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Forward

The 4th International Conference on Sensitivity Analysis of Model Output (SAMO 2004) was
held in Santa Fe, New Mexico, USA, March 8-11, 2004. This was the first time that the
SAMO meeting had been held in the United States of America. The meeting took place in the
Inn at Loretto, which proved to be a wonderful venue for holding a relaxed meeting.

The first International Symposium on Sensitivity Analysis of Model Output (SAMO) was
held in 1995 in Belgirate, Italy, under the auspices of the Joint Research Centre (JRC) of the
European Commission. It was organized by Andrea Saltelli, who brought together a small,
informal group of researchers dedicated to the advancement of methodologies for
understanding uncertainty in mathematical simulations (models) of physical systems. The
same group organized a second meeting in 1998 at the University Ca' Foscari in Venice. The
third SAMO meeting was held in 2001 in Madrid, Spain. It was organized by a group from
Spain’s Department of Environmental Impact of Energy (DIAE) of CIEMAT, together with
two universities, Politechnical University of Madrid (UPM) and the University Rey Juan
Carlos (URJC).

The theme of the SAMO series has been the study of the variation in the output of a model
caused by variations in its inputs variables, parameters, and factors related to numerical
solution methods. Especially highlighted at this meeting was the importance of the
quantification of the total uncertainty in model prediction. The following techniques were
discussed:

e Innovative methods of sensitivity and uncertainty-importance analysis
Designs and sampling plans for computer experiments
Model calibration
Model evaluation and validation
Reliability analysis and robustness analysis
Probabilistic and non-probabilistic analysis of uncertainty and sensitivity
Modeling knowledge and judgment
Decision-making under uncertainty
The application areas included economics, engineering, environment, nuclear safety, and
physics.

The Organizing Committee was comprised of Scott Doebling, Ken Hanson, Francois Hemez,
Rudy Henninger, Michael McKay, and Kathie Womack, all from the Los Alamos National
Laboratory. Kathie Womack’s diligent attention to the organizational details contributed
greatly to the smooth functioning of the meeting. Vivian Romero of the Statistical Sciences
group developed and maintained the SAMO 2004 web site.



To compose the final program, the Organization Committee relied heavily on the
recommendations from the Scientific Committee, which included the following people:
e James Cavendish, Research and Development Center, General Motors Corporation,
US.A.
e Kenneth M. Hanson (committee chair), Continuum Dynamics, Los Alamos National
Laboratory, U.S.A.
e Toshimitsu Homma, Department of Reactor Safety Research, Japan Atomic Energy
Research Institute, Japan
e Michiel Jansen, Biometris, Wageningen University and Research Centre, The
Netherlands
e Hyoung-Man Kim, Structural Dynamics, The Boeing Company, U.S.A.
e Jack P.C. Kleijnen, Department of Information Management, Center for Economic
Research, Tilburg University, The Netherlands
e Pedro Padro Herrero, Department of Environmental Impact of Energy, Research
Centre for Energy, Environment and Technology, Spain
e Stefano Tarantola, Institute for the Protection and Security of the Citizen, Joint
Research Centre of the European Commission, Italy
This committee was tasked with reviewing the 78 abstracts that were submitted for
consideration.

The final program consisted of 35 oral presentations, including eight invited tutorials. In
addition, 24 posters were presented. By avoiding parallel tracks, it was possible for everyone
to hear everything and to provide ample time for questions and comments throughout the
four-day conference. There were numerous lively discussions. Additionally, an hour-long
open discussion was held on Model Calibration and Validation, with Michiel Jansen, Michael
McKay, Anthony O'Hagan, and Timothy Trucano as panelists and Ken Hanson as moderator.

Tutorials were presented on the basic elements of sensitivity analysis by the well-known
experts Max Morris, Andrea Saltelli, Michael McKay, Anthony O'Hagan, Katherine
Campbell, Timothy Trucano, Roger Cooke, and Jon Helton.

SAMO 2004 drew to Santa Fe 106 registrants from 13 countries. Attendees had ample
opportunity for informal technical discussions. Evenings were spent socializing and exploring
the unique attractions of Santa Fe. The banquet was held at the Inn at Loretto. Guest speaker
Andrew White, of the Los Alamos Computing Project, spoke about the development of
computing at LANL in a talk entitled “A History of Predicting the Future.”

The conference was generously supported by the Los Alamos National Laboratory (LANL).
LANL, which is operated by the University of California for the National Nuclear Security
Administration of the U. S. Department of Energy. LANL’s contribution facilitated the
participation of numerous internationally recognized leaders in the fields of sensitivity
analysis and simulation science, many of whom presented the invited tutorials. LANL’s
sponsorship made it possible for many graduate students to attend. The specific organizations
at LANL that provided substantial financial and logistic support include the Weapons
Response group (ESA-WR), the Continuum Dynamics group (CCS-2), the Statistical



Sciences group (D-1), and the Research Library. Additional sponsors include the Joint
Research Centre of the European Union, the American Statistical Association, and the Society
for Industrial and Applied Mathematics.

The SAMO 2004 proceedings include 50 contributed papers. This collection is archived on
the web by the LANL Research Library at http:/library.lanl.gov/. Mark Martinez, of the
Library-Without-Walls team, helped create our web pages, and maintain the archive. The
conference web pages, which include photos taken during the conference, are maintained by
the Statistical Sciences Group at http://www.stat.lanl.gov/SAMO2004/ .

We suggest that citations to papers from these proceedings include the following information:
Author list, "Paper Title,” Sensitivity Analysis of Model Output, K. M. Hanson and F. M.
Hemez, eds., pp. page numbers (Los Alamos National Laboratory, Los Alamos, 2005)
(http://library.lanl.gov/ccw/samo2004/).

Kenneth M. Hanson and Francois M. Hemez, editors
Los Alamos, New Mexico
March 2005
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Input Screening: Finding the Important Inputs on a Budget

Max D. Morris

Departments of Statistics, and Industrial and Manufacturing Systems Engineering
Iowa State University, Ames, Iowa, 50011, USA
E-mail: mmorris@Qiastate.edu

Abstract: One general goal of sensitivity or uncertainty analysis is the determination
of which inputs most influence model outputs of interest. Simple methodologies based
on randomly sampled input values are attractive because they require few assumptions
about the nature of the model. However, when the number of inputs is large and the
computational effort required per model evaluation is significant, techniques based on
more complex assumptions, analysis techniques, and/or sampling plans are needed. This
talk will review some approaches that have been proposed for input screening, with an
emphasis on the balance between assumptions and economy, including a brief description
of recent work in economical sampling plans.

Keywords: Computer experiment, sensitivity analysis, uncertainty analysis

1. INTRODUCTION

Especially in the early stages of work with a computer model, it is important to determine
which inputs are important and which are not. The precise definition of “important” is
not always the same (and in some cases is never carefully addressed) but is generally
related to how much or what kind of influence each input has on outputs of interest.
For very simple computer models, such questions may be addressed directly through
analysis of the underlying equations. But more complex models require an empirical
approach, or computer experiment designed to allow determination of the importance of
inputs through analysis of numerical output values. The approaches we shall discuss are
described as entirely empirical (i.e. “black box”), even though it is understood that in
many applications these can be tailored to take advantage of specific knowledge about a
model.

In order to be specific, let y = m(x),z € A, represent what we mean by a “computer
model”, a deterministic function mapping a vector x of k input arguments from a defined
domain A to a scalar-valued output y. In most real problems y would also be vector-
valued, but we shall not address complications that this may created here. A particular
input z; may be deemed important if (1.) dy/0x; is large in at least some regions of A, (2.)
y is relatively complex (in some sense) as a function of z;, or (3.) y varies substantially
as the value of x; changes. These three concepts of “importance” are relatively vague,
certainly related, and certainly not exclusive, but one or more of them have been found
to be useful in a large variety of problems.

Two characteristics of this problem that make identifying important inputs practically
difficult are (1.) the dimension of x (typically not small), and (2.) the effort required
Sensitivity Analysis of Model Output
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to evaluate m (typically not trivial). The difficulty is easy to understand; if k is large,
the number of “points” needed to “fill” it sufficiently to allow characterization of y as a
function of x, without extensive knowlege or assumptions about the nature of m, will also
be large. But computer experiments requiring a large number of model executions will
be prohibitive if each execution is expensive.

Methodologies for the input screening problem have been proposed by several authors,
and vary in the assumptions required, the sense in which importance is measured, and the
number of model executions required for satisfactory performance. The four approaches
reviewed in this paper are representatives of a large collection of ideas introduced as
uncertainty analysis or sensitivity analysis. Our intent here is to point out the spectrum
of compromises they offer between required assumptions and required evaluations.

2. ASSUMPTIONS, INPUT IMPORTANCE, AND MODEL RUNS
2.1. Linear Approximation

A time-honored and often useful assumption about a function of interest is that it is at
least approximately linear in its arguments. This is such a strong assumption that it
effectively boils the entire question of the behavior of m down to a single slope parameter
for each input. There can be little question as to the definition of importance of any
input in this case. The linearity assumption implies that dy/0x; takes the same value
everywhere in A, which in turn fully defines any sense of how variable y is with respect
to x;. Complexity is not an issue here unless it is also defined so as to increase with the
derivative.

Local sensitivity analysis often amounts, in practice, to definition of A to be small
enough so that an assumption of approximate linearity is plausible. Downing et al. [3] are
among the may authors who have described how first-difference approximations to partial
derivatives can be derived from simple one-factor-at-a-time computer experiments. More
recent practitioners of this approach sometimes use orthogonal 2-level fractional factorial
designs of Resolution III or IV as the basis of such studies. Minimal designs supporting
this kind of analysis generally contain from approximately k& to 2k model runs, where k
is the number of inputs.

Approaches requiring even fewer model evaluations may be developed if even stronger
assumptions can be made. If it is reasonable to assume that most inputs have little or no
effect on the output (“effect sparsity” in some literature) and/or the signs of each deriva-
tive can be assumed to be known, then group screening plans offer sequential strategies
to identify important inputs using substantially fewer than k& model evaluations. See
the forthcoming book edited by Dean and Lewis [2] for a description of many of these
strategies.

While this general approach is often useful and usually simple, one disadvantage is
that there is little basis upon which to base an objective analysis of uncertainty. Since
there is no formal basis for the statistical interpretation of residuals, quantities such as
the t-statistics associated with each slope have only very limited heuristic value.



2.2. Input-Output Correlations

If approximate linearity is not a justifiable assumption, it still may be acceptable in some
cases to assume that the slope of y with respect to x;’s, averaged over A, is an acceptable
measure of input importance. This is probably most reasonable when an argument can be
made that y is monotonic in the arguments of interest, and that the degree of nonlinearity
in its behavior is limited. In these cases, an index such as

J ) = 9w = B@) f)dx, 5= [ y(0f(x)dx

may be reasonable, where y(x) = m(x) and f is a probability density function.

Such integrals are easily estimated using a relatively modest Monte Carlo sampling
of inputs, although most guidelines would suggest the need for more function evaluations
than can be used when the strict linear approximation is used. The virtues of using Latin
Hypercube sampling rather than unconstrained random sampling of inputs have been
argued by McKay et al. [5] and Stine [13]. Iman and Conover [4] take this approach to
evaluating the importance of inputs after transforming the output data to ranks.

The connection between k and the number of runs needed for effective Monte Carlo
estimation of the integrals is not so clear as it is when a Linear Approximation is used.
If more than a few inputs are important, accidental correlations between selected input
values can be substantial unless the number of runs is not small compared to k. These
problems may be moderated by using quasi-random sequences, e.g. [8], or algorithms
such as Owen’s [9] that control the degree of correlation between inputs.

2.3. Stochastic Continuity

Over the last 15 years or so, a number of papers have appeared in the statistics litera-
ture suggesting that the design and analysis of computer experiments might be based on
regarding (1.) m as a realization of a spatial (i.e. A) stochastic process (frequentist), or
(2.) the generalized uncertainty about m being expressed by such a process (Bayesian).
See, e.g. Sacks et al. [10] and Currin et al. [1] for overviews of this approach. The
most important practical issue in such approaches is the statement of a spatial covariance
function, governing the “complexity” that may be expected in the behavior of the output
as each input is varied. One popular functional form is:

Covly(x),y(x)] = o?e” > Oslwi—al)?

Given data from a computer experiment, likelihood or Bayes procedures may be used
to estimate parameters such at the 6;, and these used as importance indices. The sense
of importance in this example function is, again, one of scale; the value of 0, essentially
defines distance in the x; direction over which a given degree of activity would be expected
in y.

Welch et al. [14] described an algorithm, for which the overall structure is much like
that of stepwise regression, for identifying the inputs for which estimates of 6; are largest,
i.e. that are most important in this sense. In demonstrating the method, they evaluated
two example functions each in & = 20 inputs using a Latin Hypercube sample of 50



runs. The methodology worked well in these exercises, but relatively few of the 20 inputs
were actually important in each case; it might be reasonably expected that more runs
would be needed if more of the inputs were active. The authors suggest that, following
the identification of large correlation parameters, a sensible follow-up analysis would be
examination of the fitted surface (mean of the conditional or posterior stochastic process)
to examine the shape of m as a function of each apparently important input. However,
reliable estimation of the response surface is likely to require more runs than reliable
estimation of the covariance parameters.

One somewhat philosophical sticking point with (this version of) the Stochastic Con-
tinuity approach is that the indices of importance are parameters that do not directly
describe properties of the function of interest! In the frequentist formulation of the prob-
lem, 6; is a property of the (physically non-existant) process of which m is supposed to be
a single realization. In the Bayesian model, 6; is part of the characterization of a gener-
alized uncertainty (or lack of understanding) of what the model might do under specified
circumstances. With sufficient data (and I am not aware of a careful analysis of what this
may mean in this application), this distinction may be less important practically than it
is philosophically.

2.4. Conditional Variance

The approaches described to this point are predicated on assumptions of linearity, mono-
tonicity, and continuity, respectively, in the model function. Even an assumption of
continuity, however, is not always be warranted, and even when it is strictly warranted,
the degree of complexity of y as a function of some x; may make any attempt to explicitly
model m difficult or impossible for practical purposes. In such cases it may be more
natural or meaningful to define importance in purely statistical terms, e.g. the degree
to which y may be expected to vary as z; varies according to some (possibly arbitrary)
probability distribution, completely disregarding any attempt to match a specific change
in y to a specific change in x;.

Sobol’ [12], Saltelli et al. [11], and McKay [6] are among those who have proposed
input sampling plans that support estimates of conditional moments of the distribution
of y, where that distribution is propagated to the output from a specified distribution on
the input vector. In particular, where each component of x is statistically independent of
the others, these authors address estimation of

VilE@ly(x)]] or “first-order variance”

E@[Vily(x)]] or “total variance”
Here the subscript ¢ means expectation or variance with respect to the marginal distri-
bution of z;, and subscript (i) implies the joint distribution of all inputs except x;. No
functional assumptions about m are involved here, but the nonparametric nature of this
approach carries a practical requirement for a large number of model evaluations. Morris
et al. [7] have recently identified other sampling plans based on Balanced Incomplete
Block Designs that have some advantages for this type of analysis.

While this analysis has substantial appeal for the especially assumption-averse mod-
eler, it also carries a philosophical difficulty (although not as fundamental as the one I



described above for Stochastic Continuity methods). Here the objection is one of analysis
efficiency. The indices of importance are estimated based entirely on the computed values
of y, along with information about which runs share common randomly drawn values for
each input. But the specific values of x; are not used at all in the analysis; while they
intuitively must carry some information of value in most practical situations, avoiding all
assumptions about the y-to-x connection makes it difficult to apply this information.

3. COMPARISONS, CONCLUSIONS

The four general approaches outlined in Section 2 differ in (1.) the strength of assumptions
that must be made about the model, (2.) the number of model evaluations that are
required for practical purposes, and (3.) the sense in which importance is assessed for each
input. Relatively strong assumptions leave relatively few degrees of freedom in defining
importance, but require relatively few model evaluations for assessment. Relatively weak
assumptions allow more subtle definitions of importance (or negatively, do not support
the simplest interpretations), but require relatively many model evaluations.

Approach Assumptions Required Runs  Importance

Linear Approximation most least derivative
Input-Output Correlations T ! averaged slope

Stochastic Continuity T ! complexity

Conditional Variance least most variability

Variations on each of the approaches described here, and other fundamentally differ-
ent approaches, have been proposed in the literature on computational science, applied
mathematics, and statistics — the methods mentioned here are only an example of what
has been found to be useful in many applications contexts. Future research might benefit
from a broader inspection of how these methods differ, and how they might beneficially
be combined to create new “points” along the assumption-data-interpretation spectrum.
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The Evaluation of Combustion Mechanisms using Locand Global
Sensitivity and Uncertainty Methods.

Alison. S. Tomlin
Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT, UK.
Email: A.S.Tomlin@leeds.ac.uk

Abstract: Complex chemical mechanisms are increasingly used within mddstgibing a

range of important chemical processes. Within chemical modelsickpaameters describing
the rates of chemical steps and thermodynamics may be highlytaincenfluencing the

uncertainty in final model predictions. Traditionally, local sengitivanalysis is employed
within commercial modelling packages but may not be appropriate gatyhuncertain data
where models are nonlinear. This work compares linear sensitivethats with global

techniqgues such as Morris and Monte Carlo sampling for a kinetic nums$ekribing the

influence of fuel sulphur on the oxidation of nitrogen within flames. Thetkis forms an

important component of larger models describing pollution formation in cdrabudevices.

The analysis reveals the most important rate and thermo-kineaimeters contributing to the
uncertainty in NO predictions for both rich and lean flames. The l&vagreement between
local and global techniques is highlighted. The use of reduced modeteetatons using
fitting methods is also discussed as a way of improving theesftig of Monte Carlo based
methods. Speed ups of a factor of 15 are seen without significanttiorpdee predicted mean
output and standard deviation. For certain conditions, the mechanism ispaiilec of

observing previous experimental data, highlighting the need for strudawa@lopments of the
model such as including additional reaction steps for which data is not currentlplavaila

Keywords: kinetic mechanism, sensitivity analysis, reduced model, Monte Carlo, MOAT.
1. INTRODUCTION

The use of computational modelling as a design tool is increasitignwengineering
applications. One area of importance is that of combustion reactmnd&nvironmental
legislation means that engineers must develop combustion applicaitbne®w emissions of
pollutants such as nitrogen and sulphur oxides. Understanding the impaek todée elements
such as nitrogen and sulphur containing compounds on pollutant emissions isimnpac
requires the description of complex chemical mechanisms withinaimédustion chamber. In
many cases mechanism data, such as rate constants and therneaigba@rameters, are poorly
categorised. If confidence is to be placed in the design procesththemcertainty in output
predictions resulting from the use of such complex mechanisms shouildvésigated.
Local/linear sensitivity analysis techniques are commomly useydluate such mechanisms.
They have been developed in a generic way in the process enginesldngsing packages
such as CHEMKIN [1], which is used for a range of applicationsudic chemical
mechanism validation in simplified flow environments such as flowtoes, premixed and
diffusion flames. Linear methods are employed because they are ebiopalty efficient, but
are problematic where uncertainties in inputs are large and nmexe@elsghly non-linear. This
work therefore describes the development of methods for global unceréaiatysis for
application within modelling packages such as CHEMKIN.

Sensitivity Analysis of Model Output
Kenneth M. Hanson and Frangois M. Hemez, eds.
Los Alamos National Laboratory, 2005; http://library.lanl.gov/ 7



The paper will present a comparison of local and global uncertaigtiyoas for a test
case describing a 1 dimensional model of the influence of sulphur smecie emission of
NO (nitrogen oxide) from methane air flames. Experiments showthibanfluence of sulphur
within the flame can lead to both enhancement and reduction of NOi@miskpending on
whether the flame is fuel rich or fuel lean [2-4]. The chemmeathanism employed has been
developed using evaluated rate data where possible. Predictions frometianism are
evaluated for experimental data sets for a variety of flaandsuel nitrogen contents. Without
sulphur present in the fuel the mechanism has previously been shown hit exud
agreement with experimental profiles of key species. Howevem#ahanism does not capture
the quantitative influence of sulphur on NOx emissions that is demtmusirathe 1D flame
experiments[3]. Local sensitivity analysis has already resig¢d]eseveral important reactions
that require improved categorisation of the rate data to lower owdgance. The present work
presents a comparison between local and nonlocal linear methods, tHesgtebaing Morris
One at a Time (MOAT) method and random sampling Monte Carlo metisidg full and
reduced models, coupled with scatter plot and correlation analysis.

2. MECHANISM STRUCTURE AND CONDITIONS FOR EVALUATION

The mechanism under investigation consists of an updated version ofettie rhethane/NOXx
mechanism [5-7]. The SOx extension (156 reversible reactions and 2dsypebased on the
mechanism of Glarborg et 8] and Alzueta et al. [9] and has been augmented by the inclusion
of additional reactions of sulphur containing species appropriate foethane oxidation
environment, and reactions describing sulphur-nitrogen interactions that gnaveusly
appeared in the literature or widely available databases. Thetaintyestudy here focuses on
reactions of sulphur containing species and heats of formation of sulpiyooands. It is
undertaken for selected experimental conditions from [3] where ladaced fluorescence
studies were performed for a variety of low pressure methameglaoped with various levels

of HCN and S@ Comparisons were made of relative NO concentrations for sedepaht
levels and flame stoichiometries fron= 0.7 to¢ = 1.6 (Table 2 of [3]). Whilst showing
similar qualitative trends, previous mechanisms have tended to ovestphedielative increase

in NO on the addition of S{or rich flames when compared to the experiment, and to under
predict the reduction in NO for lean flames.

3. SENSITIVITY/UNCERTAINTY METHODS EMPLOYED
3.1 Uncertainties in Input Data

Well categorised kinetic rate parametersuch as those from evaluations [10], are often quoted
with an accuracy expressed&lsgk. HereAlog k = D andD is defined by logk = C4D. This

is equivalent to the rate parameteibeing uncertain by a factdrwhereD = logf. For
temperature dependant reactions this respresents the uncertair2g98lat §(299). A
temperature dependant form for second order reactions is given by:

£(T) = f(298) expis (1—1) (1)
R\T 298

where AE is the quoted error in the activation energy. The uncertainty efklagy usually

assumed to be normally symmettnless the parameter is stated as an upper or lower limit.

One can then define a probability density function (pdf) for the ratarder according to a

distribution type. For less well categorised reactions a pdf cabpeotletermined and a

minimum and maximum possible value are chosen, with an equal probabihiy value of the



rate constant existing across the range. Local sensitivityi@eats are problematic in these
cases since a most likely value cannot be reliably determinede¢owif ranges of possible
inputs are chosen, a full Monte Carlo analysis allows the usertéondee if the model can
“observe” target output values by comparison with experiments, allothiegevaluation of
possible structural uncertainties in the model such as missingckpretesses. Where target
outputs are observable then the use of correlation factors or glokaiganethods, allows the
determination of the most important input factors leading to output uncertainties.

3.2 Linear Sensitivities.

In this study non-local linear sensitivities calculated usingthé force methodre compared
against previous local linear sensitivity studies from [3]. The afsine brute force method
involves performing a base model run with outputuging the nominal values of the input
parameters, and extra model runs where each uncertain input parameter j is chayga
small factordj. The final output (y) from each run is determined and the sensitivity coefficient

given by: 5, :%_The sensitivity at any temporal or spatial point is determinet wi

computational effort of order (the number of uncertain inputs).
3.3 The Morris One at a Time (MOAT) Method.

Although they allow the study of non-linear interactions between péeesnglobal methods
can be computationally expensive since thousands of model runs may bedequne
example of a potentially more efficient screening method isQhe at a Time analysis
developed by Morris [11]. The method determines an importance ranking reongtars in
terms of their mean effect on output variance as well as deiagrthose parameters with
linear additive effects and non-linear interactions [12]. In the M@#ethod the inputsjare
assumed to have values in the set {Op-1), 2/(p-1),...,1} where in practice these values are
re-scaled to values from within their uncertainty ranges. A pgeation factorA is defined as a
multiple of 1/(p-1). A control simulation is then performed based onahdom selection of
parameters from the set {O,@/1),...,1-A}. A single parameter is then randomly selected and
modified by a factor\, and a second simulation performed. This is repeated until each factor
has been chosen once, corresponding+td runs. This procedure is repeatedimes until
stable output statistics are obtained. The average output is computedwve and the cost of
the method scales witiin+1).

The elementary effect of the jth component»obn the output iywhere x has been
changed by a factat is given by:

d; (x) e e 2

ij
The mean effect acrossuns is given byd, === and the variance:
r

() —(id:j ]

c (dij): : ((r—1) ©))




In this study, ten runs were sufficient to produce stable outputs arldeaof@=4 was chosen.
Parameters with the highest mean effect have a signifiogrddt on overall output variance
and require improved categorisation to lower output uncertainty. If tihenca between runs is
low then the effect is said to be linear or additive. Paramefiénsa high variance exhibit non-
linear or interactive effects, which is important since it iathe parameters with sensitivities
that may change if other parameter ranges are changed through improved ctitegorisa

3.4 Sampling Based Methods and Monte Carlo Analysis.

The standard method of Monte Carlo analysis is to perform a tangder of model runs
where in each run a sample of input parametes: [Xk1,Xk2, .-, Xknx, K = 1,2,...,1,

of size pis randomly selected from the possible valuexfisom the chosen distributions [12].
For a uniform distribution each sample region is assigned equal pigbahd therefore the
sample points are chosen randomly from any region. The corresponding gutiputeach
sample are determined by rerunning the moddimes. Examination of the mapping from
inputs to outputs can then be performed via a variety of methods incluchtigrsplots,
correlation analysis, regression analysis etc. The computatiostakaf order fiwhere g must
be large enough for the mean output and the output variance to converge.

4. OVERALL METHODOLOGY

Simulation of the low pressure flames described in [3] has beeorped using PREMIX [1]

at a pressure of 40 Torr for fuel to air rattbs1.6 and®=0.7. 0.3% and 0.5% of S@as been
added to the lean and rich flames respectively in line with therements [3]. The output ¥\

is the NO mole fraction in the burnt gas region. Reactions havetteaded as reversible with
reverse rates calculated from the appropriate equilibrium constdr@ssensitivity to the heats
of formation therefore forms an important part of the study. Each MPREun is
computationally fairly expensive since a larger number of coupledinearlequations must be
solved in order to determine the concentration profiles of over 75 spedhes flame. The use
of a fitted model within the Monte Carlo analysis will therefalgo be discussed as a method
of reducing the computational expense resulting from large numbers of PREMDatsomst|

The following methods will be presented for comparison:

For uncertainties in rate parameters of sulphur containing reactions:

1. linear sensitivities using the brute force method and a relative change of 10%,

2. MOAT analysis,

3. Monte Carlo analysis using up to 2000 model runs based on full and fitted models.
For uncertainties in heats of formation for the sulphur containing compounds:

4. Monte Carlo analysis using up to 2000 model runs.

Uncertainty ranges for kinetic rate parameters were asbigiseng f factors with 95%
confidence limits where data evaluations existed. For paramd&riged from a single
experimental or modelling study a factor of 2 was used. Wheredggiteed from a single
RRKM calculation, or was estimated, a factor of 10 was assuméeréithe temperature
dependence was estimated, an uncertainty factoABnof 2 was assumed. Of the 155
parameters 18% derived from evaluated rate data, 18% from a low nofmieasurements,
7% from measurements with no evaluation, 8% from a single RRKM stndy49% were
estimated. For this reason, only input ranges were determined and soT Ipelfanalysis will
not therefore allow pdfs of the outputs to be determined, but rathesatewevaluation of the

10



current mechanism in order to inform its future development. Thermodyragata and their
uncertainties were obtained from the databases of Burcat [13] &Td[M]. Coefficients for a
large number of the sulphur compounds originated from modelling technigyesMtére a
single model value was used an uncertainty of +100 (kK3nwehs assumed. Because almost
half the thermodynamic data was of this type uniform distributions were used.

5. RESULTS AND DISCUSSION
5.1 Linear Sensitivity Coefficients.

®=1.6: The importance ranking from the non-local linear sensitivity studyhirrich flame is
presented in Table 1. The highest ranked reaction is SO+NH=NO+3greement with the
local sensitivity study in [3]. The second highest ranked reaction fh@rlocal study was
SO,+H=SO+O0H, which is represented here by its reverse rate ftbjaamked 5th. The second
highest ranked reaction from this study is SH+NH=Ng+khich was also highlighted by the
local sensitivity study and has an estimated rate giving scopenpwovement. The reaction
H,S+M=H+SH+M, ranked third here, was not identified using local seitgitoefficients.
SO+Q=S0O,+0 was highlighted by the previous study and again has a negativeviégns
when using non-local methods. There is therefore some broad agreema@rbine local and
non-local linear sensitivity methods as well as notable differences in ranking.

Table 1- Comparison of importance ranking of sulphur containing reactions in the rich flame (
1.6) from the linear brute force (Ibf) and MOAT analyses.

React. Reaction Ibf MOAT | Pearson Source of Data
No. Rank Rank Coeff.
1 SO+NH=NO+SH 1 1 0.79 Single meas.
2 SH+NH =NS+H 2 5 0.12 Estimated
3 H,S+M=H+SH+M 3 7 -0.08 Unevaluated measurements.
4 SO+Q=S0O+0 4 14 -0.03 Evaluated
5 SO+0OH=SG+H 5 4 0.2 Single meas.
6 S+OH=SH+O 6 15 -0.07 Estimated
7 HSO+H=SH+OH 7 33 -0.03 Estimated
8 S+H=H+SH 8 10 -0.06 Unevaluated measurements.
9 SO+N=NO+S 9 2 0.56 Estimated
10 HS+M=H,+S+M 10 55 0.01 Unevaluated measuremernts.
11 HSOH=SH+OH 69 3 0.04 Estimated
12 SH+H=H2+S 11 6 0.06 Unevaluated measurements.
13 SH+NO=SN+OH 13 8 0.01 Estimated
14 SN+O=SO+N 39 9 0.05 Estimated

®=0.7: In the lean case a 10% increase in the selected rate pamamvatenot sufficient to

cause any detectable change in the NO mole fraction. An facldr ioicrease was required to
produce a detectable difference, making it impossible to determimepertance ranking using
a linear method. The analysis indicates that for lean conditiondl@heoncentration is highly

insensitive to the forward rate parameters of the sulphur reactions around theirl vaings

5.2 MOAT Analysis

®=1.6: Figure 1a shows the variance of the factor effects plotted agaenmean effects from
the MOAT analysis for the rich flame. Parameters with a $aynificance in terms of output
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variance appear at the bottom left of the plot. Those in the bogbisegment have a high
linear effect on model output and those in the upper portion show strong ram-ine
interactive effects. The reaction SO+NH=NO+SH appears abdtm right of the figure
showing a strong linear effect on the output in agreement with ittear|l methods.
SO+N=NO+S also shows a strong linear effect and ranks secohe IM®AT analysis as
shown in Table 1, although lower in the linear analyses. HSOH = Bh8ws a strong mean
effect and a high variance, indicating that the sensitivity toréiastion strongly depends on the
values of the other parameters. Not surprisingly this reactiomotagentified as important by
the linear methods. Its high ranking by the MOAT analysis is steeidgnce of the importance
of using global uncertainty techniques.
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Figure 1. Morris One at a Time Analysis for (ap(= 1.6) and (b)® = 0.7)

Table 2 4mportance ranking of sulphur reactions in lean flafe=(0.7) from MOAT analysis.

React. No. Reaction MOAT Rank Source of Data
9 SO+N=NO+S 1 Estimated
11 HSOH=SH+OH 2 Estimated
15 HOSO+H=S@+H, 3 Estimated
16 SH+HS,=H,S+HS 4 Single low temp. meas.
17 StH+M=HS,+M 5 Estimated
1 SO+NH=NO+SH 6 Single meas.
18 SO2+0OH=S03+H 7 Estimated
19 SO+M=S+0+M 8 Unevaluated measurements.

®=0.7: Figure 1b and Table 2 represent the output from the MOAT analydisefdean flame.
The overall mean effect of the rate parameters on the NOfragten in the burnt gas region
iIs much lower than for the rich flame. SO+N=NO+S shows the Higivesall mean effect and
since this has an estimated rate there is some scope for irmenalvien predictions by its better
categorisation. There are some differences between the reaetiiesl highly by the MOAT
analysis and by the linear studies in this and previous work [3]. on@® reactions 11, 16,
and 17 had no impact in the linear study despite being modified by upatdoa 6f 10. This
indicates interaction effects between rate parameters isctiteme. The dominant uncertainty
in the conversion from SQo SQ identified by the MOAT analysis is via OH rather than the
pressure dependant reaction in the linear study. The low mean d@ffaittreactions for this
flame again highlights the low sensitivity of NO to the sulphur chemistry fordeaditions.
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5.3 Monte Carlo analysis.

The output values resulting from the randomly sampled input distributtoribiéd rich flame

are presented in Fig. 2 as scatter plots for high ranking readtmmsthe MOAT analysis.

Pearson correlation functions [12] can also be used to determinerehgtistof the linear
response of the output to the input parameters (see Table 1). Admghatton implies a

strong linear response of NO concentrations to an increase in tthgpaeameter. These
correlation coefficients do not take into account interactive effects.
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Figure 2. Scatter plot showing Monte Carlo simulation of changes in finakhiizentration resulting
from changes in reaction rate constant (a) SO+NH=NO+SH, (b) HSOH = OH+SH.

The Pearson coefficient of SO+NH=NO+SHris= 0.79 (Fig. 2a) showing a strong linear
response in line with both the linear sensitivity and MOAT methodse statter about the
mean effect in Fig. 2a is due to the influence of other paranmtdtse output. This reaction is
ranked highest by all the methods of analysis and is clearly iamgofor the rich flame.
SO+N=NO+S also shows strong linear behaviour as demonstrated I0y56, in agreement
with the MOAT analysis. As expected, the Monte Carlo analysipled with linear regression
techniques agrees well with the MOAT analysis for reactioith wtrong linear effects.
Interestingly this reaction is fairly low down the importanagkiiag using both linear methods.
Because it is estimated however, this parameter has a higlegtaindnput range and therefore
its overall contribution to the output uncertainty is high, even thougleritsita/ity may not be.
HSOH=SH+OH is ranked third by the MOAT analysis. It has aremély low ranking using
the linear method and as Fig. 2b shows there is a large amourdttef s¢ the Monte Carlo
results. Its correlation coefficient is very low £ 0.04). This stems from the fact that the
sensitivity of NO mole fraction to this reaction rate parametanges sign in different regions
of the input parameter space. In order to highlight the importanagbfren-linear responses
either the MOAT method or higher order correlation techniques combiitedente Carlo
based methods must be used. The ranking of reactions SO+QH#$%0d SH+NH =NS+kl
as derived from the correlation coefficients and the MOAT arsafyra similar due to their high
mean effects on the output but low variances. Scatter plots andPeaetficients are not
presented for the lean flame since insufficient changes in N@ framition occur. Each method
therefore highlights the lack of sensitivity to the sulphur cheynistithe lean flame leaving
limited scope for model improvement via better characterisation of the curest ra

5.4 Agreement with experiment.

The experimental study in [3] showed a 16% increase in the NOfraoten in the burnt gas
region of the rich flame on the addition of 0.5%,S@ith an experimental uncertainty of
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+12%. In order to overlap with the experimental predictions the NO frasdgon in the burnt

gas region must be < 9.545 x“1(The scatter plots show that in order to achieve this, several of
the parameters must be chosen from the extremes of their imgetsraA view could be taken
that the likelihood of these parameters being at their extreinesves low. This leads to the
possibility of structural problems within the model, such as misegagtion sets or rate
parameters that are significantly more uncertain than has bsemed. For the lean flame, the
model does not observe the concentration determined in the experiminémycombination

of the forward rate parameters for the sulphur reactions used here.

5.5 Influence of Heats of Formation.
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Figure 3. Scatter plot showing Monte Carlo simulation of changes in finakchitzentration resulting
from changes to heats of formation of a) NS, b) SO.

Uncertainties in the heats of formation of sulphur containing spewgsaffect the reaction
kinetics as the rates of the reverse reactions are deterthiedyh the equilibrium constant.
Figure 3 shows scatter plots from a Monte Carlo analysis of tantiges in heats of formation
for the two most significant parameters for the rich flame. Hiience of the heat of
formation for NS AiH29¢(NS)) is extremely non-linear with a strong response at védwesr
than the quoted value, which flattens off at higher values. The output N© fraction will
therefore be dominated b:H,0e(NS)) only if the quoted value is too high. At higher values
other compounds start to have an effect as shown by the scattdop®@. The large amount
of scatter stems from the dominant influence of NS in its loagge. However, as the effect of
NS saturates, a negative linear responséktygs for SO can be seen. The influence of
(AtH29¢(SO)) is therefore highly dependant on the value choseAdasg(NS)).

5.6 Computational Requirements and Stabilisation of Output Statistics.

Theoretical estimations of the number of Monte Carlo runs requirethéoanalysis of 155
uncertain parameters would be extremely high. In reality, 2000 rensufficient for output
statistics to settle. Because of the large number of uncerfaihparameters attempts could be
made to reduce the computational costs by focussing the Monte Cadisisaioa a smaller
number of parameters, for example those highest ranked from the MiDAIlysis. For
comparison purposes therefore, a second Monte Carlo run has been perfarrtes rich
flame, where only the top 15 reactions from the MOAT analysis rarglomly within their
input uncertainty ranges. All other parameters are fixed atribaiinal values. The final means
for the full and 15 parameter runs compare well at 1.298=hal 1.283x18respectively, as do
the final standard deviations of 1.321%1@nd 1.320x18. This shows that the top 15
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parameters identified by the MOAT analysis account for almibshe variance in the final
output. However, the 15 parameter run does not settle statistingliaster than the full run,
meaning that large computational savings have not been made, simegaa arder of full
model simulations have been required. This indicates that the numbmmples used in the
Monte Carlo analysis depends not on the total number of uncertain paignieit on the
number of important parameters that significantly affect the ostatistics. In many cases, the
number of samples required may not rise dramatically with the nuofbencertain input
parameters, since only a few parameters may dominate the output uncertainty.
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Figure 4 Comparison of output from Monte Carlo simulations using full and reducedsn@tey line
- full PREMIX runs, black line — runs using fitted polynomial.

Further attempts may be made in order to reduce the computationaf tdes Monte Carlo
runs. In this work a second order polynomial equation has been fitted &saspithe input
output relationships from a small number of randomly sampled PREMIX wsing a Gram-
Schmidt orthonormalisation procedure [17]. Again 15 input parameters #disedutas
determined by the MOAT analysis and 120 samples are used fort.thehd polynomial
coefficients are determined by minimizing the root mean squawce éms) of the fitted
function with respect to the target output data derived from thenfadlel. Terms not reducing
the rms error are discarded. The final polynomial is factoriséug udorner equations to
minimize the number of arithmetic expressions required in thedimallation. Figure 4 shows
that both the mean output and the output variance behave in a very siayilaith increasing
sample size for the full PREMIX simulations and those using thapaiial model. After 2000
simulations both give extremely similar results, despite tdecexd model being formulated
using only 120 full simulations. The final output means from the full addaed models are
1.283x10° and 1.286x18 respectively, and the final standard deviations 1.320xaied
1.337x10", showing that the polynomial model gives similar results for >fifegi lower
computational costs. In contrast, if only 120 full model runs had been usethéhnal mean
and standard deviations would not have settled down and would have been I32320t10
1.217x10" and therefore do not represent the final values as well as using 2@@mpiall
model runs. A further point is that the polynomial model directly Heveacond order
interactions between parameters.

6. FINAL DISCUSSION AND CONCLUSIONS

The analysis shows that useful information can be obtained from Beeaitivities, although
both the linear sensitivities and the regression analysisofadentify important reactions with
strong non-linear interactions. Using combined global methodologies howeghlights a
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range of reaction rates and thermo-kinetic parameters leadiagtpat uncertainties in NO
predictions providing useful information for further kinetic studies. Faethod agrees that the
sensitivity of NO mole fraction to sulphur containing reactionsushrhigher in the rich flame
than the lean flame, which is extremely insensitive to the peeamtested here. Possible
mechanistic problems relevant to the lean flame must thereforgldngified. Since the
mechanism utilised in the study contained all reactions preseme iitgrature with measured,
modelled or estimated rates, significant further improvements imepjve new elementary
reactions being postulated with a further requirement for the categorisatioir chtbelata.

The MOAT analysis performed in this study successfully idedtifieose reactions
making the major contribution to the overall output uncertainty as detdnby Monte Carlo
techniques. Once this group of 15 parameters had been identified demasistrated that the
computional expense of using Monte Carlo analysis could be significaailiced by fitting a
polynomial model describing the relationship between the 15 importannhei@s and the
chosen model output. 120 random sampling runs proved sufficient for the fityakathen
capable of predicting the mean output and standard deviation across unanyith a high
degree of accuracy when compared to analysis using full model innse.tBe computation of
polynomials is so fast, the use of the reduced model gave speed upatef than a factor of
15. This approach of combining a global screening method with random saraphhgis
using a fitted model could therefore have potential benefits foruthieef application of global
uncertainty methods where individual model runs are computationally time consuming.
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Abstract: In stormwater quality modeling, estimating the confidence level in conceptual
model parameters is necessary but difficult. The applicability and the effectiveness of a
method for model calibration and model uncertainty analysis in the case of a four parameters
lumped urban runoff quality model are illustrated in this paper. This method consists of a
combination of the Metropolis algorithm for parameters’ uncertainties and correlation
assessment and a Variance-based method for global sensitivity analysis. The use of the
Metropolis algorithm to estimate the posterior distribution of parameters through a likelihood
measure allows the replicated Latin Hypercube Sampling method to compute the parameters’
importance measures. Calibration results illustrate the usefulness of the Metropolis algorithm
in the assessment of parameters’ uncertainties and their interaction structure. The sensitivity
analysis demonstrates the insignificance of some parameters in terms of driving the model to
have a good conformity with the data. This method provides a realistic evaluation of the
conceptual description of the processes used in models and a progress in our capability to
assess parameters’ uncertainties.

Keywords: Uncertainty analysis, Global sensitivity analysis, Bayesian inference, Model
calibration, Urban runoff, Quality modeling

1. INTRODUCTION

Since the seventies, an important number of research programs (National Urban Runoff
Program, in the USA (1978-1983), French Campaign (1980-1982), Experimental Urban
Catchment “le Marais” (1994-2000), ...) have shown that the urban stormwater is a
significant source of pollution for the receiving systems. This pollution results mostly from
the erosion caused by the runoff of particulate pollutants accumulated on the urban surfaces
and in sewers during the dry weather period (Figure 1). Moreover, in old urban centers
combined’ sewer systems are found, whereby, during wet weather periods, mixed rain and
wastewaters may reach the receiving system through combined sewer overflows.

Within the European Union, control of this pollution was concretized in government
policy and Community legislation. Concerning the urban drainage, the European Directive
n°91/271 of May 1991 on wastewater treatment forces the communities to take into account
the pollution discharged into receiving waters during storm events.

" Corresponding author. Tel.:+33(0)1 64 15 36 30; Fax:+33(0)1 64 15 37 64
" Combined sewer system is used in old cities to drain both the urban stormwater and the wastewater
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Figure 1 Sources of urban water pollution

Mathematical and computational modeling seems to be a necessary decision-making tool
for the management of urban stormwater pollution. Currently, existing models are based on a
combination of complex models including conceptual but empirical formulations that describe
the processes of generation and transport of pollutants during rainfall. The parameters
governing these functions do not have a physical interpretation and therefore, cannot be
measured directly in the field. Instead, these parameters must be indirectly estimated using a
calibration procedure whereby the model’s parameters are adjusted until the system’s and the
model’s outputs show an acceptable level of conformity.

However, the difficulty, expensiveness and uncertainty level of the in situ measurement of
urban stormwater pollution generate data that rarely allow a satisfactory calibration and
validation of these models [1]. Furthermore, classical optimization methods that are still used
up to date for calibration don’t allow neither an estimation of the significance of the obtained
optimal parameter set, nor a realistic quantification of models’ uncertainty. Thus, the existing
urban stormwater quality models are rarely used for practical application.

In this paper, we present the results of testing the applicability and the effectiveness of a
method for model calibration/validation/sensitivity analysis in urban runoff quality modeling.
This method based on the Monte Carlo Markov Chain sampling techniques “MCMC” consists
of a combination of a Metropolis algorithm for statistical inference and a Variance-based
method for the Global Sensitivity Analysis. This test will be done using data resulting from a
survey conducted on the «Marais» catchment in the center of Paris — France [2].

This paper is organized as follows: In section 2, we discuss the difficulties encountered in
urban runoff quality modeling. In section 3, we present a general overview of the uncertainty
and sensitivity analysis methods. In section 4, we describe the MCMC-GSA method by
introducing the Metropolis algorithm, the replicated Latin Hypercube sampling method and
their use in the model’s calibration and sensitivity analysis. In section 5, we examine the
applicability of this method in the case of urban runoff quality modeling. Finally, in section 6,
we summarize the methodology and discuss the results.

2. URBAN RUNOFF QUALITY MODELING

It is obvious that modeling represents a necessary tool for understanding the behavior of
the urban drainage system and a predictive tool in decision making. For this purpose, models
have been developed to simulate the urban water cycle for both quantitative and water quality
aspects. Concerning quantitative stormwater management, researchers developed runoff and
water flow models that are widely used by managers. However, concerning storm water
quality management, researchers built complex models whose structure corresponds to the
course of pollution. These models simulate the pollutants’ accumulation on the urban
catchments, their erosion by runoff, the erosion of sediments in the sewers, and finally the
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transport of pollutants through sewers to the outlet. However, despite that many models have
been proposed since 1971 (first version of SWMM by US-EPA), several difficulties are
facing attempts of stormwater quality modeling.

First of all, the physical, chemical and biological phenomena occurring simultaneously at
each stage of the processes of generation and transport of pollution in the system make the
system very complex. Moreover, space scales vary greatly considering the heterogeneity of
the system’s characteristics (topography, watersheds, pipes, sediments size), and time scales
vary from several days corresponding to the dry weather period, to few minutes during the
wet weather period. Therefore, the only possible modeling approach is the conceptual one.

Second, despite the efforts that have been done to understand the sources and the
mechanisms governing the processes involved, the dynamics of accumulation, erosion and
transport of pollutants are not well known especially in what concerns the sources and
processes of pollution generation in sewers. Currently, modelers tend to divide the urban
catchment to a number of sub-catchments of few tens of hectares connected by a sewer
network. Runoff models, which are initially developed for surfaces, are used to conceptually
describe the accumulation and erosion processes on sub-catchments for which little
knowledge is currently available. Erosion and transport models of in-sewers solids’ are
derived from alluvial hydrodynamics, which poorly describe the real behavior of a sewer
system during a rain event. So, great discrepancies exist between the current state of
knowledge concerning phenomena and the models used.

Third, field surveys for collecting data necessary for the development of models are
difficult and expensive. In consequence, input data (topography, sediment sewer deposits, rain
intensity, etc...) and quality measurement data (pollutants concentrations) are rare and
characterized by great uncertainties (in the range of 30%) [1]. They rarely allow a satisfactory
calibration of the model’s parameters.

Finally, while considerable attention has been given to develop global calibration
procedures that estimate a best set of parameter values, noting that this is not an easy task
especially that most of the models are non-linear [3, 4], much less attention has been given to
both the assessment of the significance of the obtained optimal set of parameters, and the
realistic quantification of models’ uncertainty. Thus the estimated parameters from these
models are generally error-prone leading to considerable uncertainty in the calibrated model.

Improving these models and their usefulness requires modelers to use a more robust
methodology for calibration and validation of models. Such methodology should be able to
provide both an assessment of the uncertainties in the model’s parameter values and an
evaluation of the confidence level of the model’s predictions. Uncertainty and sensitivity
analysis are therefore indispensable for any modeling improvement attempt in this field.

3. UNCERTAINTY AND SENSITIVITY

In the last decade, great attention has been given to the Bayesian inference for model
calibration and uncertainty assessment particularly in the case of complex hydrological
models [5, 6]. Nevertheless, its application in environmental modeling is very rare.

Bayesian approach, expresses uncertainties in the model’s parameters & in terms of
probability. Parameter uncertainty is quantified first by introducing a prior probability
distribution P(6) ,which represents the knowledge about & before collecting any new data, and
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second, by updating this prior probability on #to account for the new data collected (D). This

updating is performed using Bayes’ theorem, which can be expressed as:
P(Dlo)- P(0)

iP(Dl6)- P(6)-d6 @
Where P(e\ D) is the posterior distribution of &, jP(D\H)- P(H)-de is a normalizing

constant required so that jP(¢9|D)-d0 =1, and P(D| ) is the conditional probability for the

measured data given the parameters. P(D | 6) is often referred to as the likelihood function.

P(¢lp)-

Unlike traditional statistical theories based on first order approximations and multi-normal
distributions that may fail especially when dealing with nonlinear complex models [5], Monte
Carlo Markov Chain “MCMC” technique have become increasingly popular as a general
method that provides a solution to the difficult problem of sampling from a high dimensional
posterior distribution [7]. The idea behind MCMC for Bayesian inference is to generate
enough samples from a random walk which adapts to the true posterior distribution P(0| D).
A variety of appropriate Markov chains can be constructed, but all of them are special cases
of the Metropolis algorithm [8]. A study conducted by Kuczera and Parent (1998)
demonstrated the capability of the Metropolis algorithm to produce reliable inferences for the
parameter’s uncertainty assessment in the case of hydrological models.

This posterior distribution represents the uncertainty in the model’s parameters and can be
propagated through a Monte Carlo method to assess the uncertainty in the model’s output
attributable to the parameters’ uncertainties. However, as the obvious objective of calibration
is to reduce the uncertainty in the model’s output, it seems necessary to conduct global
sensitivity analysis to determine on one hand, which parameters contribute the most to the
output variation and require reducing their variances to minimize the variance in the model’s
output; and on the other hand, which parameters are insignificant and can be discarded from
the model. Thus, using this method we can determine the type of research that is required to
reduce the output’s uncertainty by reducing the variance in some of the model’s parameters.

There are many different ways to perform a sensitivity analysis, the method that will be
used in this paper is called a “Variance based” method where the uncertainty in the model’s
output Y is measured by its variance V(Y) and thus can be partitioned to the sum of a top
marginal variance and a bottom marginal variance as follows:

V(Y) =VIE(YU)]+ENV (Y)] (2)

Where U is a subset of one or more elements 4. V[E(Y|U)] is the variance of the
conditional expectation of Y given U and it will be equal to zero if Y is completely
independent of U, E[V(Y|U)] is the expectation of the conditional variance of Y given U and it
will be equal to zero if Y depends only on U [9]. In this context, the main effect, or first order
sensitivity index Sy, representing the sensitivity of Y to the parameter U is defined

as Sy =V[E(Y|U)]/V(Y). The total effect, or total sensitivity index Sry is defined
asSyi = E[V(Y|9._U )]/V(Y) where 6.y indicates all the factors but U.

Many estimation procedures of Sy and Syy are available in case of independent
parameters. However, when the parameters are correlated, a replicated Latin Hypercube
sampling method [9] for the estimation of the importance measure of parameters can be used.
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4. MODEL ASSESSMENT METHOD

In this paper, a combination of two complementary and model — independent techniques is
used to quantitatively assess the uncertainties associated with the model’s parameters as well
as the output of the model itself.

4.1. Metropolis algorithm

Although the Metropolis algorithm is not the most efficient Markov Chain sampler, it is
chosen in this study because of the simplicity of its implementation, and its generality. It only
requires knowledge about the likelihood function to update simultaneously the parameters set
for each iteration. Supposing that residuals between model and observation are N(0, o), the
likelihood function can be written in the multiplicative form:

(Y ~f(X.0)
P(D|0)= 20" (3)
—1(2 T )1/
Where (Y1,...,Yn) is the vector of the measured response Y, (Xi,..., Xp) is a vector of input
data, 8= (6.,..., 6) is the vector of p unknown parameters, and f( ) is the model’s output. o is
considered, as well as 6, as a set of parameters to be estimated during calibration.

At each iteration, candidate values of parameters are drawn from a multi-normal transition
probability distribution for which the variance could be tuned up in a way to increase the
speed of convergence. However, updating periodically (automatically) the variance during the
simulation, as proposed by Kuczera [5] is subject to difficulties: how can one be sure that the
samples used to update the variance contain information of a good quality that can help to
ensure the convergence of the chain to the limit distribution? We suggest fixing a prior value
of the variance according to the information about the parameters during all the simulation.

An interesting feature of the Metropolis algorithm is that the interaction among the
model’s parameters is reflected in the likelihood function, so there will be no need to
incorporate correlation in the prior distributions of parameters. In order to avoid favoring any
initial value, the use of a uniform prior distribution over the range of parameters may seem
reasonable [6].

4.2. Replicated Latin Hypercube sampling

The Replicated Latin Hypercube Sampling method r-LHS has been employed in this study
to assess the importance measure of the parameters. This method use r replicate Latin
hypercube samples of size k to produce m = r x k parameter vectors & in total. The same k
values of each component U of @ will appear in each replicate but the matching within each
one will be done independently. For this application the k values of each parameter U are
sampled from its posterior distribution inferred with the Metropolis algorithm. The Iman &
Conover rank correlation method [10] has been considered for the r-LHS in order to induce
parameters’ correlation in the sample. After making the computer runs using the m replicated
samples, the importance of U is assessed by computing the ratio Sy:

ssB - 92yl oLk

— 2 . =
Sy = ST , SSB = rzl(y. y)?, SST = %El(y., Y)7. Vi rjgly Zy. 4)
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yij represents the output value that corresponds to the ith value Uj, in the jth replicate. In
this paper, we are interested in the sensitivity analysis for the likelihood measure in order to
identify the parameters that are mainly driving the model to have a good conformity with the
data. Ratto [11] showed that sensitivity analysis for the likelihood gives useful information for
model calibration especially when great interaction exists between parameters.

5. CASE STUDY

In this paper, we apply the method on the case of urban runoff modeling firstly on the
scale of a sub-catchment as used in practice and secondly on the scale of a street surface.

5.1. Site description

Two different watershed scales have been used in this study: the first one WS1 is a 42 ha
urban catchment (91% imperviousness) drained by a combined sewer system and the second
one WS2 is a 160 m? street surface. The used rain event database covers a continuous period
of 16 months (1996-1997) with 151 rain events. Suspended solid SS pollutographs™ were
measured for 40 rain events at the outlet of the combined sewer, and for 11 rain events at a
street gully collecting discharge from the street. These data were acquired on the experimental
catchment “le Marais” in the centre of Paris [2].

5.2. Model description

The model used in this study to simulate the Suspended Solids pollutograph is a very
classical one. It describes the particulate pollutants’ erosion during the storm event and their
accumulation on the watershed during the preceding dry weather period. This model was at
first proposed to be used on street surface scales. However, it is currently used in all available
urban stormwater pollution software at the scale of urban subcatchment where both sewers
and urban surfaces are described as one entity.

Equation 5 and Equation 6 represent the two accumulation models tested in this paper.
Equation 5 calculates the accumulation of pollutants assumed to follow an asymptotic
behavior that depends on two parameters: an accumulation rate Daccu (kg/ha/day) and a dry
erosion rate Dero (day™) [12].

dl\/(;?(t) = Daccu - Simp — Dero - Ma(t) (5)
aMa(t) = Kaccu - (My;, - Simp — Ma(t)) (6)

Where Ma(t) (kg) is the available pollutants’ mass at time t and Simp (ha) is the impervious
area. Equation 6 represents a mathematical reformulation of the previous model and was
chosen in regard to the obtained results. This model depends on two parameters: an
accumulation coefficient Kaccu and a maximum accumulated mass Mlim. It supposes that the
accumulation is proportional to the mass still to be accumulated before reaching the maximum
Mlim, which is equivalent to the Daccu/Dero.

Equation 7 represents the evolution of the available pollutant mass during storm weather
period. It is supposed that the eroded mass is proportional to the available mass and to the

“ Suspended Solid pollutograph represents the profile of SS C(t) concentration during time t
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rainfall intensity. The erosion model depends on two parameters: the erosion coefficient Wero
and a coefficient w [13].
Clt)= 1 dMaft) and
qt) dt
Where C(t) (mg/l) is the SS concentration produced by erosion, q(t) is the discharge
(m3/s) at the outlet of the watershed at time t, and I(t) is the rainfall intensity (mm/hr).

dMa(t)

=-Wero-1(t)" - Ma(t) (7)

5.3. Results

12,000 iterations were performed with the Metropolis algorithm, and the first 2,000
samples generated were removed allowing the Chain to “forget” the initial parameter set.
Results showed that the Chain converged successfully to the same posterior probability
distribution of the parameters regardless of the initial parameter set used. However, the speed
of convergence has been found to be sensitive to the variance of the transition distribution. In
the present case we chose a value of the standard deviation equal to 1/15 of the prior value of
parameter to ensure the convergence.

5.3.1. Marais catchment scale

Figure 2 represents the confidence intervals of the model’s output obtained by applying
Monte Carlo to the model with the estimated posterior distribution of parameters. In the
present case, the range of the possible responses is very large. The value of the estimated
variance of errors (o = 130mg/l), which is quite large compared to the variance of the data
(owata = 150 mg/l), indicates that the variation in the measured pollutographs are considered as
randomness in regard to the predictive capacity of this calibrated model. Obviously, the
proposed model seems to be unable to reproduce accurately the measured pollutographs, and
the Metropolis results indicate clearly that it is not due to calibration problems.
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Figure 2 5-95% prediction intervals of the SS concentration at the Marais catchment scale

This is not surprising regarding the experimental results showed by Gromaire [2] where
the deposits in combined sewer systems contribute to 60% of pollution. The complexity of
sediments’ deposition, erosion and transport processes in sewers make the sub-catchment
scale by far outside the domain of validity of the conceptual model used. Thus, it seems
important to apply the MCMC method for the calibration of this model on a space scale
having an acceptable range of conformity to the model’s domain of validity.

5.3.2. Street Surface scale

Figure 3 presents the posterior probability distribution obtained for the parameters Daccu,
Dero, Wero, w and for the standard deviation of errors o with the Metropolis algorithm.
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Figure 3 Posterior distribution of the 4 parameters estimated at the street catchment using Eq. 5

The analysis of the posterior distributions of the parameters shows large uncertainties
related to the dry weather model parameters Daccu and Dero (Figure 4). We also found a
linear correlation between these two parameters (correlation = 0.7). This correlation is due to
the mathematical formulation of the accumulation model (Eg. 5). As a consequence, the
accumulation model could be better calibrated if mathematically reformulated.
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Figure 4 Scatter plot of the Likelihood measure vs. the parameters at the street catchment using Eq. 5
However, despite that the results obtained for the reformulated model (using Eq. 6) show

a better identification of the maximum mass accumulated Mlim as shown in Figure 5,

calibration results indicate a large uncertainty related to the parameter Kaccu representing
(like the parameter Dero) the speed of the accumulation process during dry weather.
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Figure 5 Scatter plot of the Likelihood measure vs. the parameters at the street catchment using Eq. 6

50 replicates of the 200 LH samples are used to estimate the importance measures of the
parameters for the likelihood of the model’s output for the two used models (Figure 6).
Results show that the maximum accumulated mass Mlim represents an important parameter
that has a significant impact on the likelihood measure of the model. However, the Kaccu
parameter has an insignificant effect on the model’s output. This conclusion is also provided
using the scatter plot of the likelihood measure vs. the parameters as shown in Figure 4 & 5.

One can conclude that the estimation of the initial accumulated stock available before the
rain event is very essential for the good performance of the model. However, the sensitivity
analysis results indicate clearly that using the length of the dry weather period as an
explicative parameter for the accumulation process, described by an asymptotic behavior, is
not sufficient to explain the variability of the available mass just before the rain event.
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Nevertheless, calibration results indicate a clear correlation between the maximum mass
Mlim and the erosion parameter Wero (Figure 7.a.). Such correlation is not surprising
regarding the mathematical structure of the erosion model (Eq. 7), which represents a
multiplicative form of Ma(t) and Wero.
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Figure 7 a. Correlations between Mlim and Wero. b. 5-95% prediction intervals of the pollutants
concentration simulated by model

Figure 7.b. presents the confidence interval of the model’s output C(t). It shows large
uncertainties in the model’s predictions. This is not surprising regarding the fact that an
important part of this uncertainty is attributable to the value of the variance of errors (o =
47mg/l) which is quite large compared to the variance of the data (oyaa = 62mg/l). In other
words, the predictive power of the calibrated model is low.

6. CONCLUSION

In this paper, we tested the applicability and effectiveness of a method used for model
calibration/validation/sensitivity analysis in urban runoff quality modeling. This method,
based on the MCMC sampling technique, consists of a combination of the Metropolis
algorithm and a Variance based method. Metropolis algorithm provides an estimation of the
posterior distributions describing parameters’ uncertainties, as well as, their interaction
structure. On the basis of the parameters’ distributions, the Monte Carlo method determines
the conceptual model’s confidence intervals reflecting its prediction capacity. Using the
posterior distribution, the performance of the replicated LHS method in regard to the
likelihood measure leads to the quantitative identification of the main parameters that drive
the model to have best fit to data.
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Calibration results demonstrate that the tested conceptual model seems unable to represent
the complexity of the system at the scale of urban sub-catchments. However, the application
of the method to calibrate the model on a street surface scale shows that the mathematical
concept of the accumulation model, using two parameters Daccu and Dero, contains linear
interaction between its parameters, and implies much more uncertainty in their calibration.
Furthermore, despite that a reformulation of this model using two parameters (Mlim and
Kaccu) allows a better identification of the parameter Mlim, sensitivity analysis results show
that the parameter Kaccu provides negligible contribution to the likelihood variation, or in
other words, have no significant effect on the behavior of the model. This hypothesis casts
doubts on the utility of using an asymptotic behavior, which depends only on the length of the
dry weather period to describe the accumulation process. Such a conclusion needs to be
validated on other sites to test its generality.

However, this method delivers much information, which would have been unreachable
with classical calibration methods, and which are very useful for modeling attempts.
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Abstract: This presentation aims to introduce global sensitivity analysis (SA), targeting
an audience unfamiliar with the topic, and to give practical hints about the associated
advantages and the effort needed. To this effect, we shall review some techniques for
sensitivity analysis, including those that are not global, by applying them to a simple
example. This will give the audience a chance to contrast each method’s result against the
audience’s own expectation of what the sensitivity pattern for the simple model should
be. We shall also try to relate the discourse on the relative importance of model input
factors to specific questions, such as “Which of the uncertain input factor(s) is so non-
influential that we can safely fix it/them?” or “If we could eliminate the uncertainty in
one of the input factors, which factor should we choose to reduce the most the variance of
the output?” In this way, the selection of the method for sensitivity analysis will be put in
relation to the framing of the analysis and to the interpretation and presentation of the
results. The choice of the output of interest will be discussed in relation to the purpose of
the model based analysis. The main methods that we present in this lecture are all related
with one another, and are the method of Morris for factors’ screening and the variance-
based measures. All are model-free, in the sense that their application does not rely on
special assumptions on the behaviour of the model (such as linearity, monotonicity and
additivity of the relationship between input factor and model output). Monte Carlo
filtering will be also be discussed to demonstrate the usefulness of global sensitivity
analysis in relation to estimation.

Keywords: global sensitivity analysis, factor prioritisation, main effects, second-order
interaction effects, nonlinear models

INTRODUCTION

The material in this presentation is taken from a primer on global sensitivity analysis
entitled “Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models” by
Andrea Saltelli, Stefano Tarantola, Francesca Campolongo and Marco Ratto. This will
appear with John Wiley & Sons by early 2004, and we shall refer to it as to Saltelli et al.,
2004 in the following. The primer aims at guiding a non-expert user in the choice of the
method to adopt for the user own problem. The methods recommended include the
variance based measures, the method of Morris, and Monte Carlo filtering, €.g. some
effective methods for global sensitivity analysis.

Global sensitivity analysis is the study of how the uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty in the

Sensitivity Analysis of Model Output
Kenneth M. Hanson and Frangois M. Hemez, eds.
Los Alamos National Laboratory, 2005; http:/library.lanl.gov/ 27



model input”. Global could be an unnecessary specification here, were it not for the fact
that most analysis met in the literature are local or one-factor-at-a-time.

All models have use for sensitivity analysis. Applications worked by the Joint Research
Centre group for Applied Statistics include: Atmospheric chemistry (Campolongo et al.,
1999a), transport emission modelling, fish population dynamics (Campolongo et al.
1999b), composite indicators (Tarantola et al. 2002), portfolios, oil basins models
(Saltelli, 2002), capital adequacy modelling (for Basle 1), macroeconomic modelling,
radioactive waste management (Saltelli and Tarantola, 2002). Applications from several
practitioners can be found in Saltelli et al. Eds. 2000, a multi-author book.

Prescriptions have been issued for sensitivity analysis of models when these used for
policy analysis.

In Europe, the European Commission recommends sensitivity analysis in the context of
the extended impact assessment guidelines and handbook (2002). Similar
recommendation in the United States EPA’s White Paper on model use acceptability
(1999)

The EC handbook for extended impact assessment, a working document by the European
Commission, 2002, states: “A good sensitivity analysis should conduct analyses over the
full range of plausible values of key parameters and their interactions, to assess how
impacts change in response to changes in key parameters”. The EPA paper (1999) is less
prescriptive, but insists on the need for uncertainty and sensitivity analysis.

Even leaving prescriptions aside, one cannot ignore that models have not escaped the
post-modern critique of the role of science in society. Specific critiques of simulation
modelling and model validation have been frequent in recent years. One example:
<<...most simulation models will be complex, with many parameters, state-variables and
non linear relations. Under the best circumstances, such models have many degrees of
freedom and, with judicious fiddling, can be made to produce virtually any desired
behaviour, often with both plausible structure and parameter values.>>, Hornberger and
Spear 1981.

Also, from within the modelling community reminders of the problem were frequent:
Konikov and Bredehoeft, 1992, proclaims: "Groundwater models cannot be validated".
This cry of alarm was taken up by Oreskes et al. 1994, in an article on Science entitled
"Verification, Validation and Confirmation of numerical models in the earth sciences”,
both works focusing on the impossibility of model validation. Two established
laboratory, IIASA and RIVM, had considerable trouble with the perceived quality of their
models, see Mac Lane 1989, and van der Sluijs 2002 respectively. The post-modern
French thinker Jean Baudrillard (1990) presents ‘simulation models' as unverifiable
artefact which, used in the context of mass communication, produce a fictitious hyper
realities that annihilate truth. Science for the post modern age is discussed in Funtowicz
and Ravetz 1990, 1993, 1999, mostly in relation to Science for policy use, a settings
which Gibbons (1994) calls “mode 2” scientific production.
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Faced with these critiques, the modelling community may consider that a quality check as
that which is provided by a careful sensitivity analysis is worth its effort.

Before we discuss the methods for sensitivity analysis, we would like to say a few words
about the output Y of interest. In our experience, the target of interest should not be the
model output per se, but the question that the model has been called to answer. To make
an example, if a model predicts contaminant distribution over space and time, it is the
total area where a given threshold is exceeded at a given time which would play as output
of interest, or the total health effects per time unit.

One should seek from the analyses conclusions of relevance to the question put to the
model, as opposed to relevant to the model, e.g.

e Uncertainty in emission inventories [in transport] are driven by variability in driving
habits more than from uncertainty in engine emission data.

e |n transport with chemical reaction problems, uncertainty in the chemistry dominates
over uncertainty in the inventories.

e Engineered barrier count less than geological barriers in radioactive waste migration.

This remark on the output of interest clearly applies to model use, not to model building,
where the analyst might have interest in studying a variety of intermediate outputs.

FIRST EXAMPLE: THE OBVIOUS TEST CASE

We move now to a self-evident problem, to understand the methods as applied to it. This
is a simple linear form:

Y= 0z
Y is the output of interest (a scalar), Q, are fixed coefficients, Z; are uncertain input

factors distributed as
Z.~N(z.0,), z=0 i=12,..r.

Y will also be normally distributed with parameters:

Oy = 2, X0

— r =

y= ZileiZi

To make our point we stipulate as additional assumptions:
Gz, <Oz, <...< 0y

Q>Q,>..>Q,

According to most of the existing literature, SA should be done by taking derivatives,
suchas: S; = g—; which would give for our model of Y: S¢ = 2—; =Q,.
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Hence the factors’ ordering by importance would be Z,>7Z,>..>Z_, based on our
previous assumption that Q,>Q,>...>Q_, and this in spite of the fact that
G, <Gz, <...<0, . This would seem to suggest that if our purpose is to rank input
factors in terms to their contribution to the variability of the output, then simple
derivatives such as S;‘i = S?Yare not the best instrument to use.

i

A better measure could a normalised derivative of the type: S; =&§_Y, which,
' ©

Y i

(o)
applied to our model, gives S; = Qii
1 GY

Comparing this with our previous expression GY=1/Z::lQi262, we obtain
r o 2
Zj:l(szi) :1'

This is a nice result: the terms add to 1, and each of them gives the fractional contribution
of the factor to the variance of the output. Unfortunately this only works for linear
models.

If we want to tackle nonlinear models as well, we have to abandon derivatives and move
into “exploration” of the input factors space, e.g. via Monte Carlo.

We generate a sample

A} U 5
(2)  4(2) (2)

VIR - Ry
M) AN )

and run our computer program estimating the corresponding model output
y®
(2)
y
y =
y)
A natural thing to do at this point is to regress the y’ s on the z;’s to obtain a regression
model
y=b,+Y b 2", where asymptotically b,=0,b, =Q, i=12,.r. Most
regression packages will already provide the regression in terms of standardised
regression coeff|C|entsBZ _b 6, o, =00, / o,. Comparing BZ = Q0, /o, with
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so - 2k
z, T4
Gy

it is easy to conclude that for linear models 3, =357 .

2 2
In summary, z:_:l(sz) =Z;=1(BZ.) =1, but only for linear models. Yet the regression
coefficients are better than the derivatives in several respects.

2
Although for nonlinear models »_ (Bzi) <1, at least we now know how much linear

j=1
> 5~ 5

the model is. This is given by the model coefficient of determination R§ =1

N
>y -y)
i=1
We now know that we can decompose a fraction R§ of the model variance using the f3, .

Furthermore the coefficients f, offer a measure of sensitivity that is multi-
dimensionally averaged, unlike the S; . For linear model this does not matter but it does,

and a lot, for nonlinear ones. The drawback is when Rj <<1; typically Ry2 can be zero
or near it for non-monotonic models.

In summary, we like the idea of decomposing the variance of the model output according
to source (the input factors), but would like to do this for all models, independently from
their degree of linearity or monotonicity. We would like a model-free approach.

In order to get there, we take a somehow twisted path and start asking ourselves the
question: If I could determine the value of an uncertain factor, e.g. one of our Z, and

thus fix it, how much would the
variance of the output decrease? E.g. imagine the true value is z; and hence we fix Z, to

it obtaining a “reduced” conditional variance: V(Y‘Zi = z,) There are two problems

with this quantity being a good measure of sensitivity. First 1 do not know where to fix
the factor, and secondly for nonlinear model one could haveV(Y‘Zi = zf)zV(Y ).

This difficulty can be overcome by averaging this measure over the distribution of the
uncertain factors obtaining E(V(Y|Zi)), or E, (Vz,i (Y|Zi)) where we have made explicit

the variables over which mean and variance operators are applied. This measure has the
property that E(V (Y|Zi))§V(Y) always, and in particular

E((Y[z,)+V(E(v|z,)=V(Y), where the term E(V(Y|Z,)) is called a residual, and the
term V(E(Y|Zi )) is known as the first order effect of Z; onY . A nice property of the main
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effect is that it is large when a factor is influential. Furthermore it is easy to verify that for
VE(MZ)) _
=Pz, -

linear models S, = V(Y)

r 2 -
We have made a real progress, as while ijl(Bzi) =1 only holds for linear models,

Z;:l(szi )zl holds for a much larger class of models: that of the additive models. For

non-additive models, Z;zl(szi )sl, which is also a way to define non-additive models.

Yet the measure S, is very useful for all models, as it provides a rigorous answer to a

precise sensitivity analysis setting: setting FP, for factors prioritisation. Let us then make
a digression here, and describe this setting.

FACTORS’ PRIORITISATION (FP) SETTING

Imagine that I must bet on a factor that, once “discovered” in its true value and fixed,
would reduce the most V(Y). Of course | do not know where the true values are for the

factors, hence | cannot compare the V(Y‘Zi = z,) for the various factors. Hence the best
choice | can make is, by definition, to choose the factor with the highest V(E(Y|Zi)) or,
V(E(v|z,)

, Whether the model is additive or not
V(Y)

which is the same, the highest S, =

(Saltelli and Tarantola, 2002).

To complete all this, we must say something about non-additive model treatment, so let
us complicate our model Y = Zir:lQiZi by allowing both the Q, and Z; to be uncertain,
ie. Z;, ~ N(Z ,Gzi), z,=0, i=12,.r asbeforeand Q, ~ N(Ei,cswi ) o =ci,i=12,.r,
where c is a constant greater than zero (note: if the mean of the Q, were also null as that
of the Z,, then the model would be fully non-additive, as we shall see in a moment).

Our set of uncertain input factors is now X=(Q,,Q,,.Q.,72,,Z,,.Z, ). We start

crunching number estimating the sensitivity measures and we obtain the following
results:
All S, are zero.

All S,  are>zero.

S, Is zero because the distribution of Z; is centred in zero, and hence for any fixed
value o, of Q.

E(v|e = o;)=0, and a fortiori v (E(v|©,))= 0.
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Given that zrj:l(sz )sl where is the remaining variance? To find it out we must

compute sensitivity indices on more than one factor. If we do that, we find that

\%Z“Zj)):szi +Szj, while, instead: %Q"Z‘)ksgi +S, . The difference
Y Y
a7z, =%Q“Zi))—sQi —3S,, is the second order (or two-way) effect of the two
Y

factors. We have discovered that our model is additive with respect to S, , S, , and non-
additive with respectto S, , S, .

Adding all the non-zero first order terms and all the non-zero second order terms gives
back 1, i.e. 100% of the variance of Y is accounted for.

le. Y S, +S,, =1

For our model, all other terms of whatever order (1,2,3...2r) is zero. In general, if k is the
total number of independent factors, then > S, +> > S, +> > > 'S +..5, , =1

i j>i i j>il>]

(Sobol’, 1993).

It is quite rare that in practical applications one computes all terms in the development
above. The number of terms grows exponentially with k.

We are customarily happy with computing all the S, plus a full set of synthetic terms
called S;, which give for each factor X;, the effect of all terms including that factor.

What are the total effect terms S;, and why do we need them? Let us compute one of
them, by starting with the measure

V(EMX‘Q' ))zV(E(Ypl’gz""Q“19‘+1""Qrzl’zz’"'Z’)). We have taken factor Q. as an

VY VY
example. Analogy with previous formulae should suggest that, by definition, this is the
| VNV, )
[first order] effect of all-but- ;. Hence S, :1—V— will be the effect of all

Y
terms [any order] that include €, ; for our model this is simplyS;, =S, +S,; ,

provided we remember that the S, are zero as well, so thatS;, =S, , . Note that because
of an algebraic relation already mentioned
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1—\/(Eb\(/|x‘Qi »: E(V(UX‘Q » so that the right hand expression is often used for the
Y Y

Sy

There is a considerable symmetry between the S, and S;;. Both indices can be computed
in asingle

shot at the cost of about N(k+2) simulations, where N is between 100 and 1000, to give
an idea. In Saltelli, 2002, we use an extension of the method of Sobol’, 1993. Both
indices can also be computed using the Fourier based FAST method, as extended in
Saltelli et al., 1999.

Furthermore S, is ideal for factor prioritisation setting, already described, while S;; is
ideal for the “factors fixing” setting (of which more in a moment).

A nice property of S, is that if one is desperate for less expensive simulations, a rough

estimate of these can be obtained via the method of Morris, at less than 1/10 of the cost,
see Morris 1991. (We prefer to compute a “modulus” version of the test statistics, as
described in Chapter 4, Campolongo et al., in Saltelli et al. Eds., 2000).

Finally one last useful property of variance based methods is their application “by
groups”, e.g.
Sqo+S,+S,, =1, where Q=0Q,,Q,,..Q . The computational cost of this is just 3N. Or

I can regroup as ZSAi =1, where A =(Q;,Z;). The computational cost of this is kN.
i=1

Note that in this latter expression all higher order terms are zero because there are

interactions only within A, =(€;,Z;).

Although in the first regrouping we save a lot in terms of model execution, and in the
second we don’t, there might be reasons other than economy to regroup factors. I might
want to groups factors in different submodels. In this way, if | can fix all factors in the
submodels may be | can skip the submodel altogether. I might want to separate
controllable factors from uncontrollable ones, and so on.

A SECOND EXAMPLE: WHAT CAN SENSITIVITY OFFER FOR PARAMETER
ESTIMATION

Let us now move to an estimation/calibration problem for a computational model with six
parameters. We do not know how the model is done — imagine it is a computer code. The
output of interest Y is a measure of likelihood is obtained after comparing the model
prediction Y’ with data, e.g.

Y=exp(-[sum of squared residuals of the predicted Y’ versus the data]).
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How can we characterise the good parameter set for calibration? A scatter plots of log-
likelihood (e.g. of the sum of scores) vs. parameters is not very informative (Figure 1).
Even “filtering”, e.g. taking the best outcomes, those with the highest log-likelihood,
leaves us in the dark (Figure 2). Plotting the factors value for the input (Figure 3) as well
as for the input corresponding to the best values (Figure 4) is likewise noninformative.
Note that if we computed on the filtered input factors (Figure 4) the pairwise correlation
coefficients we would obtain zeros. Also Principal Component Analysis would not be
informative as applied to the filtered input sample, as there are no correlations among the
filtered factors. Computing the first order sensitivity indices for the log-likelihood and the
second order ones (Figure 5), a story starts to emerge; there are non-zero second order
effects, but only within the closed groups involving factors (1,2,3) and (4,5,6).
Computing the third order effect (Figure 6) again only those pertaining to (1,2,3) and
(4,5,6) are non-zero. Regrouping and adding the terms up gives an interesting result:

S5 =S,+S,+S;4+S,+S;3+S,+5,,,=05
Suss =S, + S5+ S5+ S5+ Sy +Sgg + S, =05
where we have used the supescript ¢ symbol to denote the effects closed within the

indices. The variance of the problem is characterised by two groups of three factors.
Higher term orders are zero.

This leads the investigator to conclude that what could be reasonably estimated are two
unknown functions of two parameter sub-sets. We can now reveal that the unknown
function, our computer program, was the sum of two speres.

F( Xy X, ) =
—(xEe X xE R IA —([XErxZrxE-R,[ 1A,

Were the investigator to identify this structure, by trial and error, he/she would conclude
that all that estimation can provide are the two radiuses.

This concludes our illustration of sensitivity analysis as applied to a diagnostic setting,

and we would now like to come back to our discussion of the settings for sensitivity
analysis.

MORE ON THE SETTINGS FOR SENSITIVITY ANALYSIS

We have already mentioned that the sensitivity measure of the first order,

V(E(YX,). o
S, = V—I is the ideal measure for factor prioritisation. It is also easy to see that the
Y
_EMx) . .
total effect measure S, = v is appropriate for a setting that we could call

Y
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“Factors Fixing”: Can | fix a factor [or a subset of input factors] at any given value over
their range of uncertainty without reducing significantly the output variance? If factor X,

is totally non-influential, then all the variance is due to X, , and fixing this vector results
in V(Y|X_i)=0. It is easy to see that the reverse is also true so that necessary and
sufficient condition for X, to be totally non-influential is S;; =0.

Other settings that we have found useful are the following.

Factors mapping: Which factor is mostly responsible for producing realisations of Y in
the region of interest? This can be treated with Monte Carlo Filtering and related tools
(described elsewnhere at this workshop).

Variance cutting: Reducing the variance of the output of a prescribed amount fixing the
smallest number of factors. This setting can be dealt with using a combination of the S,

and S;; measures (Saltelli and Tarantola, 2002).

Why do we need settings? One way in which a sensitivity analysis can go wrong is
because its purpose is left unspecified or vague (e.g. “find the most important factors™).
One throws different statistical tests and measures to the problem and obtains different
factors rankings. What can then be concluded? Models can be audited and settings for
sensitivity analysis can be audited as well. For this reason we believe that importance
must be defined beforehand.

A FEW MORE COMMENTS ON PRACTICES

What else can go wrong in a sensitivity analysis? Two instances come to mind:

There are too many outputs of interest, as we discussed at the beginning. What is the
question asked from the model? Is the model relevant to the question? The optimality of a
model must be weighted with respect to the task, according to a current mode of thinking.
According to Beck et al. 1997, a model is “relevant” when its input factors actually cause
variation in the model response that is the object of the analysis. Model “non-relevance”
could flag a bad model, or a model used out of context (e.g. a gun to kill a fly). Excess
complexity could also be used to silence or to fend off criticism from stakeholders, e.g. in
environmental assessment studies.

Patchy or piecewise sensitivity (performed by sub-model, or one possible model at a
time, or one factor at a time): Not only conflicts with the requirement of focus just
mentioned, but leads to a dangerously incomplete exploration of the uncertainties;
interactions are overlooked. All uncertainties should be explored simultaneously. Also
the procedure of fixing non-influential factors should be conducted in this way, as fixing
factors based on their first order effect can be dangerous as discussed above. The €, of

our initial example all have first order equal zero.
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A posteriori sensitivity: Once an analysis has been produced, its revision via sensitivity
analysis by a third party is not something most modellers will willingly submit to.
Sensitivity analysis should be used in the process of model development, prior and within
model use in analysis.

One should never forget that an unpleasant (or pleasant, depending from the viewpoint)
feature of sensitivity analysis is that it might falsify the analysis altogether, e.g. by
showing that the model cannot answer the question given the uncertainties, or that the
model is irrelevant, or that the variation in the output of interest (e.g. a contamination
level in an estuary) is insensitive to the available policy options given the uncertainties. A
nice example that shows how SA can falsify a model as applied to a policy issue is
described in Chapter 20, Tarantola et al., of Saltelli et al., Eds. 2000.

CONCLUSIONS

We can itemise our main conclusions as follows. There is an increased need, scope and
prescription for quantitative uncertainty and sensitivity analyses. Methods are mature for
use, e.g. in terms of literature, software, computational cost, tested practice, ease of
communication.

In spite of this one observes a “slow start” of quantitative methods in practical analyses

Variance based measure are concise, easy to understand and to communicate, reduce to
the elementary test (the standardised regression coefficients Bﬁ) for linear model, relate

to the popular method of Morris.
We also like and use methods in the MC filtering family.

Whatever the method one uses, we think it important that the framing of the analysis be
defensible and meaningful to its users.
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Figure 1. Log-likelihood for the six input factors.
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Figure 2. Same as Figure 1, for values of log-likelihood > -200.
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Figure 3. Pair-wise scatter plots of input factors.
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Figure 5. First- and second-order sensitivity indices for the log-likelihood.
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NOTES

The Joint Research Centre distributes freely the software SIMLAB for uncertainty and
sensitivity analysis. More information from stefano.tarantola@jrc.it. Marco Ratto
(marco.ratto @jrc.it) has developed a set of scripts in Matlab to run global sensitivity
analysis in diagnostic settings (e.g. with filtering plus variance based methods, see our
two-sphere example). This is also available.

A forum to discuss sensitivity analysis issues is
available at http://sensitivity-analysis.jrc.cec.eu.int/.
It includes a FAQ section, introduction to the main

methods and a bibliography. [ A0 ab
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Abstract: The initiative “e-Readiness of European enterprises” is part of the European
Commission “e-Europe 2005 action plan. As part of this initiative, the European Council of
ministers has requested the compilation of a composite indicator to assess the preparedness of
the internet business environment of European Countries. Underlying data for the component
indicators have been obtained through enterprise surveys. The Joint Research Centre, as part
of the European Commission, has been asked to carry out a pilot study on this composite
indicator for the year 2002. The study includes the testing for robustness and sensitivity, as
recommended by the European Commission guidelines for impact assessment. We illustrate
here the uncertainty and sensitivity tests that have been carried out for this pilot study.

Keywords: e-business, robustness, uncertainty, weights, imputation.

1. INTRODUCTION

Composite indicators are weighted combinations of selected sub-indicators into single
aggregated measures, via underlying models of the policy domains of interest. Discussion on
the legitimacy of such indicators is incessant. Composites are increasingly used by media and
policy makers to communicate information on the situation of countries or regions in various
policy fields such as environment, economy or technological development (reviews in [1,2]).
Opponents lament that composites are mixes of dubious interpretation yet expensive to obtain.
Organisms such as the UN, the OECD and the European Commission make use of such
measures. In particular the OECD and the JRC have recently undertaken the joint preparation
of a handbook of good practices of composite indicators building [3].

In this paper we study the construction of a composite indicator of e-business readiness
(see Section 2). This composite indicator is aimed at measuring the progress of Member
States towards a more extensive take up and use of digital technologies. We report part of the
results of a pilot study commissioned to JRC by the Directorate General Enterprise of the
European Commission. In particular, we focus our analysis on the weighting scheme used to
aggregate sub-indicators, and on the sensitivity of the composite indicator to different
weighting schemes and to incomplete data.

As far as weighting is concerned, JRC suggested and deployed a participatory technique,
called “budget allocation”, which allows any expert of a panel to express, from a policy
perspective, their opinion upon the relative importance of sub-indicators (see Section 4).

The issue of sensitivity is crucial for the characterisation of composites. The
Communication from the European Commission on Structural Indicators [4] recognises the
importance to assess the sensitivity of the message provided by composites with respect to the
weights employed. Here we consider an additional source of uncertainty in the evaluation of
the composite indicator, the uncertainty due to missing data.

Sensitivity Analysis of Model Output
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Los Alamos National Laboratory, 2005; http://library.lanl.gov/ 44



As we shall see in Section 3 we use a Multiple Imputation technique (based on Markov
Chain Monte Carlo algorithms) for the treatment of missing data. This is appealing in that it
provides confidence bounds for the imputed data [5,6]. Imputed data are, indeed, estimated
values. Different imputed data may result in different values for the composite indicator. Thus
their effect on the resulting composite indicator must be acknowledged using both uncertainty
and sensitivity analysis.

2. THE eeREADINESS COMPOSITE INDICATOR

The eEurope 2005 Action Plan [7] calls for a benchmarking of the target that ‘by 2005,
Europe should have (...) a dynamic e-business environment’, specifying that ‘e-business
comprises both e-commerce (buying and selling on-line) and restructuring of business
processes to make best use of digital technologies’. Besides proposing guidelines for the
benchmarking, the resolution sets out a number of policy indicators to monitor progress in the
implementation of the Action Plan.

One of these benchmarking indicators is the composite indicator on e-business readiness.
According to the Council’s recommendation, this is made of two core groups (see Table 1):
(a) Adoption of ICT by business, and (b) Use of ICT by business; each group is composed by
six sub-indicators.

The composite indicator, Y, for a given country C, is a weighted sum of K sub-indicators

k
Xic (5 available for Adoption and 6 for Use of ICT) and k weights w; : Y, = Z X, 0w . The
i=1
analysis is conducted using an incomplete dataset (data availability is 81%) for the year 2002.
Therefore, the first step in our analysis is that of “filling up” empty spaces.

Table 1. List of sub-indicators for the composite indicator on e-business readiness

Adoption of ICT by business

al % of enterprises that use Internet

a2 % of enterprises that have a web site/home page

a3 % of enterprises that use at least two security facilities at the time of the survey

a4 % of total number of persons employed using computers in their normal work routine (at least once a week)
as % of enterprises having a broadband connection to the Internet

a6 % of enterprises with a LAN and using an Intranet or Extranet

Use of ICT by business

bl % of enterprises that have purchased products / services' via the internet, Electronic Data Interchange or any other computer
mediated network where these are >1% of total purchases

b2 % of enterprises that have received orders via the internet, Electronic Data Interchange or any other computer mediated
network where these are >1% of total turnover

b3 % of enterprises whose IT systems for managing orders or purchases are linked automatically with other internal IT systems
b4 % enterprises whose IT systems are linked automatically to IT systems of suppliers or customers outside their enterprise group
b5 % of enterprises with Internet access using the internet for banking and financial services

b6 % of enterprises that have sold products to other enterprises via a presence on specialised internet market places
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3. MULTIPLE IMPUTATION OF MISSING DATA

3.1 Methodology

We do not attempt any imputation for countries and sub-indicators that are totally missing.
Therefore, Belgium, France, The Netherlands, Portugal and the sub-indicator a3 were not
included in the analysis (see Table 2).

The explanation of the MCMC-based technique for multiple imputation is given in Refs. 5
and 6. The technique yields, simultaneously, one estimate for each of the 22 missing data.
This process is repeated M=50 times. Against the prevailing practice of using, for each of the
22 cells, the mean over the M individual estimates, we use their full distribution in our study.
The gray values in Table 2 are the medians of the (normal) distributions. The sample means
and standard deviations, calculated over the M values, are given in Table 3. The dataset in
Table 2 is the starting point for the calculation of the composite indicator.

Table 2. Data set for the e-business readiness composite indicator. The50-th percentiles of the
distribution of the imputed values are marked in grey. NA stands for ‘not available'.

DK 95% 76% 59% 56% 53% 24% 12% 5% 9% 68% 2%
D 84% 66% 51% 28% 45% 39% 16% 11% 11% 55% 1%
EL 64% 34% 43% 3% 25% 7% 6% 7% 8% 39% 1%
E 82% 38% 34% 45% 31% 3% 1% 3% 9% 64% 0%
F

IRL 83% 53% 42% 9% 41% 23% 11% 6% 10% 57% 3%
I 74% 46% 42% 15% 39% 3% 3% 1% 1% 38% 0%
L 78% 51% 44% 18% 69% 22% 11% 5% 10% 42% 1%
NL

A 85% 64% 51% 29% 50% 27% 17% 6% 12% 58% 2%
P

FIN 96% 69% 57% 44% 51% 30% 13% 6% 14% 81% 2%
S 95% 80% 2% 33% 62% 31% 16% 8% 16% 1% 2%
UK 74% 67% 57% 20% 39% 18% 12% 14% 18% 45% 1%

4. SELECTION OF WEIGHTS

A rather common way to assign weights is to involve experts opinion. In the budget
allocation method [8], each expert is given a “budget” of 100 points, and is asked to distribute
the budget over the sub-indicators by allotting more points to those indicators which are felt
as more important. For each sub-indicator, the average weight across the experts (last row in
Tables 4 and 5) is used in the aggregation procedure.
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Table 3. Mean and standard deviation of the 22 imputed data over M values

Indicator Country Mean Standard deviation The budget allocation method was
a4 FIN 53% 11% employed at the steering group meeting
as D 32% 31% of the e-business support network (e-
bl S 38% 16% BSN), held in Paris on October, 28,
bl UK 20% 1% 2003. Fourteen experts coming from
b2 UK 10% 59 the European Union and the Accession
3 DK 6% s Coun‘Fries were invo!ved in ‘ the
o3 b 135, 00, exercise. The sets of weights obtamed,
for each core group, are given in
b3 F 10% > Tables 4 and 5.
b3 L 129 8
3 A 12;; 8;; Contrarily to the common use of
o3 N 6% 00, average weights, where the information
from the single expert vanishes, we
b3 s 13% 8 believe it is important to retain the
b4 DK 20% 8% identity of the experts and
b b 16% 7% acknowledge, in our model of
b4 14% 8% composite indicator, the uncertainty to
b4 L 8% 4% due expert selection.
b A 1% 4% Table 4. Results of the budget
b4 FIN 19% 8% allocation exercise for ‘Adoption of ICT".
b4 S 16% 8% Data for a3 not available. Weights
bs UK 56% 0% originally attributed to indicator a3 have
o DK - - been_ 'equal!y _ distributed over the
remaining 5 indicators, and re-scaled so
b6 UK 2% 1% that the sumis 100.
Expert’'s
al a2 a4 a5 a6 SUM
Nationality
UK - 15 15 35 35 100
NL - 20 20 50 10 100
LV 35 35 10 20 - 100
L 30 25 30 15 - 100
DK 25 25 25 25 - 100
SL - 30 20 30 20 100
F - 25 25 25 25 100
LT - 10 20 40 30 100
IRL - - 312 50 18.8 100
N - - 409 357 214 100
S 11.2 - - 44.4 44.4 100
HU 16.7 16.7 16.7 22 27.7 100
EL - 15 25 30 30 100
E 40 40 10 10 - 100
Average 117 192 203 304 184
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Table 5. Results of the budget allocation exercise for ‘Use of ICT .

Expert’s

bl b2 b3 b4 b5 b6 SUM
Nationality
UK 15 15 35 35 - - 100
NL 10 30 - 30 - 30 100
LV 35 30 20 15 - - 100
IL 25 25 - - 25 25 100
DK 25 25 25 25 - - 100
SL 40 20 - - 30 10 100
15 25 25 25 25 - - 100
LT - 10 - 30 20 40 100
IRL 15 15 30 40 - - 100
N 15 35 35 15 - - 100
S 10 30 - 40 - 20 100
HU 5 10 20 20 20 25 100
EL 20 - 30 30 20 - 100
E 40 - 40 - 20 - 100
Average 20 19.3 18.6 218 9.6 10.7

5. UNCERTAINTY ANALYSIS

Given the variability of expert selection, and the uncertainty coming from the imputation
of the missing data, the composite indicator for the different countries is also affected by
uncertainty. We have carried out the following tests:

* uncertainty analysis to assess how the variability in the weights and the uncertainty in
the imputed data influence the composite indicator of e-readiness;

* sensitivity analysis of the composite indicator to assess how much uncertainty is due
to choice of weights and how much to imputation errors. This is helpful to know
whether collecting more data permits drawing more accurate inferences.

The variability in expert selection has been accounted for by considering a trigger factor
o, i.e. a discrete random variable uniformly distributed between 1 and 14 (the number of
experts). For example, for ®=7 the expert from France is chosen (see Tables 4 and 5).

The uncertainty coming from imputation of missing data depends on how many
imputations have been done for a given country. For example, for Denmark three imputations
have been made. Therefore, we define one uncertain factor for each imputed data. The factors
are normal distributions with means and standard deviations given in Table 3. For Denmark
we have four uncertain factors; for Italy only one uncertain factor (®), hence no sensitivity
analysis can be carried out. Let Y be the composite indicator for a given country:

Y :Vvlal +W2a2 +W3a3 +W4a4 +W5a5 +W6a6 +W7bl +W8b2 +W9b3 +Vv10b4 +Wllb5 +Vvl2b6

where w=(w,,W,,...,W,, ) is the set of weights proposed by a given expert (a given row in
Tables 4 and 5). For UK, for example, the composite has five sources of uncertainty: o, bl,
b2, b5 and b6; for Greece the composite has only one source of uncertainty: .
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Different countries have different (number of) uncertainty sources; this implies that the
uncertainty analysis is carried out independently for each country. For each country, a LHS
sample of size N =1500 is generated for the uncertain factors based on their distributions, and
the composite indicator is evaluated N times. Figure 1 displays the empirical distributions of
composite indicators for the eight countries that had both uncertainty on weights and on data.
The other countries, Greece, Ireland, and Italy have a complete dataset, thus the uncertainty
analysis is a histogram with 14 bins, one for each expert in the budget allocation exercise.
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Figure 1. Uncertainty analysis of the composite indicator of e-business readiness for eight
countries, based on a LHS sample of size 1,500. On the horizontal axis the values of the
composite indicator; on the vertical axis their frequency of occurrence.

For Austria, b3 and b4 are imputed, and experts 4 (from Luxembourg) and 6 (from
Slovenia) give zero weight to both b3 and b4. This causes the presence of two peaks for
Austria (the left one due to expert 4, the right one due to expert 6). Similar peaks occur for
Luxembourg, Denmark, and Spain. Figure 1 displays multi-modal distribution functions for
most countries. Each modal function is the result of the convolution of particular
combinations of weights with uncertainty in imputation. Discrete distributions are obtained
for Greece, Ireland and Italy. While for Ireland uncertainty on weights does not favour any
particular output value, for Greece and Italy medium and low values respectively of e-
business are more likely.

Figure 2 displays the composite indicator of e- readiness with its confidence bounds for all
countries in terms of box-plots. Sweden and Italy have non overlapping bounds: the policy
inference is robust, no matter uncertainty in weights or in data. When the box plots of two
countries overlap, the degree of uncertainty determines the relative score of the countries
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considered. Spain, Greece, and Italy unambiguously have lower e-readiness than Denmark,
Finland and Sweden. Germany overlaps with almost all other countries pointing to the crucial
effects played by uncertainty in weights and data (mainly a5, see Table 3) for this country.

Figure 2. Box plots of the composite indicator on e-business readiness. Uncertainty is due
to different weighting schemes as well as to imputation of missing data.
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s ul , | boxes. For  Greece,
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6. SENSITIVITY ANALYSIS

6.1  Methodology

The question answered by the sensitivity analysis is how much of the uncertainty on the
composite indicator Y for a given country depends on the uncertainty on its input factors X
(imputed data and weight selection). Using the variance of Y as yardstick of importance, the
issue becomes, how much does the prediction variance, V(Y), decrease, on average, when
some components of X are held fixed. The starting point of the variance-based methods is the
variance decomposition V(Y )=V(E(Y]| X, ))+E(V(Y|X,)), where X, is any uncertain
factor. The first order sensitivity indices can be calculated as S =V(E(Y| X, ))/V(Y), for

each uncertain factor. The higher S, the higher the importance of X;, as the larger the

average drop in variance V(Y') obtained when fixing X, within its range.

The method used here to evaluate the sensitivity indices is a generalisation of that
proposed in [9] (a review is also offered in [10]) at no extra cost for the analysis. We illustrate

the generalisation briefly here. The first order indices are calculated by:
.U, -EXY

S,- = IA—() (1)

V(Y)
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where Monte Carlo estimates for U, E(Y) and V(Y') are computed as:

A 1 [ r ] ! ! 4
j :F; f( Xi1s Xigseees rk)f(Xrl,sz,...,Xr(j_l),X”-,Xr(j+1),...,er) (2)
. 1Q 2
Ez(y):{ﬁ f(Xrl,sz,..,X,k)} (3)
r=1
1 ’
V(y):E f(XrI’Xr2’ ° rk) (Zf( r> rZ’ °2 rk)) (4)
r=1

Let us simplify the notation by setting:
Ya= f(Xl ’Xz’"-’xk): f(A) Ye = f(Xrl asz ” r(j—l)V’er 1Xr(j+1)""'er'): f(C) (5)

Vg = f(xl' ,xz',__l,xk'): £(B) Yo = T XXy X 1) X X o1y X )= T(D)

A and B are independent sample matrices; C and D are independent re-sample matrices as
well. Ref. 9 suggests that, when calculating U; as sum of products Y,Y., more accurate

estimates for S; are obtained when E*(y) is based on products of independent matrices:

n , , , 1<
Z f(xrl’xrz 7"7er)f (Xr1>Xr2 ""7er) = E; yAyB (6)

Therefore, it is also legitimate to estimate E2(y) using products of Y.y, which are also
independent. When (6) is employed, the denominator of (1) can then be calculated from
either y,y, or YgYg. Similarly, when E2(y) is estimated using products of Yy.Yy,, the
denominator in (1) can be estimated from either y.y. or y,Y,. We end up with four
sensitivity indices:

= (Z YaYe _ZyAyB)/ zyAyA SJ!“ =(Z‘,B/Ayc _zycyD)/Zycyc

Sj!l :(ZyAyC _ZyAyB)/ZyByB SJ!V :(ZyAyC _ZycyD)/zyDyD

Exploiting the symmetry property of the design (Ref. [9]), we obtain additional indices:

S}/ = (ZyByD _ZyAyB)/ZyAyA S}/” = (ZyByD _zycyD)/zyCyC

S =X YaYo =X YaYe )/ X e Ve " = (X Ye¥o = 2 Ye¥o )/ 2 ¥oYo

The indices SJ! ,SJ!I ,S}” ,S}V are positively correlated. So are the indices S’ ,S\j/' ,S\j/” ,S}/”' . The

two groups of indices are negatively correlated. Comparison tests between the indices used in
[9] and the average of the eight estimates confirm that the convergence of this latter is
generally more rapid. Same symmetry properties allow the estimation of four total indices.
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7. RESULTS

We test the sensitivity of the composite indicator for each country to both weights and
imputation results using the method illustrated so far. A total cost of about 1,000 model runs
has been required to estimate both the (eight) first order indices and the (four) total effects for
all the factors with an accuracy of 1% on the indices. The time required to execute one model
run is approximately nil, as the model output is a weighted average of the input. Is uncertainty
coming from imputation (other than for Greece, Italy and Ireland) more relevant than the
uncertainty due to choice of weights?

Table 5. First order and total effects of uncertain factors (weights trigger and imputed
indicators) on e-business readiness for eight countries. Calculations performed with the
enhanced version of the method of Saltelli.

A D DK 1 FIN IL, S UK
Weights 0.97 0.56 0.95 0.91 091 0.95 091 0.94
ay 0.03
as 0.38
b, 0.04 0.03
b, 0.01
bs 0.01 0.01 0.00 0.01 0.01 0.02 0.01
by 0.00 0.01 0.03 0.05 0.02 0.01 0.01
bs 0.00
bs 0.00 0.00
A D DK 12 FIN L S UK
Weights 0.98 0.61 0.97 0.93 0.93 0.97 0.94 0.96
ay 0.04
as 0.42
b, 0.06 0.04
b, 0.01
bs 0.02 0.01 0.06 0.02 0.02 0.04 0.01
by 0.00 0.01 0.08 0.07 0.03 0.02 0.02
bs 0.01
bs 0.05 0.00

Table 5 shows that for all countries a large fraction of the composite indicator variability
is due to the set of weights used. The uncertainty brought by weights is an implicit part of the
participatory approach used to build the composite indicator. In other terms a “true value” for
weights cannot exist because of different objectives, viewpoints and interests at stake;
uncertainty in the composite indicator due to weights cannot be eliminated and has a visible
impact on the results.

The uncertainty due to the imputation of missing data does not account for more than 5%
of the e-business readiness variance for all countries but Germany. For Germany indicator a4
accounts for 38% of the composite indicator variance. This means that, being able to find the
real value of a4, would reduce (on average) the variance of the composite indicator of 38%.
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The total indices look very similar to those of the first order. This highlights the additive
structure of the model. Some indicators (e.g., bs and by for Germany; by, bs and bg for UK)
have total effect index lower than, or equal to, 0.01. This means that it is worthless to spend
resources collecting data for those indicators and those countries, because this would not help
improving the accuracy of the composite indicator.

8. CONCLUSIONS

Media and policy-makers look with increasing interest at composite indicators as
appealing tools to attract the attention of the community and to help focusing policy debates.
But methodological gaps in their design and construction may invite politicians to draw
simplistic conclusions or the press to communicate misleading information. That is why
national and international organisations believe that it is important to focus on methodological
issues in the design of composite indicators [3].

This study focuses on the design stage of composite indicators, where rarely robustness
and sensitivity analysis are applied. Yet, quite recently, the European Commission has
recognised the role of such investigation and requires the use of sensitivity analysis in the
development of any new composite indicator. The Joint Research Centre supports various
Directorates General of the European Commission in a number of projects that involve the
development and use of composite indicators. The case of e-business readiness presented in
this paper is the latest exercise carried out so far.
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Abstract: Conventional variance-based sensitivity indices are extended to deal with the
case when information is available as closed convex sets of probability measures, a situation
that exists when probability distributions are specified with interval-valued parameters.
The generalization to closed convex sets of probability measures yields lower and upper
sensitivity indices. An example demonstrates a numerical method for estimating these
sensitivity indices.
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1. INTRODUCTION

The information input into computer models may be imprecise for several reasons. Impre-
cision is often a consequence of measurement processes, for example using digital sensors.
Prior information is sometimes recorded in the literatures as intervals without any infor-
mation about probability distributions [1]. Given only finite time, it is argued that it may
be impossible to elicit precise probability distributions from experts [2]. Indeed experts
may deliberately use imprecision to express their uncertainty.

The extension of probabilistic analysis to include imprecise information is now well
established in the theory of imprecise probabilities [3], robust Bayesian analysis [4, 5] and
fuzzy statistics [6]. In this paper we explore the notion of sensitivity within this framework.
We confine ourselves to the theory of coherent lower and upper probabilities, which,
whilst not the most general theory of imprecise probabilities, is sufficient to deal with the
situation in which probability distributions are specified by interval-valued parameters.

2. COHERENT LOWER AND UPPER PROBABILITIES

Consider a probability density function f(z,a), where x € R and a = (a1, as, ..., an), a
vector of parameters of the probability density function. By definition
Pr(A) = / f(z,a)dx,VA CR. (1)
A

If each parameter a; in a is specified by a closed interval [I;,u;] then a is constrained by
an m-dimensional box @), defining a closed set of probability measures that imply lower

and upper probabilities, P(A) and P(A):

Pr(A) = inf /Af(x,a)dx (2)

acqQ
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glég/fxa (3)

P(A) and 1 — P(Z_) will be located at the same point a, so P(A) = 1 — P(A), meaning
that P(A) and P(A) are coherent lower and upper probabilities [7].

The lower and upper expectations, E(X) and E(X), are given by

B = juf [ aflea)is (1)
E(X) = {silég /_OO xf(z,a)dx. (5)

The definitions in Equations 2 to 5 can be extended to the case when f(x,a) is a joint
probability distribution on R"™ and x = (z1,...,x,).

2.1. Lower and upper variance

The standard definition of the variance V(X)) of a random variable X is
V(X) = E([X - E(X)]"). (6)

If M is a closed convex set ¢ of probability measures P : X — [0, 1], then the lower and
upper variances V(X)) and V(X) are given by:

V(X) = min V(X) (7)
V(X) = max V(X). )

2.2. Natural extension of imprecise probabilities

Let g be a function such that y = g(x) : x = (x1,...,2,), and let B, C R" containing
all of the points (z1,...,2,) such that g(x) € C : C € R, then the lower and upper
probabilities P(C') and P(C') are:

:ﬁg/ /fmw.xm)ml dz,, (9)

P —sup/ /f Ty ..., Tp,a)dxy ... dT, (10)
aeqQ JB,

and
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3. VARIANCE-BASED SENSITIVITY ANALYSIS

Consider now the conventional probabilistic case in which the uncertainties in z1,...,x,
are expressed as precise probability distributions, i.e. xy,...,z, and y are replaced by ran-
dom variables Xi,...,X,, and Y respectively. In variance-based sensitivity analysis, the
first order sensitivity indices S; represents the fractional contribution of a given variable
X; to the variance in a given output variable Y [8]. In order to calculate the sensitivity
indices the total variance V' in the model output Y is apportioned to all the input factors

X; as [9]
i 1<j 1<j<k
where
Vi = VIB(Y|X: = o) (12)
Vi =VIE(Y|X; =2}, X; =2})] - Vi =V} (13)

and so on. V[E(Y|X; = z})] is the Variance of the Conditional Expectation (VCE) and
is the variance over all values of =] in the expectation of ¥ given that X; has a fixed value
xf. The first order (or ‘main effect’) sensitivity index S; for variable X is:

and the ‘total effect’ sensitivity index is [10]

VIEY X< = 2%,)]
V(Y)

where X.; denotes all of the variables other than X;.

4. IMPRECISE SENSITIVITY INDICES

In the case when the uncertainty in the variables X; ... X, is described by a closed convex
set M of probability measures P, the lower and upper variances introduced in Equations 7

and 8 above can be extended to lower and upper sensitivity indices, S; and S;,i = 1,...,n:
S, = min S; (16)
PeM
and B
Si = max S,L (17)
PeM
where .
S < 1. (18)
=1

The additional constraint in Equation 18 means that the upper sensitivity indices S;,
1t =1,...,n may not co-exist. Indeed there is a closed convex set S of sensitivity indices

SesS: 8= {S1,...5,} constrained such that VS;,i = 1,...,n : S; < S; < S; and
Z?:l Si < 1.
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4.1. Numerical method

Estimating the lower and upper sensitivity indices in Equations 16 and 17 is a problem
of non-linear optimization. Each iteration j of the optimization involves estimating the
precise sensitivity indices for some P; € M, specified by a vector of parameters a; =
(ay,...,an). For each a; the corresponding precise joint probability distribution f(x,a;)
is randomly sampled d times, yielding a precise estimate of the variance [8]:

d
1 .
E Z an aj 9(2)73 (19)
k=1
where
1l
905 =7 > g(xk,a). (20)
k=1

The Monte Carlo estimate V;(Y;) of the ith partial variance is given by

d
1 2 1 A
)= 5D 90X ang(x 2 Xt ay) — G, (21)
k=1
where
Xevih = (1 gy T2k - o s Tim 1oy Tit1 e - - - » L) (22)

The superscripts (1) and (2) in Equation 21 indicate that two sampling matrices are being
used for x;. Both matrices have dimensions d X n. In computing 171(}/]) the values of Y
corresponding to x;, from matrix (1) are multiplied by the values of Y; computed using a
different matrix (2), but for the ith column, which is kept constant [8]. This resampling
yields a precise estimate of the sensitivity indices S; ;. The lower and upper variances are
then given by

V(Y) = min(V(Y)) (23)

J

V(Y) = max(V(Y;) (24)

J

and the lower and upper sensitivity indices are given by
Si(Y) = min(5;(Yj)) (25)
— j
Si(Y) = max(S;(Y;)),i=1,...,n (26)
where Si(Y;) = Vi(¥;)/V(¥))

5. APPLICATION

Oberkampf et al. [11] have proposed a series of Challenge Problems to compare and
evaluate alternative theories of uncertainty. One of the Challenge Problems relates to a
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damped linear oscillator (a single degree of freedom mass-spring-damper system), whose
steady-state magnification factor D, is given by

k

S T (#1)

where k is the spring constant, m is the mass of the oscillator, w is the frequency of
oscillation and c is the damping coefficient. In this Challenge Problem, the variables in
Equation 27 were specified as follows:

m is given by a precise triangular probability distribution defined on the interval [10,12],
with a median value 11.

k is given by an imprecise triangular probability distribution, specified by three imprecise
parameters k,,in, kmoa and k..., whose values are contained in the closed intervals
Emin € [90,100], kpoa € [150,160] and kpq. € [90, 100].

¢ is given by a closed interval of possible values ¢ € [5,10]. No probability distribution
over this interval is specified or to be assumed.

w is given by an imprecise triangular probability distribution, specified by three imprecise
parameters Wy,in, Wmod and wy,q., Whose values are contained in the closed intervals
Winin € [2.0,2.3], Wmoa € [2.5,2.7] and wpqee € [3.0,3.5].

In the Challenge Problem specification, the information concerning k and ¢ was given by
three independent sources. The problem of aggregation of evidence from multiple sources
is beyond the scope of the present paper and is not addressed. The information is used
from the first source only.

There are 6 interval-valued distribution parameters, kin, Kmods Emaz, Wmin, Wmod,
Wmaz, and one interval-valued variable, ¢, in the analysis. If the sensitivity indices S;
were a monotonic function of these imprecise quantities then it would only be necessary
only to test the vertices of the 7 dimensional hypercube that contains all of the possi-
ble values of these quantities. There is, however, no reason to believe that S; should
be a monotonic function of these interval-valued quantities, so in order to find the im-
precise sensitivity indices it was necessary to search the volume contained within these
interval constraints. Besides testing each of the 27 vertices, the volume was searched
by uniformly sampling the space with a total of 30000 samples. At each test point
a; = (Kminjs kmod> Kmaz,j> Wmin,j» Wmod,js Wmaz,j- ¢;) (Equations 19 to 26) 50000 Monte
Carlo samples were used in the sensitivity estimates.

The lower and upper upper probability distributions on D, are shown in Figure 1.
The lower and upper expectations were estimated as E(D,) = 1.78 and E(D,) = 2.86
and the lower and upper variances were estimated as V(D,) = 0.09 and V(D,) = 1.57.
The imprecise sensitivity indices are listed in Table 1. Note the additional condition in
Equation 18 means that the upper sensitivity indices cannot all coexist.
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Figure 1. Lower and upper cumulative probability distributions of Dy

Table 1. Imprecise sensitivity indices

Variable | S, | S;
m 0.00 | 0.07
k 0.18 | 0.76

w 0.19 | 0.70

W N =

6. CONCLUSIONS

Variance-based sensitivity indices provide an intuitive and practical expression of the con-
tribution of model input variables to the variance in the model output [10,12]. To date,
variance-based sensitivity analysis have been restricted to the situation where uncertain
information is presented as precise probability distributions, yielding precise sensitivity
indices. In this paper this precise probabilistic case has been extended to the situation
in which information appears as imprecise probability distributions or intervals, yielding
interval-valued sensitivity indices for the (precise or imprecise) probabilistic variables.
These imprecise indices complement the insights into the effects of imprecision and ran-
domness provided by generalized uncertainty analysis [13]. A further challenge, which
has not been addressed in this paper, is the problem of aggregation of imprecise and
probabilistic information from multiple sources [14,15]. Sensitivity analysis has further
potential in this respect in highlighting the influence of different information sources.

The computational expense of calculating imprecise sensitivity indices is considerable.
Furthermore, the advantage over Monte Carlo approaches of efficient methods for calcu-
lating variance-based sensitivity indices, such as FAST and Sobol’ methods [8], is less clear
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than in the precise case. Monte Carlo methods can make use of function evaluations from
previous steps in the optimization to find the lower and upper sensitivity indices, whereas
the FAST and Sobol’ methods would usually require a new sample at each optimization
step. Whilst for the example addressed in this paper little computational advantage was
to be gained by reusing previous function evaluations, clearly this will be desirable in
many practical situations, so methods of this type are the subject of ongoing research.
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Abstract: In this paper we use State Dependent Parameter (SDP) models (a non-parametric
model estimation approach, based on recursive filtering and smoothing estimation) to estimate
the main effect sensitivity indices of computational models. Especially when coupled with
efficient sampling methods, such as the quasi-random LP-tau sequence, this method is
extremely efficient, allowing for drastic reduction in the cost of the sensitivity analysis.
Moreover, the method allows us also to estimate the first order terms of the High Dimensional
Model Representation of the model under analysis, at no additional cost.

Keywords: State Dependent Parameter models, Variance based methods, High Dimensional
Model Representation, Sensitivity analysis.

1. STATE OF THE ART

Consider the mathematical or computational model ¥ = f (X PO, ¢ ), where some of
the input factors X, are uncertain. For the non-correlated case, sensitivity indices are related
to the Sobol’ decomposition [1]

V) =SV, 4V, (1)

i j>i

where V, =V, (EX# (Y|X,. )), Vi=Vyx (EX/ (Y‘X,.,Xj))—Vi—Vj and so on. This is also

related to a decomposition of the function f itself into terms of increasing dimensionality
(HDMR, [2-3)]), i.e.
f(Y):fO"'Zfi+22fij+---+f12...k )
i i

where each term 1is a function only of the factors in its index, i.e.
Ji=1i(X0), [ = 1y (Xi,Xj) and so on. The various terms can be expressed as:

Sensitivity Analysis of Model Output
Kenneth M. Hanson and Frangois M. Hemez, eds.
Los Alamos National Laboratory, 2005; http:/library.lanl.gov/ 61



Jo=EX)
Ji (X)) =Ex (Y[ X) =],

3
Sy (XX )= Ex (Y| X, X))~ fi(X) (X)), ©)

Variance-based sensitivity measures are based on the terms in the decomposition (1),
normalised by the total unconditional variance V' (Y):

Sy =V IV o S =V, By (VXX v )

/

The §; are called the main effects, the Sl-j are the second order pure interaction terms,
while the S; are the called the second order closed effects, giving the overall effect of a
group of two factors, i.e. for orthogonal input factors § lj =S8;+S;+8;, and so on until the
closed term of order k£ equal to 1. All indices are nicely scaled in [0, 1] and, as discussed in [4]
and in the Keynote lecture by A. Saltelli at this conference [5], are related to rigorous settings,
applicable to different contexts for SA. In particular, main effects are related to the setting
“Prioritising Factors”, i.e. to identify the factor which, if determined (i.e., fixed to its true,
albeit unknown, value), would lead to the greatest reduction in the variance of the target
output , and so on for the second most important factor etc., till all factors are ranked.

Let us then concentrate on the main effects §;. The classical strategy for global sensitivity
analysis methods is to directly estimate the V; terms, without passing through the elementary
functions f;, and then to normalise by V. These methods (FAST, Extended FAST, correlation

ratios, Sobol’, etc, see [4-6] for reference) are conceived as black-box methods and do not try
to use information present in the Monte Carlo sample, e.g. analysing scatter plots and trying
some smoothing of the pattern, if any, between to model output and a given input. So, even if
they are robust, unbiased and applicable to whatever non-linear and complex computational
model, they do not make the best use of all the information contained in the Monte Carlo
sample. This makes such methods computationally expensive, with a required number of
model evaluations that is proportional to the number of factor &, e.g. of at least some
thousands for a good approximation of the solution. This limits the application of variance
based methods to not too complex computational models, which allow the required number of
model evaluations to be carried out in a reasonable time. A lot of effort has been expended in
recent years to reduce the cost of the analysis, either by improving the efficiency of the
available methods (see e.g. [7]), or by exploring more efficient routes, such as the Bayesian
approach presented by Oakley and O’Hagan [8]. In the latter case, Bayesian tools are used to
exploit the information about the input-output mapping more efficiently than classical
variance based methods, thus reducing drastically the computational cost of the analysis.

In this paper, we first estimate the f;’s, using recursive filtering and Fixed Interval
Smoothing (FIS) algorithms to fit SDP models to the input-output mapping [9], then we
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compute the variance of f; to estimate the main effects. As in [8] this method allows us to
estimate both f;, and V; (i.e. S;), adding valuable information to the sensitivity analysis at a

much smaller computational cost than classical methods. The convergence rate is of the same
order of the Bayesian approach by Oakley and O’Hagan [8] and, at the same time, the method
presented here is simple, since it is based on ‘classical’ recursive algorithms, such as the
Kalman filter [10-11] and recursive FIS.

2. THE METHOD

The present methodology exploits signal processing and time series analysis tools, in
particular an approach to non-stationary and nonlinear signal processing based on the
identification and estimation of stochastic models with time variable (TVP) or state dependent
(SDP) parameters. The works of P.C. Young [12-13] illustrate TVP/SDP algorithms and
provide full references on the subject.

Often non-stationary and nonlinear systems can be approximated well by TVP (or piece-
wise linear) models, the parameters of which can be estimated using recursive methods of
estimation, where parameters are assumed to evolve in a simple stochastic manner (e.g. [12-
14]). When instead the changes in the parameters are functions of the state or input variables
(i.e. they actually constitute stochastic state variables), then the system is truly nonlinear and
likely to exhibit severe nonlinear behaviour. Normally, this cannot be approximated in a
simple TVP manner; in which case, the alternative and more powerful SDP modelling
methods must be used.

In SDP time series modelling, the natural ordering of the data along the time coordinate is
replaced by an ordering based on the ascending value of the state variables (or inputs),
making the SDP model estimation similar to ‘pattern recognition’, i.e. to analysing scatter
plots between a model input X ; and the output Y. In the SA framework, the analyst has a set

of Monte Carlo simulations from which sensitivity indices and HDMR terms have to be
estimated. Nothing impedes to consider such a set of Monte Carlo model evaluations as a time
series and therefore to try to apply SDP modelling to estimate the first order terms in the
decomposition of the computational model given in (2).

2.1. SDP models and HDMR

The general SDARX (State Dependent Auto-Regressive with eXogenous variables)
specification for a dynamical system is:

Y, =Z{p, +e, e, ~ N(0,6°) (5)
where
T T T T
Z, =[-Y Y0, Y X 5. X s X 5o ]

XTI =[x, X, ]

P: = [al(Zt)’aZ(Zt)"":an (Zt)st(Zt)sbl(Zt)o""bm(Zt)]
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and a;(Z,),i=1,....,n b;(Z,),i=0,...,m are the state dependent parameters, which are
assumed to be functions of the state vector Z,. We keep here the time series notation, with
the index ¢ spanning the set of Monte Carlo simulations, ¢ =1,...,N .

In the SDP modelling framework the identification of the model structure itself is a
critical issue. Observations of the input and output series are available and the analyst has to

identify the dynamical model which best fits the observations, in the most parsimonious way
(Data-Based Mechanistic modelling, [15]).

This involves finding which and how many lags and/or delays characterise the input state
variables as well as if and how many autoregressive terms of the output have to be included.
Moreover, the analyst has to make hypotheses on (i) which state variable are parameters
dependent to and (ii) whether all parameters are state dependent or some of them are only
time-dependent or simply constant.

In the present context, however, considerable simplifications can be achieved considering
that model is deterministic and that, from (2), we know that, truncating all terms of order two
and higher, the model can be written as:

Y~ fo = A+ r(Xo )+t [t (Xi ) +e e ~N(0,0%) (6)

where we assume that all terms of high order can be approximated by a Gaussian white noise

with zero mean and variance o’ , 1.e. the truncated HDMR is seen as a stochastic non-linear
system. This can be justified by a version of the central limit theorem [16], since the truncated
terms can be seen as the sum of a large number of independent random variables with equal
zero mean and arbitrary probability distribution.

Comparing the representation (6) to the SDP model definition (5) we can see that:
1. no autoregressive terms of the output variable are present in (6), i.e. n=0;
2. no lags or delays in the input variables are present in (6), i.e. m=0, 5=0;
3. items 1 and 2 imply that the state vector reduces to the vector of input variables, i.e.

Z, =X, and that the vector of time dependent parameters reduces to p, =by(X,);

4. each term of the sum (6) is a function of a single input variable, so each state
dependent parameter b); depends only on the corresponding input variable X, i.e.
Piy =by;(X;)=by;(X;,). Without loss of generality, we can then re-write each
term of (6) as fi(X ;) =bo;(X; )X ;, =p;, X;,.

So, the general, dynamic, time series specification (5), including lagged variables and

delays, can be specialised to the HDMR of the computational model stopped to the first order
(6) as follows:

2
Y, - fo= P1,1X1,; "‘Pz,th,z +---+Pk,th,t +e e, =N(0,07) (7)
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Estimating the state dependent parameters p;, is hence equivalent to estimating the first
order terms of the HDMR. The estimation of p;, requires the following steps (see [12-13]

for more details):

1. characterise the variability of p;, in some stochastic manner: this is done using

generalised random walk processes (GRW), specifically our choice is limited to the random
walk (RW) and the integrated random walk (IRW) processes;

2. estimate via maximum likelihood (ML) the hyper-parameters (i.e. the variance of the
innovations) of the RW/IRW processes of the state dependent parameters;

3. estimate the state dependent parameters and hence the first order terms of (2) applying
recursive filtering and smoothing estimation, within an iterative backfitting procedure (The
ML estimation in step 2. can also be iterated within the backfitting procedure).

With this procedure we estimate all the terms simultaneously, allowing us to use a single
sample to estimate all indices. Moreover, the Monte Carlo sample is a standard one (pure
random sample, Latin Hypercube, LP-tau, etc) and does not require a particular design, such
as the classical variance based methods. This also allows it to be applied in the case of
dependent inputs. We warn however that the convergence rate depends somehow on how the
sample is generated. If quasi-random LP-tau random numbers are used, the convergence rate
is very high, while using Latin Hypercube or pure random samples convergence is slower.
This is clearly due to the more efficient exploration of the parameter space provided by the
LP-tau quasi-random sequence.

2.2. The backfitting algorithm

The ’time scale’ of the SDP model used for SA is just given by the sequence of the Monte
Carlo evaluations of the computational model, so no ’logical’ ordering can be expected in this
sequence. In practice, the p, values will continuously ’jump’ in an extremely noisy way from
one run to the subsequent in the Monte Carlo sample. So, it cannot be assumed that the simple
GRW model is appropriate to describe such a variation over ’time’. However, it is possible to
solve this problem if we sort the data in an ad-hoc manner. Specifically, if the ordering is
chosen so that the SDP variations associated with the sorted series are smoother, it is more
likely that a simple GRW process can be utilized to describe their evolution.

In our case, it is logical to assume that the most suitable ordering for each parameter p;,
should be done with respect to the corresponding input factor X ;,. In this way, we can
expect that the recursive estimation will be able to identify the pattern of ¥, vs. X ;. This

also implies that each SDP needs a different sorting strategy, each with respect to its input
factor. To solve this further problem, the backfitting procedure described in [13] can be
exploited. Here, each parameter is estimated in turn, based on the modified dependent
variable series obtained by subtracting all the other terms on the right hand side of (7) from
Y,. At each such backfitting iteration, the sorting can then be based on the single variable

associated with the current SDP being estimated.
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2.3. Specific issues for SA applications
2.3.1. Rescaling the inputs

Suppose that the input factor distribution of a factor X'; contains the zero. Suppose also
that the corresponding f; term assumes a non-zero value for X ; =0. This poses a
singularity problem, since, if X ;, =0 at a given sample point 7, p;, should assume an
infinite value to yield a non-zero f;,. So, we propose that in the standard procedure for SA

estimation, while leaving the output unmodified, all the input factors are transformed via a
monotonic (invertible) operator into cumulative probabilities, obtaining a uniform distribution
for all input factors in the [0, 1] interval. Then, to eliminate the zero, all values are then
shifted to the interval [1, 2]. This allows the elimination of the singularity problems, while
preserving the scale and shape of the model output.

Then, after estimation, the f ; terms estimated for the transformed variable X ;, can be
plotted by putting in the axis of the abscissas the original values X ;, fully recovering the true

S terms. In fact, if P;(X ;) is the cumulative distribution of factor X ;, at each sample point
. * * _1 *k
twe canwrite: f; (X ;)= /1, (P, (X;, —-D)=/f;,(X;,).

2.3.2. The choice of the GRW model

A last methodological issue on the use of SDP models for sensitivity analysis of
computational models concerns the choice of the GRW model, i.e. RW of IRW. Usually,
sensitivity analysis tools, such as the software SIMLAB [17], aim to be ’black-box’.
Whatever the model, inputs and outputs are fed to the SA tool to get the sensitivity indices. In
principle, a priori one does not know whether RW or IRW model is more appropriate for each
S term of the HDMR decomposition. In order to make this choice "automatic’, we propose

the following preliminary step to the backfitting algorithm:
1. for each factor X'; perform the ML estimation of both RW and IRW models of the

univariate model ¥, = p; , X ; , +¢;;

2. for each estimated model, compute the R? measure or fit;

3. select the model with the highest R? in the subsequent SDP estimation.

3. APPLICATION

We have tested the method with several models, with up to 15 input factors. We first
considered models with known analytical solutions for sensitivity indices and HDMR, such as
the g-function of Sobol’ [9]. Such tests allowed the convergence rate of the numeric to
analytic solution to be measured. In general, a number of model runs of about 1,000 is
sufficient for quite accurate estimates, with an absolute errors of about 0.01 on a scale [0, 1].
An extremely important improvement with respect to the classical estimation methods is that,
in all the tests done, the computational cost was almost independent of the number of input
factors. Clearly, it has to be expected that for a number of factors larger than 15-20, the
convergence rate will start decreasing, but cases with such a large number of input factors are
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usually preliminary passed through a screening method (e.g. the method of Morris or others)
and only at a later stage the variance based/HDMR analysis is performed for fewer inputs.
Convergence also becomes slower for non-monotonic models for which the parameters tend
to be all rather equally important. Note that the latter condition is not usual, as most often
factors follow a Pareto law, with few factors accounting for most of the importance. In all
cases, the convergence is reached with a few thousand runs, with a considerable saving in
computational effort with respect to the standard estimation methods (FAST, Sobol’). Even in
the nastiest cases, convergence did not require more than 8000 runs.

Here, we show some significant results for the Level E model. Level E was used both as a
benchmark of Monte Carlo computation [18] and as a benchmark for sensitivity analysis
methods [19]. This test case has been extensively used by several authors; see [20] for a
review. The model predicts the radiological dose to humans over geological time scales due to
the underground migration of radionuclides from a nuclear waste disposal site. In a
companion paper to this conference [21], readers can find another application of SDP
modelling for the SA of a basin model to evaluate hydrocarbon exploration risk.

The Level E model has 12 input factors and is characterised by a strong non-linearity.
Among the 12 parameters, X, (=), water velocity in the first geosphere layer) and X,

(=W, stream flow rate) have the largest main effect over the simulated period. In Figures 1
and 2 we show the sensitivity indices versus time for these two parameters and compare the
asymptotic values estimated with standard SA tools (Sobol’ method), taking 1,000,000 runs,
with the SDP estimation having total costs of 1024 and 8192. The samples for SDP model
analysis were generated using LP-tau quasi-random sequences. We can see that already with
only 1024 runs, which is a very small sample size for this kind of model, the absolute errors
of the SDP estimates with respect to the asymptotic values is of the order of 0.01-0.02 in the
sensitivity scale range of [0, 1]. With 1024 runs there is a critical point for W, where the drop
of the sensitivity index at /=200,000 yr is shifted to the next time point =300,000 yr.
Increasing the total cost to 8192, results converge to the asymptotic values.

0.14
0.12 | l
0.1 1N A
0.08 —e— Asympt
P ) = 8192
0.06 \/ —— 1024
0.04 -
0.02 -
O T T T T T T T T T T T T T T T T T T T T T T
20,000 70,000 300,000 800,000 4,000,000 9,000,000

time (yr)
Figure 1. First order sensitivity index vs, time for parameter v(V) (X}).
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Figure 2. First order sensitivity index vs. time for parameter W (X12).

Comparing total costs, with the Sobol’ technique we would need about 40,000 model runs
to reach an accuracy comparable to the cheaper SDP model estimation of 1,024 model runs,
i.e. the SDP modelling approach reduces the computational time by a factor 40 in this case.
Conversely, 1024 runs for the Sobol’ estimates are too few, with absolute errors that can reach
0.7-0.8, i.e. totally unreliable estimates.

In addition to sensitivity estimates, the SDP modelling approach also allows us to estimate
the first terms in the high dimensional model representation decomposition. The plots of such
functions for v() and W at the time =100,000 are shown in Figure 3. The added value of the
SDP modelling approach is evident by looking at the clear representation of the first order
input-output mapping between V) and W and the output Y (the radiological dose). It is
interesting to note in Figure 3 that the pattern estimated with 1024 runs for f(X,) slightly
passes the zero axis for high values of X,, while this is corrected increasing the number of
runs to 8192. To better appreciate the ‘pattern recognition’ performed by the SDP estimation,
in Figure 4 we also compare the scatter plots to the SDP estimates of f(X,) and f(X;,)
(solid lines), for 8196 runs.
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Figure 3. First order terms of the HDMR of the Level E model for v(1) (=X;) and W (=X,) at

t=100,000 yr. Solid lines are for the total cost of 8192 runs; dotted lines for the total cost of
1024 runs.
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Figure 4. Scatter plots of ¥ and estimated first order terms of (2) for the Level E model for
v(1) (=Xy) and W (=X),) at =100,000 yr (8192 runs).

4. CONCLUSIONS

The use of SDP models is a powerful tool for a fast and accurate estimate of the first order
terms of the HDMR and of the main effects sensitivity indices of computational models. All
the estimates are performed with a unique sample, which can be any standard Monte Carlo
sample. However, if efficient quasi-random number generators are used, such as the LP-tau
sequence, the efficiency of the method is further enhanced, with a significantly faster
convergence. We have tested the method with different models, always with extremely rapid
convergence rates: 1,000 runs are in most cases sufficient for good estimates with models
having up to 10-15 input factors. The dependence of the computational cost of the method to
the number of input factors is very small: this is an extremely important improvement with
respect to classical estimation methods. The convergence becomes slower in cases where the
model is non-monotonic and the input factors share similar and relatively small levels of
importance, i.e. they do not follow a Pareto law.
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Abstract: Results from complex computer models are often subject to both aleatory and
epistemic uncertainty. The natural straightforward procedure to analyze these uncertainties by
Monte Carlo simulation is a double-loop nested sampling: the epistemic parameters are
sampled in the outer loop and the aleatory variables are sampled in the nested inner loop. For
time-demanding codes, however, the computational effort of this procedure may be
prohibitive. Therefore a method of an approximate sensitivity analysis (“sensitivity” in the
sense of “uncertainty importance”) has been suggested which is based on a single-loop
sampling procedure with epistemic parameters and aleatory variables being sampled
“simultaneously” from their respective distributions. From the results of such sampling one
can obtain approximate estimates of many of the commonly used sensitivity measures for the
aleatory probability distributions of model outcomes of interest with respect to the underlying
epistemic parameters. The reliability of these estimates depends on the relative contribution of
epistemic uncertainties U to the overall joint epistemic & aleatory uncertainty in the outcome
Y expressed by the quantity ¢ = varE[Y|U]/varY. This quantity can be estimated in several
ways depending on the feasibility of additional sampling and model computations.

Keywords: sensitivity analysis, aleatory and epistemic uncertainty, uncertainty importance,
conditional expectation.

1. INTRODUCTION

The effect of model input variables subject to aleatory uncertainty (“random behavior”) on
the results of a complex model can be analyzed by Monte Carlo simulation. To this end the
aleatory variables are sampled according to their random laws and the results of the
corresponding model runs are summarized in form of empirical distributions which represent
the aleatory uncertainty of the model outcomes. From these empirical distributions statistical
estimates of the probabilities of the process states of interest and other useful probabilistic
quantities like expectations etc. may be obtained.

Often, however, the exact types of the random laws, their distributional parameters, the
model formulations, the values of model parameters, the input data of the model application
etc are not known precisely, i.e. they are subject to epistemic ("lack-of-knowledge™)
uncertainty. These uncertainties, denoted as epistemic input uncertainties, are quantified by
probability distributions representing the respective subjective state of knowledge.

The aim of epistemic sensitivity analysis (“uncertainty importance analysis™) in this case is to
quantify the effect of the epistemic input uncertainties on the epistemic uncertainty of the

Sensitivity Analysis of Model Output
Kenneth M. Hanson and Frangois M. Hemez, eds.
Los Alamos National Laboratory, 2005; http://library.lanl.gov/ 71



probabilistic quantities representing aleatory output uncertainty, e.g. probabilities,
expectations etc.

It is widely recognized and accepted that these two types of uncertainty must very
carefully be distinguished and therefore it wouldn’t make sense to perform a “simultaneous”
Monte Carlo simulation of both types of variables and a sensitivity analysis of a direct model
outcome with respect to the variables of both types.

It is intuitively clear and has often been pointed out by many authors, e.g. [1], that the
natural method to appropriately account for both types of uncertainty by Monte Carlo
simulation is a “double-loop” nested sampling procedure (also called “two-stage” or “two-
dimensional” sampling,). It consists of (1) an "outer loop” where the values of the epistemic
parameters are sampled according to their epistemic marginal probability distributions and (2)
a nested “inner loop” where the values of the aleatory variables are sampled according to their
aleatory conditional probability distributions given the values of the epistemic variables
chosen in the outer loop. Each “inner loop” provides an empirical conditional aleatory
distribution of the process outcome of interest such that finally a sample of empirical
distributions is obtained. This sample could be used for a standard epistemic sensitivity
analysis for various (aleatory) probabilistic quantities.

However, for complex and computationally expensive models, as used e.g. in probabilistic
safety analysis of nuclear power plants, the computational effort for the double-loop
procedure will be prohibitive. In such cases the consequence would be to do without an
uncertainty and sensitivity analysis.

Therefore, an approach of an approximate epistemic sensitivity analysis is suggested in
the following sections. Instead of the nested double-loop sampling procedure the above-
mentioned simple single-loop sampling procedure is employed with both types of variables
being sampled “simultaneously” according to their joint probability distribution. From the
results of this sampling appropriate sensitivity measures can be computed.

2. FUNDAMENTALS

Being subject to both epistemic and aleatory uncertainties, any scalar process variable or

model outcome Y may be represented as
Y =h(U,V)

with
set of all epistemic uncertainties (uncertain parameters),
set of all aleatory uncertainties (random variables),
the computational model considered as a deterministic function of both
aleatory and epistemic uncertainties U and V.

o< C
LTI

When holding the epistemic variables U fixed at a value u , i.e. U=u, the resulting
outcome Y is a function of the aleatory uncertainties V, solely. Its probability distribution, i.e.
the conditional distribution F(y|U=u) of Y given U=u, quantifies the corresponding
(conditional) aleatory uncertainty in Y. Its expectation

E[Y|U=u]
taken over all aleatory variables V conditionally on U=u may be considered as a scalar
quantity representing this conditional aleatory uncertainty of the outcome Y.
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Using expectation to represent conditional aleatory uncertainty must not be considered
very restrictive since many of the standard distributional parameters characterizing aleatory
uncertainty can be viewed as expectations of appropriately chosen outcome functions Y’. E.g.
the value Fy(y) of a distribution function of a random variable Y at any given point y may be
represented as expectation of the indicator variable Y’= gy <y3, i.e. Y’=1 if Y<y and Y’=0
otherwise, from which follows that EY =Fy(y).

In the following the standard concise notation
E[Y|U]
will be used to denote the above conditional expectation E[Y|U=u] considered as function of
the epistemic uncertainties U, i.e. as a quantity subject to epistemic uncertainty from U alone.

The principal aim of an approximate epistemic sensitivity analysis of results from models
subject to both epistemic and aleatory uncertainties will therefore be to determine appropriate
sensitivity indices of the conditional expectation E[Y|U] with respect to the components
Uy, ...,U, of U avoiding the time-consuming double-loop Monte Carlo sampling.

The following fact is the basis of the proposed method:

Many of the standard sensitivity measures of E[Y|U] with respect to Us,...U, are uniformly
proportional to the corresponding sensitivity measures of Y=h(U,V) with respect to Uy,...U, .
The proportionality constant c is, in most cases, given by

c = varEY |U
V' vary

l.e. if SM; denotes the (population) sensitivity measure of E[Y|U] with respect to epistemic
parameter U;, and SM’; denotes the corresponding sensitivity measure of Y= h(U,V) with
respect to the same parameter, then

SM’; =c¢ - SM;
for all i=1,...,n. This holds for many types of sensitivity measures with the same constant c.

Consequently, this property implies that the sensitivity indices for
(a) the conditional expectation E[Y|U] and for
(b) the direct outcome Y=h(U,V)
provide the same uncertainty importance ranking with respect to parameters Uy,...Up.

This result holds for the sensitivity measures

- Correlation Coefficient (CC)

- Standardized Regression Coefficient (SRC)

- Correlation Ratio CR (=“main effect” sensitivity index)

and with slight modifications also for

- Partial Correlation Coefficient (PCC)

- “total effect” sensitivity index ST

- “linearized”(or R?-) Version of the “total effect” sensitivity index STL.

The proof of this fact becomes very simple if the concept of conditional expectation
E[Y|U] is employed. It is worthwhile mentioning that the notion of conditional expectation is
very useful also in the context of sensitivity analysis. Many results from the standard
sensitivity analysis which look rather complex and difficult can very effectively be
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represented, very clearly interpreted and very easily proved with the aid of the concept of
conditional expectation.

The following basic properties of conditional expectation are useful in this context. They
can be found in many textbooks and can also very easily be proved:

(1) E(E[Y|U]) = EY

(2) var(E[Y|U]) = varY - E(var[Y|U])

(3) E(E’[Y|UI) = E(Y-E[Y|U])

(4) E(E[Y|U]|Ui) = E[Y|Ui]

(5) E[E[Y|U]- U] = E[E[Y|Ui]-Ui] = E[Y U]

(6) cov(E[Y|U],U)=cov(Y,U))

(7) the linear regression of E[Y|U] with respect to U and the linear regression of Y with
respect to U are identical, i.e. RC(E[Y|U],U;) = RC(Y,U;) with RC(...) being the
corresponding regression coefficients.

Using these properties the above result can easily be proved. Here, e.g., the proofs for the
correlation coefficient CC and the correlation ratio CR (“main effect” sensitivity index):

cov(E[Y |U],U,) _ cov(Y,U,)
JvarE[Y|U]-varU; /var E[Y|U]-varU,

_ cov(Y,U;) / varY - CC(Y, U) / varY — _
JvarY -varu, '\ varE[Y |U] var E[Y |U]

CC(E[Y|UL,U) =

=CC(Y, Uj) - 1fc.
CRA(E[Y|ULU) = VarE[E[Y [U]|U;] _ varE[Y |U;] _varE[Y|U;]  varY  _
vare[Y |U] varE[Y |U] varY vare[Y | U]

= CRY(Y,U)) - 1/c%.
The proofs for the other sensitivity measures are similar.

3. SAMPLING METHOD FOR AN APPROXIMATE SENSITIVITY ANALYSIS

Owing to the preceding result it seems natural and reasonable to replace the above-
mentioned but often impracticable double-loop sample-based sensitivity analysis for the
conditional expectation E[Y|U] by the corresponding sensitivity analysis for the direct
outcome Y=h(U,V) with respect to the components U;,...U, of U, alone. The Monte Carlo
sampling procedure appropriate for such sensitivity analysis for the direct outcome Y,
however, is a simple single-loop sampling with the epistemic parameters U and the aleatory
variables V being sampled “simultaneously” according to their joint probability distribution
f(u,v). This joint probability distribution is given by the product of the marginal distribution
f(u) of U and the conditional distribution f(v|U=u) of V given U=u, i.e. by the expression

f(u,v) = f(v|U=u)-f(u) .

In most applications the marginal distribution f(u) of the epistemic parameters U will be
given directly, while the conditional distribution f(v|U=u) of the aleatory variables V may
also be given in terms of intermediate results from the computational model.
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Thus, the “simultaneous” sampling procedure with sample size N generates N joint
epistemic & aleatory sample values

(Ul,Vl), ...... ,(UN,VN)
from which, eventually, the corresponding sample values
Yieoronnn WYN

of the direct outcome Y=h(U,V) are calculated via the computer code.

From all these sample values the above mentioned standard sensitivity measures with
respect to the parameters Us,...U, for the outcome Y=h(U,V) can be computed. Since the
proportionality constant c=V(varE[Y|U]/varY) is usually not known one cannot directly derive
the sensitivity indices for E[Y|U] from the sensitivity indices for Y. However, according to
the preceding section, the sample based parameter importance ranking obtained for Y may
approximately be used as the importance ranking for the conditional expectation E[Y|U]
asked for. Methods for approximating/estimating the proportionality constant ¢ will be
presented in section 5.

It is also clear that Simple Random Sampling (SRS) as well Latin Hypercube Sampling
(LHS) or any other sampling method appropriate for the selected type of sensitivity measure
may be used for such sample-based approximate sensitivity analysis.

4. ACCURACY CONSIDERATIONS

The accuracy of the approximate sensitivity analysis for the outcome Y depends on the
(usually) unknown value of the (squared) proportionality constant
Q2= var E[Y |U]
var'Y
which relates the sensitivity measures for E[Y|U] to the sensitivity measures for Y.

Clearly, 0 < ¢® < 1 since varE[Y|U] < varY due to the above property (2) of the
conditional expectation. From the proportionality SM;=1/c-SMy’ (i=1,...,n) it follows that the
values of the sensitivity measures SM;” for Y are uniformly lower than the corresponding
sensitivity measures SM; for E[Y|U]. If this constant c¢? is small, the sample-based
approximate sensitivity analysis for Y may produce small or even statistically not significant
values of the sensitivity measure for a parameter although the sensitivity of E[Y|U] with
respect to this parameter one is actually interested in may be high. Nevertheless, ¢? is
unknown and therefore it is important to analyze it more closely.

By definition, c? is easily identified as squared multiple correlation ratio (or “main effect”
sensitivity index) [2],[3] of Y with respect to the whole parameter vector U. It can therefore
be interpreted in several ways, e.g.

- as an indicator of the accuracy of the approximation of Y=h(U,V) by E[Y|U] as a
function of U alone,
- as an indicator of the relative contribution of the epistemic uncertainties from U to the
overall “joint” uncertainty in Y=h(U,V) from U and V,
- as the extent to which the overall “joint” uncertainty in Y coming from U and V is
dominated by the epistemic uncertainty coming from U alone.
Consequently, the more “dominant” the epistemic uncertainties the higher the c? value,
and, consequently, the higher the dependability of the proposed approximate sensitivity
analysis.
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In practical applications it may sometimes be immediately clear which type of uncertainty
is dominant such that the reliability of the approximate sensitivity results may also be judged
immediately. Nevertheless, an approximation of c? is needed on the basis of the reduced
sampling effort without employing the impracticable double-loop approach.

S. APPROXIMATING THE PROPORTIONALITY CONSTANT ¢?

Three alternative procedures are proposed to approximate res. to estimate the (squared)
. . var E[Y .
proportionality constant CZ:LY“J]. Below the three procedures are ordered according
var
to the amount of the additional computational effort necessary to determine the corresponding

approximated res. estimated value of ¢

(1) Procedure No.1 to approximate c? is based solely on the underlying sample values from
the “joint” sampling of U and V, i.e. without additional model computations. It is given by
2
&2 = R°(Y,VU)
R*(Y,(U,V)) '

with
R?(Y,(U,V)) =multiple sample correlation coefficient of outcome Y with respect to the joint

sample of (U,V).
R%(Y,U)) = multiple sample correlation coefficient of outcome Y with respect to the

sample of U alone.
Both multiple correlation coefficients can easily be computed from the available sample
values (ui,Vi),.....,(Un,VN) @and ys,...,yn according to the well-known formulae:

RA(Y,U) = p'vuRu™ pyu

R¥(Y,(U,V)) = p'vuv Ruv™ pruw
with
pvyu = vector of empirical correlation coefficients between Y and the components of U

pv,u,v) = vector of empirical correlation coefficients between Y and the components of U,V
Ru® = inverse of the empirical correlation matrix Ry between the components of U
Ruv™ = inverse of the empirical correlation matrix Ry between the components of U,V.

All these quantities are computed from the underlying sample values (uz,vi),.....,(Un,vn) and
y1,....¥Yn generated by the single-loop joint sampling of U,V and the corresponding model
computations of Y. The sample size N must exceed the joint number of variables in U,V.

The motivation behind this method is simply to approximate the conditional expectation
(= regression of the 1st kind) by the linear regression (= regression of the 2nd kind).

(2) Procedure No.2 of approximating c? is based on two samples: (a) the underlying sample
values yi,...,yn from the same “joint” sampling of U and V and (b) sample values from an
additional (single-loop) sampling of aleatory variables V alone with the values of epistemic
parameters U held fixed at their nominal values ug . It is defined by
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82 = SZ(Y)_SZ(Y|UZUO)
s*(Y) |

where
2 1< 52
S(Y) ==Y (y; -V
N =
is the variance from the underlying sample values yi,...,yn, and
13 _
s?(Y|U=ug) = WZ(y'i -v)?.
i=1

is the variance from the other sample values y’s,...,y’n generated by sampling the aleatory
variables V alone while the epistemic parameters U are held fixed at their nominal values uj.
In many applications this additional sample may already be available as the “nominal result”
computed before starting uncertainty and sensitivity analysis.

The motivation behind this method is to approximate the term Evar[Y|U] appearing in the
expression varE[Y|U] = varY - Evar[Y|U] for the numerator of c? by the term var[Y|U=u].

(3) Procedure No. 3: While the first two methods should rather be considered as numerical
approximations to the constant c>=varE[Y|U]/varY, the third method may be viewed as an
estimate of ¢? in the full statistical sense. It is based on the following basic and easy to prove
property of conditional expectation:

If V and V’ are identically distributed and conditionally independent given U, i.e. the
joint conditional distribution of V and V’ given U is the product if the two marginal
conditional distributions, formally: f(v,v’|U=u) = f(v|U=u)-f(v’|U=u) and if Y = h(U,V) and
Y’ = h(U,V), then the (squared) proportionality constant c? can be expressed by:

2= var E[Y |U] _ cov(Y,Y")

T varyY sJvaryY varY'

i.e. ¢ is the correlation coefficient between the variables Y und Y’.

=p(Y.Y"),

Consequently, one can estimate the proportionality constant ¢c? by the sample correlation
coefficient r(y,y’) from the two-dimensional sample (y1,y1’),......(yn,yn’) from the bivariate
distribution of (,Y?). The corresponding well-known formula is

2=y (yi-y)
¢ =r(yy) = —= -

JZ(yi -y)* ‘Z(yé -y’

where
Y1,...,yn are the sample values of Y from the underlying “joint” sample of U and V, i.e.
yi=h(u;,vy), ), i=1,...,N and

y1’,...,yn’ are the sample values of Y’ from the “joint” sample of U and V’ generated by
independently sampling the aleatory variables V’ alone, according to the conditional
distribution with the epistemic parameters U held fixed at the same values as in the 1% sample,
i.e. yi’:h(ui,vi’), i:].,...,N.
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The additional computational effort for this statistical estimate of c? is therefore N
additional model computations (= 2nd single-loop sample of size N).

Obviously, these two single-loop samples may also be viewed as a realization of the
above-mentioned nested double-loop sampling with the “inner” loop sample size being 2.

Remark 1:

The above statistical estimate ¢* may also be considered as an extension of the familiar
procedure [4] to estimate the so-called “main effect” and “total effect” sensitivity indices SM
and ST in the case of not independent variables. Changing the notation and replacing U by X,
and V by X; the “total effect” sensitivity index ST for Y with respect to X; may be defined as
_ Evar[Y|X,] _ varY —var E[Y|X,]
ST, = = :
varY varY
It can be interpreted as “the relative amount of variance of Y that is expected to remain if the
values of all variables except variables X; will become known”. Analogously, the “main
effect” sensitivity index SM; for Y with respect to X, may be defined as
SM, = var E[Y | X, ]
varY

and interpreted as “the relative amount of variance of Y that is expected to be removed if the
values of all variables X, will become known”. This representation holds for independent as
well as for dependent variables X; and X; and is equivalent to the representation given in [4]
in the case of independent variables (e.g. ST, := sum of all terms containing X; of the “Sobol
decomposition” of Y=h(X3,X5) into a sum of uncorrelated terms of increasing dimensionality
[2], [4]). It is immediately seen that

STi=1-¢

SM; = ¢?
with X1,X, playing the role of V,U in the above representation of ¢ It can also be easily seen
that for independent variables the estimate presented in this paper and the estimate presented
in [4] are nearly equivalent. Consequently, in the procedure [4] to compute the “main effect”
and the “total effect” sensitivity indices it is not necessary to assume the input variables be
independent. This procedure can be used for dependent variables, as well, provided the two
samples of X; are generated conditionally independently given X5 .

Remark 2:

According to the above procedure a 2" sample is generated to estimate (together with the 1%
sample) the constant ¢ while to estimate the sensitivity indices only the 1% sample is needed.
It appears, and is intuitively clear, too, that using the mean sample values yi* = (yi+yi’)/2,
i=1,...,N from both samples an improvement of the accuracy of the sensitivity results can be
achieved compared to the results obtained with the values y; , i=1,...,N, from a single sample.
As before, since E[Y*|U]=E[Y|U] and varY*=(varY+varE[Y|U])/2, it can easily be shown
that a similar proportional relationship holds between the sensitivity measures SM; of E[Y|U]
and the corresponding sensitivity measures SM*; of Y*=(Y+Y”)/2 with respect to parameter
Ui, ie.

SM*; = ¢c* - SM;

with the new proportionality constant c** given by
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var E[Y*|U] = 2varE[Y|U] _ 2¢c? > &2
varY * varY +var E[Y |[U] 1+¢c?

As stated above, since c*? > ¢?, the uncertainty importance ranking (sensitivity results) based
on the y;* values will provide a more reliable approximation to the importance ranking for
E[Y|U] than the importance ranking based on the y; values from a single sample.

c*? =

A straightforward generalization to K conditionally independent samples, i.e.
Y*=1/KYY®
provides an improvement with the proportionality constant
Kvar E[Y |U] _ K c?
varY +(K-1)var E[Y|U] 1+(K-1)c?
This, obviously, is equivalent to the above-mentioned nested double-loop sampling with the
“inner” loop sample size being K.

*=

6. SIMPLE ANALYTICAL EXAMPLE (LINEAR NORMAL CASE)

To illustrate some of the preceding results a simple (artificial) numerical example is
presented where all quantities of interest can be determined analytically and compared with
the results from the sampling procedures presented above. In this example a simple linear
independent normal case is considered, i.e.

Y=hUV)=>aU, +> bV,
i=1 j=1

where all epistemic parameters U=(Uy,....,U) and all aleatory variables V=(Vy,....,.Vny) are
independent and have the standard Normal distribution N(0,1). The coefficients a; , b; are
assumed to be known. Then it can easily be shown that

- varY = Ya? +Yb?,

- E[Y|U] = >aU;,
- varE[Y|U] = Ya?,
) Q2= var E[Y U] _ >a’
var Y Zai2+zbj2 ’
~ SMY=SM(Y,U) = 4 (i=1,...n)
J>a’+3b}
- SMi=SME[Y|U], U) = —2— | (i=1,...n),

>

where SM denotes any type of sensitivity measure, since, due to linearity and independence
all standard sensitivity measures of Y or of E[Y|U] with respect to U; are equal.

Here it can directly be seen: the higher the contribution of the epistemic uncertainties from U
to the overall joint uncertainty in Y, expressed by the constant c? the more precise the
proposed approximation of the sensitivity measures for E[Y|U] by the sensitivity measures for
Y.

For numerical calculations it was assumed that n=m=5, a=b=(1,2,3,4,5). Consequently
varY=110, varE[Y|U]=55, ¢* = 1/2.
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The following table summarizes the results obtained analytically and with the sampling
methods described above. It shows the values of the sensitivity measures (Standardized
Regression Coefficient, SRC) for E[Y|U] with respect to all five parameters U;,....,Us
obtained in four different ways:

(1) analytically,

(2) from double-loop simple random sampling with sample size 100x100
(3) from single-loop simple random sampling with sample size 500

(4) from single-loop simple random sampling with sample size 200.

Standardized Regression Coefficients (SRC) for E[Y|U]

Index of 1) (2) two-loop (3) one-loop (4)one-loop
Parameter analytic §s=100x100 ss=500 $s=200

1 0.1348 0.1369 0.140 0.071

2 0.2696 0.2946 0.259 0.265

3 0.4044 0.4262 0.387 0.397

4 0.5392 0.5340 0.584 0.629

5 0.6740 0.7225 0.703 0.658

The three alternative methods for approximating/estimating the proportionality constant c
provide the results:

The proportionality constant ¢

sample size  method 1 method 2 method 3 exact value
500 0.7027 0.7032 0.7003 0.7071 =V0.5
200 0.7437 0.6895 0.6920 0.7071 =V0.5

Conclusion: The results of this simple example look promising and suggest that in real
situations with complex and computationally expensive models where the double-loop
sampling is prohibitive, the approximate sensitivity analysis presented in this paper may
provide reasonable results. It may therefore be preferred to the alternative of not performing
any sensitivity analysis.

REFERENCES

[1] Helton J.C. et al., 1998. Uncertainty and sensitivity results obtained in the 1996
performance assessment for the waste isolation pilot plant. SAND98-0365, Albuquerque:
Sandia National Laboratories; 1998

[2] Saltelli A., Chan K., Scott M. (eds.). Sensitivity Analysis. John Wiley & Sons, 2000.

[3] McKay M.D., 1995. Evaluating prediction uncertainty. Tech. Rep. NUREG/CR-6311.
U.S. Nuclear Regulatory Commission and Los Alamos National Laboratory.

[4] Homma, T., Saltelli A., 1996. Importance measures in global sensitivity analysis of
nonlinear models. Reliability Engineering and System Safety Vol. 52, 1-17

80



Sensitivity Analysis When Model Outputs Are Functions

Katherine Campbell, Michael D. McKay, and Brian J. Williams

Statistical Sciences Group
Los Alamos National Laboratory, Los Alamos, NM 87545 USA
Corresponding author: Brian Williams: Fax: +1 505 667 4470 E-mail: brianw@Ianl.gov

Abstract: When outputs of computational models are time series or functions of other
continuous variables like distance, angle, etc., it can be that primary interest is in the general
pattern or structure of the curve. In these cases, model sensitivity and uncertainty analysis
focuses on the effect of model input choices and uncertainties on the overall shapes of such
curves. We explore methods for characterizing a set of functions generated by a series of
model runs for the purpose of exploring relationships between these functions and the model
inputs.
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1. INTRODUCTION

The outputs of computational models are often time series or functions of other
continuous variables like distance, angle, etc. Following Campbell [1], we propose that
sensitivity analysis of such outputs be carried out by means of an expansion of the functional
output in an appropriate functional coordinate system, i.e., in terms of an appropriate set of
basis functions, followed by sensitivity analysis of the coefficients of the expansion using any
standard method. The principal new problem, therefore, is choosing an appropriate coordinate
system in which to apply the selected sensitivity analysis methods. We consider both pre-
defined basis sets and data-adaptive basis sets, with their associated advantages and
disadvantages. We devote only passing mention to some related, but important problems, such
as increasing the interpretability of the results by appropriate preprocessing of the functional
outputs (in particular, alignment or registration of curves), and by enforcing some degree of
smoothness when data-adaptive bases are used.

We will use a simple made-up example for explaining ideas. Fig. 1 shows a sample of
curves generated by v