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The 4th International Conference on Sensitivity Analysis of Model Output (SAMO 2004) was 
held in Santa Fe, New Mexico, USA, March 8-11, 2004. This was the first time that the 
SAMO meeting had been held in the United States of America. The meeting took place in the 
Inn at Loretto, which proved to be a wonderful venue for holding a relaxed meeting.  
 
The first International Symposium on Sensitivity Analysis of Model Output (SAMO) was 
held in 1995 in Belgirate, Italy, under the auspices of the Joint Research Centre (JRC) of the 
European Commission. It was organized by Andrea Saltelli, who brought together a small, 
informal group of researchers dedicated to the advancement of methodologies for 
understanding uncertainty in mathematical simulations (models) of physical systems. The 
same group organized a second meeting in 1998 at the University Ca' Foscari in Venice. The 
third SAMO meeting was held in 2001 in Madrid, Spain. It was organized by a group from 
Spain’s Department of Environmental Impact of Energy (DIAE) of CIEMAT, together with 
two universities, Politechnical University of Madrid (UPM) and the University Rey Juan 
Carlos (URJC). 
 
The theme of the SAMO series has been the study of the variation in the output of a model 
caused by variations in its inputs variables, parameters, and factors related to numerical 
solution methods. Especially highlighted at this meeting was the importance of the 
quantification of the total uncertainty in model prediction. The following techniques were 
discussed: 

• Innovative methods of sensitivity and uncertainty-importance analysis  
• Designs and sampling plans for computer experiments  
• Model calibration  
• Model evaluation and validation  
• Reliability analysis and robustness analysis  
• Probabilistic  and non-probabilistic analysis of uncertainty and sensitivity  
• Modeling knowledge and judgment  
• Decision-making under uncertainty 

The application areas included economics, engineering, environment, nuclear safety, and 
physics. 
 
The Organizing Committee was comprised of Scott Doebling, Ken Hanson, François Hemez, 
Rudy Henninger, Michael McKay, and Kathie Womack, all from the Los Alamos National 
Laboratory. Kathie Womack’s diligent attention to the organizational details contributed 
greatly to the smooth functioning of the meeting. Vivian Romero of the Statistical Sciences 
group developed and maintained the SAMO 2004 web site. 
 
 
 
 
 
 



To compose the final program, the Organization Committee relied heavily on the 
recommendations from the Scientific Committee, which included the following people: 

• James Cavendish, Research and Development Center, General Motors Corporation, 
U.S.A.  

• Kenneth M. Hanson (committee chair), Continuum Dynamics, Los Alamos National 
Laboratory, U.S.A.  

• Toshimitsu Homma, Department of Reactor Safety Research, Japan Atomic Energy 
Research Institute, Japan  

• Michiel Jansen, Biometris, Wageningen University and Research Centre, The 
Netherlands  

• Hyoung-Man Kim, Structural Dynamics, The Boeing Company, U.S.A.  
• Jack P.C. Kleijnen, Department of Information Management, Center for Economic 

Research, Tilburg University, The Netherlands  
• Pedro Padro Herrero, Department of Environmental Impact of Energy, Research 

Centre for Energy, Environment and Technology, Spain  
• Stefano Tarantola, Institute for the Protection and Security of the Citizen, Joint 

Research Centre of the European Commission, Italy 
This committee was tasked with reviewing the 78 abstracts that were submitted for 
consideration. 
 
The final program consisted of 35 oral presentations, including eight invited tutorials. In 
addition, 24 posters were presented. By avoiding parallel tracks, it was possible for everyone 
to hear everything and to provide ample time for questions and comments throughout the 
four-day conference. There were numerous lively discussions. Additionally, an hour-long 
open discussion was held on Model Calibration and Validation, with Michiel Jansen, Michael 
McKay, Anthony O'Hagan, and Timothy Trucano as panelists and Ken Hanson as moderator.  
 
Tutorials were presented on the basic elements of sensitivity analysis by the well-known 
experts Max Morris, Andrea Saltelli, Michael McKay, Anthony O'Hagan, Katherine 
Campbell, Timothy Trucano, Roger Cooke, and Jon Helton. 
 
SAMO 2004 drew to Santa Fe 106 registrants from 13 countries. Attendees had ample 
opportunity for informal technical discussions. Evenings were spent socializing and exploring 
the unique attractions of Santa Fe. The banquet was held at the Inn at Loretto. Guest speaker 
Andrew White, of the Los Alamos Computing Project, spoke about the development of 
computing at LANL in a talk entitled “A History of Predicting the Future.” 
 
The conference was generously supported by the Los Alamos National Laboratory (LANL). 
LANL, which is operated by the University of California for the National Nuclear Security 
Administration of the U. S. Department of Energy. LANL’s contribution facilitated the 
participation of numerous internationally recognized leaders in the fields of sensitivity 
analysis and simulation science, many of whom presented the invited tutorials.  LANL’s 
sponsorship made it possible for many graduate students to attend. The specific organizations 
at LANL that provided substantial financial and logistic support include the Weapons 
Response group (ESA-WR), the Continuum Dynamics group (CCS-2), the Statistical 



Sciences group (D-1), and the Research Library. Additional sponsors include the Joint 
Research Centre of the European Union, the American Statistical Association, and the Society 
for Industrial and Applied Mathematics.   
 
The SAMO 2004 proceedings include 50 contributed papers. This collection is archived on 
the web by the LANL Research Library at http://library.lanl.gov/. Mark Martinez, of the 
Library-Without-Walls team, helped create our web pages, and maintain the archive. The 
conference web pages, which include photos taken during the conference, are maintained by 
the Statistical Sciences Group at http://www.stat.lanl.gov/SAMO2004/ . 
 
We suggest that citations to papers from these proceedings include the following information: 
Author list, "Paper Title," Sensitivity Analysis of Model Output, K. M. Hanson and F. M. 
Hemez, eds., pp. page numbers (Los Alamos National Laboratory, Los Alamos, 2005) 
(http://library.lanl.gov/ccw/samo2004/). 
 
Kenneth M. Hanson and François M. Hemez, editors 
Los Alamos, New Mexico 
March 2005 
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Input Screening: Finding the Important Inputs on a Budget

Max D. Morris

Departments of Statistics, and Industrial and Manufacturing Systems Engineering
Iowa State University, Ames, Iowa, 50011, USA

E-mail: mmorris@iastate.edu

Abstract: One general goal of sensitivity or uncertainty analysis is the determination
of which inputs most influence model outputs of interest. Simple methodologies based
on randomly sampled input values are attractive because they require few assumptions
about the nature of the model. However, when the number of inputs is large and the
computational effort required per model evaluation is significant, techniques based on
more complex assumptions, analysis techniques, and/or sampling plans are needed. This
talk will review some approaches that have been proposed for input screening, with an
emphasis on the balance between assumptions and economy, including a brief description
of recent work in economical sampling plans.

Keywords: Computer experiment, sensitivity analysis, uncertainty analysis

1. INTRODUCTION

Especially in the early stages of work with a computer model, it is important to determine
which inputs are important and which are not. The precise definition of “important” is
not always the same (and in some cases is never carefully addressed) but is generally
related to how much or what kind of influence each input has on outputs of interest.
For very simple computer models, such questions may be addressed directly through
analysis of the underlying equations. But more complex models require an empirical
approach, or computer experiment designed to allow determination of the importance of
inputs through analysis of numerical output values. The approaches we shall discuss are
described as entirely empirical (i.e. “black box”), even though it is understood that in
many applications these can be tailored to take advantage of specific knowledge about a
model.

In order to be specific, let y = m(x), x ∈ ∆, represent what we mean by a “computer
model”, a deterministic function mapping a vector x of k input arguments from a defined
domain ∆ to a scalar-valued output y. In most real problems y would also be vector-
valued, but we shall not address complications that this may created here. A particular
input xi may be deemed important if (1.) ∂y/∂xi is large in at least some regions of ∆, (2.)
y is relatively complex (in some sense) as a function of xi, or (3.) y varies substantially
as the value of xi changes. These three concepts of “importance” are relatively vague,
certainly related, and certainly not exclusive, but one or more of them have been found
to be useful in a large variety of problems.

Two characteristics of this problem that make identifying important inputs practically
difficult are (1.) the dimension of x (typically not small), and (2.) the effort required
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to evaluate m (typically not trivial). The difficulty is easy to understand; if k is large,
the number of “points” needed to “fill” it sufficiently to allow characterization of y as a
function of x, without extensive knowlege or assumptions about the nature of m, will also
be large. But computer experiments requiring a large number of model executions will
be prohibitive if each execution is expensive.

Methodologies for the input screening problem have been proposed by several authors,
and vary in the assumptions required, the sense in which importance is measured, and the
number of model executions required for satisfactory performance. The four approaches
reviewed in this paper are representatives of a large collection of ideas introduced as
uncertainty analysis or sensitivity analysis. Our intent here is to point out the spectrum
of compromises they offer between required assumptions and required evaluations.

2. ASSUMPTIONS, INPUT IMPORTANCE, AND MODEL RUNS

2.1. Linear Approximation

A time-honored and often useful assumption about a function of interest is that it is at
least approximately linear in its arguments. This is such a strong assumption that it
effectively boils the entire question of the behavior of m down to a single slope parameter
for each input. There can be little question as to the definition of importance of any
input in this case. The linearity assumption implies that ∂y/∂xi takes the same value
everywhere in ∆, which in turn fully defines any sense of how variable y is with respect
to xi. Complexity is not an issue here unless it is also defined so as to increase with the
derivative.

Local sensitivity analysis often amounts, in practice, to definition of ∆ to be small
enough so that an assumption of approximate linearity is plausible. Downing et al. [3] are
among the may authors who have described how first-difference approximations to partial
derivatives can be derived from simple one-factor-at-a-time computer experiments. More
recent practitioners of this approach sometimes use orthogonal 2-level fractional factorial
designs of Resolution III or IV as the basis of such studies. Minimal designs supporting
this kind of analysis generally contain from approximately k to 2k model runs, where k
is the number of inputs.

Approaches requiring even fewer model evaluations may be developed if even stronger
assumptions can be made. If it is reasonable to assume that most inputs have little or no
effect on the output (“effect sparsity” in some literature) and/or the signs of each deriva-
tive can be assumed to be known, then group screening plans offer sequential strategies
to identify important inputs using substantially fewer than k model evaluations. See
the forthcoming book edited by Dean and Lewis [2] for a description of many of these
strategies.

While this general approach is often useful and usually simple, one disadvantage is
that there is little basis upon which to base an objective analysis of uncertainty. Since
there is no formal basis for the statistical interpretation of residuals, quantities such as
the t-statistics associated with each slope have only very limited heuristic value.
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2.2. Input-Output Correlations

If approximate linearity is not a justifiable assumption, it still may be acceptable in some
cases to assume that the slope of y with respect to xi’s, averaged over ∆, is an acceptable
measure of input importance. This is probably most reasonable when an argument can be
made that y is monotonic in the arguments of interest, and that the degree of nonlinearity
in its behavior is limited. In these cases, an index such as

∫
(y(x) − ȳ)(xi − E(xi))f(x)dx, ȳ =

∫
y(x)f(x)dx

may be reasonable, where y(x) = m(x) and f is a probability density function.

Such integrals are easily estimated using a relatively modest Monte Carlo sampling
of inputs, although most guidelines would suggest the need for more function evaluations
than can be used when the strict linear approximation is used. The virtues of using Latin
Hypercube sampling rather than unconstrained random sampling of inputs have been
argued by McKay et al. [5] and Stine [13]. Iman and Conover [4] take this approach to
evaluating the importance of inputs after transforming the output data to ranks.

The connection between k and the number of runs needed for effective Monte Carlo
estimation of the integrals is not so clear as it is when a Linear Approximation is used.
If more than a few inputs are important, accidental correlations between selected input
values can be substantial unless the number of runs is not small compared to k. These
problems may be moderated by using quasi-random sequences, e.g. [8], or algorithms
such as Owen’s [9] that control the degree of correlation between inputs.

2.3. Stochastic Continuity

Over the last 15 years or so, a number of papers have appeared in the statistics litera-
ture suggesting that the design and analysis of computer experiments might be based on
regarding (1.) m as a realization of a spatial (i.e. ∆) stochastic process (frequentist), or
(2.) the generalized uncertainty about m being expressed by such a process (Bayesian).
See, e.g. Sacks et al. [10] and Currin et al. [1] for overviews of this approach. The
most important practical issue in such approaches is the statement of a spatial covariance
function, governing the “complexity” that may be expected in the behavior of the output
as each input is varied. One popular functional form is:

Cov[y(x), y(x′)] = σ2e−
∑

i
θi(xi−x′

i
)2 .

Given data from a computer experiment, likelihood or Bayes procedures may be used
to estimate parameters such at the θi, and these used as importance indices. The sense
of importance in this example function is, again, one of scale; the value of θi essentially
defines distance in the xi direction over which a given degree of activity would be expected
in y.

Welch et al. [14] described an algorithm, for which the overall structure is much like
that of stepwise regression, for identifying the inputs for which estimates of θi are largest,
i.e. that are most important in this sense. In demonstrating the method, they evaluated
two example functions each in k = 20 inputs using a Latin Hypercube sample of 50
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runs. The methodology worked well in these exercises, but relatively few of the 20 inputs
were actually important in each case; it might be reasonably expected that more runs
would be needed if more of the inputs were active. The authors suggest that, following
the identification of large correlation parameters, a sensible follow-up analysis would be
examination of the fitted surface (mean of the conditional or posterior stochastic process)
to examine the shape of m as a function of each apparently important input. However,
reliable estimation of the response surface is likely to require more runs than reliable
estimation of the covariance parameters.

One somewhat philosophical sticking point with (this version of) the Stochastic Con-
tinuity approach is that the indices of importance are parameters that do not directly

describe properties of the function of interest! In the frequentist formulation of the prob-
lem, θi is a property of the (physically non-existant) process of which m is supposed to be
a single realization. In the Bayesian model, θi is part of the characterization of a gener-
alized uncertainty (or lack of understanding) of what the model might do under specified
circumstances. With sufficient data (and I am not aware of a careful analysis of what this
may mean in this application), this distinction may be less important practically than it
is philosophically.

2.4. Conditional Variance

The approaches described to this point are predicated on assumptions of linearity, mono-
tonicity, and continuity, respectively, in the model function. Even an assumption of
continuity, however, is not always be warranted, and even when it is strictly warranted,
the degree of complexity of y as a function of some xi may make any attempt to explicitly
model m difficult or impossible for practical purposes. In such cases it may be more
natural or meaningful to define importance in purely statistical terms, e.g. the degree
to which y may be expected to vary as xi varies according to some (possibly arbitrary)
probability distribution, completely disregarding any attempt to match a specific change
in y to a specific change in xi.

Sobol’ [12], Saltelli et al. [11], and McKay [6] are among those who have proposed
input sampling plans that support estimates of conditional moments of the distribution
of y, where that distribution is propagated to the output from a specified distribution on
the input vector. In particular, where each component of x is statistically independent of
the others, these authors address estimation of

Vi[E(i)[y(x)]] or “first-order variance”
E(i)[Vi[y(x)]] or “total variance”

Here the subscript i means expectation or variance with respect to the marginal distri-
bution of xi, and subscript (i) implies the joint distribution of all inputs except xi. No
functional assumptions about m are involved here, but the nonparametric nature of this
approach carries a practical requirement for a large number of model evaluations. Morris
et al. [7] have recently identified other sampling plans based on Balanced Incomplete
Block Designs that have some advantages for this type of analysis.

While this analysis has substantial appeal for the especially assumption-averse mod-
eler, it also carries a philosophical difficulty (although not as fundamental as the one I
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described above for Stochastic Continuity methods). Here the objection is one of analysis
efficiency. The indices of importance are estimated based entirely on the computed values
of y, along with information about which runs share common randomly drawn values for
each input. But the specific values of xi are not used at all in the analysis; while they
intuitively must carry some information of value in most practical situations, avoiding all

assumptions about the y-to-x connection makes it difficult to apply this information.

3. COMPARISONS, CONCLUSIONS

The four general approaches outlined in Section 2 differ in (1.) the strength of assumptions
that must be made about the model, (2.) the number of model evaluations that are
required for practical purposes, and (3.) the sense in which importance is assessed for each
input. Relatively strong assumptions leave relatively few degrees of freedom in defining
importance, but require relatively few model evaluations for assessment. Relatively weak
assumptions allow more subtle definitions of importance (or negatively, do not support
the simplest interpretations), but require relatively many model evaluations.

Approach Assumptions Required Runs Importance
Linear Approximation most least derivative

Input-Output Correlations ↑ ↓ averaged slope
Stochastic Continuity ↑ ↓ complexity
Conditional Variance least most variability

Variations on each of the approaches described here, and other fundamentally differ-
ent approaches, have been proposed in the literature on computational science, applied
mathematics, and statistics – the methods mentioned here are only an example of what
has been found to be useful in many applications contexts. Future research might benefit
from a broader inspection of how these methods differ, and how they might beneficially
be combined to create new “points” along the assumption-data-interpretation spectrum.
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The Evaluation of Combustion Mechanisms using Local and Global 
Sensitivity and Uncertainty Methods. 

Alison. S. Tomlin 

Energy and Resources Research Institute, University of Leeds, Leeds, LS2 9JT, UK. 

Email: A.S.Tomlin@leeds.ac.uk 

 

Abstract: Complex chemical mechanisms are increasingly used within models describing a 
range of important chemical processes. Within chemical models, kinetic parameters describing 
the rates of chemical steps and thermodynamics may be highly uncertain, influencing the 
uncertainty in final model predictions. Traditionally, local sensitivity analysis is employed 
within commercial modelling packages but may not be appropriate for highly uncertain data 
where models are nonlinear. This work compares linear sensitivity methods with global 
techniques such as Morris and Monte Carlo sampling for a kinetic model describing the 
influence of fuel sulphur on the oxidation of nitrogen within flames. The kinetics forms an 
important component of larger models describing pollution formation in combustion devices.  
The analysis reveals the most important rate and thermo-kinetic parameters contributing to the 
uncertainty in NO predictions for both rich and lean flames. The level of agreement between 
local and global techniques is highlighted. The use of reduced model representations using 
fitting methods is also discussed as a way of improving the efficiency of Monte Carlo based 
methods. Speed ups of a factor of 15 are seen without significant impact on the predicted mean 
output and standard deviation.  For certain conditions, the mechanism is not capable of 
observing previous experimental data, highlighting the need for structural developments of the 
model such as including additional reaction steps for which data is not currently available. 

Keywords: kinetic mechanism, sensitivity analysis, reduced model, Monte Carlo, MOAT. 

1. INTRODUCTION  

The use of computational modelling as a design tool is increasing within engineering 
applications. One area of importance is that of combustion reactor design. Environmental 
legislation means that engineers must develop combustion applications with low emissions of 
pollutants such as nitrogen and sulphur oxides. Understanding the impact of fuel trace elements 
such as nitrogen and sulphur containing compounds on pollutant emissions is important and 
requires the description of complex chemical mechanisms within the combustion chamber. In 
many cases mechanism data, such as rate constants and thermo-chemical parameters, are poorly 
categorised. If confidence is to be placed in the design process then the uncertainty in output 
predictions resulting from the use of such complex mechanisms should be investigated.  
Local/linear sensitivity analysis techniques are commomly used to evaluate such mechanisms. 
They have been developed in a generic way in the process engineering field using packages 
such as CHEMKIN [1], which is used for a range of applications including chemical 
mechanism validation in simplified flow environments such as flow reactors, premixed and 
diffusion flames. Linear methods are employed because they are computationally efficient, but 
are problematic where uncertainties in inputs are large and models are highly non-linear.  This 
work therefore describes the development of methods for global uncertainty analysis for 
application within modelling packages such as CHEMKIN.  
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The paper will present a comparison of local and global uncertainty methods for a test 
case describing a 1 dimensional model of the influence of sulphur species on the emission of 
NO (nitrogen oxide) from methane air flames. Experiments show that the influence of sulphur 
within the flame can lead to both enhancement and reduction of NO emissions depending on 
whether the flame is fuel rich or fuel lean [2-4]. The chemical mechanism employed has been 
developed using evaluated rate data where possible. Predictions from the mechanism are 
evaluated for experimental data sets for a variety of flames and fuel nitrogen contents. Without 
sulphur present in the fuel the mechanism has previously been shown to exhibit good 
agreement with experimental profiles of key species. However, the mechanism does not capture 
the quantitative influence of sulphur on NOx emissions that is demonstrated in the 1D flame 
experiments[3]. Local sensitivity analysis has already revealed [3] several important reactions 
that require improved categorisation of the rate data to lower output variance. The present work 
presents a comparison between local and nonlocal linear methods, the global screening Morris 
One at a Time (MOAT) method and random sampling Monte Carlo methods using full and 
reduced models, coupled with scatter plot and correlation analysis.  

2. MECHANISM STRUCTURE AND CONDITIONS FOR EVALUATION 

The mechanism under investigation consists of an updated version of the Leeds methane/NOx 
mechanism [5-7]. The SOx extension (156 reversible reactions and 24 species) is based on the 
mechanism of Glarborg et al. [8]  and Alzueta et al. [9] and has been augmented by the inclusion 
of additional reactions of sulphur containing species appropriate for a methane oxidation 
environment, and reactions describing sulphur-nitrogen interactions that have previously 
appeared in the literature or widely available databases. The uncertainty study here focuses on 
reactions of sulphur containing species and heats of formation of sulphur compounds. It is 
undertaken for selected experimental conditions from [3] where laser induced fluorescence 
studies were performed for a variety of low pressure methane flames doped with various levels 
of HCN and SO2. Comparisons were made of relative NO concentrations for several dopant 
levels and flame stoichiometries from ϕ = 0.7 to ϕ = 1.6 (Table 2 of [3]). Whilst showing 
similar qualitative trends, previous mechanisms have tended to over predict the relative increase 
in NO on the addition of SO2 for rich flames when compared to the experiment, and to under 
predict the reduction in NO for lean flames.   

3. SENSITIVITY/UNCERTAINTY METHODS EMPLOYED 

3.1 Uncertainties in Input Data 

Well categorised kinetic rate parameters k, such as those from evaluations [10], are often quoted 
with an accuracy expressed as 

�
logk.  Here 

�
log k = D and D is defined by log10k = C±D. This 

is equivalent to the rate parameter k being uncertain by a factor f where D = log10f. For 
temperature dependant reactions this respresents the uncertainty at 298K (f(298)). A 
temperature dependant form for second order reactions is given by:   

f (T) = f (298)exp
∆E

R

1
T

− 1
298

� 
� 
� 

� 
� 
� ,    (1) 

where � E is the quoted error in the activation energy. The uncertainty of log10k is usually 
assumed to be normally symmetric unless the parameter is stated as an upper or lower limit. 
One can then define a probability density function (pdf) for the rate parameter according to a 
distribution type. For less well categorised reactions a pdf cannot be determined and a 
minimum and maximum possible value are chosen, with an equal probability of the value of the 
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rate constant existing across the range. Local sensitivity coefficients are problematic in these 
cases since a most likely value cannot be reliably determined. However, if ranges of possible 
inputs are chosen, a full Monte Carlo analysis allows the user to determine if the model can 
“observe” target output values by comparison with experiments, allowing the evaluation of 
possible structural uncertainties in the model such as missing kinetic processes. Where target 
outputs are observable then the use of correlation factors or global ranking methods, allows the 
determination of the most important input factors leading to output uncertainties. 

3.2 Linear Sensitivities.  

In this study non-local linear sensitivities calculated using the brute force method are compared 
against previous local linear sensitivity studies from [3]. The use of the brute force method 
involves performing a base model run with output yi, using the nominal values of the input 
parameters, and n extra model runs where each uncertain input parameter j is changed by a 
small factor ∆j. The final output (yi

*) from each run is determined and the sensitivity coefficient 

given by: .�
j

yy
S

*
ii

ji,

−= The sensitivity at any temporal or spatial point is determined with a 

computational effort of order n (the number of uncertain inputs).  

3.3 The Morris One at a Time (MOAT) Method.  

Although they allow the study of non-linear interactions between parameters, global methods 
can be computationally expensive since thousands of model runs may be required. One 
example of a potentially more efficient screening method is the One at a Time analysis 
developed by Morris [11]. The method determines an importance ranking for parameters in 
terms of their mean effect on output variance as well as determining those parameters with 
linear additive effects and non-linear interactions [12].  In the MOAT method the inputs xj are 
assumed to have values in the set {0, 1/(p-1), 2/(p-1),…,1} where in practice these values are 
re-scaled to values from within their uncertainty ranges. A perturbation factor �  is defined as a 
multiple of 1/(p-1). A control simulation is then performed based on the random selection of 
parameters from the set {0,1/(p-1),…,1-� }.  A single parameter is then randomly selected and 
modified by a factor � , and a second simulation performed. This is repeated until each factor 
has been chosen once, corresponding to n+1 runs. This procedure is repeated r times until 
stable output statistics are obtained. The average output is computed over r runs and the cost of 
the method scales with r(n+1).   

The elementary effect of the j’th component of x on the output yi where xj has been 
changed by a factor �  is given by: 

.
)(y)xx,x,x,...,(xy

)(d im1,...,jj1j1i
ij

x
x

−±
= +−

   (2) 

The mean effect across r runs is given by: ,
r

d
d

r

1l

l
ij

ij

�
== and the variance: 

.
1)r(r

d)(dr

)(d�

2r

1l

r

1l

l
ij

2l
ij

ij
2

−

�
�

�
�
�

�−
=
� �

= =      (3) 
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In this study, ten runs were sufficient to produce stable outputs and a value of p=4 was chosen. 
Parameters with the highest mean effect have a significant impact on overall output variance 
and require improved categorisation to lower output uncertainty. If the variance between runs is 
low then the effect is said to be linear or additive. Parameters with a high variance exhibit non-
linear or interactive effects, which is important since it indicates parameters with sensitivities 
that may change if other parameter ranges are changed through improved categorisation.  

3.4 Sampling Based Methods and Monte Carlo Analysis. 

The standard method of Monte Carlo analysis is to perform a large number of model runs 
where in each run a sample of input parameters:  xk = [xk1,xk2,…,xknx], k = 1,2,…,ns, 

of size ns is randomly selected from the possible values for x from the chosen distributions [12]. 
For a uniform distribution each sample region is assigned equal probability and therefore the 
sample points are chosen randomly from any region. The corresponding outputs y for each 
sample are determined by rerunning the model ns times. Examination of the mapping from 
inputs to outputs can then be performed via a variety of methods including scatter plots, 
correlation analysis, regression analysis etc. The computational cost is of order ns where ns must 
be large enough for the mean output and the output variance to converge.  

4. OVERALL METHODOLOGY 

Simulation of the low pressure flames described in [3] has been performed using PREMIX [1] 
at a pressure of 40 Torr for fuel to air ratios Φ=1.6 and Φ=0.7. 0.3% and 0.5% of SO2 has been 
added to the lean and rich flames respectively in line with the experiments [3]. The output y(x) 
is the NO mole fraction in the burnt gas region. Reactions have been treated as reversible with 
reverse rates calculated from the appropriate equilibrium constants. The sensitivity to the heats 
of formation therefore forms an important part of the study. Each PREMIX run is 
computationally fairly expensive since a larger number of coupled non-linear equations must be 
solved in order to determine the concentration profiles of over 75 species in the flame. The use 
of a fitted model within the Monte Carlo analysis will therefore also be discussed as a method 
of reducing the computational expense resulting from large numbers of PREMIX simulations.  

The following methods will be presented for comparison:  

For uncertainties in rate parameters of sulphur containing reactions: 
1. linear sensitivities using the brute force method and a relative change of 10%,  
2. MOAT analysis,  
3. Monte Carlo analysis using up to 2000 model runs based on full and fitted models.  
For uncertainties in heats of formation for the sulphur containing compounds:  
4. Monte Carlo analysis using up to 2000 model runs.  
 
Uncertainty ranges for kinetic rate parameters were assigned using f factors with 95% 
confidence limits where data evaluations existed. For parameters derived from a single 
experimental or modelling study a factor of 2 was used. Where data derived from a single 
RRKM calculation, or was estimated, a factor of 10 was assumed. Where the temperature 
dependence was estimated, an uncertainty factor in � E of 2 was assumed. Of the 155 
parameters 18% derived from evaluated rate data, 18% from a low number of measurements, 
7% from measurements with no evaluation, 8% from a single RRKM study and 49% were 
estimated. For this reason, only input ranges were determined and not pdfs. The analysis will 
not therefore allow pdfs of the outputs to be determined, but rather allows the evaluation of the 
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current mechanism in order to inform its future development. Thermodynamic data and their 
uncertainties were obtained from the databases of Burcat [13] and NIST [14]. Coefficients for a 
large number of the sulphur compounds originated from modelling techniques [15]. Where a 
single model value was used an uncertainty of ±100 (kJmol-1) was assumed. Because almost 
half the thermodynamic data was of this type uniform distributions were used.   

5. RESULTS AND DISCUSSION 

5.1 Linear Sensitivity Coefficients.  

ΦΦΦΦ=1.6: The importance ranking from the non-local linear sensitivity study for the rich flame is 
presented in Table 1. The highest ranked reaction is SO+NH=NO+SH in agreement with the 
local sensitivity study in [3]. The second highest ranked reaction from the local study was 
SO2+H=SO+OH, which is represented here by its reverse rate [16] and ranked 5th. The second 
highest ranked reaction from this study is SH+NH=NS+H2, which was also highlighted by the 
local sensitivity study and has an estimated rate giving scope for improvement. The reaction 
H2S+M=H+SH+M, ranked third here, was not identified using local sensitivity coefficients. 
SO+O2=SO2+O was highlighted by the previous study and again has a negative sensitivity 
when using non-local methods. There is therefore some broad agreement between the local and 
non-local linear sensitivity methods as well as notable differences in ranking.  

Table 1 – Comparison of importance ranking of sulphur containing reactions in the rich flame (Φ = 
1.6) from the linear brute force (lbf) and MOAT analyses.  

 
React. 
No. 

Reaction lbf 
Rank 

MOAT 
Rank 

Pearson 
Coeff. 

Source of Data 

1 SO+NH=NO+SH 1 1 0.79 Single meas.  
2 SH+NH =NS+H2 2 5 0.12 Estimated  
3 H2S+M=H+SH+M 3 7 -0.08 Unevaluated measurements. 
4 SO+O2=SO2+O 4 14 -0.03 Evaluated   
5 SO+OH=SO2+H 5 4 0.2 Single meas.  
6 S+OH=SH+O 6 15 -0.07 Estimated  
7 HSO+H=SH+OH 7 33 -0.03 Estimated  
8 S+H2=H+SH 8 10 -0.06 Unevaluated measurements. 
9 SO+N=NO+S 9 2 0.56 Estimated  
10 H2S+M=H2+S+M 10 55 0.01 Unevaluated measurements. 
11 HSOH=SH+OH 69 3 0.04 Estimated  
12 SH+H=H2+S 11 6 0.06 Unevaluated measurements. 
13 SH+NO=SN+OH 13 8 0.01 Estimated  
14 SN+O=SO+N 39 9 0.05 Estimated  

 

ΦΦΦΦ=0.7: In the lean case a 10% increase in the selected rate parameters was not sufficient to 
cause any detectable change in the NO mole fraction. An factor of 10 increase was required to 
produce a detectable difference, making it impossible to determine an importance ranking using 
a linear method. The analysis indicates that for lean conditions, the NO concentration is highly 
insensitive to the forward rate parameters of the sulphur reactions around their nominal values.  

5.2 MOAT Analysis 

ΦΦΦΦ=1.6: Figure 1a shows the variance of the factor effects plotted against the mean effects from 
the MOAT analysis for the rich flame. Parameters with a low significance in terms of output 

11



 

variance appear at the bottom left of the plot.   Those in the bottom right segment have a high 
linear effect on model output and those in the upper portion show strong non-linear or 
interactive effects. The reaction SO+NH=NO+SH appears at the bottom right of the figure 
showing a strong linear effect on the output in agreement with the linear methods. 
SO+N=NO+S also shows a strong linear effect and ranks second in the MOAT analysis as 
shown in Table 1, although lower in the linear analyses. HSOH = OH+SH shows a strong mean 
effect and a high variance, indicating that the sensitivity to this reaction strongly depends on the 
values of the other parameters. Not surprisingly this reaction was not identified as important by 
the linear methods. Its high ranking by the MOAT analysis is strong evidence of the importance 
of using global uncertainty techniques.  
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Figure 1. Morris One at a Time Analysis for (a) (Φ = 1.6) and (b) (Φ = 0.7) 

 
Table 2 –Importance ranking of sulphur reactions in lean flame (Φ = 0.7) from MOAT analysis.  
 

React. No. Reaction MOAT Rank Source of Data 
 9 SO+N=NO+S 1 Estimated  

 11 HSOH=SH+OH 2 Estimated  
 15 HOSO+H=SO2+H2 3 Estimated  
 16 SH+H2S2=H2S+HS2  4 Single low temp. meas.  

         17 S2+H+M=HS2+M 5 Estimated  
 1 SO+NH=NO+SH  6 Single meas.  
18 SO2+OH=SO3+H 7 Estimated  
19 SO+M=S+O+M 8 Unevaluated measurements. 

ΦΦΦΦ=0.7: Figure 1b and Table 2 represent the output from the MOAT analysis for the lean flame. 
The overall mean effect of the rate parameters on the NO mole fraction in the burnt gas region 
is much lower than for the rich flame. SO+N=NO+S shows the highest overall mean effect and 
since this has an estimated rate there is some scope for improvement in predictions by its better 
categorisation. There are some differences between the reactions ranked highly by the MOAT 
analysis and by the linear studies in this and previous work [3]. For example reactions 11, 16, 
and 17 had no impact in the linear study despite being modified by up to a factor of 10. This 
indicates interaction effects between rate parameters in the scheme.  The dominant uncertainty 
in the conversion from SO2 to SO3 identified by the MOAT analysis is via OH rather than the 
pressure dependant reaction in the linear study. The low mean effect of all reactions for this 
flame again highlights the low sensitivity of NO to the sulphur chemistry for lean conditions.  

HSOH=OH+SH 
SH+H2S2=H2S+H 

SO+N=NO+S 
SO+NH=NO+S 

SO+OH=H+S+O 

HSOH=OH+SH 

SO+N=NO+S 

HOSO+H=SO2+H2 
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5.3 Monte Carlo analysis.   

The output values resulting from the randomly sampled input distributions for the rich flame 
are presented in Fig. 2 as scatter plots for high ranking reactions from the MOAT analysis. 
Pearson correlation functions [12] can also be used to determine the strength of the linear 
response of the output to the input parameters (see Table 1).  A high correlation implies a 
strong linear response of NO concentrations to an increase in the rate parameter. These 
correlation coefficients do not take into account interactive effects.  
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Figure 2. Scatter plot showing Monte Carlo simulation of changes in final NO concentration resulting 
from changes in reaction rate constant (a) SO+NH=NO+SH,  (b) HSOH = OH+SH. 

The Pearson coefficient of SO+NH=NO+SH is r = 0.79 (Fig. 2a) showing a strong linear 
response in line with both the linear sensitivity and MOAT methods.  The scatter about the 
mean effect in Fig. 2a is due to the influence of other parameters on the output. This reaction is 
ranked highest by all the methods of analysis and is clearly important for the rich flame. 
SO+N=NO+S also shows strong linear behaviour as demonstrated by r = 0.56, in agreement 
with the MOAT analysis. As expected, the Monte Carlo analysis coupled with linear regression 
techniques agrees well with the MOAT analysis for reactions with strong linear effects. 
Interestingly this reaction is fairly low down the importance ranking using both linear methods. 
Because it is estimated however, this parameter has a highly uncertain input range and therefore 
its overall contribution to the output uncertainty is high, even though its sensitivity may not be. 
HSOH=SH+OH is ranked third by the MOAT analysis. It has an extremely low ranking using 
the linear method and as Fig. 2b shows there is a large amount of scatter in the Monte Carlo 
results. Its correlation coefficient is very low (r = 0.04). This stems from the fact that the 
sensitivity of NO mole fraction to this reaction rate parameter changes sign in different regions 
of the input parameter space. In order to highlight the importance of such non-linear responses 
either the MOAT method or higher order correlation techniques combined with Monte Carlo 
based methods must be used. The ranking of reactions SO+OH=SO2+H and SH+NH =NS+H2 

as derived from the correlation coefficients and the MOAT analysis are similar due to their high 
mean effects on the output but low variances. Scatter plots and Pearson coefficients are not 
presented for the lean flame since insufficient changes in NO mole fraction occur. Each method 
therefore highlights the lack of sensitivity to the sulphur chemistry in the lean flame leaving 
limited scope for model improvement via better characterisation of the current rates.  

5.4 Agreement with experiment. 

The experimental study in [3] showed a 16% increase in the NO mole fraction in the burnt gas 
region of the rich flame on the addition of 0.5% SO2, with an experimental uncertainty of 
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±12%. In order to overlap with the experimental predictions the NO mole fraction in the burnt 
gas region must be < 9.545 x 10-4. The scatter plots show that in order to achieve this, several of 
the parameters must be chosen from the extremes of their input ranges. A view could be taken 
that the likelihood of these parameters being at their extreme values is low. This leads to the 
possibility of structural problems within the model, such as missing reaction sets or rate 
parameters that are significantly more uncertain than has been assumed. For the lean flame, the 
model does not observe the concentration determined in the experiments with any combination 
of the forward rate parameters for the sulphur reactions used here.  

5.5 Influence of Heats of Formation.  
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Figure 3. Scatter plot showing Monte Carlo simulation of changes in final NO concentration resulting 
from changes to heats of formation of  a) NS,  b) SO. 

Uncertainties in the heats of formation of sulphur containing species may affect the reaction 
kinetics as the rates of the reverse reactions are determined through the equilibrium constant. 
Figure 3 shows scatter plots from a Monte Carlo analysis of uncertainties in heats of formation 
for the two most significant parameters for the rich flame. The influence of the heat of 
formation for NS (� fH298(NS)) is extremely non-linear with a strong response at values lower 
than the quoted value, which flattens off at higher values. The output NO mole fraction will 
therefore be dominated by (� fH298(NS)) only if the quoted value is too high. At higher values 
other compounds start to have an effect as shown by the scatter plots for SO. The large amount 
of scatter stems from the dominant influence of NS in its lower range. However, as the effect of 
NS saturates, a negative linear response to � fH298 for SO can be seen. The influence of 
(� fH298(SO)) is therefore highly dependant on the value chosen for (� fH298(NS)).  

5.6 Computational Requirements and Stabilisation of Output Statistics.  

Theoretical estimations of the number of Monte Carlo runs required for the analysis of 155 
uncertain parameters would be extremely high. In reality, 2000 runs are sufficient for output 
statistics to settle. Because of the large number of uncertain input parameters attempts could be 
made to reduce the computational costs by focussing the Monte Carlo analysis on a smaller 
number of parameters, for example those highest ranked from the MOAT analysis. For 
comparison purposes therefore, a second Monte Carlo run has been performed for the rich 
flame, where only the top 15 reactions from the MOAT analysis vary randomly within their 
input uncertainty ranges. All other parameters are fixed at their nominal values. The final means 
for the full and 15 parameter runs compare well at 1.290x10-3 and 1.283x10-3 respectively, as do 
the final standard deviations of 1.321x10-4 and 1.320x10-4. This shows that the top 15 
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parameters identified by the MOAT analysis account for almost all the variance in the final 
output. However, the 15 parameter run does not settle statistically any faster than the full run, 
meaning that large computational savings have not been made, since a similar order of full 
model simulations have been required. This indicates that the number of samples used in the 
Monte Carlo analysis depends not on the total number of uncertain parameters, but on the 
number of important parameters that significantly affect the output statistics. In many cases, the 
number of samples required may not rise dramatically with the number of uncertain input 
parameters, since only a few parameters may dominate the output uncertainty.  
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Figure 4 Comparison of output from Monte Carlo simulations using full and reduced models. Grey line 
- full PREMIX runs, black line – runs using fitted polynomial.  

Further attempts may be made in order to reduce the computational cost of the Monte Carlo 
runs. In this work a second order polynomial equation has been fitted to represent the input 
output relationships from a small number of randomly sampled PREMIX runs using a Gram-
Schmidt orthonormalisation procedure [17]. Again 15 input parameters are utilised as 
determined by the MOAT analysis and 120 samples are used for the fit. The polynomial 
coefficients are determined by minimizing the root mean square error (rms) of the fitted 
function with respect to the target output data derived from the full model. Terms not reducing 
the rms error are discarded. The final polynomial is factorised using Horner equations to 
minimize the number of arithmetic expressions required in the final simulation. Figure 4 shows 
that both the mean output and the output variance behave in a very similar way with increasing 
sample size for the full PREMIX simulations and those using the polynomial model. After 2000 
simulations both give extremely similar results, despite the reduced model being formulated 
using only 120 full simulations. The final output means from the full and reduced models are 
1.283x10-3 and 1.286x10-3 respectively, and the final standard deviations 1.320x10-4 and 
1.337x10-4, showing that the polynomial model gives similar results for >15 times lower 
computational costs. In contrast, if only 120 full model runs had been used then the final mean 
and standard deviations would not have settled down and would have been 1.272x10-3 and 
1.217x10-4 and therefore do not represent the final values as well as using 2000 polynomial 
model runs. A further point is that the polynomial model directly reveals second order 
interactions between parameters. 

6. FINAL DISCUSSION AND CONCLUSIONS 

The analysis shows that useful information can be obtained from linear sensitivities, although 
both the linear sensitivities and the regression analysis fail to identify important reactions with 
strong non-linear interactions. Using combined global methodologies however, highlights a 
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range of reaction rates and thermo-kinetic parameters leading to output uncertainties in NO 
predictions providing useful information for further kinetic studies. Each method agrees that the 
sensitivity of NO mole fraction to sulphur containing reactions is much higher in the rich flame 
than the lean flame, which is extremely insensitive to the parameters tested here. Possible 
mechanistic problems relevant to the lean flame must therefore be identified. Since the 
mechanism utilised in the study contained all reactions present in the literature with measured, 
modelled or estimated rates, significant further improvements may involve new elementary 
reactions being postulated with a further requirement for the categorisation of their rate data.  

The MOAT analysis performed in this study successfully identified those reactions 
making the major contribution to the overall output uncertainty as determined by Monte Carlo 
techniques. Once this group of 15 parameters had been identified it was demonstrated that the 
computional expense of using Monte Carlo analysis could be significantly reduced by fitting a 
polynomial model describing the relationship between the 15 important parameters and the 
chosen model output. 120 random sampling runs proved sufficient for the fit, that was then 
capable of predicting the mean output and standard deviation across many runs with a high 
degree of accuracy when compared to analysis using full model runs. Since the computation of 
polynomials is so fast, the use of the reduced model gave speed ups of greater than a factor of 
15. This approach of combining a global screening method with random sampling analysis 
using a fitted model could therefore have potential benefits for the future application of global 
uncertainty methods where individual model runs are computationally time consuming.  
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Abstract: In stormwater quality modeling, estimating the confidence level in conceptual 
model parameters is necessary but difficult. The applicability and the effectiveness of a 
method for model calibration and model uncertainty analysis in the case of a four parameters 
lumped urban runoff quality model are illustrated in this paper. This method consists of a 
combination of the Metropolis algorithm for parameters’ uncertainties and correlation 
assessment and a Variance-based method for global sensitivity analysis. The use of the 
Metropolis algorithm to estimate the posterior distribution of parameters through a likelihood 
measure allows the replicated Latin Hypercube Sampling method to compute the parameters’ 
importance measures. Calibration results illustrate the usefulness of the Metropolis algorithm 
in the assessment of parameters’ uncertainties and their interaction structure. The sensitivity 
analysis demonstrates the insignificance of some parameters in terms of driving the model to 
have a good conformity with the data. This method provides a realistic evaluation of the 
conceptual description of the processes used in models and a progress in our capability to 
assess parameters’ uncertainties. 

Keywords: Uncertainty analysis, Global sensitivity analysis, Bayesian inference, Model 
calibration, Urban runoff, Quality modeling 

1. INTRODUCTION 
Since the seventies, an important number of research programs (National Urban Runoff 

Program, in the USA (1978-1983), French Campaign (1980-1982), Experimental Urban 
Catchment “le Marais” (1994-2000), …) have shown that the urban stormwater is a 
significant source of pollution for the receiving systems. This pollution results mostly from 
the erosion caused by the runoff of particulate pollutants accumulated on the urban surfaces 
and in sewers during the dry weather period (Figure 1). Moreover, in old urban centers 
combined† sewer systems are found, whereby, during wet weather periods, mixed rain and 
wastewaters may reach the receiving system through combined sewer overflows. 

Within the European Union, control of this pollution was concretized in government 
policy and Community legislation. Concerning the urban drainage, the European Directive 
n°91/271 of May 1991 on wastewater treatment forces the communities to take into account 
the pollution discharged into receiving waters during storm events. 

                                                 
* Corresponding author. Tel.:+33(0)1 64 15 36 30; Fax:+33(0)1 64 15 37 64 

† Combined sewer system is used in old cities to drain both the urban stormwater and the wastewater 
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Figure 1 Sources of urban water pollution 

Mathematical and computational modeling seems to be a necessary decision-making tool 
for the management of urban stormwater pollution. Currently, existing models are based on a 
combination of complex models including conceptual but empirical formulations that describe 
the processes of generation and transport of pollutants during rainfall. The parameters 
governing these functions do not have a physical interpretation and therefore, cannot be 
measured directly in the field. Instead, these parameters must be indirectly estimated using a 
calibration procedure whereby the model’s parameters are adjusted until the system’s and the 
model’s outputs show an acceptable level of conformity. 

However, the difficulty, expensiveness and uncertainty level of the in situ measurement of 
urban stormwater pollution generate data that rarely allow a satisfactory calibration and 
validation of these models [1]. Furthermore, classical optimization methods that are still used 
up to date for calibration don’t allow neither an estimation of the significance of the obtained 
optimal parameter set, nor a realistic quantification of models’ uncertainty. Thus, the existing 
urban stormwater quality models are rarely used for practical application. 

In this paper, we present the results of testing the applicability and the effectiveness of a 
method for model calibration/validation/sensitivity analysis in urban runoff quality modeling. 
This method based on the Monte Carlo Markov Chain sampling techniques “MCMC” consists 
of a combination of a Metropolis algorithm for statistical inference and a Variance-based 
method for the Global Sensitivity Analysis. This test will be done using data resulting from a 
survey conducted on the «Marais» catchment in the center of Paris – France [2]. 

This paper is organized as follows: In section 2, we discuss the difficulties encountered in 
urban runoff quality modeling. In section 3, we present a general overview of the uncertainty 
and sensitivity analysis methods. In section 4, we describe the MCMC-GSA method by 
introducing the Metropolis algorithm, the replicated Latin Hypercube sampling method and 
their use in the model’s calibration and sensitivity analysis. In section 5, we examine the 
applicability of this method in the case of urban runoff quality modeling. Finally, in section 6, 
we summarize the methodology and discuss the results. 

2. URBAN RUNOFF QUALITY MODELING 
It is obvious that modeling represents a necessary tool for understanding the behavior of 

the urban drainage system and a predictive tool in decision making. For this purpose, models 
have been developed to simulate the urban water cycle for both quantitative and water quality 
aspects. Concerning quantitative stormwater management, researchers developed runoff and 
water flow models that are widely used by managers. However, concerning storm water 
quality management, researchers built complex models whose structure corresponds to the 
course of pollution. These models simulate the pollutants’ accumulation on the urban 
catchments, their erosion by runoff, the erosion of sediments in the sewers, and finally the 
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transport of pollutants through sewers to the outlet. However, despite that many models have 
been proposed since 1971 (first version of SWMM by US-EPA), several difficulties are 
facing attempts of stormwater quality modeling. 

First of all, the physical, chemical and biological phenomena occurring simultaneously at 
each stage of the processes of generation and transport of pollution in the system make the 
system very complex. Moreover, space scales vary greatly considering the heterogeneity of 
the system’s characteristics (topography, watersheds, pipes, sediments size), and time scales 
vary from several days corresponding to the dry weather period, to few minutes during the 
wet weather period. Therefore, the only possible modeling approach is the conceptual one. 

Second, despite the efforts that have been done to understand the sources and the 
mechanisms governing the processes involved, the dynamics of accumulation, erosion and 
transport of pollutants are not well known especially in what concerns the sources and 
processes of pollution generation in sewers. Currently, modelers tend to divide the urban 
catchment to a number of sub-catchments of few tens of hectares connected by a sewer 
network. Runoff models, which are initially developed for surfaces, are used to conceptually 
describe the accumulation and erosion processes on sub-catchments for which little 
knowledge is currently available. Erosion and transport models of in-sewers solids’ are 
derived from alluvial hydrodynamics, which poorly describe the real behavior of a sewer 
system during a rain event. So, great discrepancies exist between the current state of 
knowledge concerning phenomena and the models used. 

Third, field surveys for collecting data necessary for the development of models are 
difficult and expensive. In consequence, input data (topography, sediment sewer deposits, rain 
intensity, etc…) and quality measurement data (pollutants concentrations) are rare and 
characterized by great uncertainties (in the range of 30%) [1]. They rarely allow a satisfactory 
calibration of the model’s parameters. 

Finally, while considerable attention has been given to develop global calibration 
procedures that estimate a best set of parameter values, noting that this is not an easy task 
especially that most of the models are non-linear [3, 4], much less attention has been given to 
both the assessment of the significance of the obtained optimal set of parameters, and the 
realistic quantification of models’ uncertainty. Thus the estimated parameters from these 
models are generally error-prone leading to considerable uncertainty in the calibrated model. 

Improving these models and their usefulness requires modelers to use a more robust 
methodology for calibration and validation of models. Such methodology should be able to 
provide both an assessment of the uncertainties in the model’s parameter values and an 
evaluation of the confidence level of the model’s predictions. Uncertainty and sensitivity 
analysis are therefore indispensable for any modeling improvement attempt in this field. 

3. UNCERTAINTY AND SENSITIVITY 
In the last decade, great attention has been given to the Bayesian inference for model 

calibration and uncertainty assessment particularly in the case of complex hydrological 
models [5, 6]. Nevertheless, its application in environmental modeling is very rare. 

Bayesian approach, expresses uncertainties in the model’s parameters θ in terms of 
probability. Parameter uncertainty is quantified first by introducing a prior probability 
distribution P(θ) ,which represents the knowledge about θ before collecting any new data, and 
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second, by updating this prior probability on θ to account for the new data collected (D). This 
updating is performed using Bayes’ theorem, which can be expressed as: 

( ) ( ) ( )
( ) ( )∫ ⋅⋅⏐

⋅⏐
=⏐

θθθ
θθθ

dPDP
PDPDP  (1)

Where P(θ⏐D) is the posterior distribution of θ; ( ) ( )∫ ⋅⋅⏐ θθθ dPDP  is a normalizing 
constant required so that ( )∫ =⋅ 1θθ dDP , and P(D⏐θ) is the conditional probability for the 
measured data given the parameters. P(D⏐θ) is often referred to as the likelihood function. 

Unlike traditional statistical theories based on first order approximations and multi-normal 
distributions that may fail especially when dealing with nonlinear complex models [5], Monte 
Carlo Markov Chain “MCMC” technique have become increasingly popular as a general 
method that provides a solution to the difficult problem of sampling from a high dimensional 
posterior distribution [7]. The idea behind MCMC for Bayesian inference is to generate 
enough samples from a random walk which adapts to the true posterior distribution P(θ⏐D). 
A variety of appropriate Markov chains can be constructed, but all of them are special cases 
of the Metropolis algorithm [8]. A study conducted by Kuczera and Parent (1998) 
demonstrated the capability of the Metropolis algorithm to produce reliable inferences for the 
parameter’s uncertainty assessment in the case of hydrological models. 

This posterior distribution represents the uncertainty in the model’s parameters and can be 
propagated through a Monte Carlo method to assess the uncertainty in the model’s output 
attributable to the parameters’ uncertainties. However, as the obvious objective of calibration 
is to reduce the uncertainty in the model’s output, it seems necessary to conduct global 
sensitivity analysis to determine on one hand, which parameters contribute the most to the 
output variation and require reducing their variances to minimize the variance in the model’s 
output; and on the other hand, which parameters are insignificant and can be discarded from 
the model. Thus, using this method we can determine the type of research that is required to 
reduce the output’s uncertainty by reducing the variance in some of the model’s parameters. 

There are many different ways to perform a sensitivity analysis, the method that will be 
used in this paper is called a “Variance based” method where the uncertainty in the model’s 
output Y is measured by its variance V(Y) and thus can be partitioned to the sum of a top 
marginal variance and a bottom marginal variance as follows: 

)]([)]([)( UYVEUYEVYV +=  (2)
Where U is a subset of one or more elements θi. V[E(Y|U)] is the variance of the 

conditional expectation of Y given U and it will be equal to zero if Y is completely 
independent of U, E[V(Y|U)] is the expectation of the conditional variance of Y given U and it 
will be equal to zero if Y depends only on U [9]. In this context, the main effect, or first order 
sensitivity index SU, representing the sensitivity of Y to the parameter U is defined 
as )()]([ YVUYEVSU = . The total effect, or total sensitivity index STU is defined 

as )()]([ ~ YVYVES UTi θ=  where θ~U indicates all the factors but U. 

Many estimation procedures of SU and STU are available in case of independent 
parameters. However, when the parameters are correlated, a replicated Latin Hypercube 
sampling method [9] for the estimation of the importance measure of parameters can be used. 
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4. MODEL ASSESSMENT METHOD 
In this paper, a combination of two complementary and model – independent techniques is 

used to quantitatively assess the uncertainties associated with the model’s parameters as well 
as the output of the model itself. 

4.1. Metropolis algorithm 
Although the Metropolis algorithm is not the most efficient Markov Chain sampler, it is 

chosen in this study because of the simplicity of its implementation, and its generality. It only 
requires knowledge about the likelihood function to update simultaneously the parameters set 
for each iteration. Supposing that residuals between model and observation are N(0, σ2), the 
likelihood function can be written in the multiplicative form: 

( )
( )

( )( )
∏ ⋅

⋅⋅
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=

⋅
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t
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2
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Where (Y1,…,Yn) is the vector of the measured response Y, (X1,…, Xn) is a vector of input 
data, θ = (θ1,…, θp) is the vector of p unknown parameters, and f( ) is the model’s output. σ is 
considered, as well as θ, as a set of parameters to be estimated during calibration. 

At each iteration, candidate values of parameters are drawn from a multi-normal transition 
probability distribution for which the variance could be tuned up in a way to increase the 
speed of convergence. However, updating periodically (automatically) the variance during the 
simulation, as proposed by Kuczera [5] is subject to difficulties: how can one be sure that the 
samples used to update the variance contain information of a good quality that can help to 
ensure the convergence of the chain to the limit distribution? We suggest fixing a prior value 
of the variance according to the information about the parameters during all the simulation. 

An interesting feature of the Metropolis algorithm is that the interaction among the 
model’s parameters is reflected in the likelihood function, so there will be no need to 
incorporate correlation in the prior distributions of parameters. In order to avoid favoring any 
initial value, the use of a uniform prior distribution over the range of parameters may seem 
reasonable [6]. 

4.2. Replicated Latin Hypercube sampling 
The Replicated Latin Hypercube Sampling method r-LHS has been employed in this study 

to assess the importance measure of the parameters. This method use r replicate Latin 
hypercube samples of size k to produce m = r × k parameter vectors θ in total. The same k 
values of each component U of θ will appear in each replicate but the matching within each 
one will be done independently. For this application the k values of each parameter U are 
sampled from its posterior distribution inferred with the Metropolis algorithm. The Iman & 
Conover rank correlation method [10] has been considered for the r-LHS in order to induce 
parameters’ correlation in the sample. After making the computer runs using the m replicated 
samples, the importance of U is assessed by computing the ratio SU: 
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yij represents the output value that corresponds to the ith value Ui, in the jth replicate. In 
this paper, we are interested in the sensitivity analysis for the likelihood measure in order to 
identify the parameters that are mainly driving the model to have a good conformity with the 
data. Ratto [11] showed that sensitivity analysis for the likelihood gives useful information for 
model calibration especially when great interaction exists between parameters. 

5. CASE STUDY 
In this paper, we apply the method on the case of urban runoff modeling firstly on the 

scale of a sub-catchment as used in practice and secondly on the scale of a street surface. 

5.1. Site description 
Two different watershed scales have been used in this study: the first one WS1 is a 42 ha 

urban catchment (91% imperviousness) drained by a combined sewer system and the second 
one WS2 is a 160 m2 street surface. The used rain event database covers a continuous period 
of 16 months (1996-1997) with 151 rain events. Suspended solid SS pollutographs* were 
measured for 40 rain events at the outlet of the combined sewer, and for 11 rain events at a 
street gully collecting discharge from the street. These data were acquired on the experimental 
catchment “le Marais” in the centre of Paris [2]. 

5.2. Model description 
The model used in this study to simulate the Suspended Solids pollutograph is a very 

classical one. It describes the particulate pollutants’ erosion during the storm event and their 
accumulation on the watershed during the preceding dry weather period. This model was at 
first proposed to be used on street surface scales. However, it is currently used in all available 
urban stormwater pollution software at the scale of urban subcatchment where both sewers 
and urban surfaces are described as one entity. 

Equation 5 and Equation 6 represent the two accumulation models tested in this paper. 
Equation 5 calculates the accumulation of pollutants assumed to follow an asymptotic 
behavior that depends on two parameters: an accumulation rate Daccu (kg/ha/day) and a dry 
erosion rate Dero (day-1) [12]. 

( ) ( )tMaDeroSimpDaccu
dt

tdMa
⋅−⋅=  (5)

))(()(
lim tMaSimpMKaccu

dt
tdMa

−⋅⋅=  (6)

Where Ma(t) (kg) is the available pollutants’ mass at time t and Simp (ha) is the impervious 
area. Equation 6 represents a mathematical reformulation of the previous model and was 
chosen in regard to the obtained results. This model depends on two parameters: an 
accumulation coefficient Kaccu and a maximum accumulated mass Mlim. It supposes that the 
accumulation is proportional to the mass still to be accumulated before reaching the maximum 
Mlim, which is equivalent to the Daccu/Dero. 

Equation 7 represents the evolution of the available pollutant mass during storm weather 
period. It is supposed that the eroded mass is proportional to the available mass and to the 
                                                 

* Suspended Solid pollutograph represents the profile of SS C(t) concentration during time t 
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rainfall intensity. The erosion model depends on two parameters: the erosion coefficient Wero 
and a coefficient w [13]. 

( ) ( )
( )

dt
tdMa

tq
tC ⋅=

1  and ( ) ( ) ( )tMatIWero
dt

tdMa w ⋅⋅−=  (7)

Where C(t) (mg/l) is the SS concentration produced by erosion, q(t) is the discharge 
(m3/s) at the outlet of the watershed at time t, and I(t) is the rainfall intensity (mm/hr). 

5.3. Results 
12,000 iterations were performed with the Metropolis algorithm, and the first 2,000 

samples generated were removed allowing the Chain to “forget” the initial parameter set. 
Results showed that the Chain converged successfully to the same posterior probability 
distribution of the parameters regardless of the initial parameter set used. However, the speed 
of convergence has been found to be sensitive to the variance of the transition distribution. In 
the present case we chose a value of the standard deviation equal to 1/15 of the prior value of 
parameter to ensure the convergence. 

5.3.1. Marais catchment scale 
Figure 2 represents the confidence intervals of the model’s output obtained by applying 

Monte Carlo to the model with the estimated posterior distribution of parameters. In the 
present case, the range of the possible responses is very large. The value of the estimated 
variance of errors (σ = 130mg/l), which is quite large compared to the variance of the data 
(σdata = 150 mg/l), indicates that the variation in the measured pollutographs are considered as 
randomness in regard to the predictive capacity of this calibrated model. Obviously, the 
proposed model seems to be unable to reproduce accurately the measured pollutographs, and 
the Metropolis results indicate clearly that it is not due to calibration problems. 
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Figure 2 5-95% prediction intervals of the SS concentration at the Marais catchment scale 

This is not surprising regarding the experimental results showed by Gromaire [2] where 
the deposits in combined sewer systems contribute to 60% of pollution. The complexity of 
sediments’ deposition, erosion and transport processes in sewers make the sub-catchment 
scale by far outside the domain of validity of the conceptual model used. Thus, it seems 
important to apply the MCMC method for the calibration of this model on a space scale 
having an acceptable range of conformity to the model’s domain of validity. 

5.3.2. Street Surface scale 
Figure 3 presents the posterior probability distribution obtained for the parameters Daccu, 

Dero, Wero, w and for the standard deviation of errors σ with the Metropolis algorithm. 
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Figure 3 Posterior distribution of the 4 parameters estimated at the street catchment using Eq. 5 

The analysis of the posterior distributions of the parameters shows large uncertainties 
related to the dry weather model parameters Daccu and Dero (Figure 4). We also found a 
linear correlation between these two parameters (correlation = 0.7). This correlation is due to 
the mathematical formulation of the accumulation model (Eq. 5). As a consequence, the 
accumulation model could be better calibrated if mathematically reformulated. 

 
Figure 4 Scatter plot of the Likelihood measure vs. the parameters at the street catchment using Eq. 5 

However, despite that the results obtained for the reformulated model (using Eq. 6) show 
a better identification of the maximum mass accumulated Mlim as shown in Figure 5, 
calibration results indicate a large uncertainty related to the parameter Kaccu representing 
(like the parameter Dero) the speed of the accumulation process during dry weather. 

 
Figure 5 Scatter plot of the Likelihood measure vs. the parameters at the street catchment using Eq. 6 

50 replicates of the 200 LH samples are used to estimate the importance measures of the 
parameters for the likelihood of the model’s output for the two used models (Figure 6). 
Results show that the maximum accumulated mass Mlim represents an important parameter 
that has a significant impact on the likelihood measure of the model. However, the Kaccu 
parameter has an insignificant effect on the model’s output. This conclusion is also provided 
using the scatter plot of the likelihood measure vs. the parameters as shown in Figure 4 & 5. 

One can conclude that the estimation of the initial accumulated stock available before the 
rain event is very essential for the good performance of the model. However, the sensitivity 
analysis results indicate clearly that using the length of the dry weather period as an 
explicative parameter for the accumulation process, described by an asymptotic behavior, is 
not sufficient to explain the variability of the available mass just before the rain event. 
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Figure 6 Importance measures for the likelihood measure of the model output using a. Eq 5 & b. Eq 6 

Nevertheless, calibration results indicate a clear correlation between the maximum mass 
Mlim and the erosion parameter Wero (Figure 7.a.). Such correlation is not surprising 
regarding the mathematical structure of the erosion model (Eq. 7), which represents a 
multiplicative form of Ma(t) and Wero. 
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Figure 7 a. Correlations between Mlim and Wero. b. 5-95% prediction intervals of the pollutants 
concentration simulated by model 

Figure 7.b. presents the confidence interval of the model’s output C(t). It shows large 
uncertainties in the model’s predictions. This is not surprising regarding the fact that an 
important part of this uncertainty is attributable to the value of the variance of errors (σ = 
47mg/l) which is quite large compared to the variance of the data (σdata = 62mg/l). In other 
words, the predictive power of the calibrated model is low. 

6. CONCLUSION 
In this paper, we tested the applicability and effectiveness of a method used for model 

calibration/validation/sensitivity analysis in urban runoff quality modeling. This method, 
based on the MCMC sampling technique, consists of a combination of the Metropolis 
algorithm and a Variance based method. Metropolis algorithm provides an estimation of the 
posterior distributions describing parameters’ uncertainties, as well as, their interaction 
structure. On the basis of the parameters’ distributions, the Monte Carlo method determines 
the conceptual model’s confidence intervals reflecting its prediction capacity. Using the 
posterior distribution, the performance of the replicated LHS method in regard to the 
likelihood measure leads to the quantitative identification of the main parameters that drive 
the model to have best fit to data. 
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Calibration results demonstrate that the tested conceptual model seems unable to represent 
the complexity of the system at the scale of urban sub-catchments. However, the application 
of the method to calibrate the model on a street surface scale shows that the mathematical 
concept of the accumulation model, using two parameters Daccu and Dero, contains linear 
interaction between its parameters, and implies much more uncertainty in their calibration. 
Furthermore, despite that a reformulation of this model using two parameters (Mlim and 
Kaccu) allows a better identification of the parameter Mlim, sensitivity analysis results show 
that the parameter Kaccu provides negligible contribution to the likelihood variation, or in 
other words, have no significant effect on the behavior of the model. This hypothesis casts 
doubts on the utility of using an asymptotic behavior, which depends only on the length of the 
dry weather period to describe the accumulation process. Such a conclusion needs to be 
validated on other sites to test its generality. 

However, this method delivers much information, which would have been unreachable 
with classical calibration methods, and which are very useful for modeling attempts. 
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Abstract: This presentation aims to introduce global sensitivity analysis (SA), targeting 
an audience unfamiliar with the topic, and to give practical hints about the associated 
advantages and the effort needed. To this effect, we shall review some techniques for 
sensitivity analysis, including those that are not global, by applying them to a simple 
example. This will give the audience a chance to contrast each method’s result against the 
audience’s own expectation of what the sensitivity pattern for the simple model should 
be.  We shall also try to relate the discourse on the relative importance of model input 
factors to specific questions, such as “Which of the uncertain input factor(s) is so non-
influential that we can safely fix it/them?” or “If we could eliminate the uncertainty in 
one of the input factors, which factor should we choose to reduce the most the variance of 
the output?” In this way, the selection of the method for sensitivity analysis will be put in 
relation to the framing of the analysis and to the interpretation and presentation of the 
results. The choice of the output of interest will be discussed in relation to the purpose of 
the model based analysis. The main methods that we present in this lecture are all related 
with one another, and are the method of Morris for factors’ screening and the variance-
based measures. All are model-free, in the sense that their application does not rely on 
special assumptions on the behaviour of the model (such as linearity, monotonicity and 
additivity of the relationship between input factor and model output). Monte Carlo 
filtering will be also be discussed to demonstrate the usefulness of global sensitivity 
analysis in relation to estimation. 
 
Keywords: global sensitivity analysis, factor prioritisation, main effects, second-order 
interaction effects, nonlinear models 
 
 
INTRODUCTION 
 
The material in this presentation is taken from a primer on global sensitivity analysis 
entitled “Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models” by 
Andrea Saltelli, Stefano Tarantola, Francesca Campolongo and Marco Ratto. This will 
appear with John Wiley & Sons by early 2004, and we shall refer to it as to Saltelli et al., 
2004 in the following. The primer aims at guiding a non-expert user in the choice of the 
method to adopt for the user own problem. The methods recommended include the 
variance based measures, the method of Morris, and Monte Carlo filtering, e.g. some 
effective methods for global sensitivity analysis.  
 
Global sensitivity analysis is the study of how the uncertainty in the output of a model 
(numerical or otherwise) can be apportioned to different sources of uncertainty in the 
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model input”. Global could be an unnecessary specification here, were it not for the fact 
that most analysis met in the literature are local or one-factor-at-a-time. 
 
All models have use for sensitivity analysis. Applications worked by the Joint Research 
Centre group for Applied Statistics include: Atmospheric chemistry (Campolongo et al., 
1999a), transport emission modelling, fish population dynamics (Campolongo et al. 
1999b), composite indicators (Tarantola et al. 2002), portfolios, oil basins models 
(Saltelli, 2002), capital adequacy modelling (for Basle II), macroeconomic modelling, 
radioactive waste management (Saltelli and Tarantola, 2002). Applications from several 
practitioners can be found in Saltelli et al. Eds. 2000, a multi-author book. 
 
Prescriptions have been issued for sensitivity analysis of models when these used for 
policy analysis.  
In Europe, the European Commission recommends sensitivity analysis in the context of 
the extended impact assessment guidelines and handbook (2002). Similar 
recommendation in the United States EPA’s White Paper on model use acceptability 
(1999) 
 
The EC handbook for extended impact assessment, a working document by the European 
Commission, 2002, states:  “A good sensitivity analysis should conduct analyses over the 
full range of plausible values of key parameters and their interactions, to assess how 
impacts change in response to changes in key parameters”.  The EPA paper (1999) is less 
prescriptive, but insists on the need for uncertainty and sensitivity analysis. 
 
Even leaving prescriptions aside, one cannot ignore that models have not escaped the 
post-modern critique of the role of science in society. Specific critiques of simulation 
modelling and model validation have been frequent in recent years. One example: 
<<…most simulation models will be complex, with many parameters, state-variables and 
non linear relations. Under the best circumstances, such models have many degrees of 
freedom and, with judicious fiddling, can be made to produce virtually any desired 
behaviour, often with both plausible structure and parameter values.>>, Hornberger  and  
Spear 1981.  
 
Also, from within the modelling community reminders of the problem were frequent: 
Konikov and Bredehoeft, 1992, proclaims: "Groundwater models cannot be validated". 
This cry of alarm was taken up by Oreskes et al. 1994, in an article on Science entitled 
"Verification, Validation and Confirmation of numerical models in the earth sciences", 
both works focusing on the impossibility of model validation. Two established 
laboratory, IIASA and RIVM, had considerable trouble with the perceived quality of their 
models, see Mac Lane 1989, and van der Sluijs 2002 respectively. The post-modern 
French thinker Jean Baudrillard (1990) presents 'simulation models' as unverifiable 
artefact which, used in the context of mass communication, produce a fictitious hyper 
realities that annihilate truth. Science for the post modern age is discussed in Funtowicz 
and Ravetz 1990, 1993, 1999, mostly in relation to Science for policy use, a settings 
which Gibbons (1994) calls “mode 2” scientific production. 
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Faced with these critiques, the modelling community may consider that a quality check as 
that which is provided by a careful sensitivity analysis is worth its effort.    
 
Before we discuss the methods for sensitivity analysis, we would like to say a few words 
about the output Y of interest. In our experience, the target of interest should not be the 
model output per se, but the question that the model has been called to answer. To make 
an example, if a model predicts contaminant distribution over space and time, it is the 
total area where a given threshold is exceeded at a given time which would play as output 
of interest, or the total health effects per time unit. 
 
One should seek from the analyses conclusions of relevance to the question put to the 
model, as opposed to relevant to the model, e.g.   
 
• Uncertainty in emission inventories [in transport] are driven by variability in driving 

habits more than from uncertainty in engine emission data.  
• In transport with chemical reaction problems, uncertainty in the chemistry dominates 

over uncertainty in the inventories.  
• Engineered barrier count less than geological barriers in radioactive waste migration. 
 
This remark on the output of interest clearly applies to model use, not to model building, 
where the analyst might have interest in studying a variety of intermediate outputs.    
 
FIRST EXAMPLE: THE OBVIOUS TEST CASE 
 
We move now to a self-evident problem, to understand the methods as applied to it. This 
is a simple linear form: 

∑ =
Ω=

r

i iiZY
1

 

Y is the output of interest (a scalar), iΩ  are fixed coefficients, Zi are uncertain input 
factors distributed as 

( ) r,...,i,z,,zN~Z iZii i
210 ==σ .  

 
Y will also be normally distributed with parameters: 
 

∑ =
σΩ=σ

r

i ZiY i1
22  

∑ =
Ω=

r

i ii zy
1

 
To make our point we stipulate as additional assumptions:  

rZZZ .... σ<<σ<σ
21

 

r.... Ω>>Ω>Ω 21  
According to most of the existing literature, SA should be done by taking derivatives, 

such as:  
i

d
Z Z

YS
i ∂

∂
= , which would give for our model of Y: i

i

d
i Z

YS Ω=
∂
∂

= .  
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Hence the factors’ ordering by importance would be   rZ...ZZ >>> 21 , based on our 
previous assumption that r.... Ω>>Ω>Ω 21 , and this in spite of the fact that 

rZZZ .... σ<<σ<σ
21

. This would seem to suggest that if our purpose is to rank input 
factors in terms to their contribution to the variability of the output, then simple 

derivatives such as 
i

d
Z Z

YS
i ∂

∂
= are not the best instrument to use.  

A better measure could a normalised derivative of the type: 
iY

Z
Z Z

YS i

i ∂
∂

σ
σ

=σ , which, 

applied to our model, gives 
Y

Z
iZ

i

i
S

σ
σ

Ω=σ  

 

Comparing this with our previous expression ∑ =
σΩ=σ

r

i ZiY i1
22 , we obtain 

( ) 1
2

1
=∑ =

σr

j Zi
S . 

 
This is a nice result: the terms add to 1, and each of them gives the fractional contribution 
of the factor to the variance of the output. Unfortunately this only works for linear 
models.  
 
 
If we want to tackle nonlinear models as well, we have to abandon derivatives and move 
into “exploration” of the input factors space, e.g. via Monte Carlo. 
 
   
We generate a sample 

)N(
r

)(
r

)(
r

)N()N(

)()(

)()(

z
...

z
z

...zz

.........

...zz

...zz
2

1

21

2
2

2
1

1
2

1
1

=M  

and run our computer program estimating the corresponding model output 

)N(

)(

)(

y
...

y
y

2

1

=y  

A natural thing to do at this point is to regress the y’ s on the zi’s to obtain a regression 
model  

)i(
i

r

i Z
)i( zbby

i∑ =
+=

10 , where asymptotically r,...,i,b̂,b̂ iZ i
2100 =Ω≅≅ . Most 

regression packages will already provide the regression in terms of standardised 
regression coefficients YZiYZZZ //b̂ˆ

iiii
σσΩ≅σσ=β . Comparing YZiZ /ˆ

ii
σσΩ≅β  with 
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Y

Z
iZ

i

i
S

σ
σ

Ω=σ , 

it is easy to conclude that for linear models σ=β
ii ZZ S . 

 

In summary, ( ) ( ) 1
2

1

2

1
=β=∑∑ ==

σ r

j Z
r

j Z ii
S , but only for linear models. Yet the regression 

coefficients are better than the derivatives in several respects.  
 

Although for nonlinear models ( ) 1
2

1
≤β∑ =

r

j Z i
, at least we now know how much linear 

the model is. This is given by the model coefficient of determination 
( )

( )∑

∑

=

=

−

−
= N

i

)i(

N

i

)i(

y

yy

yŷ
R

1

2

1

2

2 . 

We now know that we can decompose a fraction 2
yR of the model variance using the 

iZβ . 

Furthermore the coefficients  
iZβ    offer a measure of sensitivity that is multi-

dimensionally averaged, unlike the σ
iZS . For linear model this does not matter but it does, 

and a lot, for nonlinear ones. The drawback is when 12 <<yR ; typically  2
yR     can be zero 

or near it for non-monotonic models.   
 
In summary, we like the idea of decomposing the variance of the model output according 
to source (the input factors), but would like to do this for all models, independently from 
their degree of linearity or monotonicity. We would like a model-free approach. 
 
In order to get there, we take a somehow twisted path and start asking ourselves the 
question: If I could determine the value of an uncertain factor, e.g. one of our iZ     and 
thus fix it, how much would the 
variance of the output decrease? E.g. imagine the true value is *

iz  and hence we fix  iZ  to 

it obtaining   a “reduced” conditional variance: ( )*
ii zZYV = . There are two problems 

with this quantity being a good measure of sensitivity. First I do not know where to fix 
the factor, and secondly for nonlinear model one could have ( ) )Y(VzZYV *

ii ≥= . 
 
This difficulty can be overcome by averaging this measure over the distribution of the 
uncertain factors obtaining ( )( )iZYVE , or ( )( )iZ ZYVE

ii −Z  where we have made explicit 
the variables over which mean and variance operators are applied. This measure has the 
property that ( )( ) )Y(VZYVE i ≤  always, and in particular  

( )( ) ( )( ) )Y(VZYEVZYVE ii =+ , where the term ( )( )iZYVE  is called a residual, and the 

term ( )( )iZYEV  is known as the first order effect of iZ  onY . A nice property of the main 
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effect is that it is large when a factor is influential. Furthermore it is easy to verify that for 

linear models 
( )( ) 2

ii Z
i

Z )Y(V
ZYEV

S β== .  

We have made a real progress, as while ( ) 1
2

1
=β∑ =

r

j Zi
 only holds for linear models, 

( ) 1
1

=∑ =

r

j Zi
S  holds for a much larger class of models: that of the additive models. For 

non-additive models, ( ) 1
1

≤∑ =

r

j Zi
S , which is also a way to define non-additive models. 

Yet the measure  
iZS  is very useful for all models, as it provides a rigorous answer to a 

precise sensitivity analysis setting: setting FP, for factors prioritisation. Let us then make 
a digression here, and describe this setting.  
 
FACTORS’ PRIORITISATION (FP) SETTING 
 
Imagine that I must bet on a factor that, once “discovered” in its true value and fixed, 
would reduce the most V(Y). Of course I do not know where the true values are for the 
factors, hence I cannot compare the ( )*

ii zZYV =  for the various factors. Hence the best 

choice I can make is, by definition, to choose the factor with the highest ( )( )iZYEV  or , 

which is the same, the highest 
( )( )

)Y(V
ZYEV

S i
Zi
= , whether the model is additive or not 

(Saltelli and Tarantola, 2002).    
 
To complete all this, we must say something about non-additive model treatment, so let 
us complicate our model ∑ =

Ω=
r

i iiZY
1

 by allowing both the iΩ  and Zi to be uncertain, 

i.e. ( ) r,...,i,z,,zN~Z iZii i
210 ==σ  as before and ( ) r,...,i,ci  ,,N~ iii i

21==ωσωΩ ω , 
where c is a constant greater than zero (note: if the mean of the iΩ  were also null as that 
of the iZ , then the model would be fully non-additive, as we shall see in a moment).  
 
Our set of uncertain input factors is now )Z,...Z,Z,,...,( rr 2121 ΩΩΩ≡X . We start 
crunching number estimating the sensitivity measures and we obtain the following 
results:     
All  

i
SΩ        are zero. 

All    
iZS      are > zero. 

 
i

SΩ  is zero because the distribution of iZ  is centred in zero, and hence for any fixed 

value *
iω    of iΩ  

 
( ) 0=ω=Ω *

iiYE , and a fortiori ( )( ) 0=ΩiYEV . 
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Given that  ( ) 1
1

≤∑ =

r

j Zi
S  where is the remaining variance?   To find it out we must 

compute sensitivity indices on more than one factor. If we do that, we find that  
( )( )

ji ZZ
Y

ji SS
V

Z,ZYEV
+= , while, instead: 

( )( )
ii Z

Y

ii SS
V

Z,YEV
+>

Ω
Ω . The difference 

( )( )
iiii Z

Y

ii
Z SS

V
Z,YEV

S −−
Ω

= ΩΩ  is the second order (or two-way) effect of the two 

factors. We have discovered that our model is additive with respect to 
ji ZZ SS , , and non-

additive with respect to 
ii ZSS ,Ω .   

 
 
Adding all the non-zero first order terms and all the non-zero second order terms gives 
back 1, i.e. 100% of the variance of Y is accounted for.  
I.e. 1

1
=+∑ = Ω

r

i ZZ iii
SS   

 
For our model, all other terms of whatever order (1,2,3…2r) is zero. In general, if k is the 
total number of independent factors, then  ∑∑∑∑∑∑

> >>

=+++
i ij jl

k...ijl
i ij

ij
i

i S....SSS 112  

(Sobol’, 1993). 
 
It is quite rare that in practical applications one computes all terms in the development 
above. The number of terms grows exponentially with k.  
 
We are customarily happy with computing all the iS  plus a full set of synthetic terms 
called TiS  which give for each factor Xi, the effect of all terms including that factor.   
 
 
What are the total effect terms TiS  and why do we need them? Let us compute one of 
them, by starting with the measure  

( )( ) ( )( )
Y

rrii

Y V
Z,...Z,Z,...,...,YEV

V

YEV
i 211121 ΩΩΩΩΩ
= +−Ω−

X
. We have taken factor iΩ as an 

example. Analogy with previous formulae should suggest that, by definition, this is the 

[first order] effect of all-but- iΩ . Hence  
( )( )

Y
T V

YEV
S i

i

Ω−
Ω −≡

X
1  will be the effect of all 

terms [any order] that include  iΩ  ; for our model this is simply
iiii ZT SSS ΩΩΩ += , 

provided we remember that the
i

SΩ are zero as well, so that
iii ZT SS ΩΩ = . Note that because 

of an algebraic relation already mentioned  
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( )( ) ( )( )
YY V

YVE

V

YEV
ii Ω−Ω− =−

XX
1 ., so that the right hand expression is often used for the 

TiS .  
 
There is a considerable symmetry between the iS  and TiS . Both indices can be computed 
in a single  
shot at the cost  of about N(k+2) simulations,  where N is between 100 and 1000, to give 
an idea. In Saltelli, 2002, we use an extension of the method of Sobol’, 1993. Both 
indices can also be computed using the Fourier based FAST method, as extended in 
Saltelli et al., 1999.  
 
Furthermore iS  is ideal for factor prioritisation setting, already described, while TiS  is 
ideal for the “factors fixing” setting (of which more in a moment). 
 
A nice property of  TiS  is that if one is desperate for less expensive simulations, a rough 
estimate of these can be obtained via the method of Morris, at less than 1/10 of the cost, 
see Morris 1991. (We prefer to compute a “modulus” version of the test statistics, as 
described in Chapter 4, Campolongo et al., in Saltelli et al. Eds., 2000). 
 
Finally one last useful property of variance based methods is their application “by 
groups”, e.g.  

1=++ ZΩ,ZΩ SSS , where r,..., ΩΩΩ= 21Ω . The computational cost of this is just 3N. Or 

I can regroup as 1
1

=∑
=

r

i
i

SA , where )Z,(A iii Ω= . The computational cost of this is kN. 

Note that in this latter expression all higher order terms are zero because there are 
interactions only within  )Z,(A iii Ω= . 
 
Although in the first regrouping we save a lot in terms of model execution, and in the 
second we don’t, there might be reasons other than economy to regroup factors. I might 
want to groups factors in different submodels. In this way, if I can fix all factors in the 
submodels may be I can skip the submodel altogether. I might want to separate 
controllable factors from uncontrollable ones, and so on.  
 
A SECOND EXAMPLE: WHAT CAN SENSITIVITY OFFER FOR PARAMETER 
ESTIMATION 
 
Let us now move to an estimation/calibration problem for a computational model with six 
parameters. We do not know how the model is done – imagine it is a computer code. The 
output of interest Y is a measure of likelihood is obtained after comparing the model 
prediction Y’ with data, e.g.  
 
Y=exp(-[sum of squared residuals of the predicted Y’ versus the data]). 
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How can we characterise the good parameter set for calibration? A scatter plots of log-
likelihood (e.g. of the sum of scores) vs. parameters is not very informative (Figure 1). 
Even “filtering”, e.g. taking the best outcomes, those with the highest log-likelihood, 
leaves us in the dark (Figure 2). Plotting the factors value for the input (Figure 3) as well 
as for the input corresponding to the best values (Figure 4) is likewise noninformative. 
Note that if we computed on the filtered input factors (Figure 4) the pairwise correlation 
coefficients we would obtain zeros. Also Principal Component Analysis would not be 
informative as applied to the filtered input sample, as there are no correlations among the 
filtered factors. Computing the first order sensitivity indices for the log-likelihood and the 
second order ones (Figure 5), a story starts to emerge; there are non-zero second order 
effects, but only within the closed groups involving factors (1,2,3) and (4,5,6). 
Computing the third order effect (Figure 6) again only those pertaining to (1,2,3) and 
(4,5,6) are non-zero. Regrouping and adding the terms up gives an interesting result:        
 

50

50

456564645654456

123231312321123

.SSSSSSSS

.SSSSSSSS
c

c

=++++++=

=++++++=
 

 
where we have used the supescript c symbol to denote the effects closed within the 
indices. The variance of the problem is characterised by two groups of three factors. 
Higher term orders are zero.  
 
This leads the investigator to conclude that what could be reasonably estimated are two 
unknown  functions of two parameter sub-sets. We can now reveal that the unknown 
function, our computer program, was the sum of two speres. 
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2

2
2
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2
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2
41
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2
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2
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Were the investigator to identify this structure, by trial and error, he/she would conclude 
that all that estimation can provide are the two radiuses. 
 
This concludes our illustration of sensitivity analysis as applied to a diagnostic setting, 
and we would now like to come back to our discussion of the settings for sensitivity 
analysis.   
 
 
MORE ON THE SETTINGS FOR SENSITIVITY ANALYSIS 
 
We have already mentioned that the sensitivity measure of the first order, 

( )( )
Y

i
i V

XYEV
S ≡ is the ideal measure for factor prioritisation. It is also easy to see that the 

total effect measure 
( )( )

Y

i
Ti V

YVE
S −≡

X
 is appropriate for a setting that we could call 

35



“Factors Fixing”: Can I fix a factor [or a subset of input factors] at any given value over 
their range of uncertainty without reducing significantly the output variance? If factor iX  
is totally non-influential, then all the variance is due to i−X , and fixing this vector results 
in ( ) 0=

−i
YV X . It is easy to see that the reverse is also true so that necessary and 

sufficient condition for iX  to be totally non-influential is 0≡TiS . 
 
Other settings that we have found useful are the following.   
 
Factors mapping: Which factor is mostly responsible for producing realisations of Y in 
the region of interest? This can be treated with Monte Carlo Filtering and related tools  
(described elsewhere at this workshop). 
 
Variance cutting: Reducing the variance of the output of a prescribed amount fixing the 
smallest number of factors. This setting can be dealt with using a combination of the iS  
and TiS  measures (Saltelli and Tarantola, 2002).  
 
Why do we need settings? One way in which a sensitivity analysis can go wrong is 
because its purpose is left unspecified or vague (e.g. “find the most important factors”). 
One throws different statistical tests and measures to the problem and obtains different 
factors rankings. What can then be concluded? Models can be audited and settings for 
sensitivity analysis can be audited as well. For this reason we believe that importance 
must be defined beforehand.  
 
A FEW MORE COMMENTS ON PRACTICES 
 
What else can go wrong in a sensitivity analysis? Two instances come to mind:  
 
There are too many outputs of interest, as we discussed at the beginning. What is the 
question asked from the model? Is the model relevant to the question? The optimality of a 
model must be weighted with respect to the task, according to a current mode of thinking. 
According to Beck et al. 1997, a model is “relevant” when its input factors actually cause 
variation in the model response that is the object of the analysis. Model “non-relevance” 
could flag a bad model, or a model used out of context (e.g. a gun to kill a fly). Excess 
complexity could also be used to silence or to fend off criticism from stakeholders, e.g. in 
environmental assessment studies. 
 
Patchy or piecewise sensitivity (performed by sub-model, or one possible model at a 
time, or one factor at a time): Not only conflicts with the requirement of focus just 
mentioned, but leads to a dangerously incomplete exploration of the uncertainties; 
interactions are overlooked. All uncertainties should be explored simultaneously. Also 
the procedure of fixing non-influential factors should be conducted in this way, as fixing 
factors based on their first order effect can be dangerous as discussed above. The iΩ  of 
our initial example all have first order equal zero.  
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A posteriori sensitivity: Once an analysis has been produced, its revision via sensitivity 
analysis by a third party is not something most modellers will willingly submit to. 
Sensitivity analysis should be used in the process of model development, prior and within 
model use in analysis. 
 
One should never forget that an unpleasant (or pleasant, depending from the viewpoint) 
feature of sensitivity analysis is that it might falsify the analysis altogether, e.g. by 
showing that the model cannot answer the question given the uncertainties, or that the 
model is irrelevant, or that the variation in the output of interest (e.g. a contamination 
level in an estuary) is insensitive to the available policy options given the uncertainties. A 
nice example that shows how SA can falsify a model as applied to a policy issue is 
described in Chapter 20, Tarantola et al., of Saltelli et al., Eds. 2000.  
  
 
CONCLUSIONS   
 
We can itemise our main conclusions as follows. There is an increased need, scope and 
prescription for quantitative uncertainty and sensitivity analyses. Methods are mature for 
use, e.g. in terms of literature, software, computational cost, tested practice, ease of 
communication.  
 
In spite of this one observes a “slow start” of quantitative methods in practical analyses 
 
Variance based measure are concise, easy to understand and to communicate, reduce to 
the elementary test (the standardised regression coefficients 2

ii
β ) for linear model, relate 

to the popular method of Morris. 
 
We also like and use methods in the MC filtering family. 
 
Whatever the method one uses, we think it important that the framing of the analysis be 
defensible and meaningful to its users. 
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Figure 1. Log-likelihood for the six input factors.  
 

Figure 2. Same as Figure 1, for values of log-likelihood > -200. 
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Figure 3. Pair-wise scatter plots of input factors. 

 
Figure 4. Same as the previous figure, for values of log-likelihood > -200. 

 
 
 
 

39



 
Figure 5. First- and second-order sensitivity indices for the log-likelihood. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Third-order sensitivity indices for the log-likelihood. 
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NOTES 
 
The Joint Research Centre distributes freely the software SIMLAB for uncertainty and 
sensitivity analysis. More information from stefano.tarantola@jrc.it. Marco Ratto 
(marco.ratto @jrc.it) has developed a set of scripts in Matlab to run global sensitivity 
analysis in diagnostic settings (e.g. with filtering plus variance based methods, see our 
two-sphere example). This is also available.  
 
A forum to discuss sensitivity analysis issues is 
available at http://sensitivity-analysis.jrc.cec.eu.int/.  
It includes a FAQ section, introduction to the main 
methods and a bibliography.  
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Sensitivity Analysis of the e-Business Readiness Composite Indicator 
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Abstract: The initiative “e-Readiness of European enterprises” is  part of the European 
Commission “e-Europe 2005” action plan. As part of this initiative, the  European Council of 
ministers has requested the compilation of a composite indicator to assess the preparedness of 
the internet business environment of European Countries. Underlying data for the component 
indicators have been obtained through enterprise surveys. The Joint Research Centre, as part 
of the European Commission, has been asked to carry out a pilot study on this composite 
indicator for the year 2002. The study includes the testing for robustness and sensitivity, as 
recommended by the European Commission guidelines for impact assessment. We illustrate 
here the uncertainty and sensitivity tests that have been carried out for this pilot study. 

Keywords: e-business, robustness, uncertainty, weights, imputation. 

1. INTRODUCTION 
Composite indicators are weighted combinations of selected sub-indicators into single 

aggregated measures, via underlying models of the policy domains of interest. Discussion on 
the legitimacy of such indicators is incessant. Composites are increasingly used by media and 
policy makers to communicate information on the situation of countries or regions in various 
policy fields such as environment, economy or technological development (reviews in [1,2]). 
Opponents lament that composites are mixes of dubious interpretation yet expensive to obtain. 
Organisms such as the UN, the OECD and the European Commission make use of such 
measures. In particular the OECD and the JRC have recently undertaken the joint preparation 
of a handbook of good practices of composite indicators building [3]. 

In this paper we study the construction of a composite indicator of e-business readiness 
(see Section 2). This composite indicator is aimed at measuring the progress of Member 
States towards a more extensive take up and use of digital technologies. We report part of the 
results of a pilot study commissioned to JRC by the Directorate General Enterprise of the 
European Commission. In particular, we focus our analysis on the weighting scheme used to 
aggregate sub-indicators, and on the sensitivity of the composite indicator to different 
weighting schemes and to incomplete data.  

As far as weighting is concerned, JRC suggested and deployed a participatory technique, 
called “budget allocation”, which allows any expert of a panel to express, from a policy 
perspective, their opinion upon the relative importance of sub-indicators (see Section 4).  

The issue of sensitivity is crucial for the characterisation of composites. The 
Communication from the European Commission on Structural Indicators [4] recognises the 
importance to assess the sensitivity of the message provided by composites with respect to the 
weights employed. Here we consider an additional source of uncertainty in the evaluation of 
the composite indicator, the uncertainty due to missing data.  
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As we shall see in Section 3 we use a Multiple Imputation technique (based on Markov 
Chain Monte Carlo algorithms) for the treatment of missing data. This is appealing in that it 
provides confidence bounds for the imputed data [5,6]. Imputed data are, indeed, estimated 
values. Different imputed data may result in different values for the composite indicator. Thus 
their effect on the resulting composite indicator must be acknowledged using both uncertainty 
and sensitivity analysis. 

2. THE e-READINESS COMPOSITE INDICATOR 
The eEurope 2005 Action Plan [7] calls for a benchmarking of the target that ‘by 2005, 

Europe should have (…) a dynamic e-business environment’, specifying that ‘e-business 
comprises both e-commerce (buying and selling on-line) and restructuring of business 
processes to make best use of digital technologies’. Besides proposing guidelines for the 
benchmarking, the resolution sets out a number of policy indicators to monitor progress in the 
implementation of the Action Plan.  

One of these benchmarking indicators is the composite indicator on e-business readiness. 
According to the Council’s recommendation, this is made of two core groups (see Table 1): 
(a) Adoption of ICT by business, and (b) Use of ICT by business; each group is composed by 
six sub-indicators.  

The composite indicator, Yc, for a given country c, is a weighted sum of k sub-indicators 

Xic  (5 available for Adoption and 6 for Use of ICT) and k weights wi : ∑
=

⋅=
k

i
iicc wXY

1
. The 

analysis is conducted using an incomplete dataset (data availability is 81%) for the year 2002.  
Therefore, the first step in our analysis is that of  “filling up” empty spaces. 

Table 1. List of sub-indicators for the composite indicator on e-business readiness 
  

Adoption of ICT by business 

a1 % of enterprises that use Internet 

a2 % of enterprises that have a web site/home page 

a3 % of enterprises that use at least two security facilities at the time of the survey 

a4 % of total number of persons employed using computers in their normal work routine (at least once a week)  

a5 % of enterprises having a broadband connection to the Internet 

a6 % of enterprises with a LAN and using an Intranet or Extranet  

Use of ICT by business 

b1 % of enterprises that have purchased products / services' via the internet, Electronic Data Interchange or any other computer 
mediated network where these are >1% of total purchases 

b2 % of enterprises that have received orders via the internet, Electronic Data Interchange or any other computer mediated 
network where these are >1% of total turnover 

b3 % of enterprises whose IT systems for managing orders or purchases are linked automatically with other internal IT systems 

b4 % enterprises whose IT systems are linked automatically to IT systems of suppliers or customers outside their enterprise group 

b5 % of enterprises with Internet access using the internet for banking and financial services 

b6 % of enterprises that have sold products to other enterprises via a presence on specialised internet market places 
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3. MULTIPLE IMPUTATION OF MISSING DATA 

3.1 Methodology 
We do not attempt any imputation for countries and sub-indicators that are totally missing. 

Therefore, Belgium, France, The Netherlands, Portugal and the sub-indicator a3 were not 
included in the analysis (see Table 2).  

The explanation of the MCMC-based technique for multiple imputation is given in Refs. 5 
and 6. The technique yields, simultaneously, one estimate for each of the 22 missing data. 
This process is repeated M=50 times. Against the prevailing practice of using, for each of the 
22 cells, the mean over the M individual estimates, we use their full distribution in our study. 
The gray values in Table 2 are the medians of the (normal) distributions. The sample means 
and standard deviations, calculated over the M values, are given in Table 3. The dataset in 
Table 2 is the starting point for the calculation of the composite indicator.  

Table 2. Data set for the e-business readiness composite indicator. The50-th percentiles of the 
distribution of the imputed values are marked in grey. NA stands for ‘not available’. 

2002 a1 a2 a3 a4 a5 a6 b1 b2 b3 b4 b5 b6

B NA NA NA NA NA NA NA NA NA NA NA NA

DK 95% 76% NA 59% 56% 53% 24% 12% 5% 9% 68% 2%

D 84% 66% NA 51% 28% 45% 39% 16% 11% 11% 55% 1%

EL 64% 34% NA 43% 3% 25% 7% 6% 7% 8% 39% 1%

E 82% 38% NA 34% 45% 31% 3% 1% 3% 9% 64% 0%

F NA NA NA NA NA NA NA NA NA NA NA NA

IRL 83% 53% NA 42% 9% 41% 23% 11% 6% 10% 57% 3%

I 74% 46% NA 42% 15% 39% 3% 3% 1% 1% 38% 0%

L 78% 51% NA 44% 18% 69% 22% 11% 5% 10% 42% 1%

NL NA NA NA NA NA NA NA NA NA NA NA NA

A 85% 64% NA 51% 29% 50% 27% 17% 6% 12% 58% 2%

P NA NA NA NA NA NA NA NA NA NA NA NA

FIN 96% 69% NA 57% 44% 51% 30% 13% 6% 14% 81% 2%

S 95% 80% NA 72% 33% 62% 31% 16% 8% 16% 71% 2%

UK 74% 67% NA 57% 20% 39% 18% 12% 14% 18% 45% 1%

 

4. SELECTION OF WEIGHTS 
A rather common way to assign weights is to involve experts opinion. In the budget 

allocation method [8], each expert is given a “budget” of 100 points, and is asked to distribute 
the budget over the sub-indicators by allotting more points to those indicators which are felt 
as more important. For each sub-indicator, the average weight across the experts (last row in 
Tables 4 and 5) is used in the aggregation procedure.  
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Table 3. Mean and standard deviation of the 22 imputed data over M values  

The budget allocation method was 
employed at the steering group meeting 
of the e-business support network (e-
BSN), held in Paris on October, 28th, 
2003. Fourteen experts coming from 
the European Union and the Accession 
Countries were involved in the 
exercise. The sets of weights obtained, 
for each core group, are given in 
Tables 4 and 5.  

Contrarily to the common use of 
average weights, where the information 
from the single expert vanishes, we 
believe it is important to retain the 
identity of the experts and 
acknowledge, in our model of 
composite indicator, the uncertainty to 
due expert selection. 

Table 4. Results of the budget 
allocation exercise for ‘Adoption of ICT’. 
Data for a3 not available. Weights 
originally attributed to indicator a3 have 
been equally distributed over the 
remaining 5 indicators,  and re-scaled so 
that the sum is 100.  

Expert’s 

Nationality 
a1 a2 a4 a5 a6 SUM 

UK - 15 15 35 35 100 

NL - 20 20 50 10 100 

LV 35 35 10 20 - 100 

L 30 25 30 15 - 100 

DK 25 25 25 25 - 100 

SL - 30 20 30 20 100 

F - 25 25 25 25 100 

LT - 10 20 40 30 100 

IRL - - 31.2 50 18.8 100 

N - - 42.9 35.7 21.4 100 

S 11.2 - - 44.4 44.4 100 

HU 16.7 16.7 16.7 22.2 27.7 100 

EL - 15 25 30 30 100 

E 40 40 10 10 - 100 

Average 11.7 19.2 20.3 30.4 18.4  

Indicator Country Mean Standard deviation 

a4 FIN 53% 11% 

a5 D 32% 31% 

b1 S 38% 16% 

b1 UK 20% 11% 

b2 UK 10% 5% 

b3 DK 16% 5% 

b3 D 13% 9% 

b3 E 10% 5% 

b3 L 12% 8% 

b3 A 12% 8% 

b3 FIN 16% 9% 

b3 S 13% 8% 

b4 DK 20% 8% 

b4 D 16% 7% 

b4 E 14% 8% 

b4 L 8% 4% 

b4 A 11% 4% 

b4 FIN 19% 8% 

b4 S 16% 8% 

b5 UK 56% 9% 

b6 DK 1% 8% 

b6 UK 2% 11% 
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 Table 5. Results of the budget allocation exercise for ‘Use of ICT’. 
Expert’s 

Nationality 
b1 b2 b3 b4 b5 b6 SUM 

UK 15 15 35 35 - - 100 

NL 10 30 - 30 - 30 100 

LV 35 30 20 15 - - 100 

L 25 25 - - 25 25 100 

DK 25 25 25 25 - - 100 

SL 40 20 - - 30 10 100 

F 25 25 25 25 - - 100 

LT - 10 - 30 20 40 100 

IRL 15 15 30 40 - - 100 

N 15 35 35 15 - - 100 

S 10 30 - 40 - 20 100 

HU 5 10 20 20 20 25 100 

EL 20 - 30 30 20 - 100 

E 40 - 40 - 20 - 100 

Average 20 19.3 18.6 21.8 9.6 10.7  

5. UNCERTAINTY ANALYSIS 
Given the variability of expert selection, and the uncertainty coming from the imputation 

of the missing data, the composite indicator for the different countries is also affected by 
uncertainty. We have carried out the following tests: 

• uncertainty analysis to assess how the variability in the weights and the uncertainty in 
the imputed data influence the composite indicator of e-readiness;  

• sensitivity analysis of the composite indicator to assess how much uncertainty is due 
to choice of weights and how much to imputation errors. This is helpful to know 
whether collecting more data permits drawing more accurate inferences. 

The variability in expert selection has been accounted for by considering a trigger factor 
ω, i.e. a discrete random variable uniformly distributed between 1 and 14 (the number of 
experts). For example, for ω=7 the expert from France is chosen (see Tables 4 and 5).  

The uncertainty coming from imputation of missing data depends on how many 
imputations have been done for a given country. For example, for Denmark three imputations 
have been made. Therefore, we define one uncertain factor for each imputed data. The factors 
are normal distributions with means and standard deviations given in Table 3. For Denmark 
we have four uncertain factors; for Italy only one uncertain factor (ω), hence no sensitivity 
analysis can be carried out. Let Y be the composite indicator for a given country: 

612511410392817665544332211 bwbwbwbwbwbwawawawawawawY +++++++++++=  

where )w,...,w,w( 1221≡ω  is the set of weights proposed by a given expert (a given row in 
Tables 4 and 5). For UK, for example, the composite has five sources of uncertainty: ω, b1, 
b2, b5 and b6; for Greece the composite has only one source of uncertainty: ω.  
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Different countries have different (number of) uncertainty sources; this implies that the 
uncertainty analysis is carried out independently for each country. For each country, a LHS 
sample of size N =1500 is generated for the uncertain factors based on their distributions, and 
the composite indicator is evaluated N times. Figure 1 displays the empirical distributions of 
composite indicators for the eight countries that had both uncertainty on weights and on data. 
The other countries, Greece, Ireland, and Italy have a complete dataset, thus the uncertainty 
analysis is a histogram with 14 bins, one for each expert in the budget allocation exercise.  

 

 
Figure 1. Uncertainty analysis of the composite indicator of e-business readiness for eight 

countries, based on a LHS sample of size 1,500. On the horizontal axis the values of the 
composite indicator; on the vertical axis their frequency of occurrence. 

For Austria, b3 and b4 are imputed, and experts 4 (from Luxembourg) and 6 (from 
Slovenia) give zero weight to both b3 and b4. This causes the presence of  two peaks for 
Austria (the left one due to expert 4, the right one due to expert 6).  Similar peaks occur for 
Luxembourg, Denmark, and Spain. Figure 1 displays multi-modal distribution functions for 
most countries. Each modal function is the result of the convolution of particular 
combinations of weights with uncertainty in imputation. Discrete distributions are obtained 
for Greece, Ireland and Italy. While for Ireland uncertainty on weights does not favour any 
particular output value, for Greece and Italy medium and low values respectively of e-
business are more likely. 

Figure 2 displays the composite indicator of e- readiness with its confidence bounds for all 
countries in terms of box-plots. Sweden and Italy have non overlapping bounds: the policy 
inference is robust, no matter uncertainty in weights or in data. When the box plots of two 
countries overlap, the degree of uncertainty determines the relative score of the countries 
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considered. Spain, Greece, and Italy unambiguously have lower e-readiness than Denmark, 
Finland and Sweden. Germany overlaps with almost all other countries pointing to the crucial 
effects played by uncertainty in weights and data (mainly a5, see Table 3) for this country.  

Figure 2. Box plots of the composite indicator on e-business readiness. Uncertainty is due 
to different weighting schemes as well as to imputation of missing data.   

Also Sweden and 
Finland have large 
boxes. For Greece, 
Spain and Italy the 
boxes are narrower, 
indicating a less 
important role for 
uncertainty in data and 
weights. For UK, with 4 
indicators imputed (b1, 
b2, b5, b6), the box is 
not so large (very low  
weight associated to b5 
and b6). How much of 
the uncertainty in the 
composite indicators is 
due to different 
weighting schemes 

rather than to imputation of missing data values? This will be the object of the sensitivity 
analysis. 

6. SENSITIVITY ANALYSIS 

6.1 Methodology 
The question answered by the sensitivity analysis is how much of the uncertainty on the 

composite indicator Y for a given country depends on the uncertainty on its input factors X 
(imputed data and weight selection). Using the variance of Y as yardstick of importance, the 
issue becomes, how much does the prediction variance, V(Y), decrease, on average, when 
some components of X are held fixed. The starting point of the variance-based methods is the 
variance decomposition ))X|Y(V(E))X|Y(E(V)Y(V ii += , where iX  is any uncertain  
factor. The first order sensitivity indices can be calculated as )Y(V))X|Y(E(VS ii = , for 
each uncertain factor. The higher iS , the higher the importance of iX , as the larger the 
average drop in variance )Y(V  obtained when fixing iX  within its range.  

The method used here to evaluate the sensitivity indices is a generalisation of that 
proposed in [9] (a review is also offered in [10]) at no extra cost for the analysis. We illustrate 
the generalisation briefly here. The first order indices are calculated by: 

)Y(V̂
)Y(ÊÛ

Ŝ j
j

2−
=                                                          (1) 

50



where Monte Carlo estimates for jU , )Y(E  and )Y(V  are computed as: 
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Let us simplify the notation by setting: 

( ) ( )Afx...,,x,xfy kA == 21  ( ) ( )Cfx,...x,x,x,...x,xfy rk)j(rrj)j(rrrC == ′′
+

′
−

′′
1121  (5)

( ) ( )Bfx...,,x,xfy kB == ′′′
21  ( ) ( )Dfx,...x,x,x,...x,xfy rk)j(rrj)j(rrrD =′= +− 1121   

 

A and B are independent sample matrices; C and D are independent re-sample matrices as 
well. Ref. 9  suggests that, when calculating Uj as sum of products CA yy , more accurate 
estimates for jS  are obtained when E2(y) is based on products of independent matrices: 
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(6)

Therefore, it is also legitimate to estimate E2(y) using products of DC yy , which are also 
independent. When (6) is employed, the denominator of (1) can then be calculated from 
either AA yy  or BB yy . Similarly, when E2(y) is estimated using products of DC yy , the 
denominator in (1) can be estimated from either CC yy  or DD yy . We end up with four 
sensitivity indices: 

( ) ∑∑ ∑−= AABACA
I
j yy/yyyyS  ( ) ∑∑ ∑−= CCDCCA

III
j yy/yyyyS  

( ) ∑∑ ∑−= BBBACA
II
j yy/yyyyS  ( ) ∑∑ ∑−= DDDCCA

IV
j yy/yyyyS  

Exploiting the symmetry property of the design (Ref. [9]), we obtain additional indices: 

( ) ∑∑ ∑−= AABADB
V
j yy/yyyyS  ( ) ∑∑ ∑−= CCDCDB

VII
j yy/yyyyS  

( ) ∑∑ ∑−= BBBADB
VI
j yy/yyyyS  ( ) ∑∑ ∑−= DDDCDB

VIII
j yy/yyyyS  

 

The indices IV
j

III
j

II
j

I
j S,S,S,S  are positively correlated. So are the indices VIII

j
VII
j

VI
j

V
j S,S,S,S . The 

two groups of indices are negatively correlated. Comparison tests between the indices used in 
[9] and the average of the eight estimates confirm that the convergence of this latter is 
generally more rapid. Same symmetry properties allow the estimation of four total indices.  
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7. RESULTS 
We test the sensitivity of the composite indicator for each country to both weights and 

imputation results using the method illustrated so far. A total cost of about 1,000 model runs 
has been required to estimate both the (eight) first order indices and the (four) total effects for 
all the factors with an accuracy of 1% on the indices. The time required to execute one model 
run is approximately nil, as the model output is a weighted average of the input. Is uncertainty 
coming from imputation (other than for Greece, Italy and Ireland) more relevant than the 
uncertainty due to choice of weights?  

Table 5. First order and total effects of uncertain factors (weights trigger and imputed 
indicators) on e-business readiness for eight countries. Calculations performed with the 
enhanced version of the method of Saltelli. 

 

 A D DK E FIN L S UK 

Weights 0.98 0.61 0.97 0.93 0.93 0.97 0.94 0.96 

a4     0.04    

a5  0.42       

b1       0.06 0.04 

b2        0.01 

b3 0.02 0.01 0.06 0.02 0.02 0.04 0.01  

b4 0.00 0.01 0.08 0.07 0.03 0.02 0.02  

b5        0.01 

b6   0.05     0.00 

Table 5 shows that for all countries a large fraction of the composite indicator  variability 
is due to the set of weights used. The uncertainty brought by weights is an implicit part of the 
participatory approach used to build the composite indicator. In other terms a “true value” for 
weights cannot exist because of different objectives, viewpoints and interests at stake; 
uncertainty in the composite indicator due to weights cannot be eliminated and has a visible 
impact on the results.  

The uncertainty due to the imputation of missing data does not account for more than 5% 
of the e-business readiness variance for all countries but Germany. For Germany indicator a4 
accounts for 38% of the composite indicator variance. This means that, being able to find the 
real value of a4, would reduce (on average) the variance of the composite indicator of 38%. 

 A D DK E FIN L S UK 

Weights 0.97 0.56 0.95 0.91 0.91 0.95 0.91 0.94 

a4     0.03    

a5  0.38       

b1       0.04 0.03 

b2        0.01 

b3 0.01 0.01 0.00 0.01 0.01 0.02 0.01  

b4 0.00 0.01 0.03 0.05 0.02 0.01 0.01  

b5        0.00 

b6   0.00     0.00 

52



The total indices look very similar to those of the first order. This highlights the additive 
structure of the model. Some indicators (e.g., b3 and b4 for Germany; b2, b5 and b6 for UK) 
have total effect index lower than, or equal to, 0.01. This means that it is worthless to spend 
resources collecting data for those indicators and those countries, because this would not help 
improving the accuracy of the composite indicator.  

8. CONCLUSIONS 
Media and policy-makers look with increasing interest at composite indicators as 

appealing tools to attract the attention of the community and to help focusing policy debates. 
But methodological gaps in their design and construction may invite politicians to draw 
simplistic conclusions or the press to communicate misleading information. That is why 
national and international organisations believe that it is important to focus on methodological 
issues in the design of composite indicators [3]. 

This study focuses on the design stage of composite indicators, where rarely robustness 
and sensitivity analysis are applied. Yet, quite recently, the European Commission has 
recognised the role of such investigation and requires the use of sensitivity analysis in the 
development of any new composite indicator. The Joint Research Centre supports various 
Directorates General of the European Commission in a number of projects that involve the 
development and use of composite indicators. The case of e-business readiness presented in 
this paper is the latest exercise carried out so far. 
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Abstract: Conventional variance-based sensitivity indices are extended to deal with the
case when information is available as closed convex sets of probability measures, a situation
that exists when probability distributions are specified with interval-valued parameters.
The generalization to closed convex sets of probability measures yields lower and upper
sensitivity indices. An example demonstrates a numerical method for estimating these
sensitivity indices.
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1. INTRODUCTION

The information input into computer models may be imprecise for several reasons. Impre-
cision is often a consequence of measurement processes, for example using digital sensors.
Prior information is sometimes recorded in the literatures as intervals without any infor-
mation about probability distributions [1]. Given only finite time, it is argued that it may
be impossible to elicit precise probability distributions from experts [2]. Indeed experts
may deliberately use imprecision to express their uncertainty.

The extension of probabilistic analysis to include imprecise information is now well
established in the theory of imprecise probabilities [3], robust Bayesian analysis [4, 5] and
fuzzy statistics [6]. In this paper we explore the notion of sensitivity within this framework.
We confine ourselves to the theory of coherent lower and upper probabilities, which,
whilst not the most general theory of imprecise probabilities, is sufficient to deal with the
situation in which probability distributions are specified by interval-valued parameters.

2. COHERENT LOWER AND UPPER PROBABILITIES

Consider a probability density function f(x, a), where x ∈ R and a = (a1, a2, . . . , am), a
vector of parameters of the probability density function. By definition

Pr(A) =

∫
A

f(x, a)dx, ∀A ⊆ R. (1)

If each parameter ai in a is specified by a closed interval [li, ui] then a is constrained by
an m-dimensional box Q, defining a closed set of probability measures that imply lower
and upper probabilities, P (A) and P (A):

Pr(A) = inf
a∈Q

∫
A

f(x, a)dx (2)

Further author information: (Send correspondence to Jim W. Hall)
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54

Sensitivity Analysis of Model Output  
Kenneth M. Hanson and François M. Hemez, eds. 
Los Alamos National Laboratory, 2005; http://library.lanl.gov/



Pr(A) = sup
a∈Q

∫
A

f(x, a)dx. (3)

P (A) and 1 − P (A) will be located at the same point a, so P (A) = 1 − P (A), meaning
that P (A) and P (A) are coherent lower and upper probabilities [7].

The lower and upper expectations, E(X) and E(X), are given by

E(X) = inf
a∈Q

∫ ∞

−∞
xf(x, a)dx (4)

E(X) = sup
a∈Q

∫ ∞

−∞
xf(x, a)dx. (5)

The definitions in Equations 2 to 5 can be extended to the case when f(x, a) is a joint
probability distribution on Rn and x = (x1, . . . , xn).

2.1. Lower and upper variance

The standard definition of the variance V (X) of a random variable X is

V (X) = E([X − E(X)]2). (6)

If M is a closed convex set of probability measures P : X → [0, 1], then the lower and
upper variances V (X) and V (X) are given by:

V (X) = min
P∈M

V (X) (7)

V (X) = max
P∈M

V (X). (8)

2.2. Natural extension of imprecise probabilities

Let g be a function such that y = g(x) : x = (x1, . . . , xn), and let By ⊆ Rn containing
all of the points (x1, . . . , xn) such that g(x) ∈ C : C ∈ R, then the lower and upper
probabilities P (C) and P (C) are:

P (C) = inf
a∈Q

∫
By

· · ·
∫

f(x1, . . . , xn, a)dx1 . . . dxn (9)

and

P (C) = sup
a∈Q

∫
By

· · ·
∫

f(x1, . . . , xn, a)dx1 . . . dxn. (10)
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3. VARIANCE-BASED SENSITIVITY ANALYSIS

Consider now the conventional probabilistic case in which the uncertainties in x1, . . . , xn

are expressed as precise probability distributions, i.e. x1, . . . , xn and y are replaced by ran-
dom variables X1, . . . , Xn and Y respectively. In variance-based sensitivity analysis, the
first order sensitivity indices Si represents the fractional contribution of a given variable
Xi to the variance in a given output variable Y [8]. In order to calculate the sensitivity
indices the total variance V in the model output Y is apportioned to all the input factors
Xi as [9]

V =
∑

i

Vi +
∑
i<j

Vij +
∑

i<j<k

Vijk + . . . + V12...n (11)

where
Vi = V [E(Y |Xi = x∗i )] (12)

Vij = V [E(Y |Xi = x∗i , Xj = x∗j)]− Vi − Vj (13)

and so on. V [E(Y |Xi = x∗i )] is the Variance of the Conditional Expectation (VCE) and
is the variance over all values of x∗i in the expectation of Y given that Xi has a fixed value
x∗i . The first order (or ‘main effect’) sensitivity index Si for variable Xi is:

Si = Vi/V (14)

and the ‘total effect’ sensitivity index is [10]

STi = 1− V [E(Y |X∼i = x∗∼i)]

V (Y )
(15)

where X∼i denotes all of the variables other than Xi.

4. IMPRECISE SENSITIVITY INDICES

In the case when the uncertainty in the variables X1 . . . Xn is described by a closed convex
setM of probability measures P , the lower and upper variances introduced in Equations 7
and 8 above can be extended to lower and upper sensitivity indices, Si and Si, i = 1, . . . , n:

Si = min
P∈M

Si (16)

and
Si = max

P∈M
Si (17)

where
n∑

i=1

Si ≤ 1. (18)

The additional constraint in Equation 18 means that the upper sensitivity indices Si,
i = 1, . . . , n may not co-exist. Indeed there is a closed convex set S of sensitivity indices
S ∈ S : S = {S1, . . . Sn} constrained such that ∀Si, i = 1, . . . , n : Si ≤ Si ≤ Si and∑n

i=1 Si ≤ 1.
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4.1. Numerical method

Estimating the lower and upper sensitivity indices in Equations 16 and 17 is a problem
of non-linear optimization. Each iteration j of the optimization involves estimating the
precise sensitivity indices for some Pj ∈ M, specified by a vector of parameters aj =
(a1, . . . , am). For each aj the corresponding precise joint probability distribution f(x, aj)
is randomly sampled d times, yielding a precise estimate of the variance [8]:

V̂ (Yj) =
1

d

d∑
k=1

g2(xk, aj)− ĝ2
0,j (19)

where

ĝ0,j =
1

d

d∑
k=1

g(xk, aj). (20)

The Monte Carlo estimate V̂i(Yj) of the ith partial variance is given by

V̂i(Yj) =
1

d

d∑
k=1

g(x
(1)
∼i,k,x

(1)
i,k , aj)g(x

(2)
∼i,k,x

(1)
i,k , aj)− ĝ2

0,j (21)

where
x∼i,k = (x1,k, x2,k, . . . , xi−1,k, xi+1,k. . . . , xn,k). (22)

The superscripts (1) and (2) in Equation 21 indicate that two sampling matrices are being
used for xk. Both matrices have dimensions d× n. In computing V̂i(Yj) the values of Yj

corresponding to xk from matrix (1) are multiplied by the values of Yj computed using a
different matrix (2), but for the ith column, which is kept constant [8]. This resampling
yields a precise estimate of the sensitivity indices Si,j. The lower and upper variances are
then given by

V (Y ) = min
j

(V (Yj)) (23)

V (Y ) = max
j

(V (Yj)) (24)

and the lower and upper sensitivity indices are given by

Si(Y ) = min
j

(Si(Yj)) (25)

Si(Y ) = max
j

(Si(Yj)), i = 1, . . . , n (26)

where Si(Yj) = Vi(Yj)/V (Yj).

5. APPLICATION

Oberkampf et al. [11] have proposed a series of Challenge Problems to compare and
evaluate alternative theories of uncertainty. One of the Challenge Problems relates to a
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damped linear oscillator (a single degree of freedom mass-spring-damper system), whose
steady-state magnification factor Ds is given by

Ds =
k√

(k −mω2)2 + (cω)2
(27)

where k is the spring constant, m is the mass of the oscillator, ω is the frequency of
oscillation and c is the damping coefficient. In this Challenge Problem, the variables in
Equation 27 were specified as follows:

m is given by a precise triangular probability distribution defined on the interval [10,12],
with a median value 11.

k is given by an imprecise triangular probability distribution, specified by three imprecise
parameters kmin, kmod and kmax, whose values are contained in the closed intervals
kmin ∈ [90, 100], kmod ∈ [150, 160] and kmax ∈ [90, 100].

c is given by a closed interval of possible values c ∈ [5, 10]. No probability distribution
over this interval is specified or to be assumed.

ω is given by an imprecise triangular probability distribution, specified by three imprecise
parameters ωmin, ωmod and ωmax, whose values are contained in the closed intervals
ωmin ∈ [2.0, 2.3], ωmod ∈ [2.5, 2.7] and ωmax ∈ [3.0, 3.5].

In the Challenge Problem specification, the information concerning k and c was given by
three independent sources. The problem of aggregation of evidence from multiple sources
is beyond the scope of the present paper and is not addressed. The information is used
from the first source only.

There are 6 interval-valued distribution parameters, kmin, kmod, kmax, ωmin, ωmod,
ωmax, and one interval-valued variable, c, in the analysis. If the sensitivity indices Si

were a monotonic function of these imprecise quantities then it would only be necessary
only to test the vertices of the 7 dimensional hypercube that contains all of the possi-
ble values of these quantities. There is, however, no reason to believe that Si should
be a monotonic function of these interval-valued quantities, so in order to find the im-
precise sensitivity indices it was necessary to search the volume contained within these
interval constraints. Besides testing each of the 27 vertices, the volume was searched
by uniformly sampling the space with a total of 30000 samples. At each test point
aj = (kmin,j, kmod,j, kmax,j, ωmin,j, ωmod,j, ωmax,j, cj) (Equations 19 to 26) 50000 Monte
Carlo samples were used in the sensitivity estimates.

The lower and upper upper probability distributions on Ds are shown in Figure 1.
The lower and upper expectations were estimated as E(Ds) = 1.78 and E(Ds) = 2.86
and the lower and upper variances were estimated as V (Ds) = 0.09 and V (Ds) = 1.57.
The imprecise sensitivity indices are listed in Table 1. Note the additional condition in
Equation 18 means that the upper sensitivity indices cannot all coexist.
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Figure 1. Lower and upper cumulative probability distributions of Ds

Table 1. Imprecise sensitivity indices

i Variable Si Si

1 m 0.00 0.07

2 k 0.18 0.76

3 ω 0.19 0.70

6. CONCLUSIONS

Variance-based sensitivity indices provide an intuitive and practical expression of the con-
tribution of model input variables to the variance in the model output [10, 12]. To date,
variance-based sensitivity analysis have been restricted to the situation where uncertain
information is presented as precise probability distributions, yielding precise sensitivity
indices. In this paper this precise probabilistic case has been extended to the situation
in which information appears as imprecise probability distributions or intervals, yielding
interval-valued sensitivity indices for the (precise or imprecise) probabilistic variables.
These imprecise indices complement the insights into the effects of imprecision and ran-
domness provided by generalized uncertainty analysis [13]. A further challenge, which
has not been addressed in this paper, is the problem of aggregation of imprecise and
probabilistic information from multiple sources [14, 15]. Sensitivity analysis has further
potential in this respect in highlighting the influence of different information sources.

The computational expense of calculating imprecise sensitivity indices is considerable.
Furthermore, the advantage over Monte Carlo approaches of efficient methods for calcu-
lating variance-based sensitivity indices, such as FAST and Sobol’ methods [8], is less clear
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than in the precise case. Monte Carlo methods can make use of function evaluations from
previous steps in the optimization to find the lower and upper sensitivity indices, whereas
the FAST and Sobol’ methods would usually require a new sample at each optimization
step. Whilst for the example addressed in this paper little computational advantage was
to be gained by reusing previous function evaluations, clearly this will be desirable in
many practical situations, so methods of this type are the subject of ongoing research.
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Abstract: In this paper we use State Dependent Parameter (SDP) models (a non-parametric 
model estimation approach, based on recursive filtering and smoothing estimation) to estimate 
the main effect sensitivity indices of computational models. Especially when coupled with 
efficient sampling methods, such as the quasi-random LP-tau sequence, this method is 
extremely efficient, allowing for drastic reduction in the cost of the sensitivity analysis. 
Moreover, the method allows us also to estimate the first order terms of the High Dimensional 
Model Representation of the model under analysis, at no additional cost. 

Keywords: State Dependent Parameter models, Variance based methods, High Dimensional 
Model Representation, Sensitivity analysis. 

1. STATE OF THE ART 
Consider the mathematical or computational model ( )kXXXfY ...,,, 21= , where some of 

the input factors iX  are uncertain. For the non-correlated case, sensitivity indices are related 
to the Sobol’ decomposition [1] 

∑ ∑∑
>

+++=
i i ij

kiji VVVYV ...12...)(  (1)

where ( )( )iXi XYEVV
ii −

= X ,  ( )( ) jijiXXij VVXXYEVV
ijji

−−=
−

,X  and so on. This is also 
related to a decomposition of the function f  itself into terms of increasing dimensionality 
(HDMR, [2-3]), i.e. 

∑ ∑∑
>

++++=
i i ij

kiji ffffYf ...120 ...)(  (2)

where each term is a function only of the factors in its index, i.e. 
( )jiijijiii XXffXff ,),( ==  and so on. The various terms can be expressed as: 
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Variance-based sensitivity measures are based on the terms in the decomposition (1), 
normalised by the total unconditional variance )(YV : 

VVS ii /= ,  

VVS ijij /= ,.. ( )( ) VXXYEVS jiXX
c
ij ijji

/,
−

= X  

… 

(4)

The iS  are called the main effects, the ijS  are the second order pure interaction terms, 

while the c
ijS  are the called the second order closed effects, giving the overall effect of a 

group of two factors, i.e. for orthogonal input factors ijji
c
ij SSSS ++= , and so on until the 

closed term of order k equal to 1. All indices are nicely scaled in [0, 1] and, as discussed in [4] 
and in the Keynote lecture by A. Saltelli at this conference [5], are related to rigorous settings, 
applicable to different contexts for SA. In particular, main effects are related to the setting 
“Prioritising Factors”, i.e. to identify the factor which, if determined (i.e., fixed to its true, 
albeit unknown, value), would lead to the greatest reduction in the variance of the target 
output , and so on for the second most important factor etc., till all factors are ranked.  

Let us then concentrate on the main effects iS . The classical strategy for global sensitivity 
analysis methods is to directly estimate the iV  terms, without passing through the elementary 
functions if , and then to normalise by V. These methods (FAST, Extended FAST, correlation 
ratios, Sobol’, etc, see [4-6] for reference) are conceived as black-box methods and do not try 
to use information present in the Monte Carlo sample, e.g. analysing scatter plots and trying 
some smoothing of the pattern, if any, between to model output and a given input. So, even if 
they are robust, unbiased and applicable to whatever non-linear and complex computational 
model, they do not make the best use of all the information contained in the Monte Carlo 
sample. This makes such methods computationally expensive, with a required number of 
model evaluations that is proportional to the number of factor k, e.g. of at least some 
thousands for a good approximation of the solution. This limits the application of variance 
based methods to not too complex computational models, which allow the required number of 
model evaluations to be carried out in a reasonable time. A lot of effort has been expended in 
recent years to reduce the cost of the analysis, either by improving the efficiency of the 
available methods (see e.g. [7]), or by exploring more efficient routes, such as the Bayesian 
approach presented by Oakley and O’Hagan [8]. In the latter case, Bayesian tools are used to 
exploit the information about the input-output mapping more efficiently than classical 
variance based methods, thus reducing drastically the computational cost of the analysis. 

In this paper, we first estimate the if ’s, using recursive filtering and Fixed Interval 
Smoothing (FIS) algorithms to fit SDP models to the input-output mapping [9], then we 
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compute the variance of if  to estimate the main effects. As in [8] this method allows us to 
estimate both if , and iV  (i.e. iS ), adding valuable information to the sensitivity analysis at a 
much smaller computational cost than classical methods. The convergence rate is of the same 
order of the Bayesian approach by Oakley and O’Hagan [8] and, at the same time, the method 
presented here is simple, since it is based on ‘classical’ recursive algorithms, such as the 
Kalman filter [10-11] and recursive FIS. 

2. THE METHOD 
The present methodology exploits signal processing and time series analysis tools, in 

particular an approach to non-stationary and nonlinear signal processing based on the 
identification and estimation of stochastic models with time variable (TVP) or state dependent 
(SDP) parameters. The works of P.C. Young [12-13] illustrate TVP/SDP algorithms and 
provide full references on the subject.  

Often non-stationary and nonlinear systems can be approximated well by TVP (or piece-
wise linear) models, the parameters of which can be estimated using recursive methods of 
estimation, where parameters are assumed to evolve in a simple stochastic manner (e.g. [12-
14]). When instead the changes in the parameters are functions of the state or input variables 
(i.e. they actually constitute stochastic state variables), then the system is truly nonlinear and 
likely to exhibit severe nonlinear behaviour. Normally, this cannot be approximated in a 
simple TVP manner; in which case, the alternative and more powerful SDP modelling 
methods must be used.  

In SDP time series modelling, the natural ordering of the data along the time coordinate is 
replaced by an ordering based on the ascending value of the state variables (or inputs), 
making the SDP model estimation similar to ‘pattern recognition’, i.e. to analysing scatter 
plots between a model input jX  and the output Y . In the SA framework, the analyst has a set 
of Monte Carlo simulations from which sensitivity indices and HDMR terms have to be 
estimated. Nothing impedes to consider such a set of Monte Carlo model evaluations as a time 
series and therefore to try to apply SDP modelling to estimate the first order terms in the 
decomposition of the computational model given in (2).  

2.1. SDP models and HDMR 
The general SDARX (State Dependent Auto-Regressive with eXogenous variables) 

specification for a dynamical system is: 

tt
T
tt eY += pZ  ),0(~ 2σNet  (5)

where 

],,,,,,,[ 121
T

mt
T
t

T
tnttt

T
t YYY −−−−−−−− −−−= δδδ XXXZ KK  

],,[ 1 k
T
t XX K=X  

)](,),(),(),(,),(),([ 1021 tmtttnttt aaa ZbZbZbZZZp KK=  
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and nia ti ,,),( K1 =Z  miti ,,),( K0 =Zb  are the state dependent parameters, which are 
assumed to be functions of the state vector tZ . We keep here the time series notation, with 
the index t spanning the set of Monte Carlo simulations, Nt ,,1K= . 

In the SDP modelling framework the identification of the model structure itself is a 
critical issue. Observations of the input and output series are available and the analyst has to 
identify the dynamical model which best fits the observations, in the most parsimonious way 
(Data-Based Mechanistic modelling, [15]).  

This involves finding which and how many lags and/or delays characterise the input state 
variables as well as if and how many autoregressive terms of the output have to be included. 
Moreover, the analyst has to make hypotheses on (i) which state variable are parameters 
dependent to and (ii) whether all parameters are state dependent or some of them are only 
time-dependent or simply constant. 

In the present context, however, considerable simplifications can be achieved considering 
that model is deterministic and that, from (2), we know that, truncating all terms of order two 
and higher, the model can be written as: 

ttkkttt eXfXfXffY ++++=− )(...)()( ,,22,110  ),0(~ 2σNet  (6)

where we assume that all terms of high order can be approximated by a Gaussian white noise 
with zero mean and variance 2σ , i.e. the truncated HDMR is seen as a stochastic non-linear 
system. This can be justified by a version of the central limit theorem [16], since the truncated 
terms can be seen as the sum of a large number of independent random variables with equal 
zero mean and arbitrary probability distribution. 

Comparing the representation (6) to the SDP model definition (5) we can see that: 

1. no autoregressive terms of the output variable are present in (6), i.e. n=0;  

2. no lags or delays in the input variables are present in (6), i.e. m=0, δ=0; 

3. items 1 and 2 imply that the state vector reduces to the vector of input variables, i.e. 

tt XZ =  and that the vector of time dependent parameters reduces to )(0 tt Xbp = ; 

4. each term of the sum (6) is a function of a single input variable, so each state 
dependent parameter ib0  depends only on the corresponding input variable iX , i.e. 

)()( ,00, tjjtjti Xbbp ≡= X . Without loss of generality, we can then re-write each 
term of (6) as tjtjtjtjjtji XpXXbXf ,,,,0, )()( =≡ . 

So, the general, dynamic, time series specification (5), including lagged variables and 
delays, can be specialised to the HDMR of the computational model stopped to the first order 
(6) as follows: 

ttktkttttt eXpXpXpfY ++++=− ,,,2,2,1,10 ...  ),0( 2σNet =  (7)
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Estimating the state dependent parameters tjp ,  is hence equivalent to estimating the first 
order terms of the HDMR. The estimation of tjp ,  requires the following steps (see [12-13] 
for more details): 

1. characterise the variability of tjp ,  in some stochastic manner: this is done using 
generalised random walk processes (GRW), specifically our choice is limited to the random 
walk (RW) and the integrated random walk (IRW) processes; 

2. estimate via maximum likelihood (ML) the hyper-parameters (i.e. the variance of the 
innovations) of the RW/IRW processes of the state dependent parameters; 

3. estimate the state dependent parameters and hence the first order terms of (2) applying 
recursive filtering and smoothing estimation, within an iterative backfitting procedure (The 
ML estimation in step 2. can also be iterated within the backfitting procedure). 

With this procedure we estimate all the terms simultaneously, allowing us to use a single 
sample to estimate all indices. Moreover, the Monte Carlo sample is a standard one (pure 
random sample, Latin Hypercube, LP-tau, etc) and does not require a particular design, such 
as the classical variance based methods. This also allows it to be applied in the case of 
dependent inputs. We warn however that the convergence rate depends somehow on how the 
sample is generated. If quasi-random LP-tau random numbers are used, the convergence rate 
is very high, while using Latin Hypercube or pure random samples convergence is slower. 
This is clearly due to the more efficient exploration of the parameter space provided by the 
LP-tau quasi-random sequence. 

2.2. The backfitting algorithm 
The ’time scale’ of the SDP model used for SA is just given by the sequence of the Monte 

Carlo evaluations of the computational model, so no ’logical’ ordering can be expected in this 
sequence. In practice, the tp  values will continuously ’jump’ in an extremely noisy way from 
one run to the subsequent in the Monte Carlo sample. So, it cannot be assumed that the simple 
GRW model is appropriate to describe such a variation over ’time’. However, it is possible to 
solve this problem if we sort the data in an ad-hoc manner. Specifically, if the ordering is 
chosen so that the SDP variations associated with the sorted series are smoother, it is more 
likely that a simple GRW process can be utilized to describe their evolution. 

In our case, it is logical to assume that the most suitable ordering for each parameter tjp ,  
should be done with respect to the corresponding input factor tjX , . In this way, we can 
expect that the recursive estimation will be able to identify the pattern of tY  vs. tjX , . This 
also implies that each SDP needs a different sorting strategy, each with respect to its input 
factor. To solve this further problem, the backfitting procedure described in [13] can be 
exploited. Here, each parameter is estimated in turn, based on the modified dependent 
variable series obtained by subtracting all the other terms on the right hand side of (7) from 

tY . At each such backfitting iteration, the sorting can then be based on the single variable 
associated with the current SDP being estimated. 
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2.3. Specific issues for SA applications 
2.3.1. Rescaling the inputs 

Suppose that the input factor distribution of a factor jX  contains the zero. Suppose also 
that the corresponding jf  term assumes a non-zero value for 0=jX . This poses a 
singularity problem, since, if 0, =tjX  at a given sample point t, tjp ,  should assume an 
infinite value to yield a non-zero tjf , . So, we propose that in the standard procedure for SA 
estimation, while leaving the output unmodified, all the input factors are transformed via a 
monotonic (invertible) operator into cumulative probabilities, obtaining a uniform distribution 
for all input factors in the [0, 1] interval. Then, to eliminate the zero, all values are then 
shifted to the interval [1, 2]. This allows the elimination of the singularity problems, while 
preserving the scale and shape of the model output.  

Then, after estimation, the *
jf  terms estimated for the transformed variable *

jX , can be 
plotted by putting in the axis of the abscissas the original values jX , fully recovering the true 

jf  terms. In fact, if )( jj XP  is the cumulative distribution of factor jX , at each sample point 

t we can write: )())1(()( ,,
*
,

1
,

*
,

*
, tjtjtjjtjtjtj XfXPfXf =−= − . 

2.3.2. The choice of the GRW model 
A last methodological issue on the use of SDP models for sensitivity analysis of 

computational models concerns the choice of the GRW model, i.e. RW of IRW. Usually, 
sensitivity analysis tools, such as the software SIMLAB [17], aim to be ’black-box’. 
Whatever the model, inputs and outputs are fed to the SA tool to get the sensitivity indices. In 
principle, a priori one does not know whether RW or IRW model is more appropriate for each 

jf  term of the HDMR decomposition. In order to make this choice ’automatic’, we propose 
the following preliminary step to the backfitting algorithm: 

1. for each factor jX  perform the ML estimation of both RW and IRW models of the 
univariate model ttjtjt eXpY += ,, ; 

2. for each estimated model, compute the 2R  measure or fit; 

3. select the model with the highest 2R  in the subsequent SDP estimation. 

3. APPLICATION 
We have tested the method with several models, with up to 15 input factors. We first 

considered models with known analytical solutions for sensitivity indices and HDMR, such as 
the g-function of Sobol’ [9]. Such tests allowed the convergence rate of the numeric to 
analytic solution to be measured. In general, a number of model runs of about 1,000 is 
sufficient for quite accurate estimates, with an absolute errors of about 0.01 on a scale [0, 1]. 
An extremely important improvement with respect to the classical estimation methods is that, 
in all the tests done, the computational cost was almost independent of the number of input 
factors. Clearly, it has to be expected that for a number of factors larger than 15-20, the 
convergence rate will start decreasing, but cases with such a large number of input factors are 
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usually preliminary passed through a screening method (e.g. the method of Morris or others) 
and only at a later stage the variance based/HDMR analysis is performed for fewer inputs. 
Convergence also becomes slower for non-monotonic models for which the parameters tend 
to be all rather equally important. Note that the latter condition is not usual, as most often 
factors follow a Pareto law, with few factors accounting for most of the importance. In all 
cases, the convergence is reached with a few thousand runs, with a considerable saving in 
computational effort with respect to the standard estimation methods (FAST, Sobol’). Even in 
the nastiest cases, convergence did not require more than 8000 runs. 

Here, we show some significant results for the Level E model. Level E was used both as a 
benchmark of Monte Carlo computation [18] and as a benchmark for sensitivity analysis 
methods [19]. This test case has been extensively used by several authors; see [20] for a 
review. The model predicts the radiological dose to humans over geological time scales due to 
the underground migration of radionuclides from a nuclear waste disposal site. In a 
companion paper to this conference [21], readers can find another application of SDP 
modelling for the SA of a basin model to evaluate hydrocarbon exploration risk. 

The Level E model has 12 input factors and is characterised by a strong non-linearity. 
Among the 12 parameters, 4X  (=v(1), water velocity in the first geosphere layer) and 12X  
(=W, stream flow rate) have the largest main effect over the simulated period. In Figures 1 
and 2 we show the sensitivity indices versus time for these two parameters and compare the 
asymptotic values estimated with standard SA tools (Sobol’ method), taking 1,000,000 runs, 
with the SDP estimation having total costs of 1024 and 8192. The samples for SDP model 
analysis were generated using LP-tau quasi-random sequences. We can see that already with 
only 1024 runs, which is a very small sample size for this kind of model, the absolute errors 
of the SDP estimates with respect  to the asymptotic values is of the order of 0.01-0.02 in the 
sensitivity scale range of [0, 1]. With 1024 runs there is a critical point for W, where the drop 
of the sensitivity index at t=200,000 yr is shifted to the next time point t=300,000 yr. 
Increasing the total cost to 8192, results converge to the asymptotic values. 
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Figure 1. First order sensitivity index vs, time for parameter v(1) (X4). 

67



 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

20,000 70,000 300,000 800,000 4,000,000 9,000,000

Time

S1
2 Asympt

8192
1024

 
Figure 2. First order sensitivity index vs. time for parameter W (X12). 

Comparing total costs, with the Sobol’ technique we would need about 40,000 model runs 
to reach an accuracy comparable to the cheaper SDP model estimation of 1,024 model runs, 
i.e. the SDP modelling approach reduces the computational time by a factor 40 in this case. 
Conversely, 1024 runs for the Sobol’ estimates are too few, with absolute errors that can reach 
0.7-0.8, i.e. totally unreliable estimates. 

In addition to sensitivity estimates, the SDP modelling approach also allows us to estimate 
the first terms in the high dimensional model representation decomposition. The plots of such 
functions for v(1) and W at the time t=100,000 are shown in Figure 3. The added value of the 
SDP modelling approach is evident by looking at the clear representation of the first order 
input-output mapping between v(1) and W and the output Y (the radiological dose). It is 
interesting to note in Figure 3 that the pattern estimated with 1024 runs for )( 4Xf  slightly 
passes the zero axis for high values of 4X , while this is corrected increasing the number of 
runs to 8192. To better appreciate the ‘pattern recognition’ performed by the SDP estimation, 
in Figure 4 we also compare the scatter plots to the SDP estimates of )( 4Xf  and )( 12Xf  
(solid lines), for 8196 runs. 
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Figure 3. First order terms of the HDMR of the Level E model for v(1) (=X4) and W (=X12) at 
t=100,000 yr. Solid lines are for the total cost of 8192 runs; dotted lines for the total cost of 
1024 runs. 
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Figure 4. Scatter plots of Y and estimated first order terms of (2) for the Level E model for 
v(1) (=X4) and W (=X12) at t=100,000 yr (8192 runs). 

4. CONCLUSIONS 
The use of SDP models is a powerful tool for a fast and accurate estimate of the first order 

terms of the HDMR and of the main effects sensitivity indices of computational models. All 
the estimates are performed with a unique sample, which can be any standard Monte Carlo 
sample. However, if efficient quasi-random number generators are used, such as the LP-tau 
sequence, the efficiency of the method is further enhanced, with a significantly faster 
convergence. We have tested the method with different models, always with extremely rapid 
convergence rates: 1,000 runs are in most cases sufficient for good estimates with models 
having up to 10-15 input factors. The dependence of the computational cost of the method to 
the number of input factors is very small: this is an extremely important improvement with 
respect to classical estimation methods. The convergence becomes slower in cases where the 
model is non-monotonic and the input factors share similar and relatively small levels of 
importance, i.e. they do not follow a Pareto law. 
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Abstract: Results from complex computer models are often subject to both aleatory and 
epistemic uncertainty. The natural straightforward procedure to analyze these uncertainties by 
Monte Carlo simulation is a double-loop nested sampling: the epistemic parameters are 
sampled in the outer loop and the aleatory variables are sampled in the nested inner loop. For 
time-demanding codes, however, the computational effort of this procedure may be 
prohibitive. Therefore a method of an approximate sensitivity analysis (“sensitivity” in the 
sense of “uncertainty importance”) has been suggested which is based on a single-loop 
sampling procedure with epistemic parameters and aleatory variables being sampled 
“simultaneously” from their respective distributions. From the results of such sampling one 
can obtain approximate estimates of many of the commonly used sensitivity measures for the 
aleatory probability distributions of model outcomes of interest with respect to the underlying 
epistemic parameters. The reliability of these estimates depends on the relative contribution of 
epistemic uncertainties U to the overall joint epistemic & aleatory uncertainty in the outcome 
Y expressed by the quantity c2 = varE[Y|U]/varY. This quantity can be estimated in several 
ways depending on the feasibility of additional sampling and model computations. 

Keywords: sensitivity analysis, aleatory and epistemic uncertainty, uncertainty importance, 
conditional expectation. 

1. INTRODUCTION 
The effect of model input variables subject to aleatory uncertainty (“random behavior”) on 

the results of a complex model can be analyzed by Monte Carlo simulation. To this end the 
aleatory variables are sampled according to their random laws and the results of the 
corresponding model runs are summarized in form of empirical distributions which represent 
the aleatory uncertainty of the model outcomes. From these empirical distributions statistical 
estimates of the probabilities of the process states of interest and other useful probabilistic 
quantities like expectations etc. may be obtained.  

Often, however, the exact types of the random laws, their distributional parameters, the 
model formulations, the values of model parameters, the input data of the model application 
etc are not known precisely, i.e. they are subject to epistemic ("lack-of-knowledge") 
uncertainty. These uncertainties, denoted as epistemic input uncertainties, are quantified by 
probability distributions representing the respective subjective state of knowledge.  

The aim of epistemic sensitivity analysis (“uncertainty importance analysis”) in this case is to 
quantify the effect of the epistemic input uncertainties on the epistemic uncertainty of the 
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probabilistic quantities representing aleatory output uncertainty, e.g. probabilities, 
expectations etc.  

It is widely recognized and accepted that these two types of uncertainty must very 
carefully be distinguished and therefore it wouldn’t make sense to perform a “simultaneous” 
Monte Carlo simulation of both types of variables and a sensitivity analysis of a direct model 
outcome with respect to the variables of both types.  

It is intuitively clear and has often been pointed out by many authors, e.g. [1], that the 
natural method to appropriately account for both types of uncertainty by Monte Carlo 
simulation is a “double-loop” nested sampling procedure (also called “two-stage” or “two-
dimensional” sampling,). It consists of (1) an "outer loop" where the values of the epistemic 
parameters are sampled according to their epistemic marginal probability distributions and (2) 
a nested “inner loop” where the values of the aleatory variables are sampled according to their 
aleatory conditional probability distributions given the values of the epistemic variables 
chosen in the outer loop. Each “inner loop” provides an empirical conditional aleatory 
distribution of the process outcome of interest such that finally a sample of empirical 
distributions is obtained. This sample could be used for a standard epistemic sensitivity 
analysis for various (aleatory) probabilistic quantities.  

However, for complex and computationally expensive models, as used e.g. in probabilistic 
safety analysis of nuclear power plants, the computational effort for the double-loop 
procedure will be prohibitive. In such cases the consequence would be to do without an 
uncertainty and sensitivity analysis. 

Therefore, an approach of an approximate epistemic sensitivity analysis is suggested in 
the following sections. Instead of the nested double-loop sampling procedure the above-
mentioned simple single-loop sampling procedure is employed with both types of variables 
being sampled “simultaneously” according to their joint probability distribution. From the 
results of this sampling appropriate sensitivity measures can be computed. 

2. FUNDAMENTALS  
Being subject to both epistemic and aleatory uncertainties, any scalar process variable or 

model outcome Y may be represented as   
      Y = h(U,V)  
with   
  U  =  set of all epistemic uncertainties (uncertain parameters),  
  V  =  set of all aleatory uncertainties (random variables),  
  h  =  the computational model considered as a deterministic function of both  
   aleatory and epistemic uncertainties U and V.   

When holding the epistemic variables U fixed at a value u , i.e. U=u, the resulting 
outcome Y is a function of the aleatory uncertainties V, solely. Its probability distribution, i.e. 
the conditional distribution F(y|U=u) of Y given U=u, quantifies the corresponding 
(conditional) aleatory uncertainty in Y. Its expectation   
      E[Y|U=u]  
taken over all aleatory variables V conditionally on U=u may be considered as a scalar 
quantity representing this conditional aleatory uncertainty of the outcome Y. 
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Using expectation to represent conditional aleatory uncertainty must not be considered 
very restrictive since many of the standard distributional parameters characterizing aleatory 
uncertainty can be viewed as expectations of appropriately chosen outcome functions Y’. E.g. 
the value FY(y) of a distribution function of a random variable Y at any given point y may be 
represented as expectation of the indicator variable Y’= I{Y ≤ y}, i.e. Y’=1 if Y≤y and Y’=0 
otherwise, from which follows that EY’=FY(y).  

In the following the standard concise notation   
       E[Y|U] 
will be used to denote the above conditional expectation E[Y|U=u] considered as function of 
the epistemic uncertainties U, i.e. as a quantity subject to epistemic uncertainty from U alone. 

The principal aim of an approximate epistemic sensitivity analysis of results from models 
subject to both epistemic and aleatory uncertainties will therefore be to determine appropriate 
sensitivity indices of the conditional expectation E[Y|U] with respect to the components 
U1,…,Un of U avoiding the time-consuming double-loop Monte Carlo sampling. 

The following fact is the basis of the proposed method: 

Many of the standard sensitivity measures of E[Y|U] with respect to U1,…Un are uniformly 
proportional to the corresponding sensitivity measures of Y=h(U,V) with respect to U1,…Un . 
The proportionality constant c is, in most cases, given by 

      c  =  
varY

|EYvar U .  

I.e. if SMi denotes the (population) sensitivity measure of E[Y|U] with respect to epistemic 
parameter Ui, and SM’i denotes the corresponding sensitivity measure of Y= h(U,V) with 
respect to the same parameter, then  

     SM’i = c · SMi   

for all i=1,…,n. This holds for many types of sensitivity measures with the same constant c. 

Consequently, this property implies that the sensitivity indices for   
    (a) the conditional expectation E[Y|U] and for   
    (b) the direct outcome Y=h(U,V)  
provide the same uncertainty importance ranking with respect to parameters U1,…Un.  

This result holds for the sensitivity measures 
- Correlation Coefficient (CC) 
- Standardized Regression Coefficient (SRC) 
- Correlation Ratio CR (=“main effect” sensitivity index)  
and with slight modifications also for 
- Partial Correlation Coefficient (PCC) 
- “total effect” sensitivity index ST 
- “linearized”(or R2-) Version of the “total effect” sensitivity index STL. 

The proof of this fact becomes very simple if the concept of conditional expectation 
E[Y|U] is employed. It is worthwhile mentioning that the notion of conditional expectation is 
very useful also in the context of sensitivity analysis. Many results from the standard 
sensitivity analysis which look rather complex and difficult can very effectively be 
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represented, very clearly interpreted and very easily proved with the aid of the concept of 
conditional expectation.  

The following basic properties of conditional expectation are useful in this context. They 
can be found in many textbooks and can also very easily be proved:  

(1) E(E[Y|U]) = EY  
(2) var(E[Y|U]) = varY - E(var[Y|U])  
(3) E(E2[Y|U]) = E(Y·E[Y|U])  
(4) E(E[Y|U]|Ui) = E[Y|Ui]  
(5) E[E[Y|U]·Ui] = E[E[Y|Ui]·Ui] = E[Y·Ui]  
(6) cov(E[Y|U],Ui)=cov(Y,Ui)  
(7) the linear regression of E[Y|U] with respect to U and the linear regression of Y with 

respect to U are identical, i.e. RC(E[Y|U],Ui) = RC(Y,Ui) with RC(…) being the 
corresponding regression coefficients.  

Using these properties the above result can easily be proved. Here, e.g., the proofs for the 
correlation coefficient CC and the correlation ratio CR (“main effect” sensitivity index): 

CC(E[Y|U],Ui) = 
i

i

varU]|var E[Y
)U],|cov(E[Y

⋅U
U

 = 
i

i

varU]|var E[Y
)Ucov(Y,
⋅U

 = 

    = 
i

i

varUvarY
)Ucov(Y,

⋅
·

]|var E[Y
Yvar

U
 = CC(Y, Ui) ·

]|var E[Y
Yvar

U
= 

    = CC(Y, Ui) · 1/c .   

CR2(E[Y|U],Ui) = 
]|varE[Y

]U|]|varE[E[Y i

U
U

 = 
]|varE[Y
]U|varE[Y i

U
 =

varY
]U|varE[Y i ·

]|varE[Y
varY

U
 = 

      = CR2(Y,Ui) · 1/c2 . 

The proofs for the other sensitivity measures are similar. 

3. SAMPLING METHOD FOR AN APPROXIMATE SENSITIVITY ANALYSIS 
Owing to the preceding result it seems natural and reasonable to replace the above-

mentioned but often impracticable double-loop sample-based sensitivity analysis for the 
conditional expectation E[Y|U] by the corresponding sensitivity analysis for the direct 
outcome Y=h(U,V) with respect to the components U1,…Un of U, alone. The Monte Carlo 
sampling procedure appropriate for such sensitivity analysis for the direct outcome Y, 
however, is a simple single-loop sampling with the epistemic parameters U and the aleatory 
variables V being sampled “simultaneously” according to their joint probability distribution 
f(u,v). This joint probability distribution is given by the product of the marginal distribution 
f(u) of U and the conditional distribution f(v|U=u)  of V given U=u, i.e. by the expression 

           f(u,v) = f(v|U=u)·f(u) .  

In most applications the marginal distribution f(u) of the epistemic parameters U will be 
given directly, while the conditional distribution f(v|U=u) of the aleatory variables V may 
also be given in terms of intermediate results from the computational model. 
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Thus, the “simultaneous” sampling procedure with sample size N generates N joint 
epistemic & aleatory sample values 

      (u1,v1),.…..,(uN,vN) 

from which, eventually, the corresponding sample values  
            y1,….…,yN 
of the direct outcome Y=h(U,V) are calculated via the computer code.  

From all these sample values the above mentioned standard sensitivity measures with 
respect to the parameters U1,…Un for the outcome Y=h(U,V) can be computed. Since the 
proportionality constant c=√(varE[Y|U]/varY) is usually not known one cannot directly derive 
the sensitivity indices for E[Y|U] from the sensitivity indices for Y. However, according to 
the preceding section, the sample based parameter importance ranking obtained for Y may 
approximately be used as the importance ranking for the conditional expectation E[Y|U] 
asked for. Methods for approximating/estimating the proportionality constant c will be 
presented in section 5. 

It is also clear that Simple Random Sampling (SRS) as well Latin Hypercube Sampling 
(LHS) or any other sampling method appropriate for the selected type of sensitivity measure 
may be used for such sample-based approximate sensitivity analysis.  

4. ACCURACY CONSIDERATIONS  
The accuracy of the approximate sensitivity analysis for the outcome Y depends on the 

(usually) unknown value of the (squared) proportionality constant   

     c2 = 
var Y

]|var E[Y U    

which relates the sensitivity measures for E[Y|U] to the sensitivity measures for Y. 

Clearly, 0 ≤ c2 ≤ 1 since varE[Y|U] ≤ varY due to the above property (2) of the 
conditional expectation. From the proportionality SMi=1/c·SMi’ (i=1,…,n) it follows that the 
values of the sensitivity measures SMi’ for Y are uniformly lower than the corresponding 
sensitivity measures SMi for E[Y|U]. If this constant c2 is small, the sample-based 
approximate sensitivity analysis for Y may produce small or even statistically not significant 
values of the sensitivity measure for a parameter although the sensitivity of E[Y|U] with 
respect to this parameter one is actually interested in may be high. Nevertheless, c2 is 
unknown and therefore it is important to analyze it more closely.  

By definition, c2 is easily identified as squared multiple correlation ratio (or “main effect” 
sensitivity index) [2],[3] of Y with respect to the whole parameter vector U. It can therefore 
be interpreted in several ways, e.g.  

- as an indicator of the accuracy of the approximation of Y=h(U,V) by E[Y|U] as a 
function of U alone,  

- as an indicator of the relative contribution of the epistemic uncertainties from U to the 
overall “joint” uncertainty in Y=h(U,V) from U and V, 

- as the extent to which the overall “joint” uncertainty in Y coming from U and V is 
dominated by the epistemic uncertainty coming from U alone. 

Consequently, the more “dominant” the epistemic uncertainties the higher the c2 value, 
and, consequently, the higher the dependability of the proposed approximate sensitivity 
analysis.  
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In practical applications it may sometimes be immediately clear which type of uncertainty 
is dominant such that the reliability of the approximate sensitivity results may also be judged 
immediately. Nevertheless, an approximation of c2 is needed on the basis of the reduced 
sampling effort without employing the impracticable double-loop approach.  

5. APPROXIMATING THE PROPORTIONALITY CONSTANT c2 
Three alternative procedures are proposed to approximate res. to estimate the (squared) 

proportionality constant c2=
var Y

]|var E[Y U . Below the three procedures are ordered according 

to the amount of the additional computational effort necessary to determine the corresponding 
approximated res. estimated value of c2.  

(1) Procedure No.1 to approximate c2 is based solely on the underlying sample values from 
the “joint” sampling of U and V, i.e. without additional model computations. It is given by 

    2ĉ  = 
)),((Y,R

)(Y,R
2

2

VU
U  , 

with  
R2(Y,(U,V)) = multiple sample correlation coefficient of outcome Y with respect to the joint  
   sample of (U,V). 
R2(Y,U))    = multiple sample correlation coefficient of outcome Y with respect to the 
   sample of U alone. 
Both multiple correlation coefficients can easily be computed from the available sample 
values  (u1,v1),…..,(uN,vN) and y1,…,yN  according to the well-known formulae: 

     R2(Y,U)  =  ρt
Y,U RU

-1
  ρY,U  

         R2(Y,(U,V))  =  ρt
Y,(U,V) RU,V

-1
  ρY,(U,V)  

with 
ρY,U       = vector of empirical correlation coefficients between Y and the components of U  

ρY,(U,V) = vector of empirical correlation coefficients between Y and the components of U,V  

RU
-1       = inverse of the empirical correlation matrix RU between the components of U 

RU,V
-1 

  = inverse of the empirical correlation matrix RU,V between the components of U,V.  

All these quantities are computed from the underlying sample values (u1,v1),…..,(uN,vN) and 
y1,….,yN  generated by the single-loop joint sampling of U,V and the corresponding model 
computations of Y. The sample size N must exceed the joint number of variables in U,V. 

The motivation behind this method is simply to approximate the conditional expectation 
(= regression of the 1st kind) by the linear regression (= regression of the 2nd kind). 

 
(2) Procedure No.2 of approximating c2 is based on two samples: (a) the underlying sample 
values y1,…,yN from the same “joint” sampling of U and V and (b) sample values from an 
additional (single-loop) sampling of aleatory variables V alone with the values of epistemic 
parameters U held fixed at their nominal values u0 . It is defined by  
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    2ĉ  = 
(Y)s

)|(Ys(Y)s
2

0
22 uU =−

 . 

where 

    s2(Y) = 2
N

1i
i )y(y

N
1

−∑
=

  

is the variance from the underlying sample values y1,…,yN, and 

     s2(Y|U=u0) = 2
N'

1i
i )'y(y'

N'
1

−∑
=

. 

is the variance from the other sample values y’1,…,y’N’ generated by sampling the aleatory 
variables V alone while the epistemic parameters U are held fixed at their nominal values u0. 
In many applications this additional sample may already be available as the “nominal result” 
computed before starting uncertainty and sensitivity analysis.  

The motivation behind this method is to approximate the term Evar[Y|U] appearing in the 
expression varE[Y|U] = varY - Evar[Y|U] for the numerator of c2 by the term var[Y|U=u0]. 

 
(3) Procedure No. 3: While the first two methods should rather be considered as numerical 
approximations to the constant c2=varE[Y|U]/varY, the third method may be viewed as an 
estimate of c2 in the full statistical sense. It is based on the following basic and easy to prove 
property of conditional expectation:  

If V and V’ are identically distributed and conditionally independent given U, i.e. the 
joint conditional distribution of V and V’ given U is the product if the two marginal 
conditional distributions, formally: f(v,v’|U=u) = f(v|U=u)·f(v’|U=u) and if Y = h(U,V) and 
Y’ = h(U,V’), then the (squared) proportionality constant c2 can be expressed by: 

    c2 = 
var Y

]|var E[Y U  = 
 varY'varY

)Y'(Y,cov  = ρ(Y,Y’) , 

i.e. c2 is the correlation coefficient between the variables Y und Y’.  

Consequently, one can estimate the proportionality constant c2 by the sample correlation 
coefficient r(y,y’) from the two-dimensional sample (y1,y1’),…..,(yN,yN’) from the bivariate 
distribution of (Y,Y’). The corresponding well-known formula is 

   2ĉ  = r(y,y’) = 

∑ ∑

∑

= =

=

′−′⋅−

′−′⋅−
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where  
y1,…,yN are the sample values of Y from the underlying “joint” sample of U and V, i.e. 
yi=h(ui,vi), ), i=1,…,N and  

y1’,…,yN’ are the sample values of Y’ from the “joint” sample of U and V’ generated by 
independently sampling the aleatory variables V’ alone, according to the conditional 
distribution with the epistemic parameters U held fixed at the same values as in the 1st sample, 
i.e. yi’=h(ui,vi’), i=1,…,N. 
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The additional computational effort for this statistical estimate of c2 is therefore N 
additional model computations (= 2nd single-loop sample of size N).  

Obviously, these two single-loop samples may also be viewed as a realization of the 
above-mentioned nested double-loop sampling with the “inner” loop sample size being 2. 

Remark 1:  
The above statistical estimate 2ĉ  may also be considered as an extension of the familiar 
procedure [4] to estimate the so-called “main effect” and “total effect” sensitivity indices SM 
and ST in the case of not independent variables. Changing the notation and replacing U by X2 
and V by X1 the “total effect” sensitivity index ST1 for Y with respect to X1 may be defined as  

    ST1 = 
varY

]| var[YE 2X
 = 

varY
]|var E[YvarY 2X−

. 

It can be interpreted as “the relative amount of variance of Y that is expected to remain if the 
values of all variables except variables X1 will become known”. Analogously, the “main 
effect” sensitivity index SM1 for Y with respect to X2 may be defined as  

    SM2 = 
varY

]|[Y var E 2X
   

and interpreted as “the relative amount of variance of Y that is expected to be removed if the 
values of all variables X2 will become known”. This representation holds for independent as 
well as for dependent variables X1 and X2 and is equivalent to the representation given in [4] 
in the case of independent variables (e.g. ST1 := sum of all terms containing X1 of the “Sobol 
decomposition” of Y=h(X1,X2) into a sum of uncorrelated terms of increasing dimensionality 
[2], [4]). It is immediately seen that  
      ST1 = 1 - c2   
     SM2 =  c2   
with X1,X2 playing the role of V,U in the above representation of c2. It can also be easily seen 
that for independent variables the estimate presented in this paper and the estimate presented 
in [4] are nearly equivalent. Consequently, in the procedure [4] to compute the “main effect” 
and the “total effect” sensitivity indices it is not necessary to assume the input variables be 
independent. This procedure can be used for dependent variables, as well, provided the two 
samples of X1 are generated conditionally independently given X2 .  

Remark 2:  
According to the above procedure a 2nd sample is generated to estimate (together with the 1st 
sample) the constant c2 while to estimate the sensitivity indices only the 1st sample is needed. 
It appears, and is intuitively clear, too, that using the mean sample values yi* = (yi+yi’)/2, 
i=1,…,N from both samples an improvement of the accuracy of the sensitivity results can be 
achieved compared to the results obtained with the values yi , i=1,…,N, from a single sample. 
As before, since E[Y*|U]=E[Y|U] and varY*=(varY+varE[Y|U])/2, it can easily be shown 
that a similar proportional relationship holds between the sensitivity measures SMi of E[Y|U] 
and the corresponding sensitivity measures SM*i  of Y*=(Y+Y’)/2 with respect to parameter 
Ui , i.e. 
       SM*i = c* · SMi   

with the new proportionality constant c*2 given by  
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   c*2 =  
*var Y

]|var E[Y* U  = 
]| var E[Y var Y

]| var E[Y2
U

U
+

 = 
c²1

c² 2
+

   >  c2  

As stated above, since c*2 > c2, the uncertainty importance ranking (sensitivity results) based 
on the yi* values will provide a more reliable approximation to the importance ranking for 
E[Y|U] than the importance ranking based on the yi values from a single sample. 

A straightforward generalization to K conditionally independent samples, i.e.   
     Y* = 1/K ∑Y(k)   
provides an improvement with the proportionality constant  

   c*= 
]| var E[Y1)-(K  var Y

]|K var E[Y
U

U
+

 = 
1)c²(K1

c²K 
−+

. 

This, obviously, is equivalent to the above-mentioned nested double-loop sampling with the 
“inner” loop sample size being K. 

6. SIMPLE ANALYTICAL EXAMPLE (LINEAR NORMAL CASE) 
To illustrate some of the preceding results a simple (artificial) numerical example is 

presented where all quantities of interest can be determined analytically and compared with 
the results from the sampling procedures presented above. In this example a simple linear 
independent normal case is considered, i.e.  

    Y = h(U,V) = ∑∑
==

+
m

1j
jj

n

1i
ii VbUa  

where all epistemic parameters U=(U1,….,Un) and all aleatory variables V=(V1,….,Vm) are 
independent and have the standard Normal distribution N(0,1). The coefficients ai , bj are 
assumed to be known. Then it can easily be shown that  
- varY = ∑ai

2 +∑bj
2 ,  

- E[Y|U] = ∑aiUi ,   
- varE[Y|U] = ∑ai

2 , 

- c2 = 
var Y

]|var E[Y U = 
∑ ∑

∑
+ 2

j
2

i

2
i

ba

a
 ,  

- SMi’= SM(Y,Ui) = 
∑∑ + 2

j
2

i

i

ba

a
, (i=1,…,n) ,  

- SMi = SM(E[Y|U], Ui) = 
∑ 2

i

i

a

a
 ,    ( i=1,…,n) ,  

where SM denotes any type of sensitivity measure, since, due to linearity and independence 
all standard sensitivity measures of Y or of E[Y|U] with respect to Ui are equal.  

Here it can directly be seen: the higher the contribution of the epistemic uncertainties from U 
to the overall joint uncertainty in Y, expressed by the constant c2, the more precise the 
proposed approximation of the sensitivity measures for E[Y|U] by the sensitivity measures for 
Y.  

For numerical calculations it was assumed that n=m=5, a=b=(1,2,3,4,5). Consequently 
varY=110, varE[Y|U]=55, c2 = 1/2. 
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The following table summarizes the results obtained analytically and with the sampling 
methods described above. It shows the values of the sensitivity measures (Standardized 
Regression Coefficient, SRC) for E[Y|U] with respect to all five parameters U1,….,U5 
obtained in four different ways:  

(1) analytically,  
(2) from double-loop simple random sampling with sample size 100x100  
(3) from single-loop simple random sampling with sample size 500  
(4) from single-loop simple random sampling with sample size 200.  

 
           Standardized Regression Coefficients (SRC) for E[Y|U] 

Index of  (1)    (2) two-loop (3) one-loop (4)one-loop
Parameter analytic ss=100x100 ss=500  ss=200  

   1  0.1348  0.1369  0.140  0.071 
   2  0.2696  0.2946  0.259  0.265 
   3  0.4044  0.4262  0.387  0.397 
   4  0.5392  0.5340  0.584  0.629 
   5  0.6740  0.7225  0.703  0.658 
 
The three alternative methods for approximating/estimating the proportionality constant c 
provide the results: 

                                  The proportionality constant c 
sample size method 1 method 2 method 3 exact value 
  500  0.7027  0.7032  0.7003  0.7071 =√0.5
  200  0.7437  0.6895  0.6920  0.7071 =√0.5
 
Conclusion: The results of this simple example look promising and suggest that in real 
situations with complex and computationally expensive models where the double-loop 
sampling is prohibitive, the approximate sensitivity analysis presented in this paper may 
provide reasonable results. It may therefore be preferred to the alternative of not performing 
any sensitivity analysis.  
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Abstract: When outputs of computational models are time series or functions of other 
continuous variables like distance, angle, etc., it can be that primary interest is in the general 
pattern or structure of the curve. In these cases, model sensitivity and uncertainty analysis 
focuses on the effect of model input choices and uncertainties on the overall shapes of such 
curves. We explore methods for characterizing a set of functions generated by a series of 
model runs for the purpose of exploring relationships between these functions and the model 
inputs. 
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1. INTRODUCTION 

The outputs of computational models are often time series or functions of other 
continuous variables like distance, angle, etc. Following Campbell [1], we propose that 
sensitivity analysis of such outputs be carried out by means of an expansion of the functional 
output in an appropriate functional coordinate system, i.e., in terms of an appropriate set of 
basis functions, followed by sensitivity analysis of the coefficients of the expansion using any 
standard method. The principal new problem, therefore, is choosing an appropriate coordinate 
system in which to apply the selected sensitivity analysis methods. We consider both pre-
defined basis sets and data-adaptive basis sets, with their associated advantages and 
disadvantages. We devote only passing mention to some related, but important problems, such 
as increasing the interpretability of the results by appropriate preprocessing of the functional 
outputs (in particular, alignment or registration of curves), and by enforcing some degree of 
smoothness when data-adaptive bases are used. 

We will use a simple made-up example for explaining ideas. Fig. 1 shows a sample of 
curves generated by varying the four parameters, a, b, c and d in the “model” 

( ) ( )
2

( ) 10 exp ( ) exp K22 2K1

b
f a b d a

a c

⎛ ⎞θ −⎜ ⎟θ = + − + + θ⎜ ⎟⎜ ⎟+⎝ ⎠

.    (1) 

We interpret these functions as model output from a problem where the independent variable 
θ is a polar angle ranging from -90º to 90º. The model was run 81 times, using a complete 34 
factorial design for the four input parameters.  

In analyzing this “model output” we are typically less interested in what affects the values 
at, say, 45º, than in questions such as:  What shifts the curves up and down or moves them left 
or right?  What makes the central peak wider or narrower? What makes the right-hand tail 
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higher or lower?  We could, of course, pick some appropriate functionals for answering these 
questions. The last, for example, we might address by examining the sensitivity of the values 
at 90º to the four input parameters. In order to address questions such as peak width we could 
devise some surrogate measurement that could be computed on each curve and then study its 
sensitivity to the input parameters. However, such choices are highly problem specific. 

 

 

Figure 1. Functional output from 81 runs of the example model 

2. TRANSFORMING FUNCTIONAL DATA 

It might seem natural to regard functions provided on a grid of T points as T dependent 
variables for the purposes of sensitivity analysis. However, this approach can be 
unsatisfactory for many reasons: 

• The T variables are highly correlated with one another, so this natural coordinate 
system is inefficient for statistical methods like discriminant analysis, sensitivity 
analysis, or almost anything other than multivariate statistical methods. Results are 
redundant from one value of θ to another. 

• The pointwise results can be difficult to interpret for the underlying physical or 
modeling problem. In particular, information about the global functioning of the 
model or physical system contained in such curve features as location, scale and 
phase shifts, as well as in localized fluctuations including tail behavior, cannot 
generally be extracted from individual univariate analyses. 
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• Even though the data are the output of a computer model, the different runs may 
not have generated outputs at the same times or points θ. Alternatively, identical 
model output times may not be physically comparable because, as a function of the 
input parameters, the modeled process may be evolving faster in one run than 
another. So we may need to register the output curves (rescale time) in some 
physically more interpretable manner before proceeding with analysis. 

All of these problems can be addressed by transforming the functional output in one way 
or another. For sensitivity analysis, the most useful approach is expanding the output 
functions in terms of some basis functions (after rescaling time, if necessary) and then 
applying the statistical method of interest—in our case, a sensitivity analysis method—to the 
coefficients of that expansion. Different types of bases can be considered. There are familiar, 
predefined bases such as Legendre polynomials or other orthogonal polynomials, 
trigonometric functions, Haar functions, or wavelet bases. Adaptive basis functions include 
principal components and partial least squares components.  Ramsay and Silverman [2] 
provide a detailed treatment of functional data analysis methodology.  In the remainder of this 
section, we highlight the techniques that are directly relevant to the application of Section 1. 

If the columns of ΦT×K (K ≤ T) are a proposed set of basis functions, then the original 
functional output from N model runs, an N × T matrix Y, can be rewritten as 

THYY Φ≈− ,           (2) 
where YNY T111−= with 1 the N-vector of ones, or 

( ) ( ) ( )∑
=

≈−
K

k
kiki thtyty

1
ϕ   for 1 ≤ i ≤ N ,   

where the mean function ( )y t  is computed as the mean of the ( )iy t  for each t.  Equality 

holds in (2) if and only if the row space of YY − is a subspace of the column space ofΦ . 

Most standard basis systems are orthonormal. For example, the Legendre polynomials are 
orthonormal with respect to Lebesgue measure on [-1, 1]. But the Legendre polynomials in 
sin(t), which are used in the example below, are not orthonormal with respect to ordinary 
Lebesgue measure dθ , but only with respect to a weighted measure cos dθ θ . Adaptive bases 
functions may be orthonormal by construction, or not. Orthonormality of the basis functions is 
a nice property, since then the total variance is naturally partitioned among the variances of 
the coefficients: 
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                                                                      (3) 

(Usually the basis functions are ordered so that the first few capture most of the total 
variance.)  However, even when the basis functions are not orthonormal, the total variance 
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captured by the expansion in terms of the first k (k ≤ K) basis functions can be computed, and 
orthonormality may be less important than some other features when it comes to sensitivity 
analysis. 

3. LEGENDRE POLYNOMIAL BASES 

Since the example is being interpreted as a set of functions of angles from -90º to +90º, 
the Legendre expansion in sin(t) is a natural choice among standard expansions. Fig. 2 shows 
how the coefficients {hik} of the expansions of the (N =) 81 functional outputs depend  on the 
parameters, for k = 1, 2, ..., 6 (= K). The Legendre polynomials are alternately symmetric and 
anti-symmetric around zero, as shown in the top row of Fig. 2. The first k polynomials define 
a k-dimensional subspace of the (T =) 41-dimensional space in which the output functions are 
vectors. The percentages at the top show how much of the total variance in the original family 
of functions lies in this subspace for k up to 6. Note for future reference that the six-
dimensional subspace defined by the first six polynomials still includes less than 90% of the 
total variance. 

 

Legendre
polynomials
in sin(x)

31.36% 41.59% 60.22% 74.59% 77.85% 88.85%

perturbations
of mean
function

dependence
on a

dependence
on b

dependence
on c

dependence
on d

 

Figure 2.  Dependence of the coefficients of the Legendre expansion on the parameters 
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In the second row, the Legendre polynomials are interpreted as perturbations of the 
overall mean of the 81 output functions. The mean function is the darker line.  The mean plus 
and minus a multiple of the Legendre polynomial are the lighter lines. 

The remaining rows contain box plots showing dependencies of the coefficients on the 
four parameters. Of course, we are not proposing sensitivity analysis by inspection-only as a 
serious method, but sensitivity analysis methodology is not the main goal of this paper. The 
figures are intended to suggest what more formal sensitivity analysis methods, such as 
described by McKay [3] and in Saltelli et al. [4], would indicate. 

Variability in the coefficients of the Legendre polynomials of even order is controlled 
largely by a, although c and d influence the constant, zero-order term. The odd orders are 
controlled mostly by b with some influence of d on the first-order term. 

An advantage of Legendre polynomials and other standard expansions is that they are well 
understood by many modelers. The other main advantage of using a consistent, non-adaptive 
basis system arises when a series of problems is being considered. The differences among 
corresponding analyses are then localized to the coefficients, instead of being partitioned out 
between the coefficients and the basis functions themselves. 

The disadvantages arise in the case where the selected basis functions are not particularly 
well suited to the problem at hand. The Legendre polynomial basis, for example, is not a 
particularly good choice for a problem in which one of the main effects is neither symmetric 
nor antisymmetric, as in our example. The dispersion in the right-hand tail by comparison 
with the tight left-hand tail is not well captured by any single polynomial but spread out over 
several of them. The other disadvantage is that a relatively simple effect may be spread over 
several terms. For example, in this problem the effect of b, responsible for the left-right shift 
of the main peak, is spread out over all polynomials of odd order. 

4. ADAPTIVE BASES COMPUTED BY PRINCIPAL COMPONENTS ANALYSIS 

The principal components of Y, considered as N observations in a T-dimensional space, 
are themselves T-vectors, and are the eigenvectors of the T×T sample covariance matrix. They 
form an orthonormal basis for the T-dimensional space (or for a subspace of T-dimensional 
space, if N < T) that is specifically adapted to maximize the variance of the projection of the 
data onto the first basis vector, then onto the subspace spanned by the first and second basis 
vectors, etc. Thus expansions in the principal component basis for sensitivity analysis should 
at least achieve some information aggregation, avoiding one of the more serious problems 
with the Legendre polynomial, namely the allocation of a fairly simple effect (e.g., width 
changes or left-right shifts) to several components. 

The principal component analysis (PCA) is shown in Fig. 3.  For the family of curves in 
Fig. 1, the first principal component is basically an up-down shift, but unlike the first 
Legendre function this shift is not constant across all angles. The subspace spanned by this 
one function accounts for about 46% of the total variance in the family of curves, compared 
with about 31% for the Legendre polynomial of order zero. Like the zero-order Legendre 
coefficient, the coefficient of the first principal component depends on all four parameters. 
The second principal component for this example is a left-right shift accounting for another 
34% of the total variance and controlled primarily by the b parameter. A similar amount of the 
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total variance was spread across the Legendre polynomials of odd orders. The third principal 
component is devoted explicitly to the right-hand tail and accounts for 11% of the total 
variance. It is clearly controlled by the d parameter, something that could not be extracted 
from the Legendre analysis. 

These first three terms capture over 90% of the total variance, compared to seven terms 
required by the Legendre analysis. The fourth component, which accounts for another 5% of 
the total variance, is a symmetric kurtosis or tail-fattening component depending most 
strongly on a and c. 
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Figure 3.  Dependence of the coefficients of PCA expansion on the parameters 

5. ADAPTIVE BASES COMPUTED BY PARTIAL LEAST SQUARES 

Partial least squares (PLS) regression was invented to handle near-collinearity among the 
independent variables, which is not usually a problem in analyzing computer experiments, 
assuming a reasonable experimental design. Thus, PLS is really a technique for decomposing 
the design matrix. (For a review of PLS regression, see Frank and Friedman [5].)  However, 
PLS simultaneously provides a transformation of the dependent variables in such a way that 
the first PLS component of the dependent variables has the maximum variance that can be 
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predicted by a linear combination of the independent variables. The second PLS component is 
computed using the residuals from the prediction of the first, and has the maximum variance 
that can be predicted by a second, orthogonal component of the independent variables, etc. So 
one might think of PLS as “peeking” at the explanatory variables while doing something that 
is similar to a PC analysis of the dependent variable. Note that while the PLS components of 
the independent variables are orthogonal, the PLS components of the dependent variables are 
not, in general. 

While there is no a priori guarantee that PLS results will be interesting for functional 
sensitivity analysis, we discuss them because they often seem to be fairly revealing. In 
particular, in the example they pull out some dependencies that were overshadowed by more 
important terms in both Legendre and principal component analyses. 

The PLS components (Fig. 4) are somewhat more readily interpretable than the PCA 
components (Fig. 3). The first component is an up-down shift of the middle of the curve, 
depending as before on all four parameters. (The first PLS component should be the same as 
the first PCA component if the independent variables are standardized, which is to be 
recommended; it is only with the extraction of the second component that the algorithms 
diverge.)  The second PLS component is a left-right shift, almost entirely a function of b, 
compared to the second PCA component which had more substantial contributions from a and 
c as well. The third PLS component is pure right-hand tail, dependent on d. The fourth is 
primarily a widthing term, although it  also includes a small left-right shift component,  and 
depends on  a and c. As there are only four input parameters, the PLS algorithm can provide 
only four component vectors, but this four-dimensional subspace captures almost 96% of the 
total variability in this family of curves, which is almost as much as the first four PCA 
components. By comparison, the first four Legendre components captured only about 75% of 
the total variance. 

The advantages and disadvantages of adaptive bases are pretty much the inverse of those 
for standard bases. The main advantage is good compaction or aggregation of the information; 
it is usually necessary to do sensitivity analysis on only the first few coefficients. The basis 
functions are also frequently more interpretable in physical terms. In a series of related 
problems, it may be interesting to study how the shapes of the component functions (as well 
as their coefficients) evolve.  Of course, the down side to this is that shapes and coefficients 
are evolving simultaneously, which may lead to interpretation problems. In some cases it may 
make sense to pool all of the output functions for the series to extract a common set of PC or 
PLS components, so that the evolution of their coefficients through the series can be studied 
in the same way as the evolution of the coefficients of a fixed basis set, such as Legendre 
polynomials, could be examined. 

6. OTHER CONSIDERATIONS 

Penalty methods can be used to enforce a degree of smoothness on adaptive basis 
functions. Orthonormality is lost when this is done, but the results are probably more 
interpretable, and curve comparison across problems, or between model output and noisy 
data, becomes easier. Ramsay and Silverman [2] discuss the enforcement of smoothness in 
PCA  (Chapter 7), and the technique is readily extended to PLS. 

 

87



 
 
   

PLS
components

40.5% 75.86% 89.18% 95.89%

perturbations
of mean
function

dependence
on a

dependence
on b

dependence
on c

dependence
on d

 

Figure 4.  Dependence of the coefficients of PLS expansion on the parameters 

Curve registration may be needed or advisable when the parameters affect the time- or 
space-scale or when the functions are not sampled at identical times in different runs. We 
would likely be interested in studying the sensitivity of the scaling and shifting to the input 
parameters, independently of the variability in the functional outputs after adjusting for these 
effects. Again, Ramsay and Silverman [2] address this problem in detail, proposing a series of 
methods from parametric location and/or scale change, through feature or landmark 
registration methods, to the estimation of general monotonic transformation. 

7. SUMMARY 

The purpose of this paper has been to suggest that sensitivity analysis for functional 
computer model outputs, correctly performed, is not significantly more difficult than for 
scalar outputs. The basic method is the expansion of the functional outputs in an appropriate 
functional coordinate system, i.e., in terms of an appropriate set of basis functions, followed 
by sensitivity analysis of the coefficients of the expansion using any standard method. The 
main art, then, is in choosing the appropriate coordinate system. We have considered both 
standard, pre-defined basis sets and data-adaptive basis sets. The example tends to favor the 
latter because of the aggregation and interpretability of the results, but the former may have 
value, depending on the problem or set of problems and the customer. 
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1. INTRODUCTION

When a computer model is to be used to guide a decision, it is important for the decision-
maker to acknowledge and investigate the uncertainty in the model. Typically, there will
be uncertainty surrounding the true values of the input parameters in the model that
should be used for the decision problem in question, and this then induces uncertainty
in the output of the model. If the decision-maker considers their probability distribution
for each unknown input in the model, they can then derive their probability distribution
for the model output. The combination of their output distribution and an appropriate
utility/loss function can then guide their decision.

In some cases, it may be possible to learn more about some or all of the uncertain
input parameters before a final decision is made. In this case, it is then desirable to assess
the importance of each uncertain input parameter in the model. Quantifying parameter
importance is known as global or probabilistic sensitivity analysis. A measure of parame-
ter importance that has been advocated previously is the variance-based measure (see 1).
Variance-based measures consider the contribution of each uncertain input parameter to
the variance of the model output. However, uncertainty about the model output as char-
acterised by its variance is not necessarily equivalent to uncertainty about the optimum
decision. Consequently, using variance-based measures to establish parameter importance
in decision problems can in some cases produce misleading results, even as far as ranking
the parameters in the wrong order of importance.

An alternative measure of parameter importance can be derived within the framework
of utility theory. The idea is to determine whether different values of a particular input
parameter lead to different optimum decisions, and if so, how much the expected util-
ity/loss under alternative optimum decisions varies. Specifically, the expected utilty of
learning the true numerical value of an uncertain input parameter before the decision is
made can be calculated. This quantity is known as the partial expected value of perfect
information (partial EVPI), and precisely quantifies the importance of an uncertain input
variable. When the specific purpose of the model is to guide a decision within a clearly
defined utility/loss structure, we advocate the partial EVPI as the single correct measure
of an uncertain parameter’s importance.

Further author information:
J.O.: Telephone: +44 (0)114 222 3853
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In most practical situations, the decision-maker will not be able to learn the true
value of an uncertain input parameter precisely, even if they desire to do so. The more
likely possibility is that they may have the option of collecting more data to reduce their
uncertainty about the unknown parameter. The expected value of perfect information
framework can be extended to consider the expected value of collecting this data before
making the decision; this is known as the expected value of sample information (EVSI).
EVSI measures can then be used for deriving optimal sample sizes.

Both partial EVPIs and EVSIs can be computed using Monte Carlo methods. Unfor-
tunately, to obtain these measures accurately, very large numbers of model evaluations
are needed, potentially millions. For computationally expensive computer models, evalu-
ating these measures may then require prohibitively lengthy computing times. However,
in many cases it will be possible to exploit a feature of the computer model to dramati-
cally speed up the computation; the function mapping inputs to output is often a smooth
function. If the model is run at a particular set of input values and the output is observed,
we will then also have information about the likely output at neighbouring sets of input
parameter values.

When the time needed for a single run of the model is non-trivial, it can be highly ad-
vantageous to construct an emulator, a statistical approximation to the original computer
model based on a fairly small number of different runs of that model. The emulator can
then be used to give a fast approximation to the computer model regardless of the com-
plexity of the model. An emulator is a regression model, and any regression technique can
be employed. Our preferred option is the Gaussian process model. The Gaussian process
emulator is a non-parametric approach that with the exception of continuity, makes no
other assumptions about the functional form of the computer model. Gaussian processes
have been used successfully before for efficient computation in other areas of sensitivity
and uncertainty analysis. It will be demonstrated that the Gaussian process approach is
of the order of 1000 times more efficient than Monte Carlo methods in terms of numbers
of model runs, for computing partial EVPIs and EVSIs.

An application is given in the field of health economics. Economic models are used
to estimate the cost-effectiveness of new treatments under consideration. A decision-
maker will use the output of the model to help decide whether or not to approve the
new treatment. There is always uncertainty regarding the values of the input parameters
needed for the model; for example, it will not be known exactly how effective the treatment
is, or what financial resources the patients on the treatment will use. There will be
particular interest in conducting a probabilistic sensitivity analysis when using the model.
It will often be possible to obtain more data regarding some of the model parameters,
and hence reduce input uncertainty. Additionally, a certain class of models, known as
patient simulation models, require an extensive simulation to produce the output for a
single choice of input parameters. These models can be very computationally expensive,
requiring in some cases in excess of an hour per run. In this scenario, emulator methods
are essential for computation of EVPIs and EVSIs.
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2. THE EXPECTED VALUE OF PERFECT INFORMATION

We now give a decision-theoretic measure of importance of an uncertain input variable.
This measure is based on a standard result from decision theory (see for example 2), and
was advocated by (3) and (4).

Suppose a decision-maker has to chose one decision d from a set of possible decisions
D. The decision-maker has a computer model to aid their decision, denoted by y = f(x),
where y is the model output and x are the model inputs. In the decision problem at hand,
we suppose that there are ‘true’, uncertain values of the inputs that should be used in
the model, and these uncertain values are denoted by X with distribution G. We then
suppose that the utility of a decision d will be some function of the true output of the
model, f(X), and is denoted by U{d, f(X)}.

The decision maker then chooses the decision d to maximise their expected utility
EX[U{d, f(X)}]. We can now define the expected utility of the optimum decision to be
U∗, where

U∗ = max
d

EX{U{d, f(X)}}. (1)

Now suppose that the decision maker decides that they will learn the value of X before
making their decision. Once they have learnt X, their utility is then

max
d

U{d, f(X)}, (2)

and so their expected utility of learning X (i.e., before they find out what X actually is)
is

EX{max
d

U{d, f(X)}}. (3)

The expected value of perfect information (EVPI) is then defined as the expected gain in
utility:

EX{max
d

U{d, f(X)}} −max
d

EX{U{d, f(X)}}. (4)

Now denote one of the uncertain input variables to be Xi. The same argument can be
applied to derive the expected value of learning Xi before making the decision. Given Xi,
we are still uncertain about the remaining input variables, X−i, and so we would choose
the decision to maximise EX−i|Xi

{U{d, f(X)}}. The expected utility of learning Xi is
then

EXi

[
max

d
EX−i|Xi

{U{d, f(X)}}
]
, (5)

and so the expected gain in utility, the partial EVPI of Xi is

EXi

[
max

d
EX−i|Xi

{U{d, f(X)}}
]
−max

d
EX{U{d, f(X)}}. (6)

Here, we advocate the partial EVPI of Xi as a measure of importance of that variable in
the model.
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2.1. Computation

Partial EVPIs can be computed by Monte Carlo methods, but this can be computationally
intensive and in some cases infeasible when a single run of the model takes a non-trivial
amount of computing time. When the model is computationally expensive, a common
approach is to use an emulator, a fast statistical approximation to the computer model
based on regression (see 5; 6). This can be considerably more efficient than Monte Carlo
when the output of the computer model is a smooth function of inputs. Full computational
details for partial EVPI estimates using (Gaussian process) emulators are given in (7)

3. EXAMPLE: HEALTH ECONOMIC MODELLING AND THE GERD
MODEL

One application area in which partial EVPIs are currently used is health economics.
In health economics, the interest is in allocating health care resources as effectively as
possible. The decision problem is to choose which out of set of competing treatments for
an illness is the most cost-effective. Cost-effectiveness of a treatment is described with
a single (financial) measure known as the net benefit of the treatment, and net benefits
are often predicted using computer models. (This is because clinical trials typically only
record information on clinical effectiveness). The models invariably require specification
of parameters that are uncertain, and so there is interest in investigating the consequences
of this input uncertainty. The utility of choosing a particular treatment is then given by
the net-benefit of the treatment, and so it is possible to measure the importance of each
input using partial EVPIs.

We give the example used in (7) that also illustrate the efficiency of the emulator
approach in the computation of partial EVPIs. The model compares treatment strategies
for gastroesophageal reflux disease. In this example, we suppose that a decision has to be
made regarding the adoption of one of three treatment strategies:

1. Acute treatment with proton pump inhibitors (PPIs) for 8 weeks, then continuous
maintenance treatment with PPIs at the same dose.

2. Acute treatment with PPIs for 8 weeks, then continuous maintenance treatment
with hydrogen receptor antagonists (H2RAs).

3. Acute treatment with proton pump inhibitors PPIs for 8 weeks, then continuous
maintenance treatment with PPIs at the a lower dose.

The model was presented in (8). In the scenario that we are considering, there are
twenty-three uncertain inputs, relating to quantities such as probabilities of healing and
recurrence of the symptoms with each treatment, and resources used by patients such
as number of visits to a general practitioner. Distributions for all the uncertain inputs
are described in (9). The output of the model can be converted into a utility for each
treatment.

Using 600 runs of the model, we estimate the partial EVPI of each patient. The GERD
model is computationally cheap, so we can determine the true partial EVPIs based on
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massive Monte Carlo samples (several hundred million in this case). Although there is
some inaccuracy in the estimates, we have identified all the influential inputs in the model,
to within what we believe would be an acceptable order of magnitude. For comparison,
we also estimate the partial EVPIs using a combination of Simpson’s rule and Monte
Carlo as described in section 2.

We give the actual values of the estimates and true values of the partial EVPIs for
the six most important variables in table 1.

uncertain input parameter true partial Gaussian process Simpson/MC estimate
EVPI estimate estimates

hazard for healing 1.286 1.194 3.465
on PPIs

no. of symptom 2.271 2.500 4.229
weeks after surgery

Recurrence probability on PPIs 4.905 4.579 5.507
(6-12) months

Recurrence probability on H2RAs 21.221 20.908 23.417
(0-6) months

Recurrence probability on H2RAs 2.652 2.666 2.958
(6-12) months

Recurrence probability on 3.473 3.378 3.846
low dose PPIs (6-12) months

Table 1. True values, Gaussian process estimates and Simpson/Monte Carlo estimates of the
partial EVPIs of the six most influential input variables. The Gaussian process estimates are
based on 600 model runs, and the Simpon/Monte Carlo estimates are based on 410200 model
runs.

These partial EVPIs can then be interpreted as (financial) values of learning the value
of the corresponding parameter before choosing which treatment to use for the patient
population. The figure represents dollars per patient, and so needs to be multiplied by
the size of the patient population to give a final value.
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Abstract: The Differential Importance Measure (DIM) is a first-order sensitivity measure 
that ranks the parameters of the risk model according to the fraction of total change in the risk 
that is due to a small  change in the parameters’ values, taken one at a time. However, the DIM 
does not account for the effects of interactions among components. In this paper, a second-
order extension of the DIM, named DIMII, is proposed for accounting of the interactions of 
pairs of components when evaluating the change in system performance due to changes of the 
reliabilit y parameters of the components. A numerical application is presented in which the 
informative contents of DIM and DIMII are compared.  

Keywords: Differential Importance Measure, Joint Importance, second order sensitivity 
measure.  

 

1. INTRODUCTION  

A limitation of the Importance Measures (IM) [1-3] currently used in reliabili ty and risk 
analysis is that they rank only individual components or basic events whereas they are not 
directly applicable to combinations or groups of components or basic events [2]. In practice 
different basic events may, for example, represent different modes of failure or unavailability 
of a single component and in order to determine the importance of such component one has to 
consider all the related basic events as a group. Furthermore, many risk-informed applications 
deal with evaluating the risk change associated to changes in the plant technical specifications 
(surveil lance and/or test frequencies, etc): such changes may indeed impact a group of 
components. To partially overcome this limitation, recently, the Differential Importance 
Measure, DIM, has been introduced for use in risk-informed decision making [3]. The DIM is 
a first-order sensitivity measure that ranks the parameters of the risk model according to the 
fraction of the total change in the risk that is due to a small change in the parameters’ values, 
taken one at a time. The DIM bears an important property of additivity: the DIM of a group of 
components or basic events is the sum of the DIMs of the single components or basic events 
of the group. However, since DIM considers risk changes due to small changes of the 
parameters’ values, it does not account for interactions among components.  

The need for IMs capable of considering combinations of components arises also when 
planning a budget-constrained improvement in the reliabil ity of a system design for example 
by replacing one of its components with a better-performing one, or by inspecting and 
maintaining it more frequently. Due to the budget constraints, the improvement may need to 
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be accompanied by the sacrifice of the performance of another, less important component. 
The interactions of these coupled changes to system design must be accounted for when 
assessing the importance of the system components. To this aim, second order sensitivity 
measures such as the Joint Reliabil ity Importance (JRI) and Joint Failure Importance (JFI) 
measures have been introduced [4, 5]. 

In this paper, a second-order extension of the DIM, named DIM II, is proposed for 
accounting of the interactions of pairs of components when evaluating the change in system 
performance due to changes of the reliabilit y parameters of the components. The extension 
aims at supplementing the first-order information provided by DIM with the second-order 
information provided by JRI and JFI. Obviously, the need of resorting to information on 
second-order effects depends on the magnitude of the changes of the parameters values and on 
the non linearity of the system.  

 

2. EVALUATING THE CHANGE IN THE SYSTEM PERFORMANCE 

We consider a system of n components. Let O be a generic measure of the system 
performance (e.g unreliabili ty, unavailabili ty, risk, etc., depending on the application at hand). 
The performance O is a function of the components’ unavailabili ties (or failure probabilit ies) 
qi, i=1, 2, …, n, i.e. O=gq(q1, q2, …, qn). A change in system performance due to arbitrary 
changes in the values of the qi, i=1, 2, n can be expanded in McLaurin series as: 
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Using the rare event approximation, the risk measure O can be written in terms of the 
probabilities of the ncs minimal cutsets: 
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where Mj is the probabil ity of the j-th cutset. Then, alternatively, the change in O due to 
generic changes of the parameters ∆qi, i=1, 2, …, n is [6]: 
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, and so on. Eq. (1) reduces to eq. (3) if the rare 

event approximation of eq. (2) holds. The right-hand part of eq. (3) contains as many terms as 
the largest number of components in any minimal cutset. The quantities Si, Sih, Sih…r can be 
straightforwardly calculated as follows [6]: Si is the sum of the contributions to O in eq. (2) of 
the minimal cutsets containing element i, with its unavailabil ity set to 1; Sih is the sum of the 
contributions to O of the minimal cutset containing elements i and h with their unavailabilit ies 
set to 1, Sih…r is the sum of the contributions of the minimal cutset containing elements i, h, 
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…, r with their unavailabil ities set to 1. Note from eq. (3) that the interaction terms Sih, Sih…r 
assume a value of zero if the components i and h, i, h, … and r, respectively do not appear 
together in one of the minimal cutsets. Thus, for example when the rare event approximation 
holds, for groups of components belonging to different blocks in series only the first-order 
terms in eq. (3) contribute to ∆O since they do not appear together in any minimal cutset. On 
the contrary, for components in parallel logic, contributions from the higher-order terms in eq. 
(3) are expected, since the components always appear together in a minimal cutset. 

 

3. FIRST-ORDER IMPORTANCE MEASURES: BIRNBAUM AND DIM 

The Marginal Reliability Importance (MRI) (often referred to as the Birnbaum IM) of 
component i is defined with respect to its unavailabili ty qi as [1, 4]: 

iq

O
)i(MRI

∂
∂=  (4) 

According to the MRI, components for which a variation in unavailability results in the 
largest variation of the system performance have the highest importance. 

The MRI applies when the components’ unavailabili ties or failure probabiliti es qi, i=1, 2, 
…, n are known explicitly. However, the quantities qi are often expressed in terms of 
additional reliability parameters xk, k=1, 2,…, np such as failure and repair rates, maintenance 
and inspection frequencies, etc: in turn, the system performance O can be expressed in terms 
of the parameters xk, i.e. )x,...,x,x(gO

pnx 21= . Furthermore, the MRI applies to single 

components. However, the changes may affect a number of components at the same time. For 
example, a change in a maintenance frequency will affect the unavailabili ties of all of the 
components that undergo that particular maintenance policy.  

Recently, the Differential Importance Measure (DIM) has been introduced to quantify the 
importance of the parameters xk entering the system performance model [3]. DIM considers 
the total variation of the output function O due to a small variation of its parameters, taken 
one at a time. If the variation of the parameter is small enough, the variation of O is the total 
differential dO: 
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The DIM of the parameter xl, DIM(xl), is defined as the fraction of the total change in O 
which pertains to the change in the parameter xl: 
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The DIM is additive in the sense that the DIM of a subset of parameters xr, xs, .., xt, is [3]: 
DIM(xr ∪ xs ∪ … ∪ xt)= DIM(xr)+ DIM(xs)+...+ DIM(xt). 
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The DIM can be useful in risk-informed applications involving the quantification of risk 
changes in O due to proposed changes of a plant technical specification, e.g. a 
surveil lance/test/maintenance frequency. Being a first order local sensitivity measure, the 
DIM can be used to forecast a finite change ∆O due to any change in the parameters’ values 
only provided that these latter changes are small enough to be used in (6). Only in this case, in 
fact, the higher-order contributions to ∆O in eqs. (1) and (3), which describe the interactions 
due to simultaneous change in pairs of parameters, triplets, etc. can be neglected. The effects 
of these interactions are ill ustrated in the next Section with reference to pairs of components. 

 

4. JOINT FAILURE AND RELIABILITY IMPORTANCES 

To evaluate quantitatively the interaction between components, the concepts of Joint 
Failure Importance (JFI) and of Joint Reliabilit y Importance (JRI) of pairs of components 
have been introduced as an extension to the single-component MRI [4, 5]. JFI is introduced 
when the  considered system performance O is a measure of the system loss (i.e. unreliabili ty, 
unavailabil ity, risk, etc.) and it is expressed in terms of the components’ unavailabil ities qi, 
i=1, 2, …, n. JRI refers to the case in which O is a measure of the system gain (i.e. reliability, 
availabili ty, etc.) and is expressed in terms of the components’ availabilities pi=1-qi. JFI and 
JRI for components i and h are defined as: 
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An interesting property of the joint importance measures is the possibility of determining 
the sign of JFI(i,h) and JRI(i,h) based on the relative logical position of components i and h 
within the system. In particular [4]: 

JFI(i,h) ≥ 0 (JRI(i,h) ≤ 0) for components in parallel  

JFI(i,h) ≤ 0 (JRI(i,h) ≥ 0) for components in series 

More generally: 

JFI(i,h) ≥ 0 (JRI(i,h) ≤ 0) if components i and h appear together in at least one minimal 
cut-set but not in any minimal path-set. 

JFI(i,h) ≤ 0 (JRI(i,h) ≥ 0) if components i and h appear together in at least one minimal 
path-set but not in any minimal cut-set. 

Joint importance measures are useful to quantify the interactions of components with 
respect to the system performance. Awareness of such interactions among components is 
useful when the analysts are interested in evaluating the effects on the system of modifications 
regarding two components or, in a more general sense, two parameters (e.g. failure rates, 
maintenance periods, etc). Indeed, when planning a modification of a reliabili ty parameter of 
a component towards a better performance (e.g. replacing it with a better-performing one, 
inspecting or maintaining it more frequently) one is often forced, by budget constraints, to 
sacrifice the performance of another. 
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5. SECOND ORDER DIFFERENTIAL IMPORTANCE MEASURE 

For finite changes in the components unavailabilit ies ∆qi, it may be relevant to evaluate 
also the second order contribution to ∆O. With reference to components i and h, the variation 
of O, ∆Oih, due to the variations of the parameters ∆qi and ∆qh is: 
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A second order DIM, DIM II can thus be defined as: 

II
ihII
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O
)h,i(DIM

∆
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=  (9) 

Note that, as stated in Section 2, when the rare event approximation can be used in the 
system modeling, one can neglect the computation of the JFI of pairs of components if the 
they do not belong to the same minimal cutset.  

 

6. NUMERICAL EXAMPLE  

6.1. Comparing the information of DIM and DIMII 
Consider the system of Figure 1. As system performance O we consider its limit 

unavailabil ity. The components’ unavailabil ities are q1=q2 =10-3, q3=q4=q<<1. In this 
numerical example we will compare the informative content of the measures DIM and DIMII 
when assessing the effect on the system performance O of changes in the components’ 
unavailabil ities of pairs of components. 

 

 

 

 

Figure 1. System reliabili ty block diagram 

 

Consider at first the behavior of DIM(1)=DIM(2) and DIM(3)=DIM(4) as functions of the 
parameter q=q3=q4 in the interval (5⋅10-4, 2⋅10-3) shown in Figure 2. The change in the 
parameters’ values is ∆qi=10-3⋅qi, for i=1, 2, 3, 4. For q=10-3 (i.e. q1=q2=q3=q4), the four 
components have the same DIM, due to the symmetry of the system. Then, as expected, in the 
cases q≠q1=q2 the most unavailable components are the most important according to the DIM. 
Indeed, DIM(1)=DIM(2) > DIM(3)=DIM(4) for q1=q2=10-3> q=q3=q4 and DIM(1)=DIM(2) < 
DIM(3)=DIM(4) for q1=q2=10-3<q= q3=q4. 

From the additivity property [3], the first order DIMs for the pairs of components are:  

DIM(1,2) = DIM(1) + DIM(2) = 2⋅DIM(1) (10) 

1 

2 

3 

4 

100



 

 

DIM(3,4) = DIM(3) + DIM(4) = 2⋅DIM(3) 

DIM(1,3) = DIM(1) + DIM(3) = DIM(2) + DIM(4) = DIM(2,4) 

The behavior of the DIMs for the above pairs of parameters in the system is reported in 
Figure 3 as functions of q. Note that for q=10-3=q1=q2, all measures DIM(1,2), DIM(1,3), 
DIM(2,4), are equal, due to the symmetry of the system and to the fact that the DIM considers 
the variation of one parameter value at a time. Still , when varying the values of the 
unavailabil ities of two components simultaneously, one would expect a difference between 
the case of a pair of components in parallel, say (1, 2), and the case of a pair of components in 
series, say (1, 3). This difference can be traced by considering second-order interactions 
among the components, i.e. the DIMII. In the cases q≠q1=q2, the measures 
DIM(1,2)=2· DIM(1) and DIM(3,4)=2· DIM(3) duplicate the behavior of DIM(1)=DIM(2) and 
DIM(3)=DIM(4). Instead, DIM(1,3) =DIM(2,4) is independent on q. Indeed,  
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Let us now compute the second-order sensitivity coeff icients (eq. (7)): 
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JFI(3,4) = 1-q1q2=1 - 10-6     JFI(2,4) = - q1q2= - 10-3q 

As expected [4], JFI<0 for the components 1 and 3 in series and JFI>0 for the components 
1 and 2 and 3 and 4 in parallel. Furthermore, as anticipated in Section 2, the absolute value of 
the JFI(1, 3) of components 1 and 3 in series is smaller than that of the two parallel pairs (1,2) 
and (3, 4). Indeed the values of the unavailabiliti es qi are such that the rare event 
approximation in eq. (2) certainly holds. This would suggest that, actually, one could neglect 
the contribution corresponding to the interaction term of the couple of components in series.  

Figure 3 also reports the measures DIM II(1, 2), DIMII(1, 3) and DIM II(3, 4) (symbols ◊, 
dots and *, respectively). Due to the small values of the variation of the parameters considered 
(∆qi= 10-3 ⋅ qi i=1, 2, 3, 4), the measures DIM II do not differ appreciably from the DIM, since 
the contribution to the total change in the output performance O of the second-order terms are 
negligible. In the same Figure the DIM and DIM II measures are reported for pairs of 
components in correspondence of larger values of the relative parameters’ change, ∆qi/qi, i=1, 
2, 3, 4. As expected, the values of DIM and DIMII differ progressively when higher values of 
∆qi/qi are considered. As a general observation, DIMII differs significantly from DIM for the 
pair (1,3) of components in series logic, whereas DIMII reproduces the behaviour of DIM for 
the pairs (1,2) and (3,4) of components in parallel logic. This behaviour could seem 
unexpected since, as above stated, the interaction term JFI of components in series logic is 
negligible, whereas that of the components in parallel logic is large. In words, this fact can be 
explained as follows. In practice, due to the values of JFI(1,3)≈0 and JFI(1,2)≈1 (and 
JFI(3,4)≈1) we can write for DIMII(1,3) and DIM II(1,2): 

101



 

 

II
II

O

q
q

O
q

q

O

),(DIM
∆

∆∆ 3
3

1
131

∂
∂+

∂
∂

≅ ;       
II

II

O

qqq
q

O
q

q

O

),(DIM
∆

∆∆∆∆ 212
2

1
121

+
∂
∂+

∂
∂

≅  (12) 

Due to the small value of the interaction term JFI(1,3)≈0, the numerator of DIMII(1,3) is 
equal to that of the DIM(1,3) for any value of ∆qi/qi, whereas the denominator, which 
accounts for all of the JFIs, progressively increases for increasing values of ∆qi/qi. As a 
consequence of this fact, the value of DIMII(1,3) is progressively shifted downwards for 
increasing values of ∆qi/qi. Instead, as for the pair (1,2), both the numerator and the 
denominator of eq. (12) change their values from those of the numerator and the denominator 
of DIM(1,2), but the change is such that the ratio is approximately independent on ∆qi.  

Let us first consider the case q=10-3=q1=q2. While still DIM(1,2)=DIM(1,3)= DIM(3,4)= 
0.5 by construction, DIMII(1,2) = DIM II(3,4) > DIM II(1,3) (Table 1). The ranking produced by 
the measure DIMII suggests that increasing simultaneously the unavailabili ties of the pairs of 
components in parallel logic (1,2) or (3,4) has a greater impact on the system unavailability 
than the same action performed on the pairs of components in series (1,3). This result is 
physically reasonable. An increase in unavailabil ity of two components has more effect on the 
system unavailability if performed on components on the same node (i.e. in parallel) rather 
than on components on different nodes (i.e. in series). Indeed, with reference to the values of 
the ∆Oih

II reported in Table 2, in the former situation the change in components 
unavailabil ities is more critical since it impacts components on the same node, thus creating a 
system bottleneck. Instead, the latter situation is less critical for the system unavailability 
since the increase in components unavailability is shared by the two nodes. Table 1 also 
reports the values of DIM and DIM II corresponding to q=9⋅10-4 and q=1.2⋅10-3, for the case 
∆qi/qi =0.5. As for the case q=9⋅10-4, DIM(1, 2)>DIM(1, 3)>DIM(3, 4), whereas DIM II(1, 
2)>DIMII(3, 4)>DIMII(1, 3). Again, DIM considers the contribution to ∆O arising from a 
change in the unavailabilit y of one of the components at a time. Therefore, the pair (1,2) 
results the most important according to this measure, since the two components 1 and 2, have 
the largest values of the first-order DIM (Figure 2), being more unavailable than components 3 
and 4 (q1=q2=10-3>q3=q4=9⋅10-4). The ranking provided by DIMII is different and it reflects 
again that an increase in the unavailabiliti es of two components has more effect on the system 
unavailabil ity if performed on components on the same node rather than on components on 
different nodes (refer also to the values of ∆Oih

II reported in Table 2). This leads to the ranking 
inversion between the pairs (3,4) and (1,3). Similar considerations apply to the case of 
q=1.2⋅10-3. 

 

Table 1. Values of DIM and DIM II for the pairs of components (1,2), (1,3) and (3,4) for different 
values of q and ∆qi/qi, i=1, 2, …, n 

 ∆qi/qi DIM DIM II 
q i=1 i=2 i=3 i=4 (1,2) (1,3) (3,4) (1,2) (1,3) (3,4) 

10-3 0.5 0.5 0.5 0.5 0.50 0.50 0.50 0.50 0.40 0.50 
9⋅10-4 0.5 0.5 0.5 0.5 0.55 0.50 0.45 0.55 0.40 0.45 

1.2⋅10-3 0.5 0.5 0.5 0.5 0.41 0.50 0.59 0.41 0.40 0.59 
10-3 -0.5 -0.5 -0.5 -0.5 0.50 0.50 0.50 0.50 0.67 0.50 
10-3 0.5 -0.5 -0.5 +0.5 0.50 0.50 0.50 0.50 0.00 0.50 
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Table 2. Values of ∆Oih and ∆Oih
II for the pairs of components (i, h), for different values of q and 

∆qi/qi, i=1, 2, …, n 

 ∆qi/qi ∆Oih ∆Oih
II 

q i=1 i=2 i=3 i=4 (1,2) (1,3) (3,4) (1,2) (1,3) (3,4) 
10-3 0.5 0.5 0.5 0.5 10-6 10-6 10-6 1.25⋅10-6 10-6 1.25⋅10-6 

9⋅10-4 0.5 0.5 0.5 0.5 10-6 9.05⋅10-7 8.10⋅10-7 1.25⋅10-6 9.05⋅10-7 1.01⋅10-6 

1.2⋅10-3 0.5 0.5 0.5 0.5 10-6 1.22⋅10-6 1.44⋅10-6 1.25⋅10-6 1.22⋅10-6 1.80⋅10-6 
10-3 -0.5 -0.5 -0.5 -0.5 -10-6 -10-6 -10-6 -7.50⋅10-7 -10-6 -7.50⋅10-7 
10-3 0.5 -0.5 -0.5 +0.5 0 0 0 -2.50⋅10-7 0 -2.50⋅10-7 

 

 

 

 

 

 

 

 
 

Figure 2. Values of DIM(1)=DIM(2) and DIM(3)=DIM(4) for different values of q, ∆qi=10-3qi 
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Figure 3. Values of DIM and DIMII for the pairs of components (1,2), (1,3)=(2,4) and (3,4) for 

different values of q. Case of ∆qi = 10-3 qi, i=1, 2, …, n 
 

6.2. Use of DIMII in risk-informed applications 
In risk-informed applications, the information provided by DIM II is handled by a decision-

maker in different ways, depending on his/her goals.  

Consider firstly the case of an analyst interested in reducing the costs associated to the 
system operation by replacing two components with two less expensive, but also less 
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performing, ones or by extending their maintenance frequencies. For example, with reference 
to the case of q=10-3=q1=q2 and ∆qi/qi=0.5, the performance of the pair of components (1, 3) 
can be sacrificed if required by budget constraints with minor consequences on the system 
unavailability, contrary to the case of acting on the pairs of components (1, 2) or (3, 4) in 
parallel logic, as DIMII(1,2) = DIMII(3,4) > DIMII(1,3). Note that this conclusion can be 
inferred only on the basis of the ranking produced by the second-order measure DIMII, as 
DIM(1, 2)=DIM(1, 3)=DIM(2 ,4). 

Consider now the case in which the analyst is interested in identifying the pairs of 
components to be improved to get the largest improvement in system performance. In the case 
of q=10-3=q1=q2 and ∆qi/qi= - 0.5, i=1, 2, 3, 4 the values of the DIMII (reported in Table 1) 
suggest that the improvement efforts should be devoted to the pair of components (1, 3) in 
series, characterized by the largest value of DIMII, and thus leading to the largest reduction in 
system unavailability (see also the values of ∆Oih

II in Table 2). Again, this result is obvious 
from the physical viewpoint: the improvement has more beneficial effects on the system 
availability if performed on components on different nodes (i.e. in series) rather than on 
components on the same node (i.e. in parallel). Indeed, in the latter case, the improvement 
would be less effective due to the presence of the other non-improved node in series, which 
remains an unvaried system bottleneck. 

Another situation that can occur in risk-informed decision-making arises from the fact 
that, in practice, the analyst has often to cope with a constrained budget that might forbid 
spending resources on two components of a pair. Thus, in this case the final decision of the 
analyst must be a trade-off between improving the availability of a component while 
worsening that of another, still with the goal of attaining the largest improvement in the 
system availability. In this case, the analyst is looking at changes in the components 
unavailabilities ∆qi and ∆qh with opposite signs (i.e. if ∆qi>0 then ∆qh<0 and viceversa) and, 
thus, it is preferable to act on pairs of components with JFI>0. In this case, if we refer again to 
the case q=q3=q4= 10-3=q1=q2, for the generic pair (i, h), the net contribution of the first-order 
terms of eq. (1) equals zero since MRI(i)=MRI(h) and ∆qi =-∆qh and the system output 
variation ∆Oih

II becomes: 
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The values of the DIM(i, h) and DIMII(i, h) and of the corresponding ∆Oih and ∆Oih
II for 

the pairs (i, h)=(1, 2), (1, 3) and (2, 4) are reported in Table 1 and Table 2 respectively with 
reference to the case q=q3=q4= 10-3=q1=q2, ∆qi/qi=0.5, i=1, 2, 3, 4. Evidently, those pairs of 
components with JFI>0, i.e. (1, 2) and (3, 4), are characterized by negative contributions 
∆Oih

II, corresponding to an increase in system unavailability. Indeed, if the unavailabilities of 
two components in parallel logic are changed in opposite directions, then, since the 
components with the lowest unavailability determines the unavailability of the pair, the 
overall system unavailability decreases. On the contrary, if the unavailabilities of two 
components belonging to different nodes in series are changed in opposite directions, then due 
to the weak interactions among the components (JFI≈0 in eq. (25)) the system unavailability 
remains basically unchanged. 
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CONCLUSIONS 

This paper considers the differential importance measure, DIM, and the Joint Failure 
Importance measure, JFI, recently introduced in literature. The DIM is a first-order sensitivity 
measure that ranks the parameters of the risk model according to the fraction of the total 
change in the risk that is due to a small change in the parameters’ values, taken one at a time, 
and, by construction, it does not account for second-order interactions among components. 
Instead, the JFI measure is a second order sensitivity measure, which considers the 
interactions of coupled changes to system design. 

In this paper, a second-order extension of the DIM, named DIM II, is proposed for 
accounting of the interactions of pairs of components when evaluating the change in system 
performance due to changes of the reliabilit y parameters of the components. The extension 
aims at supplementing the first-order information provided by DIM with the second-order 
information provided by JRI and JFI.  

A numerical application is presented in which the informative contents of DIM and DIM II 
are compared. The results confirm that in certain cases when second-order interactions among 
components are accounted for, the importance ranking of the components may differ from 
those produced by a first-order sensitivity measure. Obviously, the need of resorting to 
information on second-order effects depends on the magnitude of the changes of the 
parameters values and on the non linearity of the system.  

It is shown in the paper that in some applications it is possible to determine a priori 
whether the interaction term in DIMII can be neglected even for large changes in the 
parameters, thus avoiding the computation of the JRI and JFI measures for all of the possible 
pairs of components. In particular, second-order interactions among components are 
negligible if the components do not appear together in the same minimal cutset. Furthermore, 
guidelines for the use of DIMII in risk-informed decision-making are provided for different 
cases.  
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Abstract:   Often, the objectives in a computational analysis involve characterization of 

system performance based on some function of the computer response.  In general, this 

characterization includes (at least) an estimate or prediction for the performance measure and 

an estimate of the associated uncertainty.   Surrogate models can be used to approximate the 

response in regions where simulations were not performed.  Most surrogate modeling 

approaches, however, are based on smoothing and uncertainty in the response is typically 

specified in a point-wise (in the input space) fashion.  Together these aspects of the surrogate 

model construction might limit their capabilities. 

One alternative is to construct a probability measure, G(r) for the computer response, r, 

based on available data.  This “response-modeling” approach will permit probability 

estimation for an arbitrary event, E(r), based on the computer response.  In this general 

setting:  prob(E)= ( )( ) ( )∫r dGEI rr   where I is an indicator function.  Furthermore, one can use 

G(r) to calculate an induced distribution on the performance measure, pm.  For prediction 

problems where the performance measure is a scalar, the performance measure distribution 

pmF  is determined by: ( ) ( ) ( )∫ ≤=
r

pm dGzpmIzF rr)( .  We introduce response models for 

scalar computer output and then generalize the approach to more complicated responses that 

utilize multiple response models. 

Keywords: computational simulation, experimental design, meta-model, prediction, 

reliability, response-modeling, response surface, surrogate models. 

 

1. INTRODUCTION 

Enhanced software methodology and improved computing hardware have advanced the 

state of simulation technology to a point where large physics-based codes can be a major 

contributor in many systems analyses.  This shift toward the use of computational methods 

has brought with it new research challenges in a number of areas including model validation, 

(model-based) prediction and characterization of input, modeling and predictive uncertainty.  

It is these challenges that have motivated the work described in this paper. 

The problem considered here is one of characterizing system performance based on results 

of a computer model.  It is assumed that the model is expensive to run and consequently only 

a limited number of evaluations can be performed.  It is assumed, further, that the model has 

been validated and hence the model has been determined to provide adequate results for the 

present application.  For simplicity of presentation, we assume the model produces a single 

response for a given set of inputs.  Different responses depending on uncertain model 
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parameters (calibration parameters) can, however, be accommodated through the methods 

discussed here.  The tough issues of model validation and calibration are not addressed here. 

We consider a number of specific system performance measures for illustration -- others 

are possible.  These performance measures are based on the model responses that may be 

scalars or may be vectors or functions.  In the introduction to the response models, we work 

with a scalar computer response.  A scalar response is modeled by one response model.  In the 

remainder of the paper, we generalize the approach using a functional response over time.  

The later applications illustrate methodology for using multiple response models to 

accommodate more general computer model outputs. 

The response model described here is an atomic probability measure for the response 

calculated using a limited number of computational results.  We use this measure to 

approximate probabilities associated with arbitrary events that are based on the response, 

although the major objective is to obtain a probability distribution function for the 

performance measure.  We provide details on how the response models can be constructed 

and how they can be used in fairly general applications.   

In this introductory section, we: (1.1) review some of the possible objectives in 

computational modeling; (1.2) discuss how surrogate models can assist in addressing these 

objectives, review one specific parametric form for surrogate models and mention some 

possible limitations in their use;  and (1.3) discuss an alternative response-modeling strategy 

that overcomes some of these limitations.  In the remainder of this paper, Section 2 provides a 

more detailed account of the response-modeling approach.  A simple example is introduced 

that illustrates the construction of the measure G(r) for a scalar computer response.  Section 3 

extends the approach to more general types of computer responses providing two examples 

where multiple response models are used to characterize a functional output in time.  

1.1. Objectives in Computational Modeling 

Often, the objectives in a computational analysis involve the characterization of system 

performance based on some function of the response, r.  We consider applications where r(x) 

is the computer response depending on the p-dimensional input x.  The inputs may or my not 

be modeled probabilistically (with distribution F(x)).  For given r, some common 

performance measures may be computed as: 

( ) ( )*xrr =pm
 
 (simple performance prediction problem);  

( ) ( ) ( )∫= xx dFpm rr  (average performance prediction problem);  

( ) ( )xx rr min=pm  (worst-case performance prediction problem);  

( ) ( ){ }))((min: xr*xx* x== rrpm  (engineering design or optimization problem);   

or 

( ) ( )( ) ( )∫−= xx dFRIpm *1 εrr   (reliability prediction problem) 

where, R*, the failure region, is some subset of the response space and I is an indicator 

function taking on the value 1 when the enclosed expression is true.  In general, we desire 

both a prediction for the performance measure and an estimate of prediction uncertainty. 
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1.2. Surrogate Modeling for Computational Analyses 

1.2.1. Surrogate models in computational analysis 

Surrogate models can perform a number of functions in support of a computational 

analysis.  Through interpolation extrapolation and/or integration, these models can be used to 

address complex problems involving experimental design, system analysis and prediction.   

1.2.2. A common surrogate model form 

One model that is commonly used as a surrogate response is the Gaussian Process model 

η(x).  A general form of the model is specified through its mean function m(x) and spatial 

covariance function σ2
C(x,x’) for input vectors x and x’.  This model has been used 

successfully in numerous engineering applications, see [1] – [3] for typical assumptions and 

restrictions on the forms of m and C.  

1.2.3. Possible limitations to surrogate modeling 

Depending on the performance measure, the smoothing involved in surrogate model 

construction and method of uncertainty characterization of the surrogate model might lead to 

difficulties.  Consider the worst-case performance measure where ( ) ( )xx rr min=pm .  The 

performance measure estimate based in the surrogate model will not give an accurate estimate 

of the minimum response value.  Even an expected value for the worst-case response would 

be difficult to approximate using the information retained.  Figure 1(a) illustrates the 

difficulty.  Without information on the relationships of points in the lower regions of the 

curve, the probabilities are difficult to determine.  Similarly, for the reliability performance 

measure,
 

( ) ( )( ) ( )∫−= xx dFRIpm *1 εrr , while the surrogate model estimate might provide a 

reasonable estimate of reliability, the needed information is not retained in the surrogate 

model construct to accurately quantify uncertainty in this estimate. 

 

Figure 1.  Hypothetical models for the response in a 1-input problem: (a) a surrogate model estimate 

with point-wise uncertainty bounds; and (b) a response-model with individual “realizations” forming 

an atomic measure over the response space.  The histogram on the left indicates how a distribution 

might be constructed for a worst-case performance measure. 
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1.3. An Alternative Model for the Response 

One alternative characterization for the system response is illustrated in Figure 1b and 

discussed in detail in Section 2 below.  This “response-modeling” approach can avoid the 

problems discussed in the previous subsection.  It consists of constructing an atomic measure 

over the response space that is based on assumptions concerning the appropriate model form 

and on the available computer response data.  We refer to elements of the measure as 

“realizations” and assign them equal probability. 

Once this measure has been established for the response space, we can approximate the 

probability associated with any event E(r) through prob(E)= ( )( ) ( )∫r dGEI rr and for the 

performance measure distribution through ( ) ( ) ( )∫ ≤=
r

pm dGzpmIzF rr)( .  In Figure 1b we 

illustrate how this measure might be used on that 1-input problem.  The histogram on the left 

of the figure provides an approximation to the density function for the worst-case 

performance measure -- a value that was difficult to estimate using the surrogate model.  

Similarly, we could demonstrate the uncertainty related to the reliability prediction by 

drawing a histogram of the reliability values computed using the individual realizations. 

2. RESPONSE MODELING 

2.1. Modeling Objectives 

We construct a response-model as a discrete ensemble of realizations that could be 

interpreted as “probable” descriptions of the computer response as a function of the computer 

inputs.  The realizations are constructed in the spirit of a Latin Hypercube sample [4] where 

they are generated to span the uncertainty range of the response while attempting to satisfy the 

consistency property stated in the next paragraph. The ensemble is used to approximate an 

uncertainty distribution for the fixed but unknown true response surface that captures the 

uncertainty in the response resulting from the knowledge being based on a limited number, n 

system evaluations. Formally, the response ensemble consists of a set of k realizations: 

( )xxR ∀== ,,...,1 ),( kir i ; G(r) assigns a probability 
k

1  to each realization r
i
(x).  Using this 

formulation, the expressions above become:   prob(E)= ( )( )∑i

i
rEI

k
1   and  

( ) ( )∑ ≤=
i

i

pm zrpmI
k

zF )(1 .  

Ideally, R is constructed in a manner consistent with the data  y = y(xi), i=1,…,n  in the 

following sense:   for any given event E based on the response, if the conditional probability 

( ) pEP =y|  then the expected number of realizations )(xir  satisfying E, (the expectation 

taken over repeated application of the response-modeling process) is kp.   

The assertion ( ) pEP =y| requires assumptions for mathematical formalization.  The 

response model is based on these assumptions addressing functional form and appropriate 

methods of construction.  Decisions regarding the modeling assumptions are necessarily 

somewhat arbitrary.  Some of the issues are addressed in [5] – [6], others are the topic of our 

current research.  Some of the possible inaccuracies resulting from the assumptions tend to 

cancel each other out when making relative evaluations like comparing experimental design 

alternatives (our primary application of the response models).   Figure 2 shows an example 
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response that is used throughout this section.  The response is an analytical function that is 

simple to evaluate, but is used here, for illustration, in place of the expensive computational 

simulation model.  A twenty-five-realization response model is constructed based on fifteen 

functional evaluations as indicated by the stars in Figure 2b.  In the next subsection, we 

provide the details for constructing the response model. 

 

Figure 2.  Analytical example response surface and contours based on two inputs.  

2.2. Response Model Construction 

Listed next are the steps used in construction of the realizations for the examples given in this 

paper.  We utilize the Gaussian process model referenced in Subsection 1.2.2.  We consider m 

to be a low order polynomial in x and restrict C to be of the form:  

C(x ,x') = ( )∏ −
=

p

i
ii xxC

1

'  = ∏
−

=

p

i

i iie
1

'-xxφ
for any x  and x'  

where   ⋅  is the Euclidian norm and the φi are estimated from the data.  In our case, C is the 

covariance for the residual response after fitting the low order polynomial as described in 

more detail below.  It is more convenient for our application to decompose the Gaussian 

process model and use the form η(x) = P(x) + ε(x) where P(x) is a polynomial in x and ε(x) is 

a zero-mean Gaussian process model.  Steps (1) through (3) below describe construction of 

the polynomial component;  steps (4), (5) and (6) describe construction of the Gaussian 

process term;  step (7) combines the two elements. 

1) Evaluate main effects, quadratic terms, and interactions, where possible, using the 

initial data, settling on an appropriate polynomial regression model. 

2) Estimate the regression coefficients and their covariance structure. 

3) Generate k sets of coefficients (assuming a multivariate normal for their joint 

distribution) using a Latin Hypercube design with the appropriate correlation structure 

imposed on the sets of coefficients using rank correlation procedures described in [7].  

The remaining 4 steps are applied to each realization. 

4) The residuals to the regression surface are transformed using the “Normal-scores 

transform” as recommended in [8]. 

5) The transformed residuals can then be used to estimate parameters of the spatial 

covariance function given above.  We used a maximum likelihood procedure to 
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estimate the parameters for the combined set of residual (spatial difference) data from 

all realizations.  Differences in residual magnitude and distribution are maintained 

through the transformation and back-transformation in 4) and 6). 

6) The “sequential-Gaussian” conditional simulation procedure is used to generate the 

random function component ε x( ).  More detail (of a mechanical nature) on the 

sequential Gaussian approach is given in [8] Chapter V.  The algorithm generates a 

response surface over the grid in transformed space and then back-transforms the 

values according to a set of tables constructed during the transformation in 4).  The 

conditioning data are the transformed residuals to the polynomial surface 

7) The back-transformed random function term is added to the polynomial surface to 

complete the realization. 

We illustrate some of these steps using the analytical example.   Figure 3 shows the 

construction for two realizations.  The regression component is in Figure 3a, the random 

function component in 3b and the completed realization in 3c.   The pair of realizations 

illustrate possible differences within the ensemble.  Figure 4 provides further illustration with 

three additional completed realizations for this example. 

 

Figure 3.  Components of the response realizations for the analytical example. 

 

Figure 4.  Three of twenty-five realizations constructed for the analytical example. 

2.3. Response Model Application 

Once the response model has been constructed, it can be used as described earlier to 

evaluate arbitrary events based on the response.  The events of primary interest here relate to 

system performance.  We demonstrate how probabilities for three different performance 
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measures can be assessed using the response model generated for the analytical example.  The 

procedure for the first and last performance measure is to apply the formulas given early using 

the equally weighted realizations for ( )rG .  We illustrate the performance measure 

distribution here by showing the corresponding histograms. 

Consider, first, the “best-case” performance measure where we will assume high values of 

the response are “good”.  Figure 5a shows a histogram of realization results for this quantity – 

from this we can easily approximate its distribution.  In Figure 5b, the locations in the input 

space where these maximum values occurred are plotted.  This plot addresses the optimization 

problem where we are interested in the input location yielding the maximum value.  The next 

step might be to quantify in some way (some measure based on clustering metrics, for 

example) the spread of probable input locations.  The maximum values in this example are 

confined to the discrete grid used to record values for ( )rG .  The final performance measure 

considered here is reliability where we assume the failure region R* is that part of the 

response space exceeding 18.  We need distributions concerning the inputs a and b to 

determine a probability of failure.  For simplicity, we arbitrarily choose to assume both input 

parameters are uniformly distributed over their ranges.  Figure 5c provides a histogram for 

reliability under these assumptions. 

 

Figure 5.  Performance measures for the analytical example.   

3. EXTENSIONS TO FUNCTIONAL COMPUTER RESPONSES 

Computer responses may be scalars or vectors but can also be functions of time and/or 

space.  The examples that follow illustrate how these more complicated responses can be 

addressed using the response modeling approach.  We refer to the relatively complicated 

empirical models used to create the probability measures for these responses as “behavioral 

models.”  They combine multiple components, including the response models and a  

“response assembly” model.  For the examples considered here, the response assembly model 

creates a pulse over time based on a discrete set of “intermediate” parameter values that are 

modeled using one response model each.  The Device #1 example illustrates a case where the 

response can be modeled adequately through a four-parameter circuit model.  In this example 

the response models are used to approximate probability measures for these four parameters.  

The Device #2 example gives a case where there is no circuit model that showed the 

flexibility needed to accommodate the range of pulses in the data set.  In this case, basis 

functions were established using principle components analysis and the response models were 

used to approximate probability measures for the basis function coefficients.  Before 
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proceeding to the examples we outline briefly the process of constructing the behavioral 

models.  

1. Determine a functional form that has the flexibility to accommodate the range of 

responses anticipated in the application (where possible).  The parameters needed to fully 

specify a response are referred to as intermediate parameters (assume q of them). 

2. Determine the “best fit” values of the intermediate parameters for the computer generated 

conditional response data.  This setup will result in a set of p dimensional input -- q 

dimensional response (intermediate parameter) data. 

3. Use the data above to construct q response models.  The response models should be p-

dimensional unless an analysis of the data indicates that some of the inputs are not 

important for some of the responses. 

The behavioral models can now be used to make predictions.  Any specific set of inputs 

will yield k intermediate parameter values from each of the q response models.  These q
k  sets 

of intermediate parameters can be used to generate a distribution of the response 

corresponding to the specified inputs.  If the performance measure is constructed from the sets 

of responses, q
k  values are available to approximate a distribution. 

3.1. Device #1 Example 

This example provides an illustration of how response modeling can be used for more 

complex responses and performance criteria.  Figure 6 illustrates the behavioral model used in 

the analysis.  The output pulses were modeled using a capacitance discharge unit (CDU) 

mapping voltage (V0), inductance (I), capacitance (C) and resistance (R) to the current pulse.  

Specification of the performance measure, for this example depends on those aspects of the 

pulse considered critical for performance.  Maximum current, for example, is one possible 

quantity of interest.   

 

Figure 6.  Behavioral model for the Device #1 example. 

Following the outline specified above, four response models were constructed for the 

intermediate parameters (the four electrical parameters).  Two objectives of this analysis were 

to be able to make predictions for arbitrary sets of inputs and to investigate performance 

throughout the 6-dimensional input space economically.  Prediction uncertainty (expressed 

through 88% bounds) and computer generated values (the circles) for one of the pulses that was 

not used in constructing the response models are shown in Figure 7a.  The confidence bounds 

apply “point-wise” for individual time values.  Six of the twenty-seven points in three pulses 

used are outside the 88% confidence bounds -- almost twice the number that should fall outside 
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for a typical analysis on average.  This result is not unlikely given the high correlation among 

points and the small sample size of these curves.  It is possible, however, that the uncertainty is 

understated because of assumptions concerning the behavioral model form.  These assumptions 

are difficult to evaluate and this source of uncertainty is not included in computation of the 

bounds. 

 

Figure 7.  Modeling uncertainty for fixed inputs for the Device #1 example.  Figure 7a shows an actual 

response (the circles) and 88% prediction bounds.  Figure 7b shows the pulse yielding the lowest peak 

current and its related uncertainty. 

To illustrate a possible scenario addressing the second objective, consider a hypothetical 

threshold established at T = 550 amps and assume we are concerned that pulses that do not 

achieve this threshold may indicate unacceptable reliability.  The behavioral model was used 

to investigate the entire 6-dimensional input space in several hours.  Figure 7b shows the 

ensemble of output pulses (indicating the prediction and uncertainty associated with the 

prediction) corresponding to the inputs yielding the worst performance according to this 

criteria.  

3.2. Device #2 Example 

In the Device #1 example, the current pulses were of shapes that could be accommodated 

using a circuit model.  In this example, no simple formulation, flexible enough to characterize 

all current pulses, was available.  We include this example to illustrate how a set of basis 

functions can be constructed to provided the flexibility for modeling arbitrary curves or 

surfaces using a response-modeling approach. 

The initial data consisted of 136 runs of the computer model.  The current pulses for these 

runs are shown in Figure 8a.  The pulses were “discretized”  (to 31 points along the time axis) 

and were shifted, “time registered”, in a way that minimized their squared differences 

compared with the average pulse (see Figure 8b).  The average pulse was then subtracted 

leaving the residual curves in Figure 8c.  

The resulting sets of discrete values were evaluated through principle component analysis 

see [9] Chapters 5 and 6 for a complete description of these methods.  Basis functions, using 

the principle components, were constructed as described in that text.  Figure 9 illustrates the 

Device #2 behavioral model.  Given values for the six inputs, the eight response models each 

generate 20 values that span the range of coefficients for the appropriate basis function or the 

time-registration parameter.  Performance assessment for this example could be addressed in a 

similar way to that illustrated for the Device #1 example. 
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Figure 8.  Current pulse responses for the Device #2 example. 

 

Figure 9.  Behavioral model for the Device #2 example. 
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Local Analysis of Prameter Covariances Resulting from the Calibration
of an Overparameterized Water Quality Model

U. Callies and M. Scharfe
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Abstract: Mechanistic water quality simulation models are important tools for supporting
environmental management decisions. Possibly the most severe problem with the usage of
mechanistic models is that in most cases they cannot be fully identified from data due to
model overparameterization. The calibration of overparameterized models results in
covariances among model parameters, the neglect of which may lead to a significant
overestimation of model output uncertainty. We discuss principal component analysis (PCA)
of the posterior parameter error covariance matrix as a tool for the identification and proper
representation of parameter covariances. Our study deals with a water quality model
specifically designed to support the interpretation of algae biomass observations at one single
station (Weir Geesthacht) on the Elbe river in Germany.

Keywords: Local sensitivity analysis; Hessian matrix; Principal component analysis; Model
overparameterization

1. INTRODUCTION
The motivation for our modelling activity has been to test a hypothesis according to which

observed negative correlations between temperature and chlorophyll a concentrations in
summer at station Geesthacht on the Elbe River might indicate algae growth being limited by
lack of silica. For this specific purpose a relatively simple model has been designed and fitted
to observed chlorophyll a concentrations. However, even this simple model turns out not to be
identifiable from the data used. One obvious reason why some model parameters or parameter
combinations are poorly determined by the data, is that the observations have all been
collected at the same location and do therefore not resolve profiles along the river. A possibly
more important explanation, however, is that observations of one single state variable cannot
disentangle details of the mechanistic processes. Different parameterizations linking external
forcing (radiation, discharge, temperature) to model output (algal biomass concentrations) can
be similarly effective in reproducing the data.

Being not parsimonious in the light of the existing data (i.e. being overparameterized ) is a
property of most detailed mechanistic models. Our study is intended to illustrate an approach
for coping with this situation by explicitly accounting for parameter interaction structures that
result from model overparameterization. Specific combinations of parameters may be much
less uncertain than the individual parameters they are made up by. The opposite is also true:
Some parameters may be collectively more uncertain than any of the individual parameters.
PCA of the posterior parameter error covariance matrix allows to discriminate combinations
of model parameters that are effectively controlled by the data from those parameter
combinations that are irrelevant for model counterparts of observations. Often results from
PCA can be interpreted in terms of the basic mechanisms represented in the model. We
illustrate the method for the example from water quality modelling.
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Figure 1: Suggested explanation for negative correlations between water temperature and
chlorophyll a concentrations observed during certain summer periods at station Geesthacht.
Upper panels: Modelled temporal evolution of chlorophyll a and silica concentrations in
individual water packages assuming low and high temperature, respectively. Local time series
can be produced by storing the final points of all trajectories that arrive at Geesthacht. Bottom
panel: Observations at Weir Geesthacht. Temperature observations have been shifted by an
estimated response time of two days.

2. METHODOLOGY

2.1. The Model
Our model involves the representation of two different algae species, green algae and

diatoms, both of which are known to significantly contribute to the total amount of algal
biomass in the river Elbe. Only growth of diatoms, however, depends on the availability of
the nutrient silica. The general concept is to consider a series of individual water bodies
travelling downstream towards station Weir Geesthacht. Starting from unrealistically low
values, meaningful concentrations of algal biomass to be compared with observations evolve
only by the end of the water parcel’s journey after exponential growth over a limited period of
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travel time (cf. Figure 1). This travel time is parameterized empirically as a function of river
discharge.

At the beginning of its journey each water package is initialised by the same concentration
of silica. Diatoms are assumed to cease growing and to start decaying as soon as this initial
reservoir of silica has been used up (cf. upper right panel of Figure 1). The higher growth
rates are the earlier the diatom maximum occurs and the more pronounced it is. If growth
rates are large enough so that all available silica is assimilated already upstream of
Geesthacht, further increasing growth rates (i.e. more favourable growth conditions) imply
decreasing diatom populations at the end of the particle’s journey. Thus, assuming that diatom
growth rates increase with temperature this provides a plausible explanation for negative
correlations between water temperature and chlorophyll a concentrations at station
Geesthacht. The assumed relationship between Lagrangian trajectories of individual water
packages and local observations at station Geesthacht is outlined in Figure 1.

For each of the two species an individual balance equation describes changes of algal
biomass concentration, Calg, with time, t, as a function of temperature dependent rates of algal
growth, µ, respiration, ρ, and loss, σ :

( ) ( ) ( )[ ] ( ) ( ) Silight1
0
maxalg

alg    with   FFTqTCTTT
td

Cd
µµσρµ =−−= (1)

The focus of the sensitivity and uncertainty study reported below is on six model
parameters x1, …, x6 that enter parameterizations of the algae growth rate, µ. Two parameters
are the optimum growth rates  µ0

max  for green algae and diatoms, respectively, that occur
when algae growth is not limited by lack of light or nutrients. Next we consider for each algae
species the parameter klight that specifies the light intensity, at which the algae growth rate
reaches 71% of its maximum possible value. The light limitation factor Flight in Eq. (1) results
from vertically averaging over the efficient water depth, D, which is another model input
parameter that has been selected for our study:

∫ −

−

+
=

D

z

z

dz
eIk

eI
D

F
0

222
light

light
1

λ

λ

(2)

Here I denotes the radiation intensity at the water surface and λ the total light attenuation
coefficient due to the presence of mineral compounds and algal self shading.

The last parameter we chose is the fraction of silica, fSi, in the cells of diatoms that
governs the consumption rate of silica (with concentration CSi) by the diatoms with
concentration Calg,d and growth rate µd:

dalg,dSi
Si Cf
td

Cd
µ−= (3)

The concentration of silica determines the size of the Michaelis-Menten type growth
limitation factor, FSi, in Eq. (1) with a half saturation constant KS (relevant only for diatoms):

SiS

Si
Si CK

CF
+

= (4)
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All model parameters have been tuned manually to obtain reasonable simulations of
chlorophyll a and silica concentrations. The resulting reference parameter values are shown in
Table 1 together with rough estimates of prior parameter uncertainties.

To run the model external forcing represented by water temperature, discharge and
radiation must be specified as a function of time. Hourly temperature observations are part of
the data set from Weir Geesthacht. Daily observations of discharge at station Neu-Darchau
(Elbe-km 536) are available from ARGE ELBE (http://www.arge-elbe.de). Hourly mean
values of global radiation were provided by the GKSS Research Centre Geesthacht which is
located few kilometres upstream of the weir.

Table 1: Reference parameter values and assumed uncertainties; Optimised values for 2000

A comparison of observations and corresponding model results is presented in Figure 2.
Considering the very simple model approach with water temperature, discharge and solar
radiation being the only time dependent model inputs (no time dependent initial values or
sources/sinks) the model reproduces a reasonable amount of observed variability. Note that
also the observed very low levels of silica during summer are reflected by the model
calculations.

For the sensitivity and uncertainty study reported below we assume that only chlorophyll
a data were available for model calibration. Silica data are considered as an independent
option for checking the appropriateness of the model mechanism.

2.2. Sensitivity and Uncertainty Analysis
Let xr denote the vector being made up by those model input parameters, xi, which are to

be adjusted by fitting the model to data. If mr denotes the vector of model outputs, mt, at times
t, a quadratic loss function, Jobs, may be used to assess the differences between model output
and observations, dt, scaled by an assumed observational error, σobs. In the case of model
overparameterization the minimum of the loss function will be not well-defined due to small
curvatures in certain directions. To make the optimisation problem well-posed we
complement the loss function by a second component that penalizes all deviations of the
actual parameter vector xr from the reference vector, 0xr , which is specified in Table 1:

[ ] ( ) ( )0
1-

prior
T

0
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2
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2

priorobs 2
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2
1 xxxx

dxm
JJJ
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tt rrrr
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−−+
−

=+= ∑
=

Vα
σ (5)

Name Ref. Value Range StD Value 2000 Unit
x1 k light, g 20 [10-30] 5.77 17.7 W/m2

x2 k light, d 14 [10-18] 2.31 14 W/m2

x3 µ 0
max, g 1.65 [1.3-2.0] 2.02 10-1 1.63 1/d

x4 µ 0
max, d 1.6 [1.2-2.0] 2.31 10-1 1.62 1/d

x5 f Si 0.2 [0.1-0.3] 5.77 10-2 0.2 mgSi /mgC
x6 D 2.35 [1.2-3.5] 6.64 10-1 2.08 m
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Figure 2: Observations (black) and corresponding model predictions for chlorophyll a (upper
panels) and silica (lower panels) at station Geesthacht for two different years.

The diagonal prior parameter covariance matrix, Vprior, is introduced to remove differing
physical dimensions of the six parameters by proper scaling. For the present study we decided
to measure changes of parameter values in terms of multiples of their estimated prior
uncertainty (cf. Table 1). The scalar α enables one to adjust the overall sizes of the data and
the penalty term relative to each other. Note that the size of the data term and therefore the
appropriate choice of α must be a function of the number of observations. In the following we
choose α =100 for N=78 data points comprising about one observation every third day
between March and October 2000.

The relevance of parameter covariances for a moderately non-linear model’s fit to data
can be analysed by examining the curvature of the loss function at its minimum. Figure 3
illustrates the general idea. Directions of high curvature allow for only weak parameter
variations without getting into conflict with the data, whereas in directions with low curvature
parameters can be changed significantly without much affecting the value of the loss function.
A complete description of the loss function’s local curvature is provided by the Hessian
matrix containing all second derivatives of the loss function. Principal component analysis
(PCA) of the Hessian matrix allows to discriminate those directions in the 6-dimensional
parameter space that can be calibrated by the available data from other directions, along
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which effects of parameter changes tend to compensate each other. For a linear model the
inverse Hessian can be identified as being the posterior parameter error covariance matrix [3].

Figure 3: Loss function for variations of only two parameters; eigenvectors of the Hessian
matrix defining directions of minimum and maximum curvature, respectively.

For the analysis reported below it is convenient to incorporate both the diagonal prior
covariance matrix Vprior and the amplitude factor α into a coordinate transformation to non-
dimensional parameters x ′r :

xx ′
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For a linear model the loss function is quadratic. For a non-linear model the loss function
should still be nearly quadratic in the vicinity of its minimum so that the following formula
provides a good approximation of the Hessian and the inverse of the posterior parameter
covariance matrix, postV′ , [3]:
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A programming environment for the solution of control problems (Integrated Modelling
and Analysis System (IMAS, [1]) including an automatic differentiation tool for computer
programs has been used for an analytic calculation of  the Jacobian matrix xm rr

∂∂  and for a
gradient based minimization (Quasi-Newton algorithm) of the loss function. The inclusion of
prior knowledge into Eq. (7) renders the inversion of the Hessian matrix possible. The relative
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strength of background knowledge has been chosen sufficiently small to make the background
term negligible for modes being well controlled by the data.

Figure 4: Eigenvalues of the posterior parameter covariance matrix analysed for year 2000.

3. RESULTS
The model has been fitted to data from the year 2000. The optimized parameter values

listed in Table 1 do not deviate far from the reference values that were obtained as by careful
manual model calibration. Figure 4 depicts the eigenvalues of the analysed posterior
parameter error covariance matrix, which represent variances along directions in the
parameter space being defined by the associated eigenvectors. According to Eq. (7) all
eigenvalues of postV′ must be smaller than one as a consequence of the particular way of
scaling. It turns out that only the first two eigenvalues are small enough to conclude that prior
uncertainties have been overwritten by observational evidence. Three eigenvalues remain
virtually unaffected by the data and stay close to the prior value one. One eigenvalue is
influenced by both data and prior knowledge. Thus, PCA of the posterior parameter
covariance matrix suggests that only two degrees of freedom in the six-dimensional parameter
space are clearly relevant for a successful reproduction of chlorophyll a observations. It
should be kept in mind, however, that these results are influenced by the way, in which
parameters have been scaled. Scaling introduces some subjectivity but is a necessary
prerequisite for PCA, which needs homogeneous physical dimensions [2].

A crucial question is whether or not the two parameter combinations, which are well
controlled by the data, can be interpreted in terms of mechanistic processes represented in the
model. Principal components are artificially defined variables and therefore do not necessarily
have a physical interpretation. The two upper panels in Figure 5 depict the eigenvectors that
correspond with the two smallest eigenvalues in Figure 4. To provide a better understanding
of the mechanism of parameter calibration the bottom panel of Figure 5 presents an analysis
of model prediction errors caused by uncertainties in the space of principal components. If the
model is assumed to be linear, uncertainties of model parameters can be propagated
independently and their effects on model output can be superimposed to each other.

It turns out that the two leading principal components that jointly explain about 89% of
model output variance affect model predictions (i.e. are identifiable from the data) in distinct
time intervals. This can be explained considering the different signs that diatom related
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loading coefficients of the two eigenvectors have. According to both eigenvectors a strong
(positive) impact on predicted chlorophyll a  concentrations can be achieved by an
intensification of the maximum growth rate of green algae, x3, together with a reduction of
their demand of light, x1. However, according to the first eigenvector, which dominates model
output uncertainty during periods when silica is lacking (cf. Figure 2), values of the
corresponding parameters for diatoms, x4 and x2, are changed in the opposite directions. This
reduces the overall diatom growth rate but nevertheless results in an increase of the final
diatom biomass concentration (cf. upper right panel in Figure 1). If silica concentrations are
sufficiently high, calibration of the second instead of the first eigenmode becomes crucial,
which treats both algae species symmetrically.

Figure 5: Cumulative plot of the relative contributions of the six principal components
(amplitudes of the eigenvectors of the posterior parameter error covariance matrix) to model
output variability. About 80% of model output variance can be attributed to the first two
principal components.

The results of the local uncertainty analysis could be used for the implementation of a
more systematic model calibration procedure. It suffices to calibrate the two or three leading
principal components and to assign arbitrary values to the others. To illustrate the idea we
performed a Monte Carlo experiment with 10,000 simulations. For each model run values of
the six selected model parameters were drawn independently. Then those parameter
combinations, which gave rise to the most successful model simulations (i.e. lowest values of
the loss function), were projected onto the eigenvectors of the local parameter error
covariance matrix. These projections, being standardized to have zero mean and unit standard
deviation, are depicted in Figure 6. Projections onto the first three vectors are connected by
solid lines. Projections onto the first two eigenvectors show small variability while anomalies
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of the other projections may have large values even for the very best simulations. This proves
that the choice of these amplitudes  has little impact on the model’s fit to data.

Figure 6: Monte Carlo generated parameter vectors giving rise to successful simulations are
projected onto the six eigenvectors of the local parameter covariance matrix at the loss
function’s minimum. All projections are scaled by their respective standard deviations.
Projections onto the first three eigenvectors are connected by solid lines.

4. DISCUSSION
Posterior parameter correlations reflect the fact that in the process of model calibration

changing the values of different parameters had similar effects on model counterparts of the
data. Taking into account such parameter interaction structures strongly mitigates
uncertainties in model predictions [6]. PCA of the posterior parameter error covariance matrix
gives a clear picture of how many degrees of freedom are really controlled by data. It helps to
identify the nature of a model’s overparameterization and its dependence on the kind of data
being available for model calibration. The artificial new input parameters (principal
components) do not necessarily have a physical meaning. In the present example, however,
two parameter patterns being controlled by data could be related to the discrimination
between different algae species in the model.

Vajda and Turányi [5] applied PCA for optimally reducing the mechanism of chemical
reactions based, however, on a response function which measures model output variability but
makes no reference to observed data. Using a small number of sensitive principal components
as new independent model input parameters, thereby implicitly taking into account model
parameter interactions, could much facilitate the adaptation of a model to new applications.

When a model is linear, uncertainties of model parameters can be propagated
independently and their effects on model output can be superimposed. If a model is
significantly non-linear, there are obvious limitations for a local sensitivity analysis, and a
more general global method may be needed. As long as the local method is applicable,
however, one can take advantage of  the very basic definition of sensitivity in terms of the
slope of model output at a given point in the parameter space [4]. Signs of model output
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sensitivities are available rather than their pure sensitivity strengths, which facilitates an
interpretation in mechanistic terms.

In the present application it turned out that the relevance of eigenmodes changed when the
modelled concentration of silica dropped to zero. Accordingly any parameter change, which
affects the modelled lengths of periods with lack of silica, will have an impact on the posterior
parameter covariance matrix. This indicates the limitations of linear uncertainty analysis
applied to the present example. Depending on a model concept with or without the inclusion
of silica, model parameters must be calibrated differently, possibly giving rise to chlorophyll
a simulations of similar quality. To consult observations of silica is the only way to resolve
this ambiguity with regard to model formulation.
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Abstract: Key to understanding the uncertainties in a physics simulation code is the
full characterization of the uncertainties in the physics submodels incorporated in it. I
demonstrate an approach to the determining the parameters of material models in a sim-
ulation code that combines the principles of physics and probabilistic Bayesian analysis.
The focus is on the parameters and their uncertainties in the simulation-code submodels,
as well as the numerical errors introduced in solving the dynamical equations. Bayesian
analysis provides the underpinning for quantifying the uncertainties in models inferred
from experimental results, which possess their own degree of uncertainty. The aim is to
construct an uncertainty model for the submodels that is based on inferences drawn from
comparing the code’s predictions to relevant experimental results. As an example, I will
present a preliminary analysis of a set of material-characterization experiments performed
on tantalum to determine the parameters of the Preston-Tonks-Wallace model for plastic
material behavior. I will indicate how data from a Taylor impact test may be used to
update the parameters in the model by using Bayesian calibration in the context of a
simulation code.

Keywords: plastic deformation model, Preston-Tonks-Wallace model, uncertainty anal-
ysis, Bayesian analysis, hierarchy of experiments, simulation uncertainty, model uncer-
tainty, systematic uncertainty, Hopkinson-bar experiments, quasistatic-compression ex-
periments

1. INTRODUCTION

The primary sources of data that are typically used to characterize the plastic behavior
of a metal are obtained in quasi-static and Hopkinson-bar experiments. In quasi-static
tests, a small cylinder of the material is typically squeezed at a constant, relatively slow
rate and the change in its height is measured as a function of the load on the cylinder.
These measurements are easily converted to stress and strain values. In Hopkinson-bar
experiments, an elastic wave is transmitted through a thin cylinder of the material and
its change in dimensions measured. Although these measurements require the use of a
simulation code for precise interpretation, they are straightforwardly converted to a stress-
strain curve at nearly constant strain rate. The strain rates attained in Hopkinson-bar
experiments are around 10 3 per second, whereas in quasi-static tests they are typically
about one per second or less.

Author’s web URL: http://public.lanl.gov/kmh/
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The analysis of these basic data is a fairly straightforward data-fitting problem, albeit
a nonlinear one. The approach used here is quite standard. It is based on linearizing the
response of the model output with respect to its input. The Jacobian, which characterizes
the first-order sensitivities of the model, is used to minimize chi squared, that is, the mean-
square differences between model predictions and the measured data, normalized to their
variance. The Jacobian is also used to estimate the quadratic behavior of chi squared,
and hence, the covariance matrix of the estimated parameters.

In the present example, it is necessary to introduce systematic uncertainties to ac-
count for sample-to-sample variations in material properties. The treatment of system-
atic uncertainties in analyzing experimental data is a topic that has not received enough
attention in most analyses, let alone in the literature. The present analysis incorporates
the systematic uncertainties in a straightforward way.

A major goal of any analysis is to transcribe uncertainties in the data into uncertain-
ties in the fitted parameters. A useful self-consistency check on the results of the analysis
involves propagating the uncertainties in the parameters (by means of a Monte Carlo
procedure) to uncertainties in the stress-strain curves given by the PTW model. The un-
certainty in the curves can be compared to the original data relative to their uncertainties
to demonstrate that the model used in the analysis is consistent with the data. This test
amounts to mapping the uncertainties in the data into the parameters and back again.
In the context of the proposed framework [1–3], it is possible to design new experiments
that can best provide data for reducing prediction uncertainty.

2. LIKELIHOOD ANALYSIS

Before describing the details of the present analysis, I will briefly review a standard
approach to fitting a nonlinear model to data by the minimum chi-squared method [4].
It is assumed that one has a model to predict the values of the measured data. For each
measured datum di, the models provides a value yi in terms of the operating conditions
of the experiment xi and a parameter vector a.

The likelihood is the probability of the measured data for a specified parameter vector
a. If the errors in the data are Gaussian distributed and statistically independent, the
likelihood is given by

p(d |a) ∝ exp

{
−1

2

∑
i

[di − yi(a)]2

σ2
i

}
= exp

{−1
2
χ2

}
, (1)

where σi is the expected rms deviation of the measurement di, The corresponding value
given by the model for a specified parameter vector a is designated by yi. One recognizes
the sum in the exponential in Eq. (1) as the familiar chi squared, χ2, which quantifies the
discrepancy between measurements and values predicted by a model.

The parameters that best fit the data are typically taken as those that maximize the
likelihood, or equivalently, minimize χ2. A standard tactic is to expand the model value yi
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around a particular value of the parameter vector a0 and at the value of the independent
variable xi in terms of a Taylor series,

yi = y(xi,a) = y0
i +

∑
j

∂yi

∂aj

∣∣∣∣
a0

(aj − a0
j) + ... , (2)

where y0
i = y(xi,a

0). The complete set of derivatives make up the so-called the Jacobian
matrix J , which summarizes the results of a first-order sensitivity analysis. Dropping
higher-order terms, chi-squared can be approximated as a quadratic function around its
minimum,

χ2(a) = 1
2
(a − â)TK(a − â) + χ2(â) , (3)

where â is the parameter vector at the minimum in χ2, and K is the curvature matrix
of χ2(a) at â, which is commonly called the Hessian. The curvature can be written in
terms of the Jacobian, evaluated at â, as

[K]jk =
∂2χ2

∂aj∂ak

∣∣∣∣
â

= JJT , (4)

As noted above, when a flat prior is assumed, the posterior is proportional to the
likelihood. In the quadratic approximation for χ2 given in Eq. (3), the posterior is then
a Gaussian

p(a |d) =
1

det(C)(2π)n/2
exp

{−1
2
(a − â)TC−1(a − â)

}
, (5)

which is written in a way to explicitly display the covariance matrix, C:

cov(a) = 〈(a − â)T(a − â)〉 = C = 2K−1 . (6)

The covariance matrix describes the degree of correlation among the uncertainties in
the parameters. The analysis of nearly every type of experiment leads to off-diagonal terms
in the covariance matrix, which must be stated for a full specification of the uncertainties
in the parameters. The off-diagonal elements of the covariance matrix are often expressed
in terms of the correlation coefficients, ρij = Cij/

√
CiiCjj.

Once the parameters and their uncertainties are obtained for a given set of experi-
mental data, one may check their consistency with the input data by propagating random
Monte Carlo draws from the inferred uncertainty distribution in the parameter space back
into the data space. To draw random parameters from a Gaussian distribution with a
specified covariance, one can employ a standard numerical technique: one draws a vector
r with the same dimension as the parameter vector a from an uncorrelated unit-variance

Gaussian distribution, and then calculates a∗ = C
1
2r∗ + â. Here the matrix C

1
2 is the

square root of the covariance matrix, which may be calculated through singular-value
or Cholesky decomposition [5]. The set of a∗ will have the mean value of â and the
covariance C.
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3. MATERIAL-CHARACTERIZATION MODEL

The Preston-Tonks-Wallace (PTW) model [6] describes the plastic deformation of metals
in terms of the dependence of plastic stress on plastic strain over a wide range of strain
rates and temperature. The following summary of the PTW model is taken directly from
Ref. 6.

In the PTW model, the plastic stress in a material is a function of the amount of
strain ψ is has undergone, the strain rate ψ̇, the material temperature T , and its density
ρ. It is assumed that the plastic stress is independent of the history of the material.
Furthermore, PTW ignores nonisotropic plasticity and material texture effects. Material
fracture or failure is not included in PTW.

The PTW model is written in terms of three scaled dimensionless variables. The
scaled stress variable is τ̂ = τ/G(ρ, T ), where τ is the flow stress, which is one-half the
usual van Mises equivalent deviatoric stress σ, that is, τ = σ/2, and G(ρ, T ) is the shear
modulus, which is a function of the material density ρ and temperature T . The shear
modulus is taken to be G(ρ, T ) = G0(ρ) (1 − α T̂ ), where G0(ρ) is the shear modulus at
T = 0 and α > 0 is a material parameter. The material temperature is scaled to its melt
temperature Tm, which is a function of the material density ρ, T̂ = T/Tm(ρ). For plastic
flow, clearly T̂ < 1. The equivalent plastic strain is denoted by ψ. The strain rate ψ̇ is
scaled to an appropriate rate

ξ̇(ρ, T ) =
1

2

(
4πρ

3M

) 1

3

(
G

ρ

) 1

2

, (7)

where M is the atomic mass of the metal. ξ̇ is the reciprocal of the time for a transverse
sound wave to cross an atom. The strain rate always appears in the PTW formulas in
terms of the ratio ψ̇/ξ̇.

For any fixed values of strain rate and temperature, the scaled stress τ̂ ranges between
the lower and upper limits given by the yield stress τ̂y and the saturation value τ̂s. The
functional form for τ̂ depends on the strain ψ as follows

τ̂ = τ̂s +
1

p
(s0 − τ̂y) ln

{
1 − [1 − exp(−p r)] exp

[
− p θ ψ

(s0 − τ̂y) [exp(p r) − 1]

]}
, (8)

where p and θ are material-specific parameters and r = (τ̂s − τ̂y)/(s0 − τ̂y). The parameter
s0 is explained below.

At strain rates below 10 8 s−1 for tantalum at room temperature, the plastic defor-
mation process is controlled by thermal activation. The values for τ̂y and τ̂s are given
by

τ̂y = y0 − (y0 − y∞) erf

[
κ T̂ ln

(
γ ξ̇

ψ̇

)]
, (9)

τ̂s = s0 − (s0 − s∞) erf

[
κ T̂ ln

(
γ ξ̇

ψ̇

)]
, (10)

129



0 0.02 0.04 0.06 0.08 0.1 0.12
550

560

570

580

590

600

610

620

630

640

650
Hopkinson Bar Data − TaRT133

Strain

S
tr

es
s 

(M
P

a)

Figure 1. Plot of data obtained from Hopkinson-bar experiment done on tantalum at room
temperature and a strain rate of 1300 s−1.

where κ and γ are dimensionless material-related parameters. The error function, defined
as erf(x) = 2√

π

∫ x

0
exp (−t2) dt, has the limiting values erf(0) = 0 and erf(∞) = 1. Note

that the logarithm is nonnegative because γ ξ̇/ψ̇ ≥ 1 in the low-strain-rate regime. There-
fore, the argument of the error function is nonnegative. The parameters y0 and y∞ are
the values that τ̂y takes at zero temperature and very high temperatures, respectively; s0

and s∞ have analogous meanings for τ̂s.

The PTW model is designed to extend the range of normal plastic-flow models to very
high strain rates, above 10 8 s−1, in which regime it relies on Wallace’s theory of overdriven
shocks in metals [7]. Because Taylor experiments, which are the goal of the present study,
do not reach these very high strain rates, the formulas that apply in that regime will not
be given. Suffice it to say that the PTW parameters β, y1, and y2 do not have an effect
in the lower strain-rate region.

4. ANALYSIS OF MATERIAL-CHARACTERIZATION EXPERIMENTS

I now outline the analysis of the material-characterization experiments to estimate the
PTW parameters and their uncertainty. In a sense, the approach is a straightforward
chi-squared (or least-squares) analysis, but it has some noteworthy aspects, for example,
the inclusion of systematic uncertainties.

Basic stress-strain data at moderate strain rates (about 10 3 s−1) are typically obtained
in a Hopkinson-bar experiment in which an elastic wave is passed through a thin cylinder of
the material under investigation. Strain gauges mounted on the support cylinders measure
strain as a function of time. From these measurements, the stress-strain behavior of the
material is inferred. The data from a Hopkinson-bar experiment on tantalum done at
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room temperature (298◦K) and a strain rate of 1300 s−1 are shown in Fig. 1. This figure
shows a well-known feature of Hopkinson-bar experiments, the presence of wiggles in the
measured stress as a function of strain, which are particularly evident at strains of 0.02
and below but also observable at higher strains. These oscillations, caused by elastic wave
dispersion within the sample and apparatus, tend to reduce the accuracy of Hopkinson-bar
data. The data below strains of 0.017 seem unreliable because of their higher amplitude
of the oscillations and the fact that the stress rises as the strain approaches zero instead
of falling. Likewise, the data above a strain of 0.1 seem to be corrupted by an artifact.
In the present analysis, the data in these two end regions are excluded.

To make use of the data between 0.017 and 0.1, their uncertainties need to be quanti-
tatively characterized. The approach taken here is to treat the fluctuations in these data
as a random Gaussian process with zero mean. The underlying assumption is that the
measured signal fluctuates around its true value. The process is described as a random
signal drawn from a Gaussian distribution with a covariance between two strains εi and εj

given by σ2 exp(−|εi − εj|2/λ2). The fluctuations are analyzed by first fitting a quadratic
function to the data and subtracting it from them. The value of σ is the rms deviation
of the resulting data set, which is found to be 4.9 MPa, or 0.8 %. By maximizing the
likelihood function for the data, the correlation length λ is determined to be 0.0019. To
avoid giving inappropriate weight to these data in the subsequent analysis, the measured
data points are thinned by a factor equivalent to one sample per correlation length, which
corresponds to using only every fourth measurement in this case. A similar analysis of
the other Hopkinson-bar data sets yields σ values between 3.1 MPa and 5.3 MPa, and
correlation lengths between 0.0027 to 0.0055.

The same type of analysis is carried out for the quasi-static measurements. However,
these data do not exhibit the same oscillatory fluctuations around a smooth curve and
the meaning of this kind of analysis is less clear. The rms deviation of the quasistatic
data from a smooth second- or third-order curve is about 0.35 MPa, or only about 0.04%
to 0.09%. Each of these data sets are also thinned out to around ten data points to avoid
giving them undue influence in the following analysis.

Particularly for the quasi-static data, experience suggests caution in accepting the
results of the above analysis without critical assessment. A number of assumptions are
typically made about the physics in these experiments, which may well limit the overall
accuracy of the reported data to a few percent. The actual uncertainties in these data
are ultimately dominated by the systematic effects discussed below.

The above analysis leads to the final set of tantalum data shown in Fig. 2, in which
the standard error in each datum is displayed as an error bar.

In addition to the suite of data shown in Fig. 2, an auxilary set of four experiments
were carried out at room temperature and 0.001 s−1 strain rate to ascertain the degree
of reproducibility from one tantalum sample to the next. The samples were selected
from different lots with various processing histories to get a good idea of the amount
of variability one might see in commercially obtained tantalum. With just four samples
to go on, the rms deviation in measured stress values is about 8%. Note that this is a
systematic error that is common to all the data from a single tantalum sample.
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Figure 2. Comparison between data from material-characterization experiments for a variety of
temperatures and strain rates and the PTW model fit to the data, shown as lines. The vertical
bar to the right of each curve indicates the estimated systematic offset for that curve.

The tantalum specimens that yielded the data shown in Fig. 2 were obtained from a
single lot so one would expect less sample-to-sample variation than in the above study.
It seems reasonable to assign a systematic standard error of 3% to each of the displayed
data sets. This assignment is supported by the degree of consistency between the data
and the fitted model.

I include this sample-to-sample variability in the analysis by treating it as a systematic
uncertainty. Because the observed differences between different samples amount to a small
vertical shift of the curves, it is a good approximation to incorporate them in terms of
an additive offset parameter for each curve. This effectively adds eight more parameters
to the model, which need to be estimated as well as the parameters in the PTW model.
To include this systematic effect in a full analysis of the eight data sets, the appropriate
expression for the minus-log-likelihood is

− log p(a |d) = 1
2

∑
k

χ2
k + 1

2

∑
k

∆2
k

σ2
k

, (11)

where the index k identifies the data set obtained with a specific tantalum sample. The
first term is a sum of χ2 values for each data set at a specific temperature and strain rate.
The second sum represents the prior probability for the offset parameters ∆k, and σk is
the rms deviation of the prior distribution on ∆k, in the current analysis taken to be 3%
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Table 1. PTW parameters for tantalum obtained from this preliminary analysis (fit4a) of the
data shown in Fig. 2. All parameters are dimensionless.

Parameter Value Standard error

y0 0.0123 0.0006

y∞ 0.00164 0.00004

s0 0.0164 0.0007

s∞ 0.00308 0.00005

κ 0.91 0.08

γ 0.0000024 0.000002

θ 0.0145 0.0002

Table 2. Correlation coefficient matrix for the PTW model parameters obtained from the fit
to the data shown in Fig. 2. The covariance matrix is estimated using Eqs. (4) and (6).

Parameter y0 y∞ s0 s∞ κ γ θ

y0 1 0.186 0.988 0.400 0.687 -0.464 -0.182

y∞ 0.186 1 0.208 0.913 0.142 0.022 -0.140

s0 0.988 0.208 1 0.432 0.713 -0.496 -0.299

s∞ 0.400 0.913 0.432 1 0.443 -0.263 -0.257

κ 0.687 0.142 0.713 0.443 1 -0.935 -0.119

γ -0.464 0.022 -0.496 -0.263 -0.935 1 0.087

θ -0.182 -0.140 -0.299 -0.257 -0.119 0.087 1

of the mean stress value of the the kth data set. This term is needed to constrain the
offset of the curves. Without it, the PTW parameters would be indeterminate.

The above model is fit to the data shown in Fig. 2 using the general approach described
earlier to minimize the function given in Eq. (11). The Jacobian (sensitivity) matrix is es-
timated at each optimization iteration by the straightforward method of finite differences.
In this fit, the following parameters are taken to be fixed: G0 = 654 kilobars, α = 0.47,
p = 4, A = 180.95, Tm = 3250◦K, and ρ = 16.6 g/cm3. The value p = 4 is determined
by auxiliary experiments that reach total strains of almost unity.[8] The following PTW
parameters are not important because the strain rates are not high enough: y1, y2, and
β. Adiabatic heating of the high strain-rate samples is taken into account, assuming a
specific heat capacity of 0.15.

The fit to the data obtained in this preliminary analysis is shown in Fig. 2. The value
of chi squared for 314 data points for this fit is 563, which corresponds to a chi squared per
degree of freedom of approximately 1.9. The vertical bars to the right end of each curve
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Figure 3. (a) A set of plausible stress-strain curves for three data sets (from top to bottom,
298◦K, 1300 s−1; 298◦K, 0.1 s−1; 1073◦K, 3900 s−1 ) obtained by drawing Monte Carlo samples
from the uncertainty distribution in the PTW parameters as derived from the data shown in
Fig. 2, and evaluating the PTW formulae. (b) Same as for (a), except that the correlations
given in Table 2 are neglected. The ranges of variation for these curves are up to twice as larger
as those observed in (a).

display the fitted value for the offset of that curve. The eight offset values range from
–25 MPa to 14 MPa. The offsets contribution to chi-squared is 12.3 (the second term in
Eq. 11), which is a reasonable value for eight parameters demonstrating consistency with
their assumed rms deviation of 3%. The PTW parameters obtained from the fit and their
rms uncertainties are given in Table 1. As important as the uncertainties in the individual
parameters are, their correlation coefficients, presented in Table 2, are equally important.
Use of the rms errors without consideration of the correlation coefficients would seriously
misrepresent the results of this analysis, as will be demonstrated next.

The Monte Carlo technique described in Sect. 2 can be used to randomly draw PTW
parameter vectors from their uncertainty distribution specified in Tables 1 and 2. Figure 3
shows a plot of the stress-strain curves that result from 12 such random draws for three
data sets at different operating conditions. Because negative values of γ are not allowed in
the PTW formalism and its relative error is so large, a log-normal distribution is used for
that variable. From the comparison of these curves to the Hopkinson-bar measurements,
one can conclude that the parameters and their uncertainties plausibly represent the data.
However, the high value of chi squared mentioned above needs to be considered in a final
analysis of these data. It indicates that either the uncertainties assigned to the data are
too small or a discrepancy exists between the PTW model and the data. The Centroidal
Voronoi Tessellation (CVT) [9, 10] algorithm is used here for drawing samples with more
uniform spacing than a set of random samples would provide.
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5. ANALYSIS OF TAYLOR DATA USING A SIMULATION CODE

The Taylor impact test represents an experiment of an intermediate level of complexity
in the hierarchy of experiments chosen to elucidate the material model for tantalum. In
the Taylor impact test, a cylindrical sample of material is propelled into a fixed, rigid
surface. Taylor tests are often performed to confirm the plastic-behavior model of a
material under severe strain conditions. Extremely high plastic strains and strain rates
occur at the crushed end of the rod, resulting in severe local deformation [11, 12]. The
experimental data usually consist of measurements of its final deformed profile.

The data from a Taylor experiment may be analyzed in much the same way as was
done above for the material-characterization experiments. Systematic experimental un-
certainties in the impact velocity, for example, may be included in a way similar to that
used above to include the sample-to-sample variations. A contribution similar to the
second term in Eq. (11) is necessary to account for the systematic offset for the specific
sample used in the Taylor test. One viable approach to chi-squared minimization is to
use the same methods as described above. When the simulation code is treated as a black
box, the Jacobian matrix may be estimated by the method of finite differences. When
the simulation code is available, however, the more sophisticated method of automatic
differentiation may prove useful [13, 14].

Bayes theorem provides the proper means for combining the prior probability density
function from the first analysis with the likelihood of the subsequent Taylor analysis [2].
The uncertainties from the above analysis may be included by adding to the expression
given in Eq. (11) a term to represent the prior for the Taylor analysis, namely 1

2
(a −

â1)
TC−1

1 (a − â1), where â1 is the PTW parameter vector estimated in the foregoing
analysis and C1 is the estimated covariance matrix.

When this process is employed to simply adjust the values of the model parameters to
match the new data, it is called calibration, which is different from what I am proposing.
By basing this parameter-updating process on Bayes theorem and quantitative uncer-
tainty estimates, the process of Bayesian calibration becomes one of continuing inference
[13]. In a sense, the Monte Carlo technique for estimating uncertainties in simulation-code
output described above is reversed; the uncertainties in the parameters are determined
from the combined uncertainties in the measurements and the effects on the simulation of
uncertainties in experimental set up. Since the inference procedure involves determining
the uncertainties in model parameters, it provides the means for predicting the uncer-
tainty in simulation output in other physical scenarios. Further details of the process are
presented in Ref. 2.

The focus here has been on the parameters in the Preston-Tonks-Wallace model. The
Bayesian methodology can address other questions, for example, comparison of two or
more competing models to decide between them. It is generally applicable to answering
all questions that one might pose about models [15].
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Abstract: The paper presents an application of GLUE (Generalised Likelihood Uncertainty 
Estimation) methodology to the problem of estimating the uncertainty of predictions produced 
by environmental models. The methodology is placed in a wider context of different 
approaches to inverse modelling and, in particular, a comparison is made with Bayesian 
estimation techniques based on explicit structural assumptions about model error. Using a 
simple example of a rainfall-flow model, different evaluation measures and their influence on 
the prediction uncertainty and confidence limits are demonstrated. 

Keywords: Bayesian inference, Deterministic environmental models, Generalised Likelihood 
Uncertainty Estimation (GLUE), Model determination. 

1. INTRODUCTION 
The Generalised Likelihood Uncertainty Estimation (GLUE) technique [1] was 

introduced partly to allow for the possible equifinality (non-uniqueness, ambiguity or non-
identifiability) of parameter sets during the estimation of model parameters in over-
parameterised models. The technique has been applied to a variety of environmental problems 
[2]. Its popularity results from the very few assumptions that it requires and the simplicity of 
the approach when used in practical applications. GLUE assumes that, in the case of large 
over-parameterised models, there is no inverse solution and, hence, that the estimation of a 
unique set of parameters, which optimise goodness-of fit-criteria given the observations, is 
not possible. The technique is based on the estimation of the weights or probabilities 
associated with different parameter sets, based on the use of a subjective likelihood measure 
to derive a posterior probability function, which is subsequently used to derive the predictive 
probability of the output variables. In [3] a statistically motivated, more formal equivalent of 
GLUE was developed. The idea was to explicitly derive the likelihood function based on the 
error between the observed outputs and those simulated by the model. This formal approach is 
equivalent to Bayesian statistical estimation: it requires assumptions about the statistical 
structure of the errors. GLUE is usually applied by directly likelihood weighting the outputs 
of multiple model realisations (either deterministic or stochastic, defined by sets of parameter 
values within one or more model structures) to form a predictive distribution of a variable of 
interest. Prediction uncertainties are then related to variation in model outputs, without 
necessarily adding an additional explicit error component. There is thus an interesting 
question as to whether an appropriate choice of likelihood measure can result in similar 
results from the two approaches.  

There are a number of possible measures of model performance that can be used in this 
kind of analysis. The only formal requirements for use in a GLUE analysis are that the 
likelihood measure should increase monotonously with increasing performance and be zero 
for models considered as unacceptable or non-behavioural. Application-oriented measures are 
easily used in this framework. Measures based on formal statistical assumptions, when 
applied to all model realisations (rather than simply in the region of an “optimal” model) 
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should give results similar to a Bayesian approach when used within a GLUE framework [3], 
but the assumptions made (additive Gaussian errors in the simplest cases) are not always 
easily justified in the case of nonlinear environmental models with poorly known boundary 
conditions (see the discussion in [4]). In this paper, we shall explore the influence of the 
choice of observation based likelihood weights on the predictive uncertainty of the model.  

2. RELATION BETWEEN GLUE AND STATISTICAL APPROACHES: 
DISCUSSION OF LIKELIHOOD MEASURES 

There is a question as to how far GLUE can be consistent with formal statistical 
approaches since it weights the predictions of different feasible models without necessarily 
using an explicit error model, albeit that the likelihood weights are determined from a 
calculation that depends in some way on the model errors. In a Bayesian framework, the 
inverse problem is usually posed in the context of the observation equation:  
 0 0( ,..., , ,..., , , , )t t t ty g u u tξ ξ ζ θ=  (1) 

or assuming an additive error model: 

 0 0( ,..., , ,..., , , )t t ty g u u t tξ ξ θ ζ= +  (2) 

where denotes the observed model output; is model input, ty tu θ denotes vector of model 
parameters and the errors on the inputs, tξ , and the measurement error tζ are not known, 
and, in the general case, may be non-Gaussian (and might indeed be required to compensate 
for model structural error). The Bayesian approach allows detailed studies to be targeted at the 
most informative areas and variables (e.g. [5]). It also allows parameter and error estimates to 
be updated as more observations become available: for example, in the case of Gaussian 
normal assumptions (see e.g. [6]), the Bayesian estimator of the state variables in a linear, 
stochastic, dynamic system is the famous Kalman Filter (KF: [7]); while the Bayesian 
estimator of the constant or stochastic, time variable parameters in a linear-in-the-parameters 
regression model is the classic recursive least squares estimation algorithm. Environmental 
models are not normally that simple, and it might be difficult to formulate an appropriate error 
model. In that case there might be advantage in the use of a nonparametric representation of 
the errors ([8], [9], [10]). 

Measures of goodness of fit applied in order to compare different nonparametric 
probability density functions (or log likelihood ratios) include: 
 (i) Mean Square Error (MSE),  

2 2ˆ ˆ ˆ[ ( ) ( )] { ( )} [ [ ( )] ( )]MSE E f x f x Var f x E f x f x= − = − − ,  (3) 

which combines both variance and bias of the estimates;  
(ii) averaged Predictive Squared Error (PSE), related to MSE: 

 2 2ˆ[ ( ) ( )]PSE E f x f x MSEε σ= + − = + ;  (4) 

where 2σ denotes the prediction error variance; and 
(iii) Mean Integrated Square Error (MISE): 

 . (5) 2

1

ˆ[ ( ( ) ( )) ]
N

i i
i

MISE E f x f x
=

= −∑
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Instead of norm used in the above definitions, we can use 2L L∞ norm: 
ˆsup | ( ) ( ) |f x f x

x
− ; L1 norm: ∑  or even L

1

ˆ| ( ) ( ) |
N

i i
i

f x f x
=

− p norm: . The influence 

of these different norms on the estimates of probability density function is discussed in [9]. 
1

ˆ| ( ) ( ) |
N

p
i i

i

f x f x
=

−∑

[8] discusses the use of a Generalised Gaussian distribution in inverse modelling. It is 
defined as the normalised probability density f(x) with fixed Lp norm estimator of dispersion: 

 (discrete case), which has the minimum information content 

(widest spreading) and has the form: 

0
1

| | ( ) (
n

p
i i

i

n x x f x σ
=

− =∑ ) p
p

 
1 1/

0| |1( ) exp
2 (1/ ) ( )

pp

p p
p p

x xpf x
p pσ σ

−  −
 = −

Γ   
  (6) 

where  denotes Gamma function and (.)Γ 0x is the centre of f(x) in the  norm sense. pL
For p=2 2 ( )f x is the Gaussian function with mean 0x  and standard deviation 2σ . The 

Generalised Gaussian distribution covers a range of distributions from the symmetric 
exponential to a box-car distribution for p = ∞ . In the case of general exponential distribution 
family, the log-likelihood based on (2) is equal to the sum of the functions of errors 0x x− and 
depending on the error structure (in this case the parameter p), we shall get the criteria related 
to L1, L2 or Lp norm. 
 In [3], it is assumed that, for a general, nonlinear model, the distribution of errors is 
Gaussian with unknown mean and variance and the log-likelihood function has a sum of 
squared errors form, equivalent to the Nonlinear Least Squares approach. In this particular 
case, the equivalence of the measure of fit between the model output and observations and 
assumed error structure follows from the equivalence between likelihood and least square 
approaches for the mean of the distribution of independent errors ([11], [10]). Following this 
approach, the predictive distribution of output variables , modelled by Eq.2, conditioned on 
the calibration data z is given by (discrete case): 

ty

 
  (7) ( | ) ( | , ) ( , |t tP y y P y y f

θ φ

θ φ θ φ< = <∑∑z z)

where ( , | )f θ φ z  is a posterior likelihood function for the parameters: 
2 2

1
( , | ) exp( ( ( ) ) / 2 )

T

t t
t

f z gθ φ θ
=

− − −∑z ∼ µ σ ;  (8) 

( , )φ µ σ=  denotes a vector of statistical model parameters and ( | , )tP y y θ φ< is a standard 
normal distribution function N(0,1). 

The GLUE methodology is closer in philosophical terms to a nonparametric approach. 
The critical difference is that posterior distributions for predicted variables are estimated 
directly from the outputs of a set of multiple acceptable or behavioural models, rather than 
from a model and an additive residual model. In [2] various likelihood measures are presented 
and applied to different environmental problems. These include measures similar in nature to 
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(6) (but also fuzzy measures and binary measures that can be used to exclude some models as 
non-behavioural). Romanowicz and Beven [3] have also shown how a formal error model 
may be used within the GLUE framework by evaluating likelihood weights over both model 
and error model parameters. GLUE allows that the likelihood surface may be very complex in 
form because of complex parameter interactions. It is the set of parameters that produces a 
behavioural model for a given input sequence, and there may be no well-defined posterior 
distribution for individual model parameters. 

In the example that follows, we concentrate on two issues: (i) definition of a likelihood 
measure for use within GLUE with a well-defined scaling parameter based on the dispersion 
of the errors to control the width of prediction limits; (ii) the influence of the choice of 
different likelihood measures on the model predictive uncertainty. 

3. THE MODELLING PROBLEM: APPLICATION OF RAINFALL-FLOW MODEL 
TO THE CAN VILA CATCHMENT, N. E. SPAIN  

To illustrate the proposed methodology, we consider a rainfall-flow model for a set of 
rainfall-flow data. The study catchment area of Can Vila is situated in Spain, in the Valcebre 
catchment of the South-East Pyrenees ([12], [13]). The catchment is 0.56 km2 in area and is 
partly covered by Pinus Sylvestris. Rainfall and flow measurements at 20 min. time steps 
were made available for winter 1995/96 and summer 1997 events. We shall use only winter 
observations in this study with hourly time step. 

The data were modelled using two forms of the mechanistic rainfall-runoff model 
TOPMODEL ([14]). The SIMULINK version of TOPMODEL, described in [15], bases its 
calculations of the spatial patterns of hydrological response on the pattern of a topographic 
index for the catchment derived from a Digital Terrain Model (DTM). The time series data 
used by the model are the rainfall, runoff and evaporation averaged over the catchment. The 
model has a modular structure. The saturated zone model is assumed to be non-linear with the 
outflow Qb(t) calculated as an exponential function of a catchment average soil moisture 
deficit S3 as:  

 
dS
dt

Q t Q tb v
3 = −( ) ( )  

 Q t Q S t mb ( ) exp( ( ) / )= −0 3   (9) 

where Q0=SK0 e-λ   is the flow when S3(t)=0. and  denotes the recharge to the 
saturated zone. SK0 is a soil transmissivity parameter, m is a parameter controlling the rate of 
decline in transmissivity with increasing soil moisture deficit and λ is the mean value of the 
topographic index distribution in the catchment (see [16]). Other parameters control the 
maximum storage available in the root zone (LRZ) and the rate of recharge to the saturated 
zone (KS). 

( )vQ t

In the first step the MC sensitivity analysis was performed using the full version of 
TOPMODEL and January 1996 rainfall-flow data. Following an initial sensitivity analysis the 
parameter ranges were chosen to ensure that the range of the simulations covers the 
observations. 10000 simulations were then performed varying the four TOPMODEL 
parameters according to prior distributions shown in Table 1.  
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Table 1. Parameter distributions applied in MC analysis of TOPMODEL 
 distributio

n 
Min value Max 

value 
mean std 

SKO uniform 10 500 251 141 

m uniform 0.003 0.03 0.017 0.0075 

LRZ Log-
uniform 

1.e-4 0.01 0.0147 0.023 

KS Log-
uniform 

1.e-15 0.01 0.0003 0.0012 

 

4. ESTIMATION OF DISCHARGE PREDICTION LIMITS  
Two methods were then applied to estimate prediction limits: (i) a formal likelihood 

function based on an assumed error model, and (ii) a non-formal GLUE approach with the 
likelihood weights proposed by Eq. 12-13. 

In both approaches, following [3], we used a multiplicative error model to account for the 
usual tendency of rainfall-model errors to increase with increasing magnitude of the 
prediction. Thus:  

, ,log( ) log( ) log( ( ))t t obs t sim tQ Qζ δ θ= = −  (10) 

where denotes the observation of flow at time t and Q,obs tQ , ( )sim t θ denotes the simulated flow 
for a given model run, depending on parameter set θ. 

We then applied the error model (2) with the assumption for the vector error 
( , )t Nζ µ Σ∼ ; where µ denotes the unknown mean of the errors and 2IσΣ =  is the 

covariance matrix. The observation sets for the conditioning of the estimates were chosen in 
such way that the correlation between the observations could be neglected. Eq. 7 can be used 
to estimate the predictive uncertainty of the model both for the calibration and the validation 
stages, under the assumption that the distribution of errors remains the same during the 
validation stage. Fig. 1 presents the predictions together with 95% confidence limits for the 
calibration (upper panel) and validation (lower panel) periods.  
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Figure 1. Flow predictions together with 95% confidence limits for Can Villa catchment; 
upper panel: calibration stage – December 1995, lower panel: validation event January 

1996; dashed lines denote the 95% confidence limits, dots represent the observations; formal 
approach. Note change in discharge scale. 

In the GLUE approach the prediction equation takes the form: 

ˆ ˆ( | ) { ( | ) |t i
i

P y y f y yθ< = <∑z z )}t  (11) 

We look for the weights ( | )if θ z , which will account for both prediction and 
parameter/structure related errors. By analogy with (7-8) we assume the form: 

2 2
, ,

1
( | ) exp( (log( ( ) log( )) / )

T

i t sim i t
t

f Q Q obsθ θ σ
=

= − −∑z  (12) 

In the formal approach, with an explicit error model, 2σ  is the variance of the prediction error 
based on the observations. The optimal value of this variance may be derived from the 
likelihood function (8).  

In the non-formal GLUE approach, however, we can treat 2σ as an additional scaling 
parameter reflecting our lack of knowledge of the true information content of the residuals tζ  
in constraining the uncertainty in the model predictions. One possible form for this scaling is 
to take the sum of the variances of the simulated flows over all the behavioural models and all 
time steps as an estimate, such that: 

2
,

1
var(log( ( ))

T

t sim
t

Qσ θ
=

= ∑  (13) 
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This will increase the dispersion of the resulting posterior likelihoods (relative to the formal 
case) to account for the predictive model uncertainty without making additional assumptions 
about the model error structure. This scaling could also be made time-dependent, since the 
cumulated variance of simulated flows at each time step can be calculated over some 
specified process memory, in a way similar to allowing a variable kernel in kernel density 
estimation ([9]) but without making any assumptions about the form of the likelihood surface. 

The resulting predictions together with 95% confidence bands for the calibration period 
are shown in Figure 2.  

 
Figure 2. Flow predictions together with 95% confidence limits for Can Villa catchment; 

December 1995, dashed lines denote the 95% confidence limits, dots represent the 
observations; non-formal GLUE approach. 

Comparison with the Fig. 1 shows that, in this case, the simplified GLUE method gives 
smaller over-prediction and better represents the observations. Results for a further evaluation 
period, using the same set of behavioural models and likelihood weights determined for the 
calibration period, are shown in Fig. 5, upper panel. In this case the GLUE method also gives 
very good results. 

5. INFLUENCE OF THE CHOICE OF OBSERVATION SETS ON THE MODEL 
PREDICTIVE UNCERTAINTY: COMPARISON OF DIFFERENT GOODNESS OF 
FIT CRITERIA 

The availability and quality of observations is often a major constraint on the 
identifiability of environmental models. In addition, different prediction problems might 
require different types of model evaluation. In the case of rainfall-flow models, there is 
usually sufficient amount of observations available but input errors and model structural 
errors can give rise to complex error structures for any model run, including 
heteroscedasticity, nonstationarity and correlation. We can attempt to model these 
complexities (as in [3]) but experience suggests that less formal methods can still provide 
useful prediction bounds. In what follows we shall compare the uncertainty predictions 
obtained when different (reduced) observation sets are chosen for the conditioning of the 
predictions and different norms are used to evaluate the likelihood weights. We shall use the 
non-formal GLUE approach in this comparison with L2 norm in (12) replaced by L1 norm and 
also we shall compare the use of observations from the whole time period with conditioning 
only on time steps with peak discharge observations (global MISE and local MSE goodness 
of fit criterion) used for the conditioning (as these criteria may use different norms). 

As an example, Fig. 3 shows the results of conditioning on the two highest peak values 
only in terms of the resulting cumulative density functions (cdfs) for the parameters integrated 
over all the behavioural parameter sets for likelihood weights based on an L1 norm (dashed 
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lines). These are compared with the cdfs obtained using likelihood weights based on L2 norm 
and the same type of conditioning (dotted lines) and the likelihoods with scaling (12) 
conditioned on the whole range of observations (solid lines).  

 
Figure 3. Comparison of the cdfs for the parameters obtained using two criteria for the 

observation based weights; continuous lines correspond to the weights (12) conditioned on 
the whole dataset (MISE L2 criterion); dashed lines show cdfs for the 2 peak values of flow, 

norm L1; dotted lines show cdfs for the 2 peak values, L2 norm. 

The results from Fig. 3 show significant differences of posterior distributions of parameters 
when different observation sets and likelihood weights are used. However, the results were 
less sensitive to the use of different norms (L1, or L2). The resulting prediction limits shown in 
Fig. 4 are also affected by the choice of the observation sets, with confidence limits for the 
conditioning on the 2 peak observations of flow better following the peak values but over 
predicting low flows. 

 
Figure 4. Comparison of confidence levels obtained using two criteria for the calibration 

period, December, 1995; the thick dashed lines correspond to 95% confidence limits obtained 
from MISE L2 criterion (5); thin dashed lines show 95% confidence limits for 2 peak values of 

flow, L2 norm, and dots denote the observed flow. 
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Figure 5. Validation stage: predicted flow (median) (--) and 95% confidence limits (:); big 
dots denote the observations; upper panel: weights derived from the sum of square errors; 

lower panel: weights derived from two peak values; January 1996. Note change in discharge 
scale from Fig. 1 

Fig. 5 shows the application of the derived sampling scheme and likelihood weights to a new 
validation period in January 1996. Comparison of these results with the predictions for the 
same validation period obtained using formal approach (Fig. 1, lower panel) shows that the 
non-formal approach provides reasonably good predictions for high flows and is much better 
for low flows, where the formal approach overestimated the observed values.  

6. CONCLUSIONS 
Due to the stochastic nature of the variables influencing the deterministic model of the 

physical process at study, the predictions of the model output should also be considered to be 
stochastic. We may have some information about the probability distribution of different 
model variables, but usually environmental models are highly nonlinear and poorly defined, 
so it may be difficult, or even impossible to obtain the solution of the related inverse problem.  
This paper is meant as the bridge between formal and non-formal approaches to estimation of 
hydrological models. We presented a short discussion of statistical methods and their 
applicability to nonlinear, multidimensional and uncertain processes and pointed out that may 
be some justification for using a less formal approach such as GLUE. 

Our results indicated that use of different criteria for evaluation of likelihood weights 
influences the shape of the resulting posterior distributions of the parameters but does not 
influence so much the uncertainty bands for the predictions. This is consistent with past 
experience reported, for example, in [2] and [17]. In order to obtain the control over the 
uncertainty limits we should use a suitable scaling parameter for the likelihood weights as 
well as a suitable choice of the observations for the conditioning of the probabilities for a 
particular application.  

In future work we shall show the influence of the choice of time variable observation 
window on the uncertainty of model predictions and the way in which the results from 
different model structures can be integrated within the GLUE framework. 
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Abstract: In many fields of science, sophisticated mathematical models are devised
and implemented within large computer codes in order to simulate and predict complex
real-world phenomena. These models are known for being exposed to various sources of
uncertainty taking place at their building and validation steps, so that they are routinely
subject to reliability tests by means of uncertainty and/or sensitivity analysis. Since
such diagnostics typically require a large number of training code runs, for CPU-intensive
models an approach based around preliminary emulation of a code’s response, followed
by application of the aforementioned techniques to the emulator, can be more practical
and efficient. This paper extends results already established within a Bayesian set-up
for deterministic models (see e.g. [1]) to dynamic multi-response computer codes, for
which some of the outputs at one stage of a simulation become inputs to the subsequent
stage. Advantages and difficulties in the implementation are here discussed, and a test-
bed application to the Sheffield Dynamic Global Vegetation Model, developed within the
UK Centre for Terrestrial Carbon Dynamics, is also presented.

Keywords: Bayesian inference, computer experiments, hierarchical models, sensitivity
analysis, uncertainty analysis

1. INTRODUCTION

A nowadays widespread practice in the scientific community is the utilisation of large
computer codes embedding sophisticated mathematical models descriptive of complex as-
pects of reality. The exploratory and predictive ability of any computer simulator is often
hampered by substantial model preparation and computational requirements. Whereas
computational burden is not remarkably cumbersome, nonetheless various uncertainties
can still significantly compromise the performance of a computer model. Among recog-
nised sources of uncertainty affecting the processes of model building and validation are
(see [1] for a thorough discussion on the subject): parameter uncertainty, originating
from unknown quantities tuning the code; model inadequacy, due to necessarily imper-
fect fit to the observed data; residual variability, related either to intrinsic randomness
or unrecognised features of the real-world phenomenon; parametric variability, arising
from quantities conveniently left unspecified; observation error, caused by inaccuracies
at the hard data recording stage; and code uncertainty, related to the complex nature
of the simulator.

Further author information: (Send correspondence to Stefano Conti, e-mail:
s.conti@sheffield.ac.uk)
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Several methodologies aimed at ascertaining the reliability and effectiveness of a given
computer model are available off-the-shelf from the classical statistical literature: an
exhaustive reference is provided by [2]. Unfortunately standard uncertainty/sensitivity
analysis tools often require a large number of training code runs, hence proving unsuitable
for validation of computationally expensive models. In order to circumvent this problem,
a strategy based around preliminary emulation of the code’s outcome (meta-modelling)
suggested by [3] has been widely adopted. This procedure would typically be followed by
application of the aforementioned techniques to the emulator, which in fact is treated like
a cheaper alias of the original code.

In this context interesting results were obtained via a Bayesian semi-parametric repre-
sentation of deterministic single-response codes, that is models returning the same scalar
output when repeatedly fed with the same input configuration. In previous works in the
field (refer e.g. to [4]) a Gaussian process prior for the code’s output was shown to be
a convenient, flexible and reasonable tool, especially for tackling the problems of model
calibration and rectification.

Sometimes special features of the phenomena of interest may translate into aspects
of the computer model that could complicate standard emulation. This is usually the
case with dynamic computer models, typically designed for time-evolving processes. In
particular, such codes have the distinctive feature that some of the inputs required at each
stage of a simulation are actually outputs from previous stages. This affects the structure
of the input space, in that variables required for the code’s operation can be classified as:
constants, which describe enduring characteristics of the examined events; time-varying,
related to aspects of the process’s evolution over time; and intermediate or final outputs,
which in turn may or may not be recycled by the model into subsequent simulations. In
this context meta-modelling of the code’s outputs needs to be suitably adjusted in order
to accommodate any relationship featured by variables evolving over time.

The paper discusses such adjustments and is organised as follows. In Section 2 a
generalisation of the emulator as developed in [4] to multi-response codes is detailed.
Section 3 is devoted to adapting the emulator to encompass dynamic computer models
as well. An application to a sub-module of an environmental model is outlined in Section
4, while Section 5 summarises concluding remarks.

2. MODELLING MULTI-RESPONSE COMPUTER MODELS

Consider a deterministic computer model which takes inputs x, typically lying in some
(possibly high-dimensional) input space X , and returns outputs y. The process of com-
puting vectors y from x can be formalised via a function f : X �−→ Rq, where the input
space is usually a subset of the Euclidean space Rp with typically p ≥ q. In light of the
usually high degree of complexity of the empirical processes being modelled via f (·), it
is normally unaffordable to explore the whole input space X just by repeatedly running
the computer program. As a consequence, although in principle deterministic the code
is in fact prone to at least code uncertainty (see Section 1). Hence f(·) is regarded as
a stochastic function on X , though still assumed to be reasonably smooth. Therefore,
within the Bayesian framework an appropriate prior process needs to be assigned to the
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random function f (·). In line with [4] we suppose that knowledge of the simulator can be
summarised by the semi-parametric Gaussian process representation

[
f(·) | B, Σ, R

] ∼ Nq

(
m(·), c(·, ·)Σ)

, (1)

where ∀ x1, x2 ∈ X

m(·) = BTh(·)
c(x1, x2) = exp

{−(x1 − x2)
TR(x1 − x2)

} .

Here h : X �−→ Rm is a vector of arbitrary regression functions h(x), common to every
component fi(·), i = 1 . . . , q of f(·), B = [β1 · · ·βq] ∈ Rm,q is a matrix of regression

coefficients, Σ = [σij ] ∈ Rq,q a dispersion matrix with generic entry σij = Cov
[
fi(·), fj(·)

]
and R = diag{ri} ∈ R+

q,q a diagonal positive-definite roughness matrix. Gaussian pro-
cesses constitute the natural counterpart of the Normal model usually invoked for finite-
dimensional estimands, and enjoy the same flexibility and tractability when utilised for
addressing problems related to functional inference. Separability of the covariance struc-
ture between the code inputs and its outputs is here assumed for simplicity. It is also
worthwhile mentioning that diagonality of R, here imposed for parsimony, implies that the
correlation structure between any pair f(x1) and f(x2) is insensitive to any interaction
among inputs.

Running the computer code on a pre-selected design set {s1, . . . , sn} ⊂ X yields
simulations organised in the data matrix D =

[
fi(sr)

] ∈ Rn,q. The design set can be
selected in accord to some space-filling experimental design criterion: see for instance
[5, 6, 7] and annotated bibliography. Due to the learning mechanism intrinsic to the
Bayesian paradigm, as more model runs become available the posterior distribution of
f (·) becomes more concentrated near the input configurations, which in turn are exactly
interpolated.

In light of the assumptions listed above, the joint distribution of the code responses
D conditional on nuisance parameters B, Σ, R is the matrix-Normal distribution

[D | B, Σ, R] ∼ Nn,q

(
HB, Σ ⊗ A

)
,

where HT =
[
h(s1) · · ·h(sn)

] ∈ Rm,n, A = [c(sr, sl)] ∈ Rn,n and ⊗ denotes the Kronecker
product. Letting now tT(·) =

[
c(·, s1) · · · c(·, sn)

] ∈ Rn, standard Normal theory and some
matrix calculus manipulations lead to the following conditional posterior distribution for
the computer simulator:

[
f(·) | B, Σ, R, D

] ∼ Nq

(
m�(·), c�(·, ·)Σ)

, (2)

where

m�(·) = BT
[
h(·) − HTA−1t(·)] + DTA−1t(·)

c�(z1, z2) = c(z1, z2) − tT(z1)A
−1t(z2)

.

A possible way to obtain the posterior process of f (·) conditional on the roughness
matrix R alone is by integration of (2) with respect to the posterior distribution of the
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nuisance parameters B, Σ. Since any substantial information about such parameters will
hardly ever be elicited from the code developers, a prior choice found to be both reasonable
and manageable is the Jeffreys non-informative independence distribution πJ(B, Σ | R) ∝
|Σ|− q+1

2 . Standard Bayesian calculations from (2) and πJ(·) yield

[f(·) | Σ, R, D] ∼ Nq

(
m��(·), c��(·, ·)Σ)

, (3)

where

m��(·) = DTA−1t(·) + B̂T
GLS

[
h(·) − HTA−1t(·)] (4a)

c��(x1, x2) = c�(x1, x2)

+
[
h(x1) − HTA−1t(x1)

]T(
HTA−1H

)−1[
h(x2) − HTA−1t(x2)

]
(4b)

and B̂GLS =
(
HTA−1H

)−1
HTA−1D is the GLS estimator of B. Provided that n ≥ m + q

so that all ensuing posteriors are proper, the conditional posterior Student’s T process

[f (·) | R, D] ∼ Tq

(
m��(·), c��(·, ·)Σ̂GLS; n − m

)
(5)

is finally obtained, in which Σ̂GLS = (n − m)−1(D − HB̂GLS)
TA−1(D − HB̂GLS) denotes

the GLS estimator of Σ.

Direct utilisation of (5) and of precursory results for drawing inferences about the
simulator f (·) must still be preceded by estimation of the unknown roughness matrix R.
A full Bayesian treatment of the roughness parameters, notoriously difficult to estimate
(see in particular [8, 9] for insights), is here rejected on the grounds of computational
tractability. Nonetheless a plug-in approach based upon the posterior mode of (r1, . . . , rp)
arising from a diffuse, albeit proper, prior was found to yield satisfactory results. Once this
task is accomplished expressions (4a)-(4b) furnish respectively a cheap code interpolator
and, when combined with Σ̂GLS, a measure of its accuracy. Furthermore, integration of
the posterior T process (5) relative to appropriately selected distributions over (possibly
portions of) the input space X constitutes the basis of customary uncertainty analysis
techniques. For a complete review of such methodologies, and their adaptations and
implications within a Bayesian set-up, see [2, 4, 10].

3. DYNAMIC META-MODELS

3.1. From Static to Dynamic Emulation

Dynamic computer models come into play when it is desired to reproduce and examine
the evolutionary nature of a time-varying process. As mentioned in Section 1, in order to
reproduce dynamic patterns computer models customarily utilise outputs from each stage
of a simulation as inputs to subsequent stages. This is in essence achieved by computing
the state vector yt relative to a time step t = 1, . . . from inputs comprising both constant
tuning values x and outputs yt−1 from the previous time period t − 1∗. Taking into

∗For many physical processes to impose a Markovian dependence of dynamic outputs over
time, although not correct, may still produce an acceptable representation.
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Figure 1. Single-step meta-modelling

account other time-evolving exogenous code drivers {zt}, the model’s functioning can be
then represented via the recursive relation

yt = f(x, zt, yt−1)

= f
[
x, zt, f (x, zt−1, yt−2)

]
= · · ·

.

If the time span of interest is delimited by endpoints t = 0 and t = T , then in principle
emulation of f (·) can be attained over such interval just in a single-run fashion (see
Figure 1): under this perspective the simulator is imagined to take a set of input values,
comprising initial system descriptors y0, and to return a collection of outputs inclusive of
yT . The main appeal of such procedure clearly lies in enabling straightforward application
of standard statistical analysis tools already existing for static codes. An important
disadvantage however is that in this set-up the input space X comprises constants x, the
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Figure 2. Recursive meta-modelling
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initial state vector y0 and all drivers {zt}. On the other hand the output generated by
f (·) consists of the whole collection of runs {yt}. Therefore applications of this strategy is
severely hindered by typically unwieldy dimensions for both the model input and output
spaces. Additional relevant flaws undermining single-step emulation can be also recognised
in the need to rebuild the posterior process (5) from scratch whenever the temporal window
of interest changes and in deferment of any occasional model rectification exercise until
the end of the simulation.

An approach which intuitively retains the code’s evolutionary pattern is alternatively
depicted in Figure 2. Here the proposed idea is to run a single-step emulator in a recursive
fashion, until coverage of the time span (0, T ) is attained: given the state vector yt

acquired at any time t = 0, . . . , (T − 1), subsequent emulation of yt+1 is then computed
only on the basis of yt and of current drivers zt+1. As a consequence input and output
spaces become more tractable and interactive data assimilation is now feasible. Main
drawbacks of the method in this case are: need to extend theoretical results from static
to dynamic codes; tighter accuracy requirements at each time step for ensuring adequate
overall meta-modelling; and gradual fading of computational advantages over direct Monte
Carlo simulation for increasing values of T .

3.2. Dynamic Emulation Theory

Assume for simplicity that no exogenous drivers are required for running f(·). In addition,
suppose with no loss of generality that the variables which the code rolls forward over
time are the last q ≤ p input entries; that is, for any t and any suitable x ∈ R

p−q, yt ∈ R
q

we have yt+1 = f (x, yt).

An issue that should promptly be highlighted is that under assumption (1) a recursive
emulator of nonlinear codes can at best be approximately Gaussian: if yt = f (x̄) for
some x̄ ∈ X , then for any x such that (x, yt) ∈ X the statement

[
f(x, Y t) | Σ, R

] ∼ Nq(·, ·)
will not strictly hold†. Keeping an assumption of approximate Normality for modelled
outputs on practical grounds obviously entails careful assessment of its plausibility at each
stage of the whole emulation process. Subject to this condition it then becomes feasible to
explore the first and second order properties of the posterior distribution of f (yt), given
previous-step outputs yt−1 and nuisance parameters Σ, R. In fact, recalling results (4)
approximate expressions have been derived in closed form for

E
[
f (x, Y t) | Σ, R, D

]
= E

[
m��(x, Y t) | Σ, R, D

]
(6a)

Cov
[
f(x1, Y t1),f (x2, Y t2) | Σ, R, D

]
= Cov

[
m��(x1, Y t1), m

��(x2, Y t2) | Σ, R, D
]

+ E

{
c��

[
(x1, Y t1), (x2, Y t2)

] | Σ, R, D
}

Σ (6b)

by applying the law of iterated expectations and relying upon properties of multi-Normal
distributions. After integrating out the unknown parameters in Σ and R, expressions (6)

†An intuitive counterexample is provided by the case f : R �−→ R
+, f(x) = x2.
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in turn play an analogous role to their “static” counterparts (4) when attempting usual
uncertainty or sensitivity analyses of f (·) in a dynamic fashion. As regards the (q q+1

2
)-

dimensional problem of marginalising Σ, in light of the dual origin of the Student’s Tq

distribution (see for instance [11], pg. 23) this was found to be efficiently dealt with by
means of a simple univariate integration.

4. THE SHEFFIELD DYNAMIC GLOBAL VEGETATION MODEL: A
TEST-BED

The Centre for Terrestrial Carbon Dynamics (CTCD) is a consortium of British academic
and governmental institutions, established for the purpose of progressing scientific under-
standing of the role played by terrestrial ecosystems in the carbon cycle, with particular
emphasis on forest ecosystems. The ultimate goals of the project are: to gauge carbon
fluxes and their uncertainties at different space/time resolutions; to devise methodological,
data and instrument advances for reducing these uncertainties; to deliver relevant findings
in accessible formats to the scientific community and ultimately to policy makers. These
tasks are pursued with the support of a variety of environmental models designed for sim-
ulating carbon patterns over different geographical and climatic scenarios. Unfortunately,
such models suffer from coarse reproduction of some underlying physical processes and
loose connections to driving data.

Bayesian statistical methods are being employed within the Centre for the assessment
of relevant model (and data) developments required for reducing the uncertainty around
them. In this setting, statistical challenges other than pure uncertainty and sensitivity
analysis which presently require special care are: prediction, i.e. estimation of (possibly
functionals of) model outputs at unavailable input configurations; screening, that is iden-
tification of which code inputs exert most significant influence on the outputs; and code
verification, or detection of bugs in the actual implementation of the program.

Among the simulators devised and deployed within CTCD a central role is played by
the Sheffield Dynamic Global Vegetation Model, daily version (henceforth SDGVMd).
SDGVMd is aimed at illustrating possible responses of ecosystem processes to atmo-
spheric CO2 concentration and climate changes by modelling interactions at a regional to
global scale between ecosystem carbon, water fluxes and vegetation. Inputs to SDGVMd
comprise broad soil, vegetation and climate descriptors; outputs of the model include
various measures of a site’s carbon budget and miscellaneous environmental quantities.
Additional challenges specifically offered by SDGVMd comprise a high-dimensional input
space and the existence of embedded sub-modules operating at different time scales. A
complete description of SDGVMd and the modules it incorporates can be found in [12].

For the purpose of illustrating the broad range of possibilities offered by Gaussian
process-based meta-modelling, the soil module of SDGVMd (CENTURY : for details refer
to [13]) was extracted and subject to emulation. In essence CENTURY manages the soil
carbon (C ) calculations within SDGVMd by recursively solving a set of independent
PDEs, each being indexed by temperature, relative humidity and precipitation drivers
and describing the monthly evolution of 8 different C pools. It should be stressed that
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Figure 3. Simulated (—�—) vs. emulated (· · ·� · · · ) C pools within 95% credible bounds
(−−−).

in fact CENTURY is not a CPU-intensive model; nonetheless this feature conveniently
enables straightforward evaluation of its emulator’s performance.

Having thus recognised as an appropriate representation of CENTURY a function
f : R11 �−→ R8, an interpolation exercise over a time period of 12 months was subsequently
carried out. The input space was covered via a maximin Latin hypercube design of size
n = 200; thereafter roughness parameters were estimated by the joint posterior mode
based on vague i.i.d. Log-Logistic priors on (r1, . . . , rp). The prior mean was chosen to be
linear, i.e. h(x) = (1, x1, . . . , xp), again for convenience. Figure 3 compares CENTURY’s
exact simulations for each C pool with their corresponding approximate posterior values
from (6a), embedded within approximate 95% credible bounds.

A few comments are in order. It should be noticed how in most cases estimated
interpolators appear to satisfactorily capture the underlying original outputs, apart from
perhaps a couple of C pools (Surface microbe and Slow) where some drift can be observed
to emerge over time. Additional effort should be placed into achieving somewhat narrower
credible bounds for the interpolators, but provisional results look overall encouraging.

5. CONCLUSIONS

The paper focuses on two main goals. First, it deals with extensions to multi-response
computer simulators of theoretical results already established for Bayesian meta-modelling
of single-response codes. Second, it attempts to adapt the general methodology to en-
compass dynamic computer models within the same formal framework. Single-step and
recursive emulation schemes were introduced and contrasted; preference towards the lat-
ter methodology was based on computational manageability. The proposed statistical
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machinery was then tested on the soil compartmental model embedded within SDGVMd:
although the implemented exercise was limited to pure code interpolation, the analysis’s
outcome confirmed that interesting insights can be gained from applying the principle of
Bayesian Gaussian process-based emulation to more sophisticated settings.
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Abstract 
This paper develops a Bayesian methodology for assessing the confidence in model prediction 
by comparing the model output with experimental data when both are stochastic. The prior 
distribution of the response is first computed, which is then updated based on experimental 
observation using Bayesian analysis to compute a validation metric. A model error estimation 
methodology is then developed to include model form error, discretization error, stochastic 
analysis error (UQ error), input data error and output measurement error. Sensitivity of the 
validation metric to various error components and model parameters in discussed. A numerical 
example is presented to illustrate the proposed methodology. 

Keywords: Bayesian statistics, error estimation, sensitivity, uncertainty, validation, verification. 
 
1. Introduction 
Complex natural phenomena are increasingly sought to be modeled through sophisticated 
computational models, with very few or no full-scale experiments, thus reducing the time and 
cost of engineering development relying upon the understanding of these phenomena. However, 
such models incorporate many assumptions and approximations and hence need to be subjected 
to rigorous, quantitative verification and validation (V & V) before they can be applied to 
practical problems with confidence.  

There are a number of physical, statistical and model uncertainties in the prediction apart 
from the various direct sources of numerical error. A probabilistic approach to V&V under 
uncertainty involves quantification of the statistical distribution of model prediction and then 
comparing it with experimental measurement that also follows a statistical distribution. Note that 
this could also be viewed as studying the joint distribution of the experiment and model. Various 
methods are available to carry out probabilistic analysis to quantify the uncertainty in the model 
output, given the statistical distributions of the input variables, such as Monte Carlo simulation 
[1] or response surface methods [2, 3].  The choice of method depends on the nature of model 
used for predicting the output, and the needs with respect to accuracy and efficiency.  

Verification refers to the assessment of accuracy of the solution with respect to known 
solutions, or by some other means, such as a posteriori error estimation. This activity helps to 
identify, quantify and reduce the errors in the computational model [4, 5]. Several finite element 
discretization error estimators have been developed in the literature [6-8]. Error estimates for 
uncertainty quantification methods (Monte Carlo and response surface methods) are also 
available [2, 5]. 

Validation involves comparison of model prediction with experimental data [4]. The widely 
used method of “graphical validation” or viewgraph-based judgment (i.e., by plotting graphs of 
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prediction and observation) is inadequate although it is better than a qualitative comparison [9, 
10]. A rigorous quantitative model validation metric should include both prediction and 
measurement errors, and other uncertainties. Several metrics have been developed to include 
parametric uncertainty [11]. One such metric normalizes the difference between model 
predictions and experimental values and computes a relative error norm for discrete and 
continuous domain problems. Another metric includes the uncertainty in the experimental value 
due to limited data through statistical distributions and classical hypothesis testing [12, 13].  

Two types of validation metrics are developed in this paper, based on the Bayesian approach. 
The first metric considers test data based on a simple fail/pass criterion, while the second metric 
compares model prediction with observed response measurement, both being continuous 
variables. The second approach explicitly incorporates the variability in the experimental data 
and the magnitude of its deviation from the model prediction. Once the model is validated, it 
may be calibrated to improve its predictive capability. A prediction error estimation 
methodology is developed for this purpose in this paper; this includes model form error, 
discretization error, stochastic analysis error (UQ error), input data error and output measurement 
error. The overall error is a nonlinear combination of these various errors. Sensitivity analysis of 
the validation metric to different physical and statistical parameters of the model output and 
measurement error variance can be very useful for model improvement or calibration and 
resource allocation. Section 2 develops the Bayesian validation metrics, and Section 3 describes 
the proposed methodology for model error estimation and sensitivity analysis of the validation 
metric. An illustrative numerical example is provided in Section 4. 
 
2. Validation metric 
2.1. Bayes factor 

Consider two models (or hypotheses) Mi and Mj. Their prior probabilities of acceptance are 
denoted by P(Mi) and P(Mj). By Bayes’ rule, when an event/data is observed, the relative 
posterior probabilities of two hypotheses are obtained as [14, 15]: 
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The term in the first set of square brackets on the right hand side is called the “Bayes factor” 
[16]. If the Bayes factor is greater than 1.0 then it can be inferred that the data favors the model 
Mi more than model Mj. If only a single model M is proposed, then the model could be either 
accepted as correct or rejected as incorrect. Thus the Bayes factor in Eq. (1) may also be written 
as ( ) ( )tcorrecnotisnobservatiocorrectisnobservatio MPMP . When an observation is made, 
then the Bayes factor estimates the ratio of relative likelihoods of the null hypothesis (i.e., data 
supports the proposed model) and alternate hypothesis (i.e., data does not support the proposed 
model). The Bayes factor metric is further developed below for two situations: 1) reliability 
model  2) response computation. 

2.1.1. Validation with pass/fail test data 

Let xo and x be the predicted failure probability and true failure probability respectively of an 
engineering system. The value xo is predicted by model M. This can be considered as a point null 
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hypothesis (Ho: x = xo). To estimate the Bayes factor in Eq. (1), we need to consider an 
alternative hypothesis (H1: x ≠ xo).  

If n experiments are undertaken, and k failures (e.g., stress greater than an allowable value) are 
observed out of n tests, then the probability of observing the data given that the true probability 
is equal to x comes from a binomial distribution as 

                                 ( ) ( )| , 1 n kn k
kP k x n C x x −= −                                                               (2) 

Under the null hypothesis, this probability, P(data| Ho: x = xo) can be exactly estimated by 
simply substituting xo in Eq. (2). Assume that there is no prior information about x under the 
alternative hypothesis. Therefore, a uniform distribution in [0, 1] is assumed for f(x| H1), the prior 
density under the alternative hypothesis [17]. Then the Bayes factor is computed as 
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It is easy to identify the above expression in Eq. (3) to be the probability density function 
(PDF) of a beta distribution with parameters k + 1, n – k +1. It is well known that the posterior 
PDF of x follows the beta distribution, when the prior PDF has uniform distribution. In more 
detail, if the prior has a uniform PDF in [0, 1] i.e., f(x) = 1, then the posterior PDF is 

                          ( | : , ) ( 1) (1 )n k n k
kf x data n k n C x x −= + −                                  (4) 

Note that this result is the same as in Eq. (3), which is the Bayes factor B(x) evaluated at the 
probability x (see Fig. 1). Therefore, the Bayes factor can be viewed here as the posterior density 
of x evaluated at the predicted value xo.  
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Fig. 1. Posterior density function for the probability of failure 

The above result, that the Bayes factor is the posterior PDF at the predicted value x0, is only for 
the case with uniform prior and binomial pass/fail data. For tests conducted in other situations, 
only a response quantity may be measured (such as deflection, strain etc.), but the specimen may 
not be loaded till failure. In such cases, it is valuable to derive a more general expression for the 
Bayes factor, by using prior and posterior PDF's of the predicted response. 

2.1.2. Validation with response variable measurement 

In Eq. (2), the probability of the data k for a given value of x, i.e., P(k| x, n), is also the likelihood 
function of x, i.e., L(x), where the failure probability x is the parameter of the binomial 
distribution. For a continuous distribution, the likelihood function is proportional to the 
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B = h2/h1

probability density of data y given the parameter x i.e., L(x) ∝ f(y| x) [18]. Consider x to be not 
the failure probability, but some general response quantity, with density function f(x) and xo the 
value predicted by the computational model under consideration. Then the probability of 
observing the data under the null hypothesis, P(data| Ho: x = xo) can be obtained from L(xo) = ε 
f(y| xo) where ε is a positive constant [18]. Similarly, the probability of observing the data under 
the alternative hypothesis P(data| H1: x ≠ xo) can be obtained from ( ) ( )L x g x dx∫  or 

( | ) ( )f y x g x dxε∫ , where g(x) is the prior density of x under the alternative hypothesis. Since no 
information on g(x) is likely to be available, one possibility is to assume g(x) = f(x). Then, using 
Eq. (1) and Bayes theorem, the Bayes factor is computed as 
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Thus, the Bayes factor simply becomes the ratio of posterior to prior PDFs of the predicted 
response when g(x) = f(x). This result probabilistically quantifies the contribution to model 
validation of an experimental result that agrees with a given model prediction. If g(x) ≠ f(x), then 
the Bayes factor is computed using Eq. (5) with g(x) instead of f(x) in the denominator. Fig. 2 
shows notional posterior and prior densities of model prediction x. Once again, B > 1 indicates 
data support for the model. 
 
 
 
 
 

 

 

 

Fig. 2. Validation metric as a ratio of posterior and prior density values 
 
If xtrue is the true solution, x is the model output, and y is the experimental observation, then the 
following equations hold: 

                xtrue = x + εpred                                                             (6a) 
                xtrue =  y + εexp                                                              (6b) 

where εpred is the model prediction error and εexp is the measurement error. If we hypothesize that 
there is no prediction error, the observed value will simply be y = x - εexp. From this relation and 
a Gaussian experimental error assumption, we obtain f(y| x) ~ N(x, 

exp

2
εσ ). The likelihood function 

L(x) in Eq. (5) can be created using f(y| x). If there is only one observed value of y, then L(x) = 
f(y| x). If multiple data are observed, the likelihood is constructed as a product of f(y| x) values 
evaluated at each y. This can be used to test our hypothesis.  

A Bayes factor less than unity denotes that εpred is significant and should not have been 
omitted and hence there is a need for estimating the total prediction error. It should be noted that 
the metric shown in Eq. (5) allows us to use non-Gaussian experimental errors also. Even when 
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B > 1, it is useful to quantify the prediction error, and to examine whether contributions from 
different errors cancel each other. Further the degree of confidence in the model prediction can 
be measured from the posterior probability of the null hypothesis being true i.e., P(H0| data) as 
B/(B + 1) assuming that the prior probability P(H0) to be 0.5 in the absence of any prior 
knowledge. The following section presents methods for quantifying the errors and uncertainty in 
model prediction. 

3. Error estimation 
The total prediction error is a function of various error components that can be broadly divided 
into numerical solution errors and model form errors. Investigations on error combination are 
rarely available. This paper pursues a nonlinear combination method.  

3.1 Numerical Error Components in Simulation 
Several components of numerical errors in model prediction, such as data error, discretization 
error, stochastic analysis error (or UQ error), and measurement error are briefly discussed below. 

3.1.1. Input data error (εd) 
The measurement error in the input variables will be propagated to the prediction of the output. 
If the relationship between input and output is given by 1 2( , ,.. )mu f x x x= , then the error in the 
prediction of the output due to the measurement error in the input variables may be approximated 
using a first-order sensitivity analysis as 
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order sensitivity coefficient of the model output u with respect to the ith input random variable xi.  
The measurement error in each input variable has been commonly quantified as a random 
variable with Gaussian distribution, with zero mean and a known or assumed variance, based on 
the instrument calibration. 

3.1.2. Discretization error (εh) 
Several methods to quantify the discretization error in finite element analysis are available in the 
literature. However, most of these methods do not quantify the actual error; instead, they 
quantify some surrogate measures to facilitate adaptive mesh refinement. The Richardson 
extrapolation (RE) method has been found to be suitable for model verification and validation, 
since it comes closest to quantifying the actual discretization error [19]. This method has been 
extended by the first author to stochastic finite element analysis [20]. It should be noted that RE 
requires that the model solution be asymptotically convergent and the domain is discretized 
uniformly (regular grid). The assumption of monotone truncation error convergence is not valid 
for very coarse models sometimes. In the Richardson extrapolation method, the error due to grid 
size (for a coarse mesh) is given by 

          
1
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−
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= ph r
ff
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where the grid refinement ratio r = h2/ h1, and f1 and f2 are the solutions with coarse and fine 
meshes respectively. The order of convergence p can be obtained from the relation 
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=  where f3 is the solution with the finest grid size, and r = h2/ h1 = h3/ h2. 

Due to the input variable uncertainties, the finite element solutions f1 and f2 are stochastic. 
Therefore, based on Eq. (8), the discretization error (εh) is also a random variable. 

3.1.3. Uncertainty quantification error (εuq) 

Errors in stochastic analysis are method-dependent, i.e. sampling error occurs (εmc) in Monte 
Carlo methods and truncation error (εsm) occurs in response surface methods (either conventional 
or polynomial chaos-based). For example, sampling error could be assumed to be a Gaussian 
random variable with zero mean and variance given by σ2/N where N is the number of Monte 
Carlo runs and σ2 is the original variance of the model output [21]. The truncation error (εsm) is 
simply the residual error in the response surface.  

In this paper, due to the use of response surface techniques for uncertainty quantification, 
truncation error is used to represent εuq. A polynomial chaos-based response surface is used, 
which is found to have superior convergence characteristics than conventional response surface 
models [20]. The response surface is constructed by approximating both the input and output 
random variables through series expansions of independent standard random variables ξi. For 
example, a normal random variable can be expressed in terms of its parameters as µ + σξ where 
ξ is a standard normal variable.  Similarly, a lognormal random variable with parameters λ and δ 
can be expressed as exp (λ + δξ). The output response surface is expressed in terms of the input 
variables through a polynomial chaos expansion as 
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where x is the output and ),...,(
1 piip ξξΓ  are multi-dimensional Hermite polynomials of degree p. 

The design points for the data used to construct the response surface are chosen such that they 
are the roots of the Hermite polynomial of the order p+1 where p is the order of the response 
surface [2].  

The series in Eq. (9) could be truncated to a finite number of terms. Thus the accuracy of the 
stochastic computational model depends on the order of the expansion. The truncation error εsm 
in the response surface of order p can be estimated by constructing additional higher order 
response surfaces (i.e., order p +1 or p + 2 ), and using the Richardson extrapolation method, 
similar to Eq. (8).   

3.1.4. Output measurement error (εexp) 

The measurement error in the output variable is a separate error component, whereas the 
measurement error in the input variables is compounded through propagation in the prediction 
model. Output measurement error is quantified commonly as a random variable with Gaussian 
distribution, with zero mean and a known or assumed variance. 
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3.2. Model Form Error (εmodel) 

If multiple models are considered, Bayesian model averaging (BMA) [22, 23] may be used to 
reduce the model form uncertainty and model errors, but not quantify them explicitly. In some 
practical cases, only one model may be available, in which case BMA may not be useful. If a 
single model is employed, this paper makes use of the observed data to express the overall 
prediction error through a regression model consisting of the individual error components. The 
residual of such a regression analysis should include the model form error (after subtracting the 
experimental error effects). From Eqs. (6a) and (6b) and by denoting εobs as the difference 
between the data and prediction, i.e., εobs = y – x, we can obtain the following relation:  

            εobs = y - x = εpred – εexp  
                   = εnum + εmodel - εexp  

                                                                  = ( , , )h uq d model expf ε ε ε ε ε+ −                           (10) 

In Eq. (10), overall numerical error εnum is a nonlinear function of the error components εh, 
εuq and εd. Therefore, it is constructed as a response surface with respect to εh, εuq, and εd, using a 
polynomial chaos expansion, similar to Section 3.1.3. The quantity εmodel – εexp is simply the 
residual εresidual of such a response surface. Thus the distribution of model error εmodel is 
quantified by knowing the distributions of εresidual and εexp. However in most practical situations, 
the validation data is very limited. From a single validation experiment, one has the numerical 
values of prediction and observation, and estimates of the numerical errors in prediction, but not 
the experimental error. In other words, values ( , , )h uq df ε ε ε , and εobs are available but the exact 
value for experimental error εexp cannot be estimated. Only the distribution of εexp is available or 
assumed, if at all. If we have a sufficient number of validation data, we can compute the 
difference (εobs - ( , , )h uq df ε ε ε ) and add a randomly generated term εexp to it each time to obtain 
an estimate of model form error εmodel. Since the sample size (number of observations made) is 
limited, an empirical distribution for εmodel cannot be constructed with confidence. However, one 
can compute the statistics like mean and standard deviation of model error from a set of 
validation experiments. Bootstrapping [24] (sampling with replacement) can be done on the 
given data set to generate a large number of statistics for model form error, thus obtaining the 
distributions for mean and standard deviation of model form error. Bootstrapping assumes that 
the data set in hand is representative of the intended population and no prior assumptions are 
made regarding distribution of the samples. Further the observations are assumed to be 
independent and sampling is purely random.  

3.3 Sensitivity Analysis 
The Bayesian validation metric given in Eqs. (3) and (5) depends explicitly on model output and 
uncertainties arising from validation experiments like lack of sufficient data points and random 
measurement errors etc. Also, the statistical and physical model parameters affect the model 
output and hence a model may be accepted or rejected based on our prior assumption in a 
Bayesian analysis. Thus, there exists an implicit relation between the Bayes factor and each of 
the above model parameters, and curves may be fitted to depict this relation. The sensitivity of 
the Bayes factor to these variables may be estimated from the slopes (first order sense) of such 
plots. For example, with reference to Eq. (3), the uncertainty due to a limited number of data 
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points in a pass/fail type of test may be quantified as 2 (1 )
o

o o
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x x
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σ −
= . For particular known 

values of k and x0, one can generate a plot of B(x0) versus 2
oxσ  for different values of n, based on 

Eq. (3), as shown in Fig. 3.  
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Fig. 3. Relation between B(x0) and 2

oxσ  

Similar relations between B(x0) and 
exp

2
εσ , µx, σx etc in Eq. (5) can be derived to be used in a 

sensitivity analysis. A numerical example is provided to illustrate the proposed methodology. 

4. Numerical example 

The steady state heat transfer in a thin wire of length L, with thermal conductivity k, convective 
heat coefficient β is of interest. The temperature at midpoint of the wire needs to be predicted. 
We assume (acknowledging model form error) that this problem is essentially one dimensional 
and that the solution can be obtained from the boundary value problem  

            
2

2 ( )Tk T Q x
x

β∂
− + =

∂
                                                       (11) 

with known conditions T(0) and T(L) 

where Q(x) is the heat source. Suppose k and β are assumed for the sake of illustration to be 
random variables, normally distributed with statistics N (5, 1) and N (0.5, 0.1) respectively. Also, 
the heat source Q(x) = 25(2x-L)2 with L = 4. The wire is insulated at the ends, which are kept at 
zero temperature i.e., T(0) = T(L) = 0. It is required to predict T(2.0). 

The numerical solution T(x) for Eq. (11) can be obtained using a finite-difference scheme 
with discretization step size h. Since k and β are random, the model prediction T(2.0) is also 
random whose statistical distribution needs to be estimated. Since each computation of T(2.0) 
using a finite-difference scheme could be computationally expensive, a response surface may be 
fitted to predict T(2.0) as a function of input random variables k and β. A polynomial chaos-
based response surface is used for this purpose, as mentioned in Section 3.1.3 earlier. Thus the 
random variables k and β are expressed as (5+ξ1) and (0.5+0.1ξ2) respectively, where ξ1 and ξ2 
are standard normal variables. The design points for the data used to construct the response 
surface are chosen such that they are the roots of Hermite polynomial of the order p+1 where p is 
the order of the response surface. The corresponding values of k and β, with respect to these 
collocation points, are then used in the numerical model to compute the response T(2.0). The 

164



                 
 
 

unknown coefficients of the stochastic response surface are then computed using standard 
regression techniques. 

In this numerical example, a second order response surface in two variables is constructed for 
T(2.0) and with step-size h = 1. The design points for k and β are selected at the collocation 
points obtained from the roots of 3rd order Hermite polynomials. The response surface is  

 Tpred = T(2.0) = 17.102 -3.003 ξ1 -0.698 ξ2 + 0.4964(ξ1
2-1) + 0.0251(ξ2

2-1) + 0.237 ξ1ξ2  (12) 

where ξ1 and ξ2 are independent standard normal variables and R2 = 0.999. The PDF of Tpred can 
be generated by simulating ξ1 and ξ2, and is found to have a lognormal distribution with mean 
17.12 and variance 10.042. This is the prior density to be considered in the Bayesian model 
validation next. 

4.1 Validation 

Suppose for given values of k and β,  the numerical model predicted a temperature of 18.5 
degrees. A wire made of a material with properties k and β having the same measured values as 
input to the numerical model was tested three times repeatedly to measure the temperature at 
location x = 2. 

 

 

 

 

 

 
Fig. 4. PDF of T(2.0) 

 
The measured temperature was different in each experiment i.e., 18.8, 18.2, 18.9 degrees. 
Assuming a Gaussian experimental error with zero mean, the true experimental value is assumed 
to be the mean of the three measurements, i.e., 18.633 degrees for the sake of illustration. Also, 
the experimental error is assumed to have a variance 2

expεσ estimated from the three 
measurements, again for the sake of illustration. 

As described in Section 2.1.1, the likelihood function of the prediction is proportional to a 
normal density with mean T(2.0) and variance 2

expεσ  = 0.1433. Also with the knowledge of 
f(T(2.0)), the validation metric is evaluated at T = 18.5 degrees. Using Eq. (5), the validation 
metric B is found to be 11.6 which is much greater than 1.0 indicating that the data matches very 
well with the prediction. However, one should be cautious in accepting this result since various 
errors like discretization error, input data error, truncation error and even model form error may 
be canceling each other to produce a result that is close to the measured value. Hence there is a 
need to estimate the various errors explicitly, as described below. 

4.2 Error Estimation 

The numerical model related to Eq. (11) was refined using h = 0.5 and h = 0.25 to estimate the 
convergence rate p = 1.985 ≈ 2 as described in Section 3.1.2. The discretization error εh based on 
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the Richardson extrapolation method was obtained as a stochastic response surface in two 
variables as 

         εh = 5.9725 -1.1 ξ1 -0.1918 ξ2 + 0.1895(ξ1
2-1) + 0.0057(ξ2

2-1) + 0.0681 ξ1ξ2       (13) 

The discretization error was found to have a lognormal distribution with parameters λ = 1.762, 
and ξ = 0.1923 i.e., with mean 5.9725 degrees and a standard deviation of 1.15. Due to the use of 
the stochastic response surface, the uncertainty quantification error εuq is estimated by the 
truncation error εsm, i.e., the residual error in the stochastic response surface for the model 
response T(2.0), which was found to be a Gaussian variable with zero mean and a standard 
deviation of 0.2 degrees. This is much smaller than the FEM discretization error. The 
information on input data error εd was not available, and εd is assumed negligible in this 
example. Neglecting εsm and εd based on the above observations, the numerical error εnum in Eq. 
(10) is approximated by εh.  Thus Eq. (10) reduces to 

                  εobs = εh + εmodel – εexp                                              (14)  

In Eq. (14), the distributions of εh and εexp are available from the above discussion. Specific 
values of εobs are available from each test. The number of tests, and thus the number of samples 
of εobs, is likely to be small in practical problems. In this example, nine values of Tpred (and hence 
εh) are calculated at nine collocation point values of ξ1 and ξ2 (using Eqs. 12 and 13 
respectively), as shown in Table 1. Assume for the sake of illustration that nine corresponding 
values of Τobs (and hence εobs) are observed from nine tests, also shown in Table 1. A bootstrap 
resampling technique [24] (with replacement) can then be applied to generate εmodel, based on Eq. 
(14). Each time a value for (εobs – εh) is resampled from the nine values shown in Table 1, a 
randomly generated value of εexp is added to it, and sample statistics of εmodel (mean and standard 
deviation) are calculated from nine such values in a resample. (Note that each resample contains 
the same number of data points as the original sample, i.e., nine in this case). The procedure is 
repeated and 10,000 values for µεmodel and σεmodel are obtained, thus giving their distributions as 
shown in Table 2. This approach thus provides a measure of the uncertainties in the statistical 
parameters of model form error, since they are obtained by bootstrap resampling.  

Table 1. Sample points for model form error 

εh Tpred Tobs εobs εobs - εh 
5.824 16.597 16.794 0.197 -5.627 

8.126 12.902 12.997 0.095 -8.031 

5.824 15.642 15.920 0.278 -5.546 

4.174 23.222 23.310 0.088 -4.086 

5.824 17.653 17.442 -0.211 -6.035 

8.126 13.526 13.488 -0.038 -8.164 

4.174 21.350 21.181 -0.169 -4.343 

8.126 12.327 12.173 -0.154 -8.28 

4.174 25.394 25.301 -0.093 -4.267 
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In this example, the mean model error µεmodel was observed to follow a normal distribution (mean 
-6.03, see Table 2), and the standard deviation of model error σεmodel was observed to follow a 
Weibull distribution. The numerical error has a mean value of 5.9 degrees while the model form 
error has a mean value of -6.03 degrees.  

Table 2. Distributions of model error statistics 
Parameter Mean Variance Type of 

distribution 

µεmodel -6.03 0.293 Normal 

σεmodel 1.6 0.066 Weibull 

Looking at these numerical results, the two errors appear to have almost cancelled each other in 
Eq. (14), resulting in a small overall observed error εobs and hence a high Bayes factor in Section 
4.1, indicating an optimistic model validation result. But the error quantification shows that the 
prediction model has large numerical and model form errors. Thus a model acceptance/ rejection 
criterion based on the overall εobs alone can lead to misleading conclusions, especially in other 
untested situations when the numerical and model form errors might become additive. This 
observation shows the importance of quantifying various error components, in addition to simply 
comparing prediction and observation. 

Since the error components add up linearly in this example, the relative first order 
sensitivities of numerical, model and experimental errors to Bayes factor will simply be 
proportional to their respective standard deviations. The first order normalized sensitivities of the 
model parameters k and β to Bayes factor in Eq. (5) are found to be 0.978 and 0.208 respectively 
at their corresponding mean values. These values are computed by plotting the relation B vs. k 
and B vs. β separately, and normalizing the products of standard deviations  
and slopes evaluated at their mean values. 

5. Conclusion 
V&V needs to quantify various errors under uncertainty and effectively compare them with 
imprecisely measured experimental data to assess the predictive capability of the model. A 
Bayesian approach was proposed for model validation in this paper, and developed for two 
situations. The first case performs model assessment using a pass/fail criterion and uses the 
Bayes factor as a metric. The second case includes the uncertainty in the experimental data 
explicitly and estimates the Bayes factor using prior and posterior distributions of the model 
output. The overall numerical error in prediction is expressed as a nonlinear response surface in 
terms of several errors such as discretization error, uncertainty quantification error and input data 
error, and compared with the observed error to estimate the statistics of the model form error. A 
bootstrapping technique is used to estimate the model form error from a limited number of 
experimental measurements. The simple numerical example resulted in a linear relation among 
various errors and the further work is needed to demonstrate the methodology for a more 
complex problem where the various errors are combined in a non-linear fashion. Also, the 
sensitivity analysis limited to a first-order evaluation showed that the validation metric is 
sensitive to the variance of each error component. Similarly model parameters that have an 
insignificant effect (small sensitivity) on Bayes factor can be omitted to reduce model 
complexity. 
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Abstract:  We introduce probabilistic inversion techniques as applied in a recent 
example of Campylobacter transmission. Such techniques are indicated when we wish 
to quantify a model whose parameters cannot be directly measured. In this a (partially 
specified) uncertainty distribution over measurable quantities predicted by the model 
can be "pulled-back" onto the parameter space of the model. If a probabilistic inversion 
is feasible, the solution is seldom unique and we require a method of selecting a 
preferred solution. If a problem is not feasible, we require a best fitting distribution.  
This study illustrates two such techniques, Iterative Proportional Fitting (IPF) (Kruithof 
1937) and PARmeter Fitting for Uncertain Models (PARFUM) (Cooke 1994). In 
addition, we illustrate how expert judgement on predicted observable quantities in 
combination with probabilistic inversion may be used for model validation and/or model 
criticism. 
 
Key words: Probabilistic inversion, IPF, PARFUM, Campylobacter, transport models, 
expert judgment, entropy, information. 
 
1. INTRODUCTION 
 
"Probabilistic inversion" denotes a family of techniques which have recently been 
introduced into the field of risk and environmental modelling. They enable 
quantification of non-measurable model parameters in terms of distributions over 
measurable quantities. This is particularly useful when expert judgement is used: experts 
are queried about outcomes of possible measurements, and their uncertainty 
distributions are pulled back onto the parameter space of a model which predicts the 
measured outcomes. Recent applications may be found in (Kraan and Cooke, 2000a,b), 
for a discussion see (Kraan 2002, Kurowicka and Cooke 2002). A complete 
mathematical discussion of the techniques employed here is found in (Du et al 2003).  
 
The ‘pull-back’ distribution on model parameters may be pushed through the model to 
re-predict the quantities assessed by the decision maker. This provides an opportunity 
for model validation and/or criticism.  If the re-predicted distributions agree with the 
original decision maker’s distributions, then the model provides a suitable vehicle for 
capturing the decision maker’s uncertainty. If these distributions do not agree, then the 
model is not suitable to represent the decision maker’s uncertainty. In this case the 
model must be re-evaluated and possibly revised. For more discussion and examples of 
this aspect see (Kraan and Cooke 2000b).  
 
This paper gives an informal introduction to probabilistic inversion techniques, 
illustrated with a recent application to campylobacter transmission. This is a relatively 
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simple environmental transport model and illustrates nicely how probabilistic inversion 
applied to structured expert judgment can play a constructive role in model evaluation. 
 
2. CAMPYLOBACTER TRANSMISSION 
 
Campylobacter contamination of chicken meat may be responsible for up to 40% of the 
annual 100,000 cases of Campylobacter-associated gastroenteritis in The Netherlands, 
and a similar proportion of an estimated 30 deaths. A recent effort to rank various 
control options for Campylobacter contamination of chicken carcasses has led to the 
development of a mathematical model of a typical chicken processing line (Nauta et al 
in preparation). This model has been quantified in an expert judgment study involving 
12 experts (van der Fels et al 2003). Key parameters in the model are transfer 
coefficients from the chickens’ skin and intestines to the processing environment, and 
from the environment back to the chickens’ skin. Experimental data on such transfer 
coefficients are not available, and experts are unable to quantify their uncertainty on the 
values of these coefficients. Hence, the model must be quantified by asking the experts 
about other quantities which, under specific circumstances, can be predicted by the 
model. These quantities typically involve aggregate phenomena with which experts are 
sufficiently familiar to render a judgment. The experts need not endorse, or even know 
the model.  Their uncertainty distributions are combined to form a “decision maker’s” 
distribution, as described in (van der Fels et al 2003).   
 
A schematic representation of a typical broiler chicken processing line is given in Fig. 1.  
 

 
 

Figure 1. Broiler Chicken Processing line 
 
For campylobacter transmission, the relevant phases are scalding, defeathering, 
evisceration, washing, and chilling. Two types of scalding processes are considered, 
namely low and intermediate temperature, as two types of chilling, namely air and spray 
chilling.   Each phase is modelled as a physical transport process. A typical phase in the 
processing line is illustrated in Fig. 2. 
 
Nenv represents the number of campylobacter in the physical environment of the chicken 
in a processing phase (expressed in cfu, colony forming units). Next is the number on the 
exterior of the chicken, and Cint is the concentration in the intestines, containing the 
feces. The transfer coefficients are explained in Fig. 2 below, and depend on the 
processing phase S. Mass balance equations are formulated which say, eg, that the cfu’s 
at the end of phase S on the exterior equals the number at the beginning, minus what is 
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transferred to the environment or inactivated/removed entirely, plus what moves onto 
the exterior during phase S: 
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In equilibrium we have Nenv,S(i) = Nenv,S(i-1), so that: 
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Figure 2.  A typical phase in the chicken processing model 
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For more detail, see (Nauta et al in preparation).  Ideally, we would like to have 
numerical values for the coefficients in Fig. 2. However, experimental data yielding 
these values are not available. Failing that, we would like to quantify the uncertainty in 
the transfer coefficients. Expert judgment could be applied for this purpose, if the 
experts had detailed knowledge of the interactions in each processing phase. 
Unfortunately, that is not the case. Experts are however able to quantify their 
uncertainty regarding the number of cfu’s on a broiler in the situations described below 
taken from the elicitation protocol:  
 

Line of carcasses 
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At the beginning of a new slaughtering day a thinned-flock is slaughtered in a “typical 
large broiler chicken slaughterhouse”. Suppose each chicken of this flock to be infected 
with Campylobacter, both externally and internally. We suppose every chicken to be 
externally infected with 105 campylobacters per carcass and internally with 108 
campylobacters per gram of caecal content at the beginning of each slaughtering stage 
(a hypothetical situation). So at the beginning of scalding, plucking etc., each chicken 
has this (identical) external and internal contamination rate. 
 
Question A1: 
All chickens of the particular flock are passing successively each slaughtering stage. 
How many campylobacters (per carcass) will be found after each of the mentioned 
stages of the slaughtering process, each time on the first chicken of the flock? 
 
Experts respond to these questions, for each phase, by stating the 5, 50 and 95% 
quantiles of their uncertainty distributions. If distributions on the transfer coefficients in 
Fig. 2 are given, then a distribution, per processing phase, for the elicited variables can 
be computed from the mass balance equations by a Monte Carlo simulation. Thus, the 
elicited quantities may be expressed as (the processing phase S is suppressed in the 
notation): 
 
A1 = 10^5 × (1-aext,) × (1-ca)+10^8 × (1-aint) × wint × (1-ca); 
A2 = A1+b × (aext × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
B1 = 10^4 × (1 - aexr - ca + aexr  × ca); 
B2= B1 + b × aexr  × 10^4/(b + ce - b*ce); 
C= (1 – b - ce + b × ce)^99 * b × (aext * 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
Wint  =  Wint.                            (1)
   
       
The variables A1, A2,… wint are the variables assessed by the experts.   Question A2 is 
similar to A1, but concerns the last chicken in the flock. Questions B1 and B2 are 
similar to A1 and A2, but refer to a flock in which the birds are externally contaminated, 
but not colonized (internally). Question C asks for the infection on the 100th broiler of 
an uninfected flock which is processed after an internally and externally infected flock. 
Wint was queried directly. It is included here to indicate that its distribution must 
conform to the decision maker’s quantile assessments. For the first 3 processing phases, 
we have 6 equations; for later phases the intestines are removed and the variable Wint is 
not defined.  In total we have 39 such equations, counting the alternative processes for 
scalding and chilling1. The number of equations is equal to the number of transfer 
coefficients for the whole line.  
  
Assuming distributions for coefficients on the right hand sides in (1) are known, we 
could sample from these distributions and build up distributions for the quantities on the 
left hand side. These quantities are assessed by the experts.  We would like these 
distributions to comply with the quantiles given by the decision maker. The probabilistic 
inversion problem may now be expressed as follows: find a joint distribution over the 

                                                           
1 The decision maker considered variable C for washing degenerate, i.e. zero with probability 1. 
Removing this would give 38 equations. 
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transfer coefficients, such that the quantiles of the quantities on left hand sides of the 
above equations agree with the decision maker’s quantiles.  If more than one such joint 
distribution exists, pick the least informative of these. If no such joint distribution exists, 
pick a “best fitting” distribution. 
   
3. PROBABILISTIC INVERSION 
 
Let X and Y be n- and m-dimensional random vectors, respectively, and let G be a 
function from ℜn to ℜm. We call x ∈ ℜn an inverse of   y ∈ ℜm

   under G if  G(x) = y. 
Similarly we call X a probabilistic inverse of Y under G if G(X) ~ Y, where “~” means 
“has the same distribution as”.   If {Y | Y ∈ C} is the set of random vectors satisfying 
constraints C, then we say that X is an element of the probabilistic inverse of {Y | Y ∈ 
C} under G if G(X)∈ C.  Equivalently, and more conveniently, if the distribution of Y is 
partially specified, then we say that X is a probabilistic inverse of Y under G if G(X) 
satisfies the partial specification of Y.  In the current context, the transfer coefficients in 
Fig. 2 play the role of X, and the left hand sides of equations (1) play the role of Y. That 
is: 
 
Y = (A1,1,… Wint,1,…  A1,2.…..Wint,5);  ( 39 components in total) . 
 
The joint distribution of these variables is partially specified by the decision maker, 
namely by given 5, 50 and 95% quantiles. The right hand sides of (1) constitute the 
function G.   
 
If the function G could be inverted analytically, then it would be a simple matter to 
compute X as G-1(Y). Of course this is generally not possible, and we must devise other 
ways to find  X.  A number of approaches could be considered. A thorough discussion of 
this problem is found in (Du et al, 2003), and a shorter discussion in (Kurowicka and 
Cooke, 2002).  By far most satisfactory to date are techniques based on sample re-
weighting, and these have been applied to the chicken line model. We first choose an 
initial distribution for the transfer coefficients (X) such that, when we sample it a large 
number of times and compute Y via (1), some samples fall within each interquantile 
interval for each variable in Y, and all samples are physically possible.  The choice of 
initial distribution is not further constrained, but it should cover the range of realistic 
values.  We take N samples from X and compute N samples for Y, yielding N samples 
for (X,Y). When drawn from the initial distribution, each of the N samples has 
probability 1/N.  We now wish to re-weight these N samples such that, if we re-sample 
this distribution, drawing each sample (with replacement) with probability given by its 
weight, then the quantile constraints on Y are satisfied in the re-sampled distribution.  
 
We describe two strategies for finding the weights, namely Iterative Proportional Fitting 
(IPF) and PARameter Fitting for Uncertain Models (PARFUM). These involve 
iteratively re-adjusting an initial set of weights so as to satisfy the constraints. For 
convenience, we describe this for one processing phase with 6 elicitation variables (Y is 
restricted to 6 components).  
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Since each sample contains a value for (A1, A2, B1, B2, C, Wint), and  each component 
falls in one of 4 interquantile intervals, we may represent this sample as a 6-vector of 
components, each component taking values in {1, 2, 3, 4}.  There are 46 = 4096 possible 
vectors of this type, and we may think of each such vector as an interquantile cell 
containing a number of samples. Not all cells will be physically possible. It is easy to 
see from (1) that A1 ≤ A2, and B1 ≤ B2.  Thus, if the 50% quantile for A1 is above the 5%  
quantile for A2, then it is impossible that A1 could be above its median while A2 is 
below its 5% quantile. Fortunately it is not necessary to figure out which combinations 
of interquantile intervals are feasible; sampling X and computing Y via (1) does that 
automatically. It is well to realize, however, that a large number of mathematically 
possible interquantile cells may actually be unfeasible under the function G. In a typical 
example for a processing phase, we would draw 65,000 samples and find that 150 – 300 
of the 4096 interquantile cells were occupied. The weight assigned to each interquantile 
cell is simply the total weight of the samples falling in that cell.  In our iterative 
algorithms, two samples falling in the same cell will be treated in the same way; 
therefore we can restrict our problem to that of finding weights for the non-empty 
interquantile cells. When these weights are found, we just distribute the cell weight 
uniformly over the samples in the cell to get the sample weights. 
 
Rather than describe the IPF and PARFUM algorithms formally, it is appropriate here 
simply to illustrate them on a simple example and report the relevant mathematical 
facts. Details can be retrieved from the cited literature. For purposes of illustration, we 
consider only 2 elicitation variables, each with 4 interquantile intervals corresponding to 
the 5, 50 and 95% quantiles. The interquantile cells can be represented as a 4 × 4 matrix; 
where, for example,  a sample is said to fall in cell (3,2) if it is between the 50 and 95% 
quantiles for variable 1 and between the 5 and 50% quantiles for variable 2. 
 
We start with an initial distribution over X and generate an initial distribution over the 
interquantile cells, which we represent in Table 2. Note that 6 cells are empty. The 
marginals are shown in boldface. 
 

 
0.1966 0.0006 0 0 0.1972
0.0407 0.1642 0.005 0 0.2099

0 0.0094 0.1196 0.0155 0.1445
0 0 0.0008 0.4476 0.4484

0.2373 0.1742 0.1254 0.4631  
 

Table 2.  Initial distribution over interquantile cells. 
 
The problem is now to adjust the non-empty cells in table 2 such that the margins equal 
0.05, 0.45, 0.45, 0.05; which are the probabilities associated with the decision maker’s 
interquantile intervals. 
 
The IPF algorithm was introduced by (Kruithof 1937) and rediscovered by (Deming and 
Stefan 1942). Its convergence properties were studied by many, including (Fienberg, 
1970, Csiszar, 1975). Simply stated, we first multiply each row by constant, so that the 
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column sums agree with the target. For the first row this constant is target / row sum 
=0.05 / (0.1966+0.0006). Then we multiply each column by the constant (target / 
column sum) to make the column sums agree with the target, then again the rows are 
multiplied by a constant, etc. Figure 4 illustrates the procedure. The target margins are 
shown by the starting distribution.  
 
Csiszar (1975) showed that this algorithm converges if and only if there is a distribution 
with exactly the same zero’s as the initial distribution which satisfies the target margins. 
In that case IPF converges to the distribution which has minimum information relative 
to the starting distribution, in the set of distributions with the target margins. This 
distribution may have zeros in cells where the starting distribution is non-zero. The 
result holds for arbitrary finite dimensions, and arbitrary finite numbers of cells per 
dimension. The target marginal distributions need not be the same on each dimension. It 
is evident that the criterion for convergence becomes more difficult to satisfy as the 
number of zero’s increases. When the criterion is not met the probabilistic inversion 
problem is infeasible and IPF does not converge. In otherwords, there is no distribution 
over the non-zero cells in the starting matrix which has the target margins.  In the case 
of two dimensions, it is known that IPF oscillates between 2 distributions, in case of non 
convergence (Csiszar and Tusnady 1983). Nothing is known about the behavior of  IPF 
in higher dimensions when the condition for convergence is not satisfied. 
 
The PARFUM algorithm (Cooke 1994, Du et al 2003) differs from IPF in the following 
way. Instead of first fitting the row sums, then the column sums, then again the row 
sums, etc; PARFUM successively averages the row and column sum fits. It is 
schematized in Fig. 4.  
 
Unlike IPF, PARFUM  always converges. If the problem is feasible, then it converges to 
a distribution P which minimizes the following functional: 
 
F(P) = I(Prow fit | P) + I(Pcolumn fit | P); 
 
relative to the starting distribution. Here, I(Q | P) denotes the relative information of Q 
with respect to P.  If P is a solution, that is, if P’s row- and column fits agree with the 
target, then Prow fit = P =  Pcolumn fit , so that F(P) = 0. Most importantly, if the problem is 
feasible, then PARFUM converges to a P with F(P) = 0, that is, it converges to a 
solution (see Du et al. 2003). If the problem is feasible then IPF is generally preferred. If 
infeasible, then IPF tends to distribute the lack of fit quite unevenly and tends to 
concentrate weight on a small number of samples. In such cases PARFUM often gives 
better results. Of course, if IPF does not cycle, we have no way of knowing on a finite 
number of iterations whether it is converging. Appeal to common sense is appropriate. 
These algorithms have several advantages relative to other methods. First, they are 
‘dumb’ in the sense that they do not require intelligent steering.  Second they avoid 
computationally expensive matrix manipulations, but simply loop repeatedly through 
the interquantile cells.  Finally, since rows and columns are altered one at a time, the 
whole sample need not be stored in memory, and there is effectively no limit on the size 
of problems which can be tackled. There are disadvantages as well. Most significantly,  
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Figure 3. Iterative proportional fitting 
 
 

 
Figure 4. The PARFUM algorithm 
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it is impossible in practice to know if IPF is converging without verifying the condition 
for convergence, and this is just as hard as finding the solution. PARFUM has a distinct 
advantage in this regard.  In case of infeasibility, neither algorithm yields information 
on how the original sample might be extended to yield better solutions.  
 
 
 
4. RESULTS 
 
The results with the model described above yielded a very poor fit between the re-
predicted and decision maker distributions for some variables.  Table 3 shows the results 
for defeathering. Especially bad fits are circled. 
 
 

  DEFEATHERING 
elicitation Quantile PARFUM IPF 
variable 5% 0.053 0.014 

A1 50% 0.424 0.175 
 95% 0.871 0.719 
 5% 0.030 0.033 

A2 50% 0.256 0.151 
 95% 0.543 0.654 
    

 
Table 3. Re-predicted results of probabilistic inversion defeathering, showing the 
proportion of samples falling below the corresponding quantile. 
   
Inspection of the experts’ rationales revealed that the experts distinguished two transfer 
mechanisms from the exterior to the environment. Campylobactor in the pores of the 
skin would be difficult to remove, but on the feathers or skin surface they would come 
off more easily. It therefore makes a difference whether the birds have been 
contaminated during transport only (giving rise to only contamination of the exterior) or 
at the farm (resulting in intestinal colonization and contamination on the exterior. These 
two different situations had been the starting point of questions A and B. The processing 
model was therefore altered to include this second transport pathway. The coefficient 
aext is replaced by two coefficients, axa and axb. The equations for the elicited quantities 
now become: 
 
A1 = 10^5 × (1-axa,) × (1-ca)+10^8 × (1-aint) × wint × (1-ca); 
A2 = A1+b × (axa × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
B1 = 10^4 × (1-axb-ca+axb × ca); 
B2= B1 + b × ax b × 10^4/(b + ce – b × ce); 
C= (1 – b - ce + b × ce)^99 × b × (axa × 10^5 + (aint) × wint  × 10^8)/(b + cenv - b × cenv); 
Wint  =  Wint.          (2) 
  
With the second model, the probabilistic inversion yielded better fits; partial results are 
shown in Table 4. 
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  Scalding low 
Scalding 
Intermediate Defeathering 

 Quantile IPF PARFUM IPF PARFUM IPF PARFUM 
variable 0.05 0.05 0.05 0.04 0.04 0.02 0.05 

A_1 0.5 0.50 0.53 0.42 0.45 0.78 0.49 
 0.95 0.95 0.95 0.81 0.86 0.97 0.94 

variable 0.05 0.05 0.04 0.07 0.07 0.00 0.04 
A_2 0.5 0.50 0.41 0.70 0.65 0.14 0.38 

 0.95 0.95 0.93 0.95 0.97 0.91 0.72 
 

Table 4. Re-predictions with Model(2). 
 
The bold values indicate the solution chosen. The PARFUM solution was chosen in 3 of 
the seven cases. There is still lack of fit, in particular for defeathering. However, overall, 
the model revision has produced a better fit. It is a truism that no model is fully adequate 
to reality. Information regarding the degree and locus of misfit is extremely valuable. 
The methods discussed here provide such information. The alternative is to search for 
compliant experts who will assess model parameters directly (and often anonymously); 
this cannot lead to model improvement.  
 
5. CONCLUSIONS 
 
Iterative sample re-weighting methods are available to solve probabilistic inversion 
problems, as illustrated in the model of chicken processing lines. IPF and PARFUM are 
easy to implement and have a solid theoretical foundation. They provide useful tools for 
the practicing risk modeller.  The present study illustrates a fruitful interaction between 
the modellers and the experts made possible by querying experts on observable 
quantities and applying probabilistic inversion. 
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Abstract: In computational physics and engineering, numerical models are developed to predict the 
behavior of a system whose response cannot be measured experimentally. A key aspect of science-based 
predictive modeling is the assessment of prediction credibility. Credibility, which is demonstrated 
through the activities of Verification and Validation, quantifies the extent to which simulation results can 
be analyzed with confidence to represent the phenomenon of interest with accuracy consistent with the 
intended use of the model. This paper argues that assessing the credibility of a mathematical or numerical 
model must combine three components: 1) Improving the fidelity to test data; 2) Studying the robustness 
of prediction-based decisions to variability, uncertainty, and lack-of-knowledge; and 3) Establishing the 
expected prediction accuracy of the models in situations where test measurements are not available. A 
recently published Theorem that demonstrates the irrevocable trade-offs between “The Good, The Bad, 
and The Ugly,” or robustness-to-uncertainty, fidelity-to-data, and confidence-in-prediction, is 
summarized. The main implication is that high-fidelity models cannot, at the same time, be made robust 
to uncertainty and lack-of-knowledge. Similarly, equally robust models do not provide consistent 
predictions, hence reducing confidence-in-prediction. The conclusion of the theoretical investigation is 
that, in assessing the predictive accuracy of numerical models, one should never focus on a single aspect. 
Instead, the trade-offs between fidelity-to-data, robustness-to-uncertainty, and confidence-in-prediction 
should be explored. The discussion is illustrated with an engineering application that consists in modeling 
and predicting the propagation of an impact through a layer of hyper-foam material. A novel definition of 
sensitivity coefficients is suggested from the slopes of robustness-to-uncertainty curves. Such definition 
makes it possible to define the sensitivity of a performance metric to arbitrary uncertainty, whether it is 
represented with probability laws or any other information theory. This publication has been approved for 
unlimited, public release on November 18, 2003 (LA-UR-03-8492, Unclassified). 

Keywords: Confidence, decision-making, fidelity-to-data, prediction, robustness, uncertainty. 

1. INTRODUCTION 
In computational physics and engineering, numerical models are developed to predict the behavior of 

a system whose response cannot be measured experimentally. A key aspect of science-based predictive 
modeling is to assess the credibility of predictions. Credibility, which is demonstrated through the 
activities of Verification and Validation (V&V), quantifies the extent to which simulation results can be 
analyzed with confidence to represent the phenomenon of interest with a degree of accuracy consistent 
with the intended use of the model [1]. 

The paper argues that assessing the credibility of a mathematical or numerical model must combine 
three components: 1) Improve the fidelity, R, to test data; 2) Study the robustness, a*, of predictions to 
uncertainty and lack-of-knowledge; and 3) Establish the “prediction looseness,” λY, of the model. 
Prediction looseness here refers to the range of predictions expected from a model or family of models. Its 
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importance stems from the fact that, to predict with confidence, there should be little difference (or small 
looseness λY) between the predictions of equally credible models. 

The discussion presented in this manuscript is kept at a conceptual level for the most part. Section 2 
defines the notations used in the paper. Section 3 briefly discusses the concepts of fidelity-to-data and 
robustness-to-uncertainty. A Theorem, that unveils the antagonistic relationships between fidelity-to-data, 
robustness-to-uncertainty, and confidence-in-prediction, is summarized in Section 4. Finally, Section 5 
suggests a novel definition of sensitivity coefficients, obtained from the slopes of robustness-to-
uncertainty curves. Such definition makes it possible to define the sensitivity of a performance metric to 
arbitrary uncertainty, whether it is represented with probability laws or any other information theory. 

2. BACKGROUND: FIDELITY, ROBUSTNESS, AND CONFIDENCE 
Even though the conventional activities of model V&V are generally restricted to improving the 

fidelity-to-data through the correlation of test and simulation results, and the calibration of model 
parameters [2-3], the other two components are equally important. The main reason is that optimal 
models—in the sense of models that minimize the prediction errors with respect to the available test 
data—possess exactly zero robustness to uncertainty and lack-of-knowledge [4-5]. This means that small 
variations in the setting of model parameters, or small errors in the knowledge of the functional form of 
the models, can lead to an actual fidelity that 
is significantly poorer than the one 
demonstrated through calibration. 

Clearly, fidelity-to-data matters because 
no analyst will trust a numerical simulation 
that does not reproduce the measurements of 
past experiments or the information 
contained in historical databases. 
Robustness-to-uncertainty is equally critical 
to minimize the vulnerability of decisions to 
uncertainty and lack-of-knowledge. It may 
be argued, however, that the most important 
aspect of credibility is the assessment of 
confidence-in-prediction, which is generally 
not addressed in the literature. Assessing the 
confidence in prediction here refers to an 
assessment of prediction error away from 
settings where physical experiments have 
been performed, which must include a 
rigorous quantification of the sources of 
variability, uncertainty, and lack-of-
knowledge, and their effects on model-based 
prediction. 

The concepts of fidelity-to-data, 
robustness-to-uncertainty, and prediction 
confidence are illustrated in Figure 1. It is emphasized that, because this is work-in-progress to a great 
extent, the concept of prediction accuracy denoted in Figure 1 by the symbol λY is somewhat broad. It is 
analogous to a range of predictions, or “looseness.” Clearly, predicting a range of values relates to the 
notion of confidence-in-predictions. It is believed that future research will narrow down this definition, 
but a standard accepted throughout the scientific community is not, to the best of the author’s knowledge, 
currently available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Illustration of the concepts of fidelity-to-data, 
robustness-to-uncertainty, and prediction accuracy 

(range, “looseness,” or confidence). 
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2.1 Definitions and Notations 
Throughout the manuscript, the numerical simulation is represented conceptually as a “black-box” 

input-output relationship between inputs p and q and outputs y. The notation is: 
• The quantity y represents the observable outputs. They can be scalar quantities—which is the case 

assumed here for simplicity—or vector quantities. These model outputs are usually features 
extracted from a large-order or large-dimensional response. 

• The quantity p denotes control parameters of the numerical simulation. These inputs include the 
control parameters that characterize the experimental configuration. Generally, there will be more 
than a single input parameter. Inputs p represent settings such as, for example, the angle of attack 
and flow velocity of an aero-elastic simulation that predicts a coefficient of lift y=CL. 

• The quantity q represents parameters that specify the structure and coefficients of the family of 
models developed to represent the physical phenomenon of interest. The inputs q can include 
discrete and continuous parameters that control the functional form of the model. Various models 
can be functions of different subsets of parameters q. 

 In the general case, the model is represented as: 
)qM(p;y o=  (1)

where qo denotes nominal settings for the parameters q. In the following, the subscript ( )o represents the 
nominal condition of a quantity. 

A domain denoted by DP represents the design space over which predictions must be obtained. This 
implies that the prediction accuracy must be established for all settings p in the design domain DP. In the 
case, for example, of a two-dimensional operational space where p = (p1;p2), like the one pictured in 
Figure 1, the prediction accuracy of the model y = M(p;qo) must be studied for all combinations (p1;p2) 
that belongs to DP = [p1

(min);p1
(max)] x [p2

(min);p2
(max)]. 

The quantity M(p;q) is used to denote alternative possible physical models. This notation is 
introduced to recognize that some of the model parameters q may be subjected to parametric variability. 
Others may be uncertain, or represent an epistemic lack-of-knowledge about the functional form of the 
model. For example, the behavior of a particular material under a fast transient load may not be known 
with certainty. Having to choose between, say, a linear elastic model, a model of perfect plasticity, or a 
visco-elastic model with hardening represents an epistemic uncertainty denoted by q. In the absence of 
epistemic uncertainty, no alternative to M(p;qo) would be feasible. As the horizon of modeling uncertainty 
increases, more and more alternative models become candidates. The family of predictive models can 
therefore be represented in a generic sense by the equation: 

{ } 0afor      , aqq  q)M(p;)qU(a; oo ≥≤−=   (2)

where the symbol a and norm || || are left undefined for now. It suffices to say that a is a positive scalar 
quantity that represents the horizon-of-uncertainty. The meaning of definition (2) is that the family of 
models U(a;qo) becomes increasingly inclusive as the parameters q are allowed to differ from their 
nominal settings qo. Note that these definitions are purposely broad to encompass a wide range of models 
and uncertainties. 

Measurements are denoted by the symbol yTest. Measurements are made at specific experimental 
configurations controlled by the parameters p. The notation used throughout this paper is that replicate 
measurements made to estimate the environmental variability are collected in the same vector or matrix 
quantity yTest. Measurements made, on the other hand, for different configurations p1 … pm will be 
indexed as yTest (1) … yTest (m). 
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2.2 Fidelity, Robustness, and Confidence 
Fidelity-to-data represents the distance R—assessed with the appropriate metrics, possibly a 

statistical test if probabilistic information is involved—between physical measurements yTest and 
simulation predictions y at a setting (p;qo): 

yyR Test −=  (3)

Fidelity-to-data is pictured in Figure 1 as the vertical distance between a measurement yTest and a 
prediction y for the physical experiment and numerical simulation performed at (p1;p2). 

Robustness-to-uncertainty refers to the range of settings q that provide no more than a given level of 
prediction error RMax. The concept of robustness is illustrated in Figure 1 by showing a subset U(a*;qo) of 
the design domain [p1

(min);p1
(max)] x [p2

(min);p2
(max)]. The significance of the concept of robustness-to-

uncertainty is that all predictions made for settings q chosen inside the domain U(a*;qo) are guaranteed 
not to exceed the error level RMax. The a-parameter represents the “size” of the domain U(a;qo). The 
definitions of the sizing parameter and corresponding domain are arbitrary at this point because the 
purpose of this discussion is to introduce concepts. The only constraint to satisfy is that increasing values 
of the sizing parameter a must define nested domains U(a;qo). Reference [5] defines the families of 
domains as convex sub-spaces. This choice allows the analyst to accommodate a wide variety of 
uncertainty and lack-of-knowledge models.3 Clearly, a large robustness-to-uncertainty (a*) is more 
desirable than a small one (a’) because the former subspace will encompass all events defined in the latter 
one, or U(a’;qo) ⊂ U(a*;qo). A large robustness indicates that potentially large uncertainty does not 
deteriorate the prediction error by more than RMax. Generally, a trade-off must be decided upon between 
the robustness-to-uncertainty (a*) and prediction error (RMax), or fidelity-to-data. Studying such trade-off 
is the basic concept of the information-gap theory for decision-making under severe uncertainty [4-5]. 

Finally, the symbol λY in Figure 1 refers to the range of predictions made by a family of potentially 
different models. The importance of λY stems from the fact that, to have confidence in predictions, there 
should be as much consistency as possible between the predictions provided by equally credible sources 
of information. Confidence is generally increased when different sources of evidence all reach the same 
conclusion. The concept of confidence-in-prediction is illustrated in Figure 1 by showing a range λY of 
predictions obtained when different models are exercised to make predictions at a setting (p1;p2) where no 
test data are available. The ultimate goal of model V&V is to establish predictive confidence by 
estimating the range of predictions λY (or, equivalently, the lack-of-consistency) provided by equally 
credible sources of information. 

Note that the terminology “model” is here defined in a broad sense. In any realistic application, 
sources of evidence include expert judgment, back-of-the-envelope calculations, measurements, and 
predictions obtained from phenomenological models or high-fidelity simulations. These can all be 
considered as models because they define a relationship between the inputs p and the outputs y. All 
available sources of information must be taken into account to assess the credibility of numerical 
simulations. It is equally important to understand, quantify, and eventually combine the uncertainty 
associated with each source of information. The integration of uncertainty and definition of total 
uncertainty metrics are areas of active research at Los Alamos National Laboratory, although not 
addressed in this publication [6]. 

                                                           
3 A first example is a probabilistic model of variability where the values of coefficients in the covariance matrix are 
controlled by the parameter a. A second example is a possibility structure defined to represent a lack-of-knowledge, 
where the size of intervals is proportional to the parameter a. A third example is a family of fuzzy membership 
functions defined to represent expert judgment and linguistic ambiguity, where the membership functions are 
parameterized by the uncertainty parameter a. 
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3. THE TRADE-OFF OF FIDELITY AND ROBUSTNESS 
A family of models U(a;qo) such as equation (2) defines a model of information-gap. In the theory 

of information-gap for decision-making, the difference between what is currently known and what needs 
to be known to make a decision is modeled. Models of ignorance are hence associated to gaps in 
knowledge [4-5]. This is a significant departure from other representations of uncertainty, such as the 
probability theory, that attempt to model the randomness itself. Doing so requires strong assumptions that 
might not be justifiable in the case of lack-of-knowledge.4 

3.1 Fidelity-optimal Strategy for Model Selection 
Let M(p;q) be any physical model in the information-gap domain U(a;qo). The fidelity-to-data, R, of 

this particular model can be estimated by calculating a test-analysis correlation metric (3). Clearly, many 
models can potentially be included in the family U(a;qo), some with higher fidelity-to-data (or smaller R 
values) than others. For a given horizon-of-uncertainty a, an analyst might have the choice between 
several models to make predictions, and a natural strategy would be to use the model that exhibits the best 
fidelity to the existing data, R*. In mathematical terms, this approach consists of solving an optimization 
problem defined as: 

Rmin*R
)qU(a;M o∈

=  (4)

Solving the optimization (4) provides the set of optimal parameters q* (or optimal model) for which the 
predictions M(p;q*) lead to the best fidelity-to-data R*. This is precisely the problem that parameter 
calibration solves. 

The inappropriateness of this strategy for choosing a model or making decisions comes from the fact 
that the horizon-of-uncertainty, a, is generally unknown. An example in mechanical engineering is the 
definition of a friction coefficient between two materials. A value of the friction coefficient might be 
available from the literature, but the extent of the variability is typically unknown. What it even more 
difficult to assess is the suitability of the Coulomb friction model—for which a friction coefficient is 
sought—to represent the mechanics of friction. These un-doubtfully involve stick-and-slip and complex 
micro-mechanics that the Coulomb friction can only approximate. The extent to which this model is in 
error compared to the “true-but-unknown” behavior is generally unknown. Therefore, any uncertainty 
model that aims at representing the lack-of-knowledge associated with the friction model would have to 
be associated to an unknown horizon-of-uncertainty. 

3.2 Robustness-optimal Strategy for Model Selection 
The main point of this discussion is that a natural trade-off arises between fidelity-to-data and 

robustness-to-uncertainty. Instead of fixing the horizon-of-uncertainty—which is practiced all the time, 
for example, in probabilistic analysis when standard deviation or total entropy are initialized and kept 
constant—and optimizing the fidelity-to-data, the robustness-to-uncertainty can be maximized for a given 
aspiration of fidelity-to-data. The fidelity aspiration is denoted as RMax, and it represents a value of 
prediction error not to be exceeded. This means that a model is rejected if its fidelity-to-data is poorer 
than the aspiration, or R>RMax. It could also happen that models are found that outperform our original 
fidelity aspiration, which would indeed be good news. In mathematical terms, this approach consists of 
solving the following embedded optimization problems: 

                                                           
4 In probability theory, for example, the frequency of occurrence of random events needs to be assessed. Enough 
measurements and observations might not be available to derive a probability density function with confidence. In 
extreme cases, only ranges of values can be obtained. Similar difficulties are encountered with physics-based 
models, historical databases, and expert opinion. Defining a specific model of uncertainty—such as probabilities, 
possibilities, or a fuzzy structure—might require assumptions that the available evidence simply does not support. 
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where a* denotes the robustness-to-uncertainty, or largest amount of uncertainty that can be tolerated in 
our knowledge of the model and its parameters, while guaranteeing a fidelity-to-data at least equal to 
RMax. As pointed out earlier, it could happen that the robust-optimal model features a better fidelity-to-
data, or R<RMax, a situation referred to in Reference [5] as opportunity from uncertainty. 

3.3 Trade-off Between Fidelity and Robustness 
Just like the fidelity-optimal strategy for model selection defines an ordering preference where the 

model M(p;q*) is preferred to the model M(p;q) if R*<R, the robustness-optimal strategy defines an 
ordering preference where the model M(p;q*) is preferred to the model M(p;q) if it is more robust to the 
uncertainty, that is, a*>a. As mentioned previously, a large robustness is more desirable than a small 
robustness because it indicates that potentially large sources of uncertainty do not deteriorate the 
prediction error by more than RMax. 

We are not advocating that fidelity-optimality, as a decision strategy for building and validating 
models, be systematically replaced with robustness-optimality. Instead, investigating the trade-off 
between the aspiration of fidelity-to-data RMax and robustness-to-uncertainty a* should be the basis for 
building and validating models. One significant advantage gained in doing so is that information-gap 
models can encompass a wide range of uncertainty: probabilistic or non-probabilistic, from parametric 
uncertainty to linguistic ambiguity and modeling lack-of-knowledge, etc. One practical limitation is the 
amount of calculation involved in the saddle-point optimization problem (5). 

4. THE TRADE-OFFS OF FIDELITY, ROBUSTNESS, AND LOOSENESS 
In this section we explore the “looseness” of model prediction: the range of predicted values deriving 

from models which all satisfy a specified fidelity requirement. The notion of prediction looseness (or 
range of predictions as it is also referred to below) is important because it relates to the confidence that 
one has in the predictions of equally credible models. We prove a Theorem whose meaning is that a 
change in the model that enhances fidelity-robustness to modeling error also increases the looseness of 
the model prediction. In other words, fidelity-robustness and prediction-looseness are antagonistic 
attributes of any modeling effort. 

4.1 More Definitions 
Let a* be the robustness-to-uncertainty of model M(pk;q) at the experimental configuration pk, as 

defined in equation (5). Let U*=U(a*;qo) denote the set of models whose fidelities are no worse than the 
aspiration RMax, for the kth experiment defined by parameters pk. Note that both a* an U* depend upon the 
model specification, q. We have no reason to reject any model M(pk;q) in U* if fidelity-to-data is used as 
the measure of merit. This is because all models M(pk;q) included in the family U* satisfy, by definition, 
the aspiration of fidelity-to-data, R<RMax. The “best” model is therefore non-unique, which is a well-
established result in inverse problem mathematics. As discussed previously, some of these models may be 
more robust to the uncertainty than others, up to the upper limit a=a*. An alternative model selection 
strategy is to identify models associated with the largest robustness a.5 

If a* is large, then U* contains a wide range of models. The predictive looseness of the family of 
models, M(pk;q), that belong to U* is simply defined as the range of predictions in U*: 

                                                           
5 Even with robustness-optimal model selection, uniqueness of the solution is not guaranteed. Because the family of 
models U(a;qo) is constructed as a family of increasingly-including—or nested—convex subsets, models that would 
possess the same fidelity-to-data, R, and the same robustness-to-uncertainty, a, can still occur on the convex hull of 
the domain U(a;qo). 
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The definition of a range (6) may not be the most appropriate to represent the concept of confidence-in-
prediction provided by a family of models U*, but it is clearly related. This choice is motivated by the 
fact that no standard is currently available in the scientific community to express confidence. It also offers 
simplicity, both conceptually and computationally. 

Large robustness, a*, and small range of predictions, λY, are both desirable. We will say that 
robustness and range are sympathetic if a change in input variables or model form parameters q improves 
them both; otherwise they are antagonistic: 
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The Theorem enounced in Section 4.2 shows that, under fairly weak conditions, robustness and 
range are always antagonistic. The axioms of nesting and translation are needed to support the main 
result. Nesting expresses that, as the horizon-of-uncertainty increases, the family of models includes all 
previously included models, plus new ones. Translation expresses that two families of models that share 
the same horizon-of-uncertainty, a, only differ in their center points. The axioms are not further discussed 
because they can easily be realized with arbitrary models of uncertainty. 

4.2 Theoretical Result of the Robustness-range Trade-off 
The main Theorem is given as follows. Let U(a;qo) be an information-gap family of models that 

obeys the axioms of nesting and translation, and let a=a(pk;qo;RMax)–versus–RMax be its robustness 
function. Consider two initial models, qo* and qo’. If a(pk;qo*;RMax) ≥ a(pk;qo’;RMax), then λY(qo*) ≥ 
λY(qo’). That is, robustness and range (or prediction looseness) are antagonistic. 

A proof of the Theorem can be found in Reference [7]. The proof relies on the information-gap 
description of ignorance. No restrictive assumption is made regarding the type of models, sources or types 
of uncertainty, and their mathematical representations. This makes the theory applicable to a wide range 
of situations. 

4.3 Exploring the Trade-offs of Predictive Accuracy 
Three quantities are central to the information-gap analysis of modeling and forecasting: fidelity of 

the model to the data, R; robustness-to-uncertainty, a*; and the range of predictions, λY, from models of 
comparable fidelity. Combining the results of References [5] and [7] yields several trade-offs briefly 
discussed in the remainder. 

First, the relationship between robustness (a) and looseness (λY) can be written as: 

0
a
λY ≥
∂

∂  (8)

which means that a revision of the model, with the purpose of enhancing robustness to modeling error, 
also increases the looseness of predictions. In other words, robustness and prediction looseness are 
antagonistic attributes of any model. Extending this result to the following three inequalities is trivial: 

0
R
λ     , 0

a
λ     , 0

R
a YY ≥

∂
∂≥

∂
∂≥

∂
∂  (9)

The inequalities (9) express the trade-offs between fidelity, robustness, and looseness: 
• Robustness decreases as fidelity improves. The robustness-to-uncertainty gets larger if the 

prediction error increases. Numerical simulations made to better reproduce the available test data 
become more vulnerable to errors in modeling assumptions, errors in the functional form of the 
model, and uncertainty and variability in the model parameters. 
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• Looseness increases as robustness improves. The prediction looseness gets larger if the 
robustness-to-uncertainty increases. Numerical simulations that are more immune to uncertainty 
and modeling errors provide a wider, hence less consistent, range of predictions. 

• Looseness decreases as fidelity improves. The range of predictions gets larger if the prediction 
error gets larger. Numerical simulations made to better reproduce the available test data provide 
more consistent predictions. Although intuitive, this result is not necessarily a good thing when the 
models are employed to analyze configurations of the system that are very different from those 
tested. 

These trade-offs imply that it is not possible to have, simultaneously, high fidelity, large robustness, 
and small prediction looseness. High fidelity (small R) implies that the model is true to the measurements, 
which adds warrant to the model. Large robustness (large a) strengthens belief in the validity of the model 
or family of models. Small looseness (small λY) implies that all the models that are equivalent in terms of 
fidelity, also agree in their predictions of the system behavior. The conflict between robustness, fidelity 
and prediction looseness is reminiscent of Hume’s critique of empirical induction. Our analysis shows 
that past measurements, accompanied by incomplete understanding of the measured process, cannot 
unequivocally establish true predictions of the behavior of the system. 

5. AN APPLICATION TO PREDICTABILITY IN ENGINEERING 
The theoretical results discussed in Sections 3 and 4 are illustrated with an engineering application. 

The numerical simulation of the propagation of an impact wave through a layer of non-linear, crushable 
foam material is compared to physical measurements [8]. Details about the experimental set-up, finite 
element modeling, and sources of uncertainty can be obtained from Reference [9]. In the following, the 
main source of uncertainty analyzed in this work is briefly described, and analysis results are discussed to 
illustrate the trade-offs between fidelity-to-data, robustness-to-uncertainty, and prediction looseness. Final 
comments are made about the concept of sensitivity in the case where calculating partial derivatives or 
variance coefficients is not mathematically feasible. 

5.1 Sources of Uncertainty 
The main source of uncertainty considered in this analysis arises from a lack-of-knowledge about the 

material behavior of the crushable foam. It is illustrated in Figure 2 that shows data obtained from four 
physical experiments. The center curve (second curve from the left, in blue) represents the nominal 
model. The other three curves are also acceptable realizations of a material behavior. This uncertainty 
matters greatly because selecting a constitutive law that describes how the material behaves is a critical 
step of building the numerical simulation. 

Because Figure 2 represents a rather severe lack-of-knowledge about the material, the predictions 
made from numerical simulations must account for this uncertainty. A pre-requisite is to obtain a 
mathematical representation of this uncertainty. Clearly, deriving a probability law based solely on the 
evidence captured by Figure 2 would be nothing short of crystal-ball reading. For the same reason, we are 
not confident postulating a possibility structure, basic Dempster-Shafer probability assignments, or fuzzy 
membership functions, to name only a few. It is recognized that more testing could be performed, and 
formal expert elicitation techniques are available to help capture knowledge. The merits of acquiring 
more knowledge, in one form or another, can never be over-stated. Nevertheless, Figure 2 illustrates a 
practical reality where decisions must often be made in the context of severe uncertainty because of 
constraints such as timetables, budgets, staffing, and lack of testing. 
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Figure 2. Four test samples of material behavior for the crushable foam. 

In this study, the uncertainty pictured in Figure 2 is represented mathematically by a family of 
convex sets U(a;qo). The nominal material model qo represents the baseline curve shown in blue color 
(second from the left). The horizon-of-uncertainty a measures the distance between any curve q and the 
nominal curve qo using the Root Mean Square (RMS) metric. The convex domain U(a;qo) defined in 
equation (2) therefore becomes the set of predictions made by all possible numerical simulations M(p;q) 
for which the material model q does not “deviate” from the nominal material model qo by more than a 
RMS distance equal to a. 

It is emphasized that such description of lack-of-knowledge can accommodate a wide variety of 
practical situations. Here, the symbol q represents variations of material coefficients for linear, bi-linear, 
or cubic material models. These variations can be made as arbitrary as desired, to the extent where the 
material models, q, do not violate the basic laws of physics. This procedure lets the analyst use his/her 
prior knowledge to restrict the variations of q around qo to the ones that make sense. It equally is critical 
to realize that, in our analysis, the extent of the horizon-of-uncertainty, a, is unknown. The family of 
models U(a;qo) becomes increasingly inclusive of material models as the uncertainty represented by the 
parameter a increases. This is a significant departure from the representation of uncertainty provided by 
probability theory, and a key aspect of the analysis results presented next. 

5.2 Consistency of Predictions 
Figure 3 illustrates the ranges of predictions (maximum minus minimum values) obtained at different 

horizon-of-uncertainty levels. The horizontal axis represents ranges of predictions, in our case, ranges of 
peak acceleration of the impact wave as it propagates through the crushable foam material. The vertical 
axis represents the horizon-of-uncertainty. An expected trend is observed: As the horizon-of-uncertainty 
increases, the range of predictions made also grows. It expresses that the models included in a given 
family U(a;qo) make increasingly less consistent predictions. Discontinuities could be encountered, but 

189



each curve is monotonically increasing because the domains U(a;qo) are nested within one another. 
Figure 3 illustrates the antagonistic nature of robustness-to-uncertainty and confidence-in-prediction. 

 
Figure 3. Ranges of predictions obtained at increasing levels of horizon-of-uncertainty. 

The four curves shown in Figure 3 present results for four different settings of the system. Test 1 (in 
red color with circle symbols) simulates the propagation of a low impact through a thin layer of material. 
Test 2 (in blue color with square symbols) simulates the propagation of a low impact through a thick layer 
of material. Test 3 (in green color with diamond symbols) simulates the propagation of a high impact 
through a thin layer of material. Lastly, Test 4 (in black color with star symbols) simulates the 
propagation of a high impact through a thick layer of material. It can be observed that the family of 
models U(a;qo) provides more consistent predictions at any given level of uncertainty, a, for the second 
and third configurations of the system. If anything, this would tend to increase the credibility of the 
numerical simulation for predicting testing conditions similar to those of Tests 2 and 3. It does not, 
however, address prediction accuracy, which is analyzed next. 

5.3 Accuracy of Predictions 
The results of fidelity-to-data and robustness-to-uncertainty are examined. Figure 4 shows the 

robustness and opportunity curves obtained with the four configurations of the system (Tests 1 through 
4), as a function of increasing levels of horizon-of-uncertainty. The horizontal axis represents test-
analysis correlation errors, in our case, the error are expressed as percent between measured peak 
acceleration values yTest and predicted values y. The vertical axis represents the horizon-of-uncertainty. 

For each configuration of low/high impact and thin/thick foam, two curves are shown. The 
robustness curves, in solid lines, are the worst possible test-analysis correlation errors that can be obtained 
from a family of models at a given horizon-of-uncertainty. As expected, fidelity-to-data worsens with 
uncertainty, hence, illustrating the antagonistic nature between truthfulness to data and robustness-to-
uncertainty. 
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Figure 4. Test-analysis errors obtained at increasing levels of horizon-of-uncertainty. 

The opportunity curves, shown in dashed lines, are the best possible test-analysis correlation errors 
that can be obtained from a family of models at a given horizon-of-uncertainty. Opportunity curves 
illustrate that uncertainty can sometimes be taken advantage of. For Tests 1 and 2, Figure 4 shows that 
tolerating a small level of uncertainty can yield material models that are more truthful to the test data.6 As 
mentioned previously, the robustness and opportunity curves can be discontinuous, but their 
monotonically increasing (for robustness) or decreasing (for opportunity) natures are guaranteed by the 
fact that increasing horizon-of-uncertainty levels, a, generate nested domains U(a;qo). 

When the robustness and opportunity curves are considered together, Figure 4 shows the ranges of 
predictive accuracy that can be obtained for each configuration of the system. For example, the prediction 
error for Test 1 is guaranteed within [1.5%; 2.7%] at the horizon-of-uncertainty level of a=0.8. No matter 
which material model is selected from the family U(a;qo), its predictive accuracy of Test 1 will be no 
worst than 2.7% but no better than 1.5%. A slight increase in uncertainty from a=0.8 to a=0.9 results in a 
potential deterioration of predictive accuracy from the interval [1.5%; 2.7%] to [1.5%; 6.6%]. Such 
analysis that examines the trade-off between fidelity-to-data and robustness-to-uncertainty provides useful 
guidelines to estimate a tolerable level of uncertainty. 

Similarly, combining Figures 3 and 4 shows that trade-offs must be made between fidelity-to-data, 
robustness-to-uncertainty, and looseness-in-prediction. Tolerating increased levels of uncertainty in the 
knowledge of the material behavior offers the potential benefit of slightly improving the fidelity-to-data 
while, at the same time, reducing the consistency of predictions made from the family of models. 

5.4 Sensitivity Analysis 
The last question examined is sensitivity analysis (SA). SA provides valuable information to assess 

the effect of a parametric change or an uncertainty on a performance metric. Local methods generally rely 
on small perturbation theory, while global methods rely on statistical analysis. Examples are finite 

                                                           
6 Figure 4 shows that the prediction error for Test 1 is equal to 2% with the nominal material model qo (when a=0, 
no uncertainty). If the material model is allowed to “deviate” from the nominal model up to the horizon of-
uncertainty of a=0.2, models can be found that yield no more than 1.5% test-analysis error. 
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differences in the former case, and variance-based effect analysis in the latter case. The question asked is 
how to handle a non-probabilistic, non-parametric uncertainty such as the material lack-of-knowledge 
described in Figure 2. 

The performance metric of interest in this work is the fidelity-to-data, R. Lack-of-knowledge is 
represented by an information-gap horizon-of-uncertainty parameter, a. Sensitivity coefficients are 
therefore defined as: 

a
RSa ∂

∂=  (10)

We already know from the theoretical investigation that an increase in robustness worsens the 
fidelity-to-data, which means that Sa>0. Nevertheless, slopes Sa of the robustness-versus-fidelity curves 
are of great interest because they indicate “how fast” robustness can be lost. A visual illustration is 
provided in Figure 4, where it can be observed that the numerical simulation is least sensitive to the lack-
of-knowledge for predicting the third and forth configurations of the system (Tests 3 and 4). A qualitative 
SA is summarized in Table 1. The sensitivity coefficients are estimated from Figure 4 by averaging the 
slopes of the four robustness curves over the entire range of fidelity-to-data values R. 

Table 1. Qualitative sensitivity analysis. 
 Thin layer of material Thick layer of material 

Low impact condition Test 1: High (Sa~6) Test 3: Low (Sa<1) 

High impact condition Test 2: Medium (Sa~1) Test 4: Low (Sa<1) 

SA results are useful to understand the vulnerability of the simulation to the uncertainty. Clearly, our 
analysis shows that the model is most vulnerable to uncertainty for Test 1. This means that a significant 
deterioration in predictive accuracy could result from a small increase in lack-of-knowledge. Caution 
should be exercised when the numerical simulation is employed to analyze configurations similar to the 
low impact/thin foam pad settings of Test 1. It is of interest to mention that the measured data provided 
by Test 1 were the only data used in this study to calibrate the material models. The fact that the average 
sensitivity coefficient Sa for Test 1 is the highest should not come as a surprise: It is, yet, another 
manifestation of the theoretical result that calibrated models have the least robustness-to-uncertainty [5]. 

Although the sensitivity coefficients Sa do not convey any physical meaning, their main advantage is 
that they can be estimated based on the robustness-versus-performance functions (such as shown in 
Figure 4), for any type of uncertainty or lack-of-knowledge. It is emphasized that the information-gap 
representation of ignorance adopted throughout this work is not exclusive of other representations of 
uncertainty. Reference [8], for example, presents results where a probabilistic description of uncertainty is 
handled within the information-gap framework. 

6. CONCLUSION 
This work studies the relationship between several aspects of prediction accuracy. The main 

conclusion is that, in assessing the predictive accuracy of numerical models, one should never focus on a 
single aspect only. Instead, the trade-offs between fidelity-to-data, robustness-to-uncertainty, and 
confidence-in-prediction should be explored. One consequence that cannot be emphasized enough is that 
the calibration of numerical models—which focuses solely on the fidelity-to-data aspect—is not a sound 
strategy for selecting models capable of making accurate predictions. Calibration leaves models 
vulnerable to modeling uncertainty. It is further established that models selected for their robustness to 
uncertainty will tend to make inconsistent predictions. This finding seems discouraging because one 
would like to make accurate predictions while being robust to the sources of uncertainty and lack-of-
knowledge. It is, however, a fundamental limitation of predictive science that scientists and engineers 
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should not loose sight of. The trade-off simply expresses that obtaining accurate predictions is 
conditioned by the assumptions upon which the models are built. 
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Abstract: It is often assumed that once a model has been calibrated to measurements
then it will have some level of predictive capability, although this may be limited. If the
model does not have predictive capability then the assumption is that the model needs
to be improved in some way.

Using an example from the petroleum industry, we show that cases can exit where
calibrated models have no predictive capability. This occurs even when there is no mod-
elling error present. It is also shown that the introduction of a small modelling error can
make it impossible to obtain any models with useful predictive capability.

We have been unable to find ways of identifying which calibrated models will have
some predictive capacity and those which will not.

Keywords: Prediction, Calibration, Uncertainty, Petroleum

1. INTRODUCTION

In many studies involving numeric models of complex real world situations, for example
petroleum reservoirs and climate modelling, it is implicitly assumed that if the model has
been carefully calibrated to reproduce previously observed behaviour, then the model will
have some predictive capacity. It is recognised that predictability may only be achievable
for a finite period of time, and that any prediction will be uncertain to some extent.

Two types of error are considered in most calibration exercises: measurement error
and model error. Measurement errors are fixed at the time the measurement was made,
they generally have well defined statistics and can be handled appropriately. Model errors
are due to approximations, such as a loss of spatial, or temporal, resolution, and the non-
inclusion of all of the relevant physics. The assumption that is normally made is that if the
model errors are sufficiently unimportant, so that when the model has been calibrated to
measurement data, then we have some level of acceptable predictability. If the model does
not have predictability, then the model errors are assumed to be too large and we need
to use a “better” model. Where “better” probably means improved resolution, spatial or
temporal, and/or the inclusion of more physics.

In this paper we present the results of a study, for a petroleum reservoir, where a well
calibrated model has no predictive value. Even though the calibration and truth models
had identical physics and identical spatial and temporal resolution. A second study shows
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that where there are slight differences in the physics between the calibration and truth
models, then the problems encountered are even worse.

In the next section the experimental set-up is described, this is followed by the results
for cases with/without modelling errors. Finally we draw some conclusions from our
observations.

2. EXPERIMENTAL SET-UP

In this section we describe our three parameter reservoir model and our methodology for
calibrating the model against the available measurements.

2.1. Model Description

Our model is a cross-section of a simple layered reservoir, with a single vertical fault mid-
way between an injector producer pair, as shown in figure 1. The model that we calibrate
has three parameters: the vertical displacement (throw) of the fault; the permeability
of the poor quality sand; and the permeability of the good quality sand. The geological
layers are assumed to be homogeneous (ie they have constant physical properties). The
“truth” case, which is used to generate the measurements for the calibration, is a variant
of the calibration model, but with fixed parameter values. In the case of no model error,
then the “truth” case is a member of the set of all possible calibration models. The size
and type of model error is chosen by how a specific calibration model is perturbed to
obtain the truth case. In the work presented in this paper, the model error is obtained
by introducing small variations into the spatial properties of the geological layers. The
permeability and porosity in each grid block are randomly perturbed. The maximum
variations that are allowed is ±1% of the unperturbed mean values. These perturbations
are much lower than would be expected for a real world rock that had been classified as
homogeneous. A more extensive description of the model can be found a paper that deals
with estimating model errors[4].

2.2. Calibration Methodology

Our procedure to produce a calibrated model is as follows:

1. Choose “truth” values for the three model parameters;

2. Select the level of measurement and model error to be used;

3. From the truth case produce the measurements required for the calibration process
(three years of monthly data);

4. Calibrate the model against the measurements;

5. Predict the behaviour for years 4-10.
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Figure 1. Reservoir model showing the fault throw and the geological, and simulation, layers.

We have considered the truth case: h = 10.4, kp = 1.31 and kg = 131.7 with and
without model error. No measurement error was added, but we assumed Gaussian noise
with a 1% standard deviation when calculating the likelihood that a proposed calibration
matches the truth.

In order to quantify the degree of the model calibration against measurements, we
define first an objective function for the calibration period, ∆m, as follows

4m =
1

36

36∑
j=1

3∑
k=1

|sim(j, k) − obj(j, k)|

2σjk

(1)

where sim(j, k) is the simulated response for production series k of the model at time j,
obj(j, k) is the corresponding true value and σjk, an estimation of what would be the
associated measurement error. We consider three production series: Oil Production Rate,
Water Production Rate (or Water Cut) and Water Injection Rate.

Likewise, the objective function for the prediction period, ∆f , is

4f =
1

7

43∑
j=37

3∑
k=1

|sim(j, k) − obj(j, k)|

2σjk

(2)

The ranges that the model parameters were allowed to take are: h ∈ (0, 60), kg ∈

(100, 200) and kp ∈ (0, 50).
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Figure 2. Calibrations of the model (with no modelling error) to a) history period, b) prediction
period.

2.3. Genetic Algorithm

Our chosen search method is a Steady-state Real-parameter Genetic Algorithm. This is
used because we need to search for multiple good optima within a parameter space that
seems to contain very many local optima. It is a development of a previously published
study [1] and has been developed to solve the type of problem described in this paper.

In brief the details are: a steady-state population of 50 individuals is used, parents
are selected randomly (without reference to their fitness), crossover is performed using
vSBX[1, 3], and culling is carried out using a form of tournament selection involving 10
individuals, a total of 7000 individuals are generated.

3. RESULTS

In this section we present the results of two studies: the first is with no modelling error
present; the second has a low level of modelling error.

3.1. Calibration with No Modelling Error

Figure 2a shows the result of calibrating the model against the data for the first 36 months.
The truth model has exactly the same physics and structure as the calibration models,
and the truth model is a member of the set of possible calibration models.

The very large spike, with h ≈ 10, corresponds to the truth case. We can also see
notable local optima with 0 < h < 8, 30 < h < 38 and 40 < h < 45. The global optimum
has a small basin of attraction around it and has proved difficult to identify in previous
work[2], the easiest optimum to find has been the one with 30 < h < 38. The rather
noisy structure of the objective surface is largely an artifact of the of the way that kg is
sampled. Any point with an acceptable objective value is plotted no matter what value
of kg was used. This means that it is possible for two points to have identical values for
h and kp but different values of the objective function. Hence a vertical line would be
plotted. Figure 3 shows a contour plot, centred on h = 5.0 and kp = 1.65, of the objective
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Figure 3. Surface plot for ∆m, where kg has been optimised so as to minimise ∆m, h ∈ (3.5, 6.5)
and kp ∈ (1.40, 1.90)

function ∆m. The figure was generated by conducting a grid search on a fine grid. At
each point on the grid, kg was optimised, this results in a much smoother representation
of the objective.

Figure 2b shows the result of calibrating the model to the prediction period. The only
substantial point found corresponds to the truth model. All of the other local optima
that can be seen in figure 2a are unable to match the observations during the prediction
period. We conclude that for this model you can only obtain a good prediction from the
truth case, and that good matches from the history matching phase have no predictive
value.

3.2. Calibration with Modelling Error

The result of matching the calibration model to data generated by a truth case that
includes modelling errors is shown in figure 4a. Superficially the figure is similar to
figure 2a. The important difference is that the global optima now occurs for h ≈ 32. This
is within the largest basin of attraction and is usually found by most search algorithms.
The optima associated with the “true” parameter values is of much lower quality.

If we now look at the calibration to the prediction period, figure 4b, we see that the
global optimum for the history matching period has no predictive value. None of the
models that have some predictive value correspond to the truth case (the spike at h ≈ 10
has the wrong values for kp and kg). The objective values obtained are low compared to
those in figure 2b.

4. CONCLUSIONS

In this paper we have examined, for a particular case, our ability to calibrate a model and
then to make accurate predictions. This has been carried out for cases with and without
modelling errors, but no measurement error.

From these studies we make the following observations:
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Figure 4. Calibrations of the model (with modelling error) to a) history period, b) prediction
period.

• The basin of attraction a round a global optimum may be sufficiently small that
search algorithms may not find them. The basins of attraction associated with other
local optima may be much larger and hence easier to find.

• When there is no modelling error present, some of the non-global optima may be of
quite good quality. However only the global optimum is able to make an accurate
prediction.

• When small amounts of modelling error are present, then the global optimum is no
longer associated with the truth. The local optimum that has parameter values of
the truth case is not of significant quality and could easily be disregarded.

• None of the models tested in the presence of modelling errors have valuable predic-
tive power. In particular the global optima from the history matching period was
unable to provide an accurate prediction.

In summary: in the absence of model errors, and with very low measurement errors,
it is possible to obtain calibrated models that do not have any predictive capability; such
models may be significantly easier to identify than the correct model; we are unable
to differentiate between calibrated models with or without predictive capabilities; the
introduction of even small model errors may make it impossible to obtain a calibrated
model with predictive value.

In this analysis there is nothing that seems to be unique to this model. In particular
there is the issue of data availability, adding more measurements does not appear to offer
a guaranty of avoiding this dilemma. If the observations made with this model are not
unique to the model, and we have no reason to believe that the model is unique, then this
presents a potentially serious obstacle to the use of models of this type for prediction.

Our concern is that if we cannot successfully calibrate and make predictions with a
model as simple as this, where does this leave us when are models are more complex, have
substantive modelling errors, and we have poor quality measurement data.
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Abstract: In the daily practice of science for policy, as experienced by governmental agencies 
which inform policymakers on the state and outlook of the environment, there is a pressing need 
for guidance in assessing and communicating uncertainties. This need extends beyond the 
quantitative assessment of uncertainties in model results per se, and focuses instead on the entire 
process of environmental assessment, running from problem framing towards reporting the 
results of the study. Using the Netherlands Environmental Assessment Agency (RIVM/MNP) as 
a case, the development, structure and content of such a guidance system is highlighted. 
Conditions for a successful implementation of the guidance system are discussed, and some 
prospects for future work are outlined. 
 
Keywords: uncertainty assessment, communication, guidance, typology, tool catalogue, science-
policy interaction 
 
1. INTRODUCTION 
 
At the onset of 1999, the Netherlands National Institute for Public Health and the Environment 
(RIVM) was faced with a credibility crisis due to public criticism in a Dutch quality newspaper 
by an employee of the RIVM. He criticized the institute for suggesting an unjustified level of 
certainty in reporting their environmental studies, by not duly accounting for uncertainty and 
relying too much on the virtual reality of poorly validated models. His criticism attracted much 
media attention in the Netherlands and triggered extensive public and political debate on the 
credibility, reliability and quality of environmental statistics and model-based environmental 
foresight, as well as on the role and position of science in policy-making (pp. 285-287 in [1];[2]). 
 

This event does not stand alone, (see, e.g., the recent upheaval around ‘The Skeptical 
Environmentalist’ by Bjørn Lomborg; compare [3]), but can be seen as typical for the role and 
position of science for policy and society in a world which is becoming increasingly interlinked 
and complex. Now decisions are urgent, stakes are high and diverse, values are in dispute, 
uncertainty and ignorance involved are high, and trust is fragile (Funtowicz and Ravetz, [4,5,6]). 
All these problems are common for sustainability, risk and safety issues. The changing 
relationship between science, policy and society calls for processes and arrangements where 
issues such as transparency and novel forms of quality control (e.g. extended peer review), 
public participation, multiple perspectives, reflexivity, transdisciplinarity and accountability are 
at the forefront in establishing knowledge that is more socially robust (Gibbons and Nowotny et 
al. [7,8,9,10]). 
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At RIVM, the above-mentioned credibility crisis was the impetus for developing a system of 

guidance for assisting its employees in their daily practice of performing research to advise 
policy-makers and the public on the state and outlook of the environment, placing special focus 
on the assessment and communication of uncertainties. In this paper the development of this 
guidance system will be described, and major parts of it will be highlighted. We will end with 
discussing conditions for its successful implementation and outlining prospects of future work in 
this area. 
 
2. ON THE DEVELOPMENT OF THE GUIDANCE SYSTEM 
 
After the media affair in 1999 there was a national and international review of the RIVM’s 
environmental assessment activities. These reviews led to the start-up of a multidisciplinary 
project on uncertainty assessment and to the development of  guidance system for uncertainty 
assessment and communication in an environmental assessment setting. It was judged that the 
scope of the guidance system should extend beyond the mere quantitative assessment of 
uncertainties in model results per se, and should focus instead on the entire process of 
environmental assessment. It should involve issues such as problem framing, stakeholder 
participation, indicator selection, appraisal of the knowledge base, mapping and assessment of 
relevant uncertainties, and reporting of the uncertainty information. Choices and judgments for 
all these aspects are potentially of key importance for ascertaining that the most relevant 
uncertainties are identified and for communicating them. Therefore the guidance system should 
explicitly stimulate reflection on these issues, since this is expected to lead to more conscious 
choices and a better way of dealing with uncertainties. It should provide a prioritized list of 
uncertainty types and sources that need particular attention for the case at hand, in view of its 
societal context and the function of the assessment. Moreover the system is intended to give 
advance warnings of which bottlenecks can occur with respect to dealing with these uncertainties 
and what additional effort should then be made in the field of uncertainty assessment. It should 
offer advice on the selection of quantitative and qualitative methods and tools to adequately 
estimate uncertainties in the given context and to communicate them to scientific researchers, the 
clients (usually ministries), other actors in the policy process, and the broader public. 
 

Commissioned by RIVM, the development of the guidance system started in September 2001, 
under the leadership of Dr. Jeroen van der Sluijs in close cooperation with RIVM and with a 
number of international uncertainty management specialists. In October 2001, an expert 
workshop was held to obtain input and feedback from the uncertainty management experts on a 
first sketch of the guidance system. This led to a draft version, in the form of a detailed 
questionnaire, which was subsequently presented to employees of the RIVM in a user workshop 
in November 2001. Though considered generally as a very thorough basis for uncertainty 
assessment, the detailed guidance document was judged by many of the users as being too 
comprehensive to be easily applicable in all cases. They preferred a shorter, pragmatic, easy-to-
use version which could be applied at varying depths/levels, and which would offer specific hints 
and suggested actions on dealing with uncertainty. Therefore it was decided that in 2002 there 
would be developed a concise mini-checklist covering the major points in mapping and 
communicating uncertainties, as well as an associated quickscan version, which includes hints 
and preferred actions. 
 

202



 

All this resulted in a suite of components (see figure 1), called the RIVM/MNP1 Guidance for 
Uncertainty Assessment and Communication, denoted by Guidance for short in the sequel. The 
Guidance can be consulted in the various stages of the process by various users at a frequency 
and level which suits their individual needs best. For instance, at the beginning of a project, the 
guidance can play an important role in designing and elaborating the way uncertainty will be 
dealt with during the project; during a project, it can be of assistance in performing the 
uncertainty assessment and communicating the results; after a project, it can be of use in 
reviewing and evaluating the project. The group of intended users of the Guidance covers a large 
fraction of the employees of the Netherlands Environmental Assessment Agency1 (RIVM/MNP) 
(e.g. project leaders, project-team members, researchers or policy advisers), as well as others 
(e.g. stakeholders involved in an extended peer-review of the project). Project leaders will 
typically use those components of the Guidance which are at a high level of aggregation (the 
Mini-Checklist and the Quickscan), while project-team members, researchers and policy 
advisers will more often also take up parts of the more detailed Guidance.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Structure of the RIVM/MNP Guidance for Uncertainty Assessment and Communication 

 
The interrelationships between the components that constitute the Guidance is as follows 

(figure 1): The Mini-Checklist ([11])) is a back-of-the-envelope kind of tool which can also 
serve as a portal to the other components of the Guidance. By concisely presenting the 
potentially important issues in the various stages of the environmental assessment process - 
running from problem framing to reporting the results - it functions as a reminder list and 
instrument for reflection on the (desired) way of dealing with uncertainties and value-loadings in 

                                                 
1 The Dutch name of the Netherlands Environmental Assessment Agency is ‘Milieu- en Natuur 
Planbureau’, abbreviated as MNP. It forms a part of the Netherlands National Institute for Public Health and the 
Environment (RIVM). 
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providing policy advice. It renders a brief account of the way uncertainty has been dealt with, 
and points to the Quickscan Questionnaire ([11]) if further elaboration is desired. This latter 
document (optionally) refers the user to the Quickscan Hints & Actions List ([12]) which has 
an advisory function and describes possible implications of the answers given to the questions in 
the Quickscan Questionnaire. 
 

Some of the hints and actions point directly to parts of the Detailed Guidance ([13])  and the 
Tool Catalogue for Uncertainty Assessment ([14]). These documents can be considered as 
basic components underlying the complete Guidance. Although the Quickscan documents are 
presented as autonomous components which can be used in a separate mode, they are 
intrinsically related to these basic components. The ‘Detailed Guidance’ has been set up as an 
elaborate questionnaire for a deeper analysis of various aspects of dealing with uncertainty. It 
also contains a glossary of terms related to uncertainty assessment and communication. The 
associated ‘Tool Catalogue for Uncertainty Assessment’ offers information on different 
quantitative and qualitative methods and tools that can be utilized to assess uncertainties. The 
above documents are freely available on the Internet (see e.g. www.nusap.net). 
 

The ultimate decision which components of the Guidance to use largely depends on the 
importance, the nature and the level of the uncertainties in the assessment concerned and on the 
resources available. The mini-checklist and the quickscan components are the parts of the 
Guidance that will be used most frequently. If one has the time and the mandate, then the 
detailed Guidance will be used to supplement and deepen the analysis. The mini-checklist and 
quickscan are discussed in the sequel. 
 
 
3. STRUCTURE OF MINI-CHECKLIST AND QUICKSCAN DOCUMENTS 
 
The mini-checklist concisely covers six central uncertainty-related themes in the environmental 
assessment process, including problem framing, stakeholder participation, selection of indicators, 
appraisal of the knowledge base, mapping and assessment of relevant uncertainties, reporting of 
the uncertainty information. It asks the user to reflect explicitly on how these issues are dealt 
with in the study at hand. The quickscan documents, consisting of a questionnaire and an 
associated hints and action list, elaborate this in more detail. In the sequel we will highlight point 
by point the six central  themes addressed in these documents. 
 
3.1 Problem Framing 
 
In this stage the problem and its context and history are outlined, by identifying major issues, 
past work, the level of contention and the (expected) role of the assessment in the policy or 
decision making process. The user is explicitly asked to consider various views/perspectives on 
the problem, and to pay attention to the problem’s  interconnectedness with other problems. 
He/she is asked to be specific on what knowledge is needed with regard to the problem, and into 
which research questions this is translated. Possibly relevant aspects which are not dealt with in 
these research questions have to be indicated. Moreover it should be outlined what role the study 
is expected to play in the policy process, and what the relation is with previous studies on the 
subject (policy context and problem history).  
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3.2 Involvement of Stakeholders 
 
This step concerns the identification of the main parties (stakeholders/actors) and their views and 
roles with respect to the problem, as well as the aspects of the problem about which they 
disagree. On the basis of all this, it has to be decided if, how (e.g. in formulating research 
questions, contributing information/data, evaluating findings/results), and when (at the 
beginning, during, after) one should involve which stakeholders in the study.  
 

Important in this respect is a characterization of the problem at hand in terms of a number of 
features: level of dissensus on policy goals regarding the problem, type of knowledge needed, 
and the decision stakes and uncertainties involved. This characterization can lead to useful 
suggestions for stakeholder involvement, and can serve as an initial step in deciding on an 
appropriate level and form of participation for the current study. See Box 1 below.  
 
 Box 1: Problem characteristics and suggestions for stakeholder involvement 
 
Problem characteristics Suggested stakeholder involvement 
There is dissensus about policy 
goals with respect to the problem 
and/or about the direction in which 
solutions need to be found 

Involve the stakeholders or their views in defining and framing the problem and 
selecting the indicators; be explicit about the limited scope of the study and its 
results. 

 
Decision stakes are high 

Be transparent and open: let stakeholders ‘take a look behind the scenes’ (in all 
stages of the study); aim for a broad composition of the advisory panel; involve 
stakeholders in the review of the study. 

 
 
There is dissensus about the (type 
of) knowledge required to solve 
the problem 

Discuss and – if possible –use knowledge produced or put forward by 
stakeholders (including other research institutes); motivate the chosen 
approach (especially the choices about involving certain scientific disciplines) 
and state the potential limitations; signal and discuss the controversies with 
respect to the knowledge base, and account for deviating theories and 
approaches to the problem; provide for external review. 

 
 
Major uncertainties exist regarding 
the behavior of the (natural and 
social) system(s) under study 

If feasible, use knowledge and information produced or put forward by 
stakeholders, including knowledge and information derived from non-scientific 
sources, in order to be able to come up with a study of the required quality. 
When communicating intermediary and final results, be specific on the lack of 
knowledge and clearly state the consequences for the quality and the scope of 
the conclusions. Provide for external review or even counter-expertise. Deliver 
a clear mapping of the uncertainties. 

 Source: [11,12] 
 
3.3 Selection of Indicators 
 
In environmental assessments, the relevant features of the problem under study are typically 
expressed in terms of indicators or target variables. Selection of indicators is therefore an 
important step in shaping a study, and it is important to substantiate the final choices, discussing 
their shortcomings and associated controversies as well. This involves judging how well the 
selected indicators address key aspects of the problem as it has been framed, and how much 
support there is among scientists and within society (including decision-makers/politicians) for 
the use of these indicators for the problem at hand. Moreover, there should be an examination of 
how to deal with a potential lack of support, giving attention to differences in views and interest, 
and specifying what the consequences of these differences will be for the meaning and value of 
the study. Consider giving the stakeholders a role in defining or revising indicators. 
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3.4 Appraisal of Knowledge Base 
 
This stage is concerned with answering the question of the adequacy of the available knowledge 
base for the assessment. It involves questions like: What quality criteria are relevant for 
answering the research questions? What knowledge and methods are needed to obtain answers of 
the required quality? What are the most important bottlenecks in the way of achieving this, in the 
light of existing controversies and weaknesses in the knowledge base? What will be the effect on 
the quality of the results, and which actions should be taken to clear these bottlenecks? In this 
way the user gets useful information for (re)shaping the study, in consultation with the client, 
and for adequately focusing the assessment and its reporting. 
 
3.5 Mapping and Assessment of the Relevant Uncertainties 
 
In this step the user is asked to identify the uncertainties most relevant to the problem, and to 
estimate what effort will be required to map these uncertainties adequately, providing 
information on their extent, nature (being it epistemic or stochastic) and location. Moreover the 
possible consequences of the uncertainties for the conclusions of the study have to be indicated, 
and an indication should be given on how to assess the most important uncertainties and their 
consequences, within the limitations of the available resources (time, money, people, expertise, 
etc.). The actual planning and performing of the uncertainty assessment completes this step. 
 
 Box 2: Aspects of uncertainty requiring additional attention 
 
Problem characteristics Uncertainty aspects requiring special attention 
 
Various assumptions are critical 

Be explicit about points of departure, assumptions and framing of the study; 
evaluate the critical choices made and discuss their consequences for the 
robustness of the policy-relevant conclusions. 

 
The estimate of an indicator is 
close to a (legal) norm or (policy) 
target for that indicator 
 
 
 

A small change in an indicator 
estimate may have a significant 
influence on estimated costs, 
impacts or risks 

Pay additional attention to uncertainties for the indicator(s) concerned: 
• indicate the nature of the uncertainties, e.g., uncertainty due to limited 

knowledge or due to intrinsic variability (in nature, human behavior or 
social systems); 

• give attention to how these uncertainties can be translated in terms of 
accomplishing/not accomplishing policy goals, or exceeding/not 
exceeding norms, and to the potential size and seriousness of effects and 
risks; 

• investigate the possibilities to reduce (policy-relevant) uncertainty, and 
discuss these 

 
There is dissensus about policy 
goals 

Pay additional attention to the role of value-laden uncertainties and 
stakeholder views and interests. Discuss the implications of uncertainties for 
the socio-political context/arena. 

 
Decision stakes are high 

Pay additional attention to the influence of views and values on the selection 
of indicators and on the conclusions. Discuss the implications of uncertainties 
for the socio-political context/arena. 

There is dissensus about the (type 
of) knowledge required to solve the 
problem 

Pay additional attention to the issues where the points of view differ most with 
respect to the (type of) knowledge required, and discuss the effects on the 
conclusions. 

Major uncertainties exist regarding 
the behavior of the (natural and 
social) system(s) under study 

Pay additional attention to the consequences of this uncertainty for the 
conclusions. Be explicit about ignorance and controversies, and about what 
these mean for the conclusions. 

The assessment method used has 
typical uncertainties associated with 
it, which require additional attention  

Determine which specific uncertainties are associated with the chosen 
assessment method (measurements, models, scenarios, expert judgment). 
 

Source: [11,12] 
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To support the user in these tasks various hints and tools are provided. For example, Box 2 
lists a number of triggers which point at policy-relevant uncertainties requiring additional 
attention. For identifying the most important uncertainties, the uncertainty matrix presented in 
table 1 can be used; see Box 3 for more background information. A tool catalogue is provided 
([14]) to assist the user in choosing appropriate methods for dealing with the identified 
uncertainties. In this document comprehensive information is given on various quantitative and 
qualitative uncertainty assessment techniques (global sensitivity analysis, NUSAP, expert 
elicitation, scenario analysis, model quality assessment etc.). The presented information concerns 
a brief description of the specific technique and its goals, strengths and limitations, required 
resources, as well as guidelines for its use and warnings for typical pitfalls. It is supplemented by 
references to handbooks, software, example case studies, websites, experts etc. The tool 
catalogue is a ‘living document’, which will be made available on the web in the future, and to 
which descriptions of additional tools can be added. 

 

Level of uncertainty 
(from determinism, through 
probability and possibility, to 

ignorance)  

Nature of 
uncertainty 

Qualification 
of knowledge 

base 

Value-
ladenness 
of choices 

 
         Location 
              ↓ 

Statistical   
uncertainty 

Scenario 
uncertainty 

Recognized
ignorance 

Epistemic Variability –  0   + – 0 + 

Context            

Expert judgment      
 

     

structure            
implementation            
parameters            

Model 

inputs            

Data             

Outputs             

 
Table 1: Uncertainty Matrix (for explanation, see Box 3) 
 
3.6 Reporting of Uncertainty Information 
 
Reporting of uncertainty information preferably takes place during the whole environmental 
assessment process, not only at the final delivery of results. In this communication it is necessary 
to be aware of (i) the context of the reporting (why, to whom, on behalf of whom, when, where) 
and (ii) the robustness of the main messages for uncertainties in the knowledge base and for any 
deviations from the employed assumptions and choices. Reporting on the policy-relevant 
uncertainties and their possible consequences for policy making, politics and society should take 
place in a clear manner, tailored to the intended audience(s). In written reporting, the results 
should be presented in a balanced and consistent way, providing a traceable account and 
adequate backing of the presented material. For example, this can be achieved by offering the 
information in a step-wise fashion. Taking account of the fact that readers often scan a text 
selectively it is recommended to present important uncertainty information explicitly at strategic 
points, e.g. in the introduction, conclusions, summary, text-boxes. See also Box 4.  
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 Box 3: The Uncertainty Matrix (see also Table 1) 
 
A central element in the ‘mapping and assessment’ phase is the use of an extended version of the uncertainty matrix, 
originally proposed in Walker et al. [15]. This matrix is a heuristic device for classifying and reporting the various 
dimensions of uncertainty, and to improve communication among analysts as well as between them and 
policymakers and stakeholders. It is based on the uncertainty typology presented in [15], which classifies 
uncertainties according to three dimensions: their location (where they occur), their level (where uncertainty manifests 
itself on the gradual spectrum between deterministic knowledge and total ignorance) and their nature (whether 
uncertainty primarily stems from knowledge imperfection (epistemic uncertainty) or is a direct consequence from 
inherent variability/stochasticity). By explicitly adding two additional columns in the matrix denoted ‘qualification of 
knowledge base' and ‘value-ladenness of choices’, we have extended the original uncertainty typology with two 
dimensions, see Table 1. The category ‘qualification of knowledge’ refers to the level of underpinning and backing of 
the information (e.g. data, theories, models, methods, argumentation etc.) involved in the assessment of the problem; 
it points at the methodological acceptability and the rigour and strength of the employed methods, knowledge and 
information, and thus it characterizes to a certain extent their (un)reliability. If desired, a so-called pedigree-analysis 
can be employed to assess the level of underpinning in a semi-quantitative way on basis of a number of quality 
criteria ([14,16]). The second additional category (‘value-ladenness of choices’) refers to the inevitable presence of 
values and biases in the various choices and assumptions involved. This concerns choices and assumptions 
regarding the way the scientific questions are framed, data are selected, interpreted and rejected, methodologies and 
models are devised and used, explanations and conclusions are formulated etc. 
Both added dimensions characterize important features which directly relate to uncertainty: If underpinning is weak, 
this indicates that the statement of concern is surrounded by much (knowledge-related) uncertainty. If value-
ladenness is high for relevant parts of the assessment, then it is imperative to analyze whether or not the results of 
the study are highly influenced by the choices and assumptions involved, and whether this could lead to a certain 
arbitrariness, ambiguity or uncertainty of the policy-relevant conclusions. This could then be a reason to explicitly deal 
with different views and perspectives in the assessment and to discuss the scope and robustness of the conclusions 
in an explicit manner. 
Source: [12] 
 
4. DISCUSSION 
 
The foregoing illustrates that the guidance system provides structure to the task of uncertainty 
management and can be employed in a flexible way. The Guidance stimulates reflection and 
deliberation on how uncertainties are (to be) handled and communicated effectively and helps to 
avoid pitfalls. Tools for uncertainty assessment are made more easily available, and can be 
selected in a more tailored manner, on basis of problem characteristics. Although the guidance 
system was initially developed in the context of environmental assessments, it can be applied in 
other application areas as well, with some minor adaptations as appropriate. 
  

For its success, some conditions are essential. Firstly, the commitment of the higher 
management is crucial, since time and effort spent on dealing with uncertainties must be 
considered as relevant. By its primary focus on the policy-relevance of uncertainties, the 
Guidance puts this issue explicitly to the fore. Secondly, it would certainly help if the use of the 
Guidance was included as standard activity in the prevailing project management. At 
RIVM/MNP this has been established by including the Guidance formally in the quality 
assurance system. Thirdly, its further application and institutionalization will require motivating 
and training the potential users of the Guidance, showing them the benefits of its use. We are 
currently developing training sessions for employees of the RIVM/MNP in the use of the 
Guidance. To support the introduction in daily practice, a web-based version of the Guidance is 
under construction, providing quick and easy access to its various parts. We hope to stimulate 
this introduction process further by providing appropriate uncertainty assessment tools, and by 
gradually building an expertise network and a ‘good-practice examples’ data-base in using the 
Guidance. 
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In fact, we currently are only at the start of implementing the presented systematic ideas of 
uncertainty management in an institutional setting. The above-mentioned activities must 
therefore be considered as first steps. In due time - after its fuller implementation - the use of the 
Guidance will be evaluated, leading possibly to further adaptations. For the time being we can 
already identify two major issues which will deserve future attention: The first one refers to the 
further deployment and development of the tool catalogue with methods for: (i) propagating and 
analyzing qualitative and semi-quantitative uncertainty information (e.g. concerning value-
loadings, assumptions, pedigree scores), especially in expert-reasoning and model-based 
calculation ‘chains’; and for (ii) synthesizing qualitative and (semi)-quantitative uncertainty 
information ([16]). The second issue concerns the analysis of various contexts of science, policy 
and society interactions in order to find suitable arrangements and forms for knowledge 
production and uncertainty communication; thus enhancing the effective use of science for 
policy or society. 

 
Notwithstanding that there is still a long way to go, one can consider the Guidance - with its 

specific focus on problem context and socio-political embedding, accountability, transparency 
and reflexivity, participation and extended peer review -  as a useful contribution towards new 
social practice of science in a postmodern era, as exemplified by e.g. the post-normal science and 
mode 2 science paradigms ([4-10]). 
 
 Box 4: Reporting of Uncertainty Information 
 
Communicating and reporting about uncertainty entails a number of issues that should be taken into consideration. 
The RIVM/MNP Guidance discerns (1) context of communication of uncertainty; (2) target audiences; (3) language; 
(4) methods; (5) format and (6) content.  

With regard to context authors have to ask themselves why the uncertainty is being reported (e.g. political purpose, 
scientific purposes, required by legislation, requested by stakeholders), and at which stage, and what setting (e.g. 
report, meeting, press article, internet, scientific journal). This will influence the scope of the reporting. 

The target audiences may stretch out over the stakeholders for the problem of concern. Although the target 
audience might not correspond to the whole set of stakeholders, it is surely a subset of those. The type of audience 
will determine amongst other things the ‘language’ of the communication/report as well as the main messages of 
interest. Since the audience can be quite diverse or disparate, clear and transparent communication of the results is 
required, but misinterpretations can not always be avoided.  

The language used in the communication and reporting of uncertainty is one of the most important issues. Careful 
design of communication and reporting should be done in order to avoid information divide, misunderstandings, and 
misinterpretations. The communication of uncertainty should be understandable by the audience. There should be 
clear guidelines to facilitate clear and consistent use of terms provided. Values should be made explicit in the 
reporting process. Potential ambiguity in the wording of the report or in use of metaphors should better be avoided.  

The method used to manage uncertainty (quantitative sensitivity and uncertainty analysis, quality assurance (e.g. 
NUSAP, pedigree analysis) etc.) and hence, the type of information generated, is a crucial aspect of communicating 
and reporting uncertainty and should be described. Uncertainty methods can operate in the foreground when applied 
explicitly to produce information on uncertainty (e.g. written material, graphs), or in the background as when run 
‘behind’ a model and results are embedded in the output (e.g. model outputs, scenarios). 

A variety of different reporting formats and media can be used (numbers, words, narratives, graphs, pictures, 
multimedia, internet). No one format is more valid than others. The choice of format depends on communication 
settings, type of audience, and uncertainty management methods. 

With regard to content one could think of making explicit the major assumptions on which the main messages are 
based, discussing the robustness of the major conclusions in the light of these assumptions as well as of 
uncertainties in the underlying knowledge base. Moreover important areas of ignorance and controversies should be 
stated explicitly, giving background on how these issues have been dealt with, and what this means for the main 
conclusions. If considered relevant for the given context, clear information could be given on the nature and causes of 
policy-relevant uncertainties and on the potential consequences for policy, politics and society (e.g. in terms of effects 
and risks). Indicate – if considered policy relevant – what can and can not be done about these uncertainties, and 
which uncertainty aspects deserve additional attention in the future. 
Source: [11,12,13] 
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Probability Bounds Analysis Is a Global Sensitivity Analysis 
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Abstract: Probability bounds analysis provides analysts a convenient means to characterize 
the neighborhood of possible results that would be obtained in probabilistic calculations of 
plausible alternative inputs.  For this reason, it constitutes a method of global sensitivity 
analysis that does not require any notion of decomposing or partitioning total uncertainty.  We 
show the relationship between probability bounds analysis and the methods of interval 
analysis and probabilistic sensitivity analysis from which it is jointly derived, and indicate 
how the method can be used to assess the quality of probabilistic models such as those 
developed in Monte Carlo simulations for risk analyses.  We also illustrate how a meta-level 
sensitivity analysis can be conducted within a probability bounds analysis by pinching inputs 
to precise distributions or real values. 

Keywords: probability bounds analysis, interval analysis, second-order probability, 
sensitivity analysis, convolution, robust Bayes, meta-level sensitivity analysis 

 

1. INTRODUCTION 
Sensitivity analysis is the general term for quantitative study of how the inputs to a model 
influence the results of the model.  Sensitivity analysis has many manifestations in 
probabilistic risk analyses and there are many disparate approaches based on various 
measures of influence and response.  Sensitivity analyses are conducted for fundamentally 
two reasons:  to understand the reliability of the conclusions and inferences drawn from an 
assessment, and to focus future empirical studies so that effort might be expended to improve 
estimates of inputs that would lead to the most improvement in the estimates of the outputs.  
Because of the obvious and fundamental importance of sensitivity analyses in calculations, 
there has been a confluence of ideas to this issue from disparate analytical disciplines. 

Leamer [1] defined global sensitivity analysis as a systematic study in which “a 
neighborhood of alternative assumptions is selected and the corresponding interval of 
inferences is identified”.  There are two disparate ways to effect such a study.  One natural 
way is to bound the neighborhood with interval ranges.  Another natural way is to ascribe a 
probability distribution to the elements in the neighborhood.  Consider, for example, the 
context of a deterministic calculation.  When the model involves uncertainty about the real-
valued quantities used in the calculation, the definition of global sensitivity analysis is 
equivalent to that of interval analysis [2,3,4,5].  Probability theory, implemented perhaps by 
Monte Carlo simulation, can also be viewed as a global sensitivity analysis of a deterministic 
calculation in that it yields a distribution describing the probability of alternative possible 
values about a point estimate [6,7,8,9].  In the figure below these two possible paths are 
shown as right and left downward arrows respectively.   
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Figure 1. Relationships among different calculation strategies.  Arrows represent generalizations.  

 

Of course, the calculations on which it might be desirable to conduct sensitivity analyses 
are not all deterministic.  In fact, many of them are already probabilistic, as is the case in most 
modern risk analyses and safety assessments.  One could construct a probabilistic sensitivity 
analysis of a probabilistic calculation.  The resulting analysis would be a second-order 
probabilistic assessment.  However, such studies are often difficult to conduct because of the 
large number of calculations that are required.  It is also sometimes difficult to visualize the 
results in a way that is easily comprehensible.  Alternatively, one could apply bounding 
arguments to the probabilistic calculation and arrive at interval versions of probability 
distributions.  We call such calculations “probability bounds analysis” (PBA) [10,11,12].  
This approach represents the uncertainty about a probability distribution by the set of 
cumulative distribution functions lying entirely within a pair of bounding distributions called 
a “probability box” or a “p-box”.  Probability bounds analysis is a global sensitivity analysis 
of a probabilistic calculation because it defines neighborhoods of probability distributions 
(i.e., the p-boxes) that represent the uncertainty about imperfectly known input distributions 
and projects this uncertainty through the model to identify a neighborhood of answers (also 
characterized by a p-box) in a way that guarantees the resulting bounds will entirely enclose 
the cumulative distribution function of the output.  A probability distribution is to a p-box the 
same way a real scalar number is to an interval.  The bounding distributions of the p-box 
enclose all possible distributions in the same way that the endpoints of the interval 
circumscribe the possible real values. 

Probability bounds analysis is related to other forms of uncertainty analysis.  It is a 
marriage of probability theory and interval analysis that generalizes and is faithful to both 
traditions.  As depicted in Figure 1, PBA can arise either by bounding probability 
distributions (the left path down to PBA) or by forming probability distributions of intervals 
(the right path).  The advantage of this marriage is that variability (aleatory uncertainty) and 
incertitude (epistemic uncertainty) are treated separately and propagated differently so each 
maintains its own character.  PBA is a comprehensive global sensitivity analysis that is an 
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alternative to complicated second-order or nested Monte Carlo methods.  PBA is very similar 
in spirit to Bayesian sensitivity analysis (which is also known as robust Bayes [13]), although 
the former concerns arithmetic and convolutions, and the latter addresses the issues of 
updating and aggregation.  Unlike Bayesian sensitivity analysis, probability bounds analysis is 
always easy to employ because it does not depend on the use of conjugate pairs to make 
calculations simple.  PBA is a practical approach to computing with imprecise probabilities 
[14].  Like a Bayesian sensitivity analysis, imprecise probabilities are represented by a class 
of distribution functions.  PBA is simpler because it defines the class solely by reference to 
two bounding distributions.  (It therefore cannot fully represent a situation in which there are 
intermediate distributions lying within the bounds that are excluded from the class.  In the 
context of risk and safety assessments, however, this is rarely a significant drawback.) 

2. PBA CIRCUMSCRIBES POSSIBLE DISTRIBUTIONS GIVEN UNCERTAINTY 
PBA can produce rigorous bounds around the output distribution from an assessment.  

These bounds enclose all the possible distributions that could actually arise given what is 
known and what is not known about the model and its inputs.  Because it is based on the idea 
of bounding rather than approximation, it provides an estimate of its own reliability [15,16, cf. 
17].  Probability bounds analysis can comprehensively account for possible deviations in 
assessment results arising from uncertainty about 

• distribution parameters, 
• distribution shape or family, 
• intervariable dependence, and even 
• model structure. 

Moreover, it can handle all of these kinds of uncertainties in a single calculation that gives a 
simple and rigorous characterization of how different the result could be given all of the 
professed uncertainty.  The requisite computations used in PBA are actually quite simple and 
have been implemented in straightforward algorithms [18,19,15,16,11,20].  The computations 
are generally much faster than even simple Monte Carlo convolution and vastly faster than a 
numerically intensive sensitivity analysis with traditional methods [21,22,23,24,6,7,25,8].  

Probability bounds analysis is useful whenever the uncertainty about the marginal 
distributions can be characterized by interval bounds about their cumulative distribution 
functions.  These bounds can be specified using empirical information available about each 
distribution.  For instance, if the parameters of a normal distribution can be given within 
interval ranges, best-possible bounds on the distribution are easy to construct.  If the shape of 
the underlying distribution is not known, but some statistics such as the mean, mode, 
variance, etc. can be specified (or given as intervals), rigorous bounds can generally be 
constructed that are guaranteed to enclose the true distribution subject to the given constraints.  
Often these bounds will be optimally narrow given the stated information.  The resulting p-
boxes are distribution-free in the sense that they make no assumptions whatever about  the 
distribution family (whether it is normal, lognormal, Weibull, etc.).  Such bounds on 
distributions can then be combined according to the calculations in the assessment.  Currently, 
software is available to handle (i) arithmetic convolutions (addition, multiplication, minimum, 
etc.), (ii) magnitude comparisons (greater than, less than), (iii) logical operations 
(conjunction, disjunction, etc.), and (iv) transformations (logarithm, exponentiation, roots, 
etc.). 
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It is also possible to handle uncertainty about the dependencies among variables in a 
model.  Recent algorithmic developments permit uncertainty about the dependencies among 
variables to be propagated through the calculations of a probabilistic assessment [26].  A pair-
wise dependency may be modeled with any of the following six assumptions: 

(i) independence, 
(ii) comonotonicity (maximal correlation), 

(iii) countermonotonicity (minimal correlation), 
(iv) linear relationship and correlation within a specified interval, 
(v) linear relationship with unknown correlation, 

(vi) signed (positive or negative) but otherwise unknown dependency, and 
(vii) unknown dependency (including any nonlinear relationship). 

For the first three cases, a convolution between two probability distributions yields a well 
defined probability distribution.  For the latter four cases, the results are given as bounds on a 
(cumulative) distribution function.  For each binary operation, the bounds obtained are 
generally the best possible bounds, i.e., they could not be any narrower yet still contain all the 
possible distributions permissible under the assumption. 

Unlike approaches based on conventional Monte Carlo simulation, the algorithms 
employed for these operations yield rigorous answers that lack sampling error.  In fact, the 
results are exact at each point of discretization, of which there may be arbitrarily many.  The 
results are guaranteed to enclose the true distributions.  Although it is straightforward to 
ensure that bounds remain rigorous (sure to contain the true distributions) in sequential 
calculations, the best possible nature of the bounds may be lost in some complication 
calculations.  Maintaining the optimality of the bounds is, in general, a computationally 
challenging task that can require other methods [14].  Nevertheless, the methods of 
probability bounds analysis developed over the last two decades provide risk and safety 
analysts a practical and convenient means to conduct comprehensive sensitivity analyses on 
their calculations. 

3. META-LEVEL SENSITIVITY ANALYSES 
As outlined above, probability bounds analysis is a kind of sensitivity analysis with 
considerable comprehensiveness.  It is possible and sometimes of interest to perform a 
sensitivity analysis on the results of an assessment conducted with PBA.  This would, of 
course, constitute a meta-level sensitivity analysis.  This section explores the use of pinching 
studies that hypothetically assess the impact on result uncertainty of additional empirical 
knowledge. 

One of the fundamental purposes of sensitivity studies is to learn where focusing future 
empirical efforts would be most productive.  This purpose requires estimating the value of 
additional empirical information.  Of course, the value of information not yet observed cannot 
be measured, but it can perhaps be predicted.  One strategy to this end is to assess how much 
less uncertainty the calculations would have if extra knowledge about an input were available.  
This might be done by comparing the uncertainty before and after “pinching” an input, i.e., 
replacing it with a value without uncertainty.  Of course, one does not generally know the 
correct value without uncertainty, so this replacement must be conjectural in nature.  To pinch 
a parameter means to hypothetically reduce its uncertainty for the purpose of the thought-
experiment.  The experiment asks what would happen if there were less uncertainty about this 
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number.  Quantifying this effect amounts to measuring the contribution by the input to the 
overall uncertainty in a calculation.   

The estimate of the value of information for a parameter will depend on how much 
uncertainty is present in the parameter, and how it affects the uncertainty in this final result.  
The sensitivity could be computed with an expression like 

%
)unc(
)unc(1100 








−

B
T  

where B is the base value of the risk expression, T is the value of the risk expression 
computed with an input pinched, and unc( ) is a measure of the uncertainty of the answer.  
The result is an estimate of the value of additional empirical information about the input in 
terms of the percent reduction in uncertainty that might be achieved in the expression when 
the input parameter is replaced by a better estimate obtained from future empirical study.  The 
pinching can be applied to each input quantity in turn and the results used to rank the inputs in 
terms of their sensitivities.  (Note that these reductions will not generally add up to 100% for 
all the input variables.)  In principle, one could also pinch multiple inputs simultaneously to 
study interactions. 

There are multiple possible ways to define unc( ) to measure uncertainty.  In the context of 
probability bounds analysis, one obvious measure is the area between the upper and lower 
bounds of the p-box.  As the p-box approaches a precise probability distribution where all 
epistemic incertitude has evaporated and only the natural variability remains, this area 
approaches zero.  An analyst might also elect to define unc( ) as some measure of dispersion 
or perhaps the heaviness of the tails [27] of the p-box.  Using different measures will 
obviously allow the analyst to address different questions in a sensitivity analysis.  If the 
measure of uncertainty is a scalar quantity (i.e., a real number), then the sensitivities that 
come from the analysis will also be scalars and can be ordered. 

There are also multiple possible ways to pinch uncertainty.  Pinching in different ways can 
result in strongly different estimates of the overall value of information.  Several strategies are 
possible in estimating sensitivities from comparative PBA assessments: 

(i) replace an input with a point value, 
(ii) replace an input with a precise distribution function, or 

(iii) replace an input with a zero-variance interval. 

Replacing a p-box with a precise probability distribution would be pinching away the 
incertitude about the distribution.  Replacing a p-box or a distribution function with a point 
value would be pinching away both the incertitude and the variability of the quantity.  For 
inputs that are known to be variable (variance greater than zero), such a pinching is 
counterfactual, but it may nevertheless be informative.  In particular, in may be especially 
useful in planning remediating strategies.  In some situations, it may be reasonable to replace 
a p-box with a p-box shaped like an interval but prescribed to have a variance of zero.  The 
effect of this would be to pinch away the variability but leave uncertainty.  Such a 
replacement might be reasonable for p-boxes having a core (a region along the abscissa for 
which the upper bound of the p-box is one and lower bound is zero).   
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This approach of pinching inputs and recalculating the assessment is not unfamiliar to 
Monte Carlo analysts.  Many routinely conduct sensitivity studies of the proportional 
contribution of variability in each variable to the overall variability in the calculated risk 
distribution.  To determine the effects of variability in a Monte Carlo simulation using this 
method, each variable containing variability (i.e., expressed as a probability distribution) is 
reduced in turn to its mean or other appropriate point value, and the simulation is repeated.  
The measure of sensitivity is often the proportional effect of variability in each variable on the 
model, which is computed as the variance in the risk distribution from each of the simulations 
divided by the variance in the risk distribution from the base model result.  Although the 
general idea of pinching is known to Monte Carlo analysts, the notions of pinching to a 
precise distribution and pinching to a zero-variance interval has no analog in Monte Carlo 
sensitivity analyses. 

Figure 2 shows a numerical example of pinching to a precise distribution.  The top panel 
of the figure depicts of addition of two p-boxes a and b (assuming independence).  This is the 
“base case” against which the pinchings will be compared.  The area between the upper and 
lower bounds for the sum a+b is 2.12.  The middle panel of the figure shows the first 
pinching.  The p-box a is replaced with a precise probability distribution that lies entirely 
within the p-box.  When a distribution replaces the p-box in the addition with b (which is still 
the same p-box), the result is the p-box shown at the far right on the middle panel.  This p-box 
has an area of about 1.14.  The percentage reduction in this area compared to that of the p-box 
for the sum shown on the top panel is 46.24%.  This percent, which labels the sum on the 
middle panel, represents the sensitivity measure for pinching the variable a to a precise 
probability distribution.  The bottom panel of Figure 2 shows the reduction of uncertainty 
(area) for the sum a+b from pinching the p-box for b to a precise distribution.  Compared to 
the base case in the top panel, the area is reduced by 47.17%.  In this case, the potential 
reduction in uncertainty from additional information about a and b are roughly the same. 

Figure 3 shows a similar set of sensitivity analyses based on pinching p-boxes to precise 
distribution functions.  The calculation for the base case in this figure (shown in the top panel) 
was made without making any assumption about the dependence between the variables a and 
b.  For this reason, even though the p-boxes for the variables a and b are just the same as were 
used in Figure 2, the area of the sum grows to about 3.05.  The second panel of Figure 3 
depicts pinching the p-box for the variable a to a precise distribution and its consequence for 
the resulting uncertainty about the sum.  The third panel likewise shows the pinching for 
variable b.  Both panels are annotated with the percent reduction in the area of the p-box for 
the sum compared to the base case in the top panel.  The reduction in uncertainty from 
pinching the variable a in this situation is perhaps surprisingly small.  The sensitivity to 
changing b is more than three times greater than that of a.  The bottom panel shows the effect 
of pinching the dependence from the Fréchet case of assuming nothing about dependence to 
assuming independence.  (The pinching could have specified any particular dependence.) 
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Figure 2.  Meta-sensitivity analysis by pinching a p-box to a precise distribution. 
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Figure 3.  Meta-sensitivity analysis for the Fréchet case without dependence assumptions. 

217



 

Figure 4 shows a third hypothetical sensitivity study.  The base case in the top panel is 
identical to the base case shown in Figure 2, but in this study, the p-boxes are pinched to 
scalar values.  The second and third panels of Figure 4 depict the additions resulting from 
pinching one of the addends to a point value.  The observed percentage reduction in the area 
of each resulting sum compared to the base case is shown beside its p-box.  What would the 
reductions in uncertainty have been if the base calculation had not assumed independence?  
The pinchings would have yielded exactly the same results, simply because dependence 
assumptions have no effect when either of the addends is a point.  Thus, the lower two panels 
of Figure 4 would look exactly the same.  However, if the base calculation had not assumed 
independence, then the base uncertainty about the sum a+b would have been slightly greater 
(area = 3.05, compared to 2.12 under independence).  That would make the rightmost p-box 
in the top panel of Figure 4 noticeably wider.  Therefore the reductions in uncertainty by 
pinching to a point would have been somewhat greater than they were for the independent 
case.  Instead of 50.4% and 52.36% reductions, pinching the variables a and b to points under 
no assumption about dependence would have respectively yielded 65.54% and 66.9% 
reductions in uncertainty as measured by the area within the resulting p-boxes. 
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Figure 4.  Meta-sensitivity analysis by pinching a p-box to a point value. 

 

4. CONCLUSIONS 
Many probabilistic assessment conducted using Monte Carlo simulations employ what-if 
sensitivity studies to explore the possible impact on the assessment results of varying the 
inputs.  For instance, the effect of the truncation of some variable might be explored by re-
running the model with various truncation settings, and observing the effect on the risk 
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estimate.  The effect of particular parameter and probability distribution choices, and 
assumptions regarding dependencies between variables can also be examined in this way.  
Model uncertainty can be probed by running simulations using different models.  However, 
such studies are often very difficult to conduct because of the large number of calculations 
that are required.  While informative, this approach is rarely comprehensive because when 
there are multiple uncertainties at issue (as there usually are), the shear factorial problem of 
computing all of the possible combinations becomes prohibitive.  Usually, in practice, only a 
relatively tiny number of such analyses can be performed.  Probability bounds analysis can be 
used to automate such what-if sensitivity studies and vastly increase their comprehensiveness. 

Sensitivity analysis can also be conducted at a meta-level by hypothetically replacing a p-
box in a probability bounds analysis with a precise distribution or perhaps a scalar number to 
evaluate the potential reduction of uncertainty of the result under additional knowledge. 
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Abstract:  Sampling-based methods for uncertainty and sensitivity analysis are reviewed.  
The following topics are considered:  (i) Definition of probability distributions to 
characterize epistemic uncertainty in analysis inputs, (ii) Generation of samples from 
uncertain analysis inputs, (iii) Propagation of sampled inputs through an analysis, (iv) 
Presentation of uncertainty analysis results, and (v) Determination of sensitivity analysis 
results. 

Keywords:  Epistemic uncertainty, Latin hypercube sampling, Monte Carlo, Sensitivity 
analysis, Uncertainty analysis 

1.  INTRODUCTION 
Sampling-based (i.e., Monte Carlo) approaches to uncertainty and sensitivity analysis are 
both effective and widely used [1-4].  Analyses of this type involve the generation and 
exploration of a mapping from uncertain analysis inputs to uncertain analysis results.  
The underlying idea is that analysis results y(x) = [y1(x), y2(x), �, ynY(x)] are functions 
of uncertain analysis inputs x = [x1, x2, �, xnX].  In turn, uncertainty in x results in a 
corresponding uncertainty in y(x).  This leads to two questions:  (i) What is the 
uncertainty in y(x) given the uncertainty in x?, and (ii) How important are the individual 
elements of x with respect to the uncertainty in y(x)?  The goal of uncertainty analysis is 
to answer the first question, and the goal of sensitivity analysis is to answer the second 
questions.  In practice, the implementation of an uncertainty analysis and the 
implementation of a sensitivity analysis are very closely connected on both a conceptual 
and a computational level. 

The following sections summarize the five basic components that underlie the 
implementation of a sampling-based uncertainty and sensitivity analysis:  (i) Definition 
of distributions D1, D2, �, DnX that characterize the uncertainty in the components x1, x2, 
�, xnX of x (Sect. 2), (ii) Generation of a sample x1, x2, �, xnS fro the x�s in consistency 
with the distributions D1, D2, �, DnX (Sect. 3), (iii) Propagation of the sample through 
the analysis to produce a mapping [xi, y(xi)], i = 1, 2, �, nS, from analysis inputs to 
analysis results (Sect. 4), (iv) Presentation of uncertainty analysis results (i.e., 
approximations to the distributions of the elements of y constructed from the 
corresponding elements of y(xi), i = 1, 2, �, nS) (Sect. 5), and (v) Determination of 
sensitivity analysis results (i.e., exploration of the mapping [xi, y(xi)], i = 1, 2, �, nS) 
(Sect. 6).  Space limitations in this presentation preclude the presentation of detailed 
examples of the indicated analysis components; however, examples can be found in the 
published descriptions of an uncertainty and sensitivity analysis carried out for the Waste 
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Isolation Pilot Plant (e.g., [5-7]).  The presentation then ends with a concluding summary 
(Sect. 7). 

Only probabilistic characterizations of uncertainty are considered in this presentation.  
Alternative uncertainty representations (e.g., evidence theory, possibility theory, fuzzy set 
theory, interval analysis) are an active area of research [8, 9] but are outside the intended 
scope of this presentation. 

2.  CHARACTERIZATION UNCERTAINTY 
Definition of the distributions D1, D2, �, DnX that characterize the uncertainty in the 
components x1, x2, �, xnX of x is the most important part of a sampling-based uncertainty 
and sensitivity analysis as these distributions determine both the uncertainty in y and the 
sensitivity of y to the elements of x.  The distributions D1, D2, �, DnX are typically 
defined through an expert review process [10-13], and their development can constitute a 
major analysis cost.  A possible analysis strategy is to perform an initial exploratory 
analysis with rather crude definitions for D1, D2, �, DnX and use sensitivity analysis to 
identify the most important analysis inputs; then, resources can be concentrated on 
characterizing the uncertainty in these inputs and a second presentation or decision-aiding 
analysis can be carried out with these improved uncertainty characterizations. 

The scope of an expert review process can vary widely depending on the purpose of 
the analysis, the size of the analysis, and the resources available to carry out the analysis.  
At one extreme is a relatively small study in which a single analyst both develops the 
uncertainty characterizations (e.g., on the basis of personal knowledge or a cursory 
literature review).  At the other extreme, is a large analysis on which important societal 
decisions will be based and for which uncertainty characterizations are carried out for a 
large number of variables by teams of outside experts who support the analysts actually 
performing the analysis. 

Given the breadth of analysis possibilities, it is beyond the scope of this presentation 
to provide an exhaustive review of how the distributions D1, D2, �, DnX might be 
developed.  However, as general guidance, it is best to avoid trying to define these 
distributions by specifying the defining parameters (e.g., mean and standard deviation) 
for a particular distribution.  Rather, distributions can be defined by specifying selected 
quantiles (e.g., 0.0, 0.1, 0.25, �, 0.9, 1.0), which should keep the individual supplying 
the information in closer contact with the original sources of information or insight than 
is the case when a particular named distribution is specified.   Distributions from multiple 
experts can be aggregated by averaging. 

3.  GENERATION OF SAMPLE 
Several sampling strategies are available, including random sampling, importance 
sampling, and Latin hypercube sampling [14, 15].  Latin hypercube sampling is very 
popular for use with computationally demanding models because its efficient 
stratification properties allow for the extraction of a large amount of uncertainty and 
sensitivity information with a relatively small sample size. 
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Latin hypercube sampling operates in the following manner to generate a sample of 
size nS from the distributions D1, D2, �, DnX associated with the elements of x = [x1, x2, 
�, xnX].  The range of each xj is exhaustively divided into nS disjoint intervals of equal 
probability and one value xij is randomly selected from each interval.  The nS values for 
x1 are randomly paired without replacement with the nS value for x2 to produce nS pairs.  
These pairs are then randomly combined without replacement with the nS values for x3 to 
produce nS triples.  This process is continued until a set of nS nX-triples xi = [xi1, xi2, �, 
xi,nX], i = 1, 2, �, nS, is obtained, with this set constituting the Latin hypercube sample.  
In addition, effective correlation control procedures are available for use with Latin 
hypercube sampling [16, 17].  The popularity of Latin hypercube sampling recently led to 
the original article being designated a Technometrics classic in experimental design [18]. 

Latin hypercube sampling is a good choice for a sampling procedure when 
computationally demanding models are being studied.  When the model is not 
computationally demanding, many model evaluations can be performed and random 
sampling works as well as Latin hypercube sampling. 

4.  PROPAGATION OF SAMPLE THROUGH THE ANALYSIS 

Propagation of the sample through the analysis to produce the mapping [xi, y(xi))], i = 1, 
2, �, nS, from analysis inputs to analysis results is often the most computationally 
demanding part of a sampling-based uncertainty and sensitivity analysis.  The details of 
this propagation are analysis specific and can range from very simple for analyses that 
involve a single model to very complicated for large analyses that involve complex 
systems of linked models [7, 19]. 

When a single model is under consideration, this part of the analysis can involve little 
more than putting a DO loop around the model that (i) supplies the sampled input to the 
model, (ii) runs the model, and (iii) stores model results for later analysis.  When more 
complex analyses with multiple models are involved, considerable sophistication may be 
required in this part of the analysis.  Implementation of such analyses can involve (i) 
development of simplified models to approximate more complex models, (ii) clustering 
of results at model interfaces, (ii) reuse of model results through interpolation or linearity 
properties, and (iv) complex procedures for the storage and retrieval of analysis results. 

5.  PRESENTATION OF UNCERTAINTY ANALYSIS RESULTS 
Presentation of uncertainty analysis results is generally straight forward and involves 
little more than displaying the results associated with the already calculated mapping [xi, 
y(xi)], i = 1, 2, �, nS.  Presentation possibilities include means and standard deviations, 
density functions, cumulative distribution function (CDFs), complementary cumulative 
distribution functions (CCDFs), and box plots [2, 15].  Presentation formats such as 
CDFs, CCDFs and box plots are usually preferable to means and standard deviations 
because of the large amount of uncertainty information that is lost in the calculation of 
means and standard deviations. 
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6.  DETERMINATION OF SENSITIVITY ANALYSIS RESULTS 
Determination of sensitivity analysis results is usually more demanding that the 
presentation of uncertainty analysis results due to the need to actually explore the 
mapping [xi, y(xi)], i = 1, 2, �, nS, to assess the effects of individual components of x on 
the components of y.  A number of approaches to sensitivity analysis that can be used in 
conjunction with a sampling-based uncertainty analysis are listed and briefly summarized 
below.  In this summary, (i) xj is an element of x = [x1, x2, �, xnX], (ii) yk is an element of 
y(x) = [y1(x), y2(x), �, ynY(x)], (iii) xi = [xi1, xi2, �, xi,nX], i = 1, 2, �, nS, is a random or 
Latin hypercube sample from the possible values for x generated in consistency with the 
joint distribution assigned to the xj, (iv) yi = y(xi) for i = 1, 2, �, nS, and (v) xij and yik 
are arbitrary elements of xi and yi, respectively. 

Scatterplots.  Plots of points [xij, yik] for i = 1, 2, �, nS can reveal nonlinear or other 
unexpected relationships.  Natural starting point in complex analysis that can help 
development of sensitivity analysis strategy using one or more additional techniques.  
Additional information:  Sect. 6.6.1, [20]. 

Cobweb Plots.  Plots of points [xi, yik] = [xi1, xi2, �, xi,nX, yik] for i = 1, 2, �, nS.  
Provides two-dimensional representation for a nX + 1 dimensional quantity.  
Generalization of a scatterplot.  Provides more information in a single plot frame than a 
scatterplot but is harder to read.  Additional information:  Sect. 11.7, [21] 

Correlation.  Provides measure of the strength of the linear relationship between xj 
and yk.  Equal to standardized regression coefficient in linear regression relating yk to xj; 
also equal in absolute value to the square root of the R2 value associated with the 
indicated regression.  Often referred to as Pearson correlation coefficient.  Additional 
information:  Sect. 6.6.4, [20]. 

Regression Analysis.  Provides algebraic representation of relationships between yk 
and one or more xj�s.  Usually performed in stepwise fashion with initial inclusion of 
most important xj, then two most important xj�s, and so on until no more xj�s that 
significantly affect yk can be identified.  Variable importance indicated by order of 
selection in stepwise process, changes in R2 values as additional variables are added to 
the regression model, and standardized regression coefficients for the xj�s in the final 
regression model. Additional information:  Sects. 6.6.2, 6.6.3, 6.6.5, [20]. 

Partial Correlation.  Provides measure of the strength of the linear relationship 
between yk and xj after the linear effects of all other elements of x have been removed.  
Additional information:  Sect. 6.6.4, [20]. 

Rank Transformations.  Replaces values for yk and xj with their corresponding 
ranks. Smallest valued assigned a rank of 1; next largest value assigned a rank of 2; tied 
values are assigned their average rank; and so on up to the largest value, which is 
assigned a rank of nS.  Converts a nonlinear but monotonic relationship between yk and xj 
to a linear relationship.  Produces rank (i.e., Spearman) correlations, rank regressions, 
standardized rank regression coefficients and partial rank correlation coefficients.  
Additional information:  Sect. 6.6.6, [20]; [22]. 

Nonparametric Regression.  Seeks more general models than those obtained by 
least squares regression.  Attempts to find models that are local in the approximation to 
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the relationship between yk and multiple xj�s.  Better at capturing complex nonlinear 
relationships than traditional regression or rank regression.  Can be applied in stepwise 
manner.  Sequential changes in R2 values with addition of successive variables to the 
model provides indication of variable importance.  Very promising. Additional 
information:  [23-25]. 

Tests for Patterns Based on Gridding.  Grids can be placed on the scatterplot for yk 
and xj and then various statistical tests can be performed to determine if the distribution 
of points across the grid cells appears to be nonrandom.  Appearance of a nonrandom 
pattern indicates that xj has an effect on yk.  Possibilities include (i) tests for common 
means, common medians, and common distributions for values of yk based on 
partitioning the range of xj and (ii) tests for no influence based on partitioning the ranges 
of xj and yk.  Additional information:  Sects. 6.6.8, 6.6.9, [20]; [26]. 

Tests for Patterns Based on Distance Measures.  Considers relationships within the 
scatterplot for yk and xj such as the distribution of distances between nearest neighbors.  
Provides way to identify nonrandom relationships between yk and xj.  Avoids problem of 
defining appropriate gridding associated grid-based methods.  Additional information:  
[27-30]. 

Trees.  Searches for relationships between yk and multiple xj�s by successively 
subdividing the sample elements xi on the basis of observed effects of individual xj�s on 
yk.  Additional information:  [31]. 

Two-Dimensional Kolmogorov-Smirnov Test.  Provides way to test for nonrandom 
patterns in the scatterplot for yk and xj that does not require the imposition of a grid.  
Additional information:  [32-34]. 

Squared Differences of Ranks.  Seeks to identify presence of nonlinear relationship 
between yk and xj.  Based on squared differences of consecutive ranks of yk when the 
values of yk have been ordered by the corresponding values of xj.  Additional information:  
[35]. 

Top-Down Concordance with Replicated Samples.  Uses top-down coefficient of 
concordance and replicated (i.e., independently generated) samples.  Sensitivity analysis 
with some appropriate technique performed for each sample.  Top-down coefficient used 
to identify important variables by seeking variables with similar rankings across all 
replicates.  Additional information:  [36]. 

Variance Decomposition.  The variance decomposition proposed by Sobol� and 
others is formally defined by high-dimensional integrals involving the xj and yk(x).  
Provides decomposition of variance V(yk) of yk in terms of the contributions Vj of 
individual xj�s to V(yk) and also the contributions of various interactions between the xj to 
V(yk).  In practice, indicated decomposition is obtained with sampling based methods.  
Two samples from x of size nS are required to estimate all Vj; nX + 2 samples of size nS 
are required to estimate all Vj and also the contributions of each of the xj�s and its 
interactions with other elements of x to V(yk).  Conceptually very appealing but can be 
computationally demanding as more samples and probably larger samples required than 
with other sampling-based approaches to sensitivity analysis.  Additional information:  
[37, 38] 
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7.  SUMMARY 
Sampling-based uncertainty and sensitivity analysis is widely used, and as a result, is a 
fairly mature area of study. However, there still remain a number of important challenges 
and areas for additional study.  For example, there is a need for sensitivity analysis 
procedures that are more effective at revealing nonlinear relations than those currently in 
use.  Among the approaches to sensitivity analysis listed in Sect. 6, nonparametric 
regression [23-25], the two-dimensional Kolmogorov-Smirnov test [32-34], tests for 
nonmonotone relations [35], tests for nonrandom patterns [26-30], and complete variance 
decomposition [37, 38] have not been as widely used as some of the other approaches and 
merit additional investigation and use.  As another example, sampling-based procedures 
for uncertainty and sensitivity analysis usually use probability as the model, or 
representation, for uncertainty.  However, when limited information is available with 
which to characterize uncertainty, probabilistic characterizations can give the appearance 
of more knowledge than is really present.  Alternative representations for uncertainty 
such as evidence theory and possibility theory merit consideration for their potential to 
represent uncertainty in situations where little information is available [8, 9].  Finally, a 
significant challenge is the education of potential users of uncertainty and sensitivity 
analysis about (i) the importance of such analyses and their role in both large and small 
analyses, (ii) the need for appropriate separation of aleatory and epistemic uncertainty in 
the conceptual and computational implementation of analyses of complex systems [39-
43], (ii) the need for a clear conceptual view of what an analysis is intended to represent 
and a computational design that is consistent with that view [44], (iv) the role that 
uncertainty and sensitivity analysis plays in model and analysis verification, and (v) the 
importance of avoiding deliberately conservative assumptions if meaningful uncertainty 
and sensitivity analysis results are to be obtained. 
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ABSTRACT

GIRM (Graphite Isotope Ratio Method) is a technique that can determine total Pluto-
nium (Pu) production in a graphite moderated reactor. In the GIRM methodology, total
Pu production is estimated by measuring isotopic ratios of trace elements in extracted
graphite samples from the target reactor.

Many safeguards problems require an estimate of total Pu production. For example,
a declaration of total Pu might need to be verified through GIRM. In some cases, reactor
information (such as core dimensions, coolant details, and operating history) are so well
documented that reactor computer-models can predict total Pu production. In most
cases however, reactor information is imperfectly known or of questionable validity, so a
measurement-based method such as GIRM is essential to such a verification strategy.

In this article we concentrate on GIRM’s estimation procedure and its associated
uncertainty. We describe a simulation strategy to estimate its uncertainty, including the
impact of local and global computer codes, and illustrate GIRM for a specific reactor.

Keywords: reactor code errors, simulation, uncertainty in estimated Plutonium

1. INTRODUCTION

In GIRM, samples from the graphite moderator are taken along the fuel channels in the
reactor of interest, and isotopic ratios in the samples are measured with mass spectrogra-
phy (TIMS for Uranium or Pu isotope ratios and SIMS for Boron isotope ratios). These
isotopic ratios are converted to local plutonium production rates (i.e. grams of Pu pro-
duced per cm of fuel rod) using a lattice physics code (WIMS). Finally, a 3D regression
model is used to estimate a Pu fluence field for the reactor which is then integrated over
the fuel channels to estimate the total Pu produced. The 3D regression model used in a
specific application is determined from a reactor physics code (such as KENO).

The basic scheme has been subjected to several feasibility studies and experimental
tests (see [1], [2], and [3]). Two previous error analyses of this methodology have been
conducted. The earliest analysis, Reference [1] evaluated uncertainties associated with a
“generic” reactor. The other, Reference [3] evaluated actual measurements taken from a
British reactor, Trawsfynydd. Because the GIRM methodology has changed substantially
in recent years [4] and additional sources of error have been included (i.e. WIMS reactor
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code error and 3D fluence model errors), it is timely to re-evaluate the total uncertainty
with the GIRM-based estimate of total Pu production. The procedures described in the
next section are illustrated by applying them to a “generic” reactor, which is described
in [4].

2. METHODOLOGY

GIRM can be organized into three steps: (1) a planning step that assembles and evaluates
information about the target reactor; (2) a sampling step that extracts graphite samples
from the target reactor, and (3) an analysis/estimation step that measures the isotopic
ratios and converts them to a Pu estimate.

In the planning step, information concerning a target reactor is gathered. This includes
reactor core dimensions, fuel channel locations, control rod locations, coolant details, fuel
rod specifications, and operating history. WIMS produces curves that relate the isotopic
ratios to local Pu fluence. WIMS runs also generate a parametric evaluation of the
main reactor variables such as temperature, density, and dimensions. A sampling plan is
designed that describes where graphite samples will be taken from the target reactor.

The analysis step includes mass spectrographic measurements of the isotopic ratios of
each sample, and statistical analysis to combine all the measurements to estimate total
Pu production. In the first step in this statistical analysis, the measured isotopic ratios
are converted to local Pu fluence (g/cm) estimates using curves calculated by WIMS.

The second step in statistical analysis fits a 3D linear regression model to the local
Pu fluence estimates produced by the first step. The 3D regression model (called the
global regression model), is produced from 3D reactor-physics solutions. After the global
regression model has been fit to the local fluence estimates, it is easy to determine the
total Pu production by integration. Standard propagation-of-error (POE) formulas also
produce the uncertainty associated with this estimate in the form of a standard error.
Uncertainties of the entire estimation procedure are verified using Monte-Carlo simulation.
Because of deficiencies in the POE methods, we presently rely on simulation to produce
the most comprehensive estimate of total uncertainty.

2.1. Pu-fluence from U/Pu Data and B data

At a given sample location, the TIMS mass spectrograph produces a vector of 5 isotopic
ratios (236U/238U , 236U/235U , 240Pu/239Pu, 241Pu/239Pu, 242Pu/239Pu), while SIMS pro-
duces a single isotopic ratio for 10B/11B. All measured isotopic ratios have an associated
uncertainty, supplied by the chemical analysis. It should be noted that Boron is particu-
larly suited to a low burn-up reactor. For a high burn-up reactor, the Boron measurements
would be replaced by Titanium.

These isotopic ratios are used to estimate the local Pu-fluence, φpu at each sample

location, and produce se(φ̂pu). To accomplish this, a nonlinear regression model is used
to relate Pu-fluence φi to the measured isotopic ratios, Rij. The model is;

Rij = Hj(φi) + eij (1)

231



where the index i identifies the sample location, and the index j the specific isotopic ratio
measured. The function Hj(φ) represents the isotopic ratio curves produced by WIMS
runs for the target reactor and the error term, eij, represents error. The least-squares
estimator for the vector of φi is the value that minimizes the quadratic form∗;

SSEi = [Ri − H(φi)]
T Cov(ei)

−1[Ri − H(φi)] (2)

while its standard error is given by an asymptotic approximation used for non-linear
regression (i.e., the inverse of Fisher information matrix).

The covariance of the regression uncertainties includes measurement error, and reactor
physics error (RPE). In other words, the covariance matrix used by the regression is
Cov(e) = Cov(Meas. Error)+Cov(Reactor Phy. Error). Including RPE in the regression
weights improves the total Pu estimates by 50% because it is the dominant source of
uncertainty in the data. RPE describes the effect that uncertainties in important reactor
parameters (such as graphite temperature) have on this regression problem.

We note here that the se’s produced by this algorithm do not account for calibration
bias. Although the se of the result does include RPE, correlation between local estimates
is not produced, which also can have an important effect on total Pu uncertainty and is the
chief reason that Monte-Carlo generated uncertainties are better than POE uncertainties.

2.2. Global Regression and Estimate of Total Pu

Linear regression is used to fit a 3D fluence field to the local fluence estimates produced
by the previous local estimation step. Let Φ(x; β) represent the fluence field model, with
x representing a location in the reactor core, and β a set of unknown parameters that
determines the shape of the fluence field. Linear regression is used to determine parameter
estimates that produce a fluence field that is as close as possible to the local fluence values.

We call this “global” regression because it transforms the local Pu estimates into
a fluence field that is defined at any point within the entire reactor core. The global
regression model is described by; φ̂i = Φ(xi; β) + ei with weight Wi associated with
location xi. The weight is determined by the se assigned to φ̂pu(x) from the local Pu

estimation step, Wi = se(φ̂pu(x))−2. Weighted regression is then performed to produce

estimates, β̂, of the unknown parameter vector β, and its covariance matrix, Cov(β̂). The
form used for the 3D fluence field model is

Φ(x; β) =
p∑

k=1

βkΨk(x). (3)

The Ψk(x) must be known functions, that are relatively good at approximating the
target reactor fluence field. An estimate of the total Plutonium production, T̂pu, is then
determined by integrating the estimated fluence field over all fuel channels in the reactor.
The integration result is a linear combination of the unknown beta parameters; conse-
quently, it is simple to calculate the standard error of the estimate, T̂pu, from Cov(β̂).

∗Ri = (R11, R12, ...R1n) and similarly for H(φ), and ei.
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Let (x1�, x2�) represent the horizontal coordinates of the �’th fuel channel, so that T̂pu

is given by;

T̂pu =
∑

�

∫ Ztop

Zbottom

Φ(x1,�, x2�, z3; β̂)dz3 =
p∑

k=1

β̂k

∑
�

∫ Ztop

Zbottom

Ψk(x1,�, x2�, z3)dz3 =
p∑

k=1

β̂kωk

(4)

with the integration constants ωk defined by ωk =
∑

�

∫ Ztop

Zbottom
Ψk(x1,�, x2,�, z3)dz3.

An estimate for the total Pu can therefore be found by multiplying the beta estimates
by the integration constants ωk. In vector notation this reduces to; T̂pu = ωT β̂ and the

estimate of total Pu has se(T̂pu)
2 = ωT Cov(β̂)ω. These formulas produce an estimate of

Tpu, and its se, which is the final objective of this statistical procedure. Incidentally, if the
regression model Φ(x, β) can fit the true fluence field without any error, then the estimate
is unbiased and the true total fluence, Tpu can be expressed as a linear combination of the
ωk and true βk that resembles Eq. (4).

The adequacy of the global regression model depends upon the proper selection of the
set of “basis functions”, Ψk(x). 3D reactor physics models are used to produce a “basis
set” of reactor fluence profiles, based on reactor operating history. If one is fairly certain
about the operating history, this set will be small, if one is less certain, the set will contain
more profiles and uncertainty related to global regression will be correspondingly greater.

In the generic example presented in this article, the KENO code has been used to
produce a “best estimate” for fluence, which is included in the basis set, along with
44 “eigen-function” profiles from an homogeneous-core solution. The homogeneous-core
“eigen-function” profiles are the functions we would use when little reliable information is
available for the target reactor. Thus the example global regression model is constructed
from generic information and one “best estimate” profile.

2.3. Monte Carlo Simulation for Error Analysis

The steps for our simulation are: (1) Calculate a “true state” for the target reactor
(the global Pu-fluence, Φ(x) at locations xi) (see the next paragraph); (2) Add error
to locations xi that arises due to limitations of the sampler; (3) Sample the reactor
parameters (such as coolant and fuel temperature, etc.) from distributions centered on
true values with standard deviations estimated using linear approximations to results of
auxiliary WIMS runs. The “true” isotopic/fluence curves are generated WIMS using these
sampled reactor parameters; (4) Add error to the true isotopic ratios to create measured
values at samples (with sample contamination, calibration, and random errors), (5) Run
the simulated measurements through the Pu estimation algorithm, and finally (6) compare
the estimated result to the “true” Pu value, and repeat many times.

The “true” global fluence is simulated by random selection from a set of “representa-
tive” 3D fluence fields. This set is related to, but not the same as the “basis” set used
to construct the global regression model. The set of 3D fluence fields contains plausible
(best-estimate) and extreme fluence shapes, calculated from what is known about the
target reactor’s operating history. For the generic reactor used here, this set consists of
seven fields calculated by KENO. Of these seven fields, three represent best-estimates
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versions of reactor fluence, while the other four represent extreme fields. The extreme
fields are calculated with unusual control rod configurations which are possible, but it is
unlikely that the reactor would be operated in this configuration for any length of time.

The local RPE is the result of errors in certain reactor parameters required to complete
a WIMs calculation. The WIMs code result can be mathematically described by the
function R = H(φ; α), where R is a vector whose components represent the ratios of all
of the measured isotopes in graphite, while φ represents the corresponding Pu-fluence.
H(·) is also a function of reactor parameters, as represented by the vector α. There is
some error associated with the best-estimate value for α used in the estimation procedure,
and to account for this, α is considered a random vector, with a mean centered around
the “best estimate” and standard deviation representative of the uncertainty associated
with these parameters. In the Monte-Carlo, a set of “true” fluence curves is simulated by
sampling α from this distribution and computing H(φ, αsampled).

For the example reactor, the reactor parameter vector α represents the following; fuel
pin radius, fuel temperature, graphite density, graphite temperature, graphite equivalent
boron concentration, and WIMS code uncertainty. “WIMS code uncertainty” represents
numerical errors produced in WIMS, estimated by comparing WIMS results to results from
another code. It is supposed to represent the difference between the answer produced by
WIMS in GIRM, and a computer code that could solve the problem without error.

As a final step, the Monte Carlo simulates SIMS and TIMS measurement errors.
These consist of random, calibration, and contamination errors, which are added to the
true isotopic ratios to produce a measured value. These operations are summarized by
the formula Rmeas = (1−C)Rirr +CRnat + ecal + eran where, for example, Rirr is the true
(irradiated) ratio of Boron in the sample, which is contaminated by C% of natural Boron
(that has ratio Rnat). A calibration error of ecal and a random error of eran is then added
to this result to obtain the measured ratio, Rmeas.

It is important to note that the simulated measurements are more complicated than
those assumed for the regression model (Equation 1) used in the estimation step. The
contamination can cause bias, while the calibration errors can cause correlations, and
neither of these effects are accounted for in the regression model.

2.4. Sampling as an Optimization Problem

A sampling plan consists of a set of specified locations in a reactor. These locations are
represented by x1, x2, ....xn, with each xi a 3D vector representing the coordinates of a
sampling location. The Monte Carlo error analysis methodology can be used to select
the best sampling plan from a limited set of candidate plans. However, Monte Carlo
evaluation is unsuited (too slow) to be used as part of a sample optimization scheme.

To find the optimal sample design, we have utilized the global regression model de-
scribed in the estimation step. This global regression model can be quickly evaluated to
produce an approximate RMSE for a particular to a sample design. These results are used
by an optimization algorithm to find the sample design with a small root mean square
error. The optimization is typically done with constraints; Samples can only be taken in
certain allowed channels, and the sample locations within a channel are fixed.
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Our optimization evaluations for the example reactor resulted in a design with 100
sample locations, taken in 10 channels. Roughly, the design consists of three “half-planes”
in three radial directions. An experimental design tool (ECHIP, available at echip.com)
was also employed to evaluate the designs and identify “high-bias” sample locations, which
were eliminated. This optimized design was used in the example evaluations presented in
this article.

3. EXAMPLE RESULTS FOR A LOW-BURNUP REACTOR

This example provides an upper-bound case for uncertainties when GIRM is applied to
a low-burnup reactor. This means the uncertainties in RPE, contamination, instrument
error, etc. are large, but not unreasonably large.

3.1. Estimation Uncertainty for the Example

To determine Pu estimation error for the example, 1400 sets of measurements were simu-
lated, resulting in 1400 “total Pu estimates,” which were compared to the “true Pu” (250
Kg for the generic case). Table 1 illustrates a few of these results.

Table 1. Simulations for Generic Case

Estimation Results Est Error
(Kg) (Kg) (Kg) (Kg)

Run T̂Pu True TPu se(T̂Pu) GOF T̂Pu − TPu

1 253.80 250.00 1.22 4.46 3.80
2 247.66 250.00 1.40 3.88 -2.33
3 252.76 250.00 1.00 2.54 2.76
. . . . . .

1400 252.08 250.00 1.59 3.27 2.08

RMSE = 4.04Kg %RMSE= 1.62

Mean se(T̂pu)=1.11Kg (Prop. Error SE)

In Table 1, each row summarizes one simulation. The total Pu estimate is in column
2 and the POE-based estimate of (se(T̂Pu)) is in column 3. Column 4 is a “Goodness
of Fit” statistic computed by the fluence regression. When the data fits the statistical
models presented in the previous sections, the GOF statistic should be approximately 1.
Theoretically a value above 1.5 indicates significant lack of fit. Note that GOF statistic
is typically higher than it should be. This is because the simulated data contains non-
independent errors (i.e. contamination, RPE, measurement calibration errors) that are
being detected by this statistic. The GOF statistic measures how severely the data devi-
ates from the assumed model, which assumes independent, zero-mean errors. We expect
the GOF statistic to be larger than its theoretical value for real data, because real data
will have calibration and contamination problems to some degree. At the bottom of the
table are the average RMSE and %RMSE over the 1400 simulations. As one can see from
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the example, the POE-based se is too small; actual errors are more than 3 times larger in
this example (average RMSE of 404 compared to average POE-based se of 111).

Table 2 decomposes the generic scenario RMSE into the three main components. Bias
describes a general bias that may be due to any combination of global regression model
misfit, measurement contamination, calibration bias, or RPE. Although significant, this
bias is relatively small. Because bias is influenced by many inputs, it can be altered
significantly by changing the above-mentioned inputs.

Table 2. Decomposition of RMSE for Generic Scenario

Source of Absolute Relative
Variation (g) % of Tpu

Bias: Due to various sources. 74 0.30
Between Model SE: Global Model Uncertainty 111 0.44
Within Model SE: All Sources Except Global Modal Uncertainty 381 1.52
Decomposition of Within SE:
–Random Measurement Error: 50 0.20
–Measurement Calibration Error: 30 0.12
–Contamination Error: 25 0.10
–Location Error 0 0
–Reactor Physics Error 375 1.50
Total RMSE* 404 1.62

* RMSE =
√

Bias2 + SE2

The between model error describes the bias in the global regression model when applied
to the population of seven global fluence models used as truth. This error is the second
largest component of error, but still relatively small. The major difference in these results
is not in the se’s (which are all approximately 1.50%), but in the bias. Biases range from
-0.18 to 0.81 for the seven fluence fields. These seven biases correspond to a between
model se of 0.44%, which is about half of the maximum, and describes the error in the
population of “true state” fields.

The third and largest source of error, “within model” error, comprises all other sources
of error in the data (contamination, measurement error, calibration error and local RPE).
By switching specific sources of error off and re-running the Monte Carlo program, one
can decompose this within model error further, into its major sources. The results of the
Monte Carlo runs are also listed in Table 2. The decomposition of within model error
shows that local RPE is the largest contributor to Total Pu error, producing an error
of 1.50%. The next largest contributor is SIMS and TIMS random measurement error,
producing a contribution of 0.20%. SIMs and TIMs calibration error produce a 0.12%
error, which roughly corresponds to the magnitude of calibration error with respect to
random error. The assumed contamination for SIMS and TIMS measurements produces
a 0.10% error, which is the smallest of the measurement error effects. Finally, sampler
location error is less than 0.01% and we have therefore set it to zero. Even a unrealistically
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large location error of 2cm only increases the se in total Pu to 0.03%, so it is safe to
eliminate location error as a serious source of estimation error.

RPE is the largest error source (1.50%), and the contributions of the key components
of RPE are fuel pin radius (1.05%), fuel temperature (0.30%), graphite density (0.24%),
equivalent boron concentration (0.16%), graphite temperature (0.63%), and specific power
(0.17%), and WIMs Code (0.25%).

Figure 1 illustrates the effect of different sources of error. In the first five plots, the
local errors are illustrated for each of the measured isotopic ratios. In these plots, the
dashed line represents the “true” relationship between fluence and the ratio, while the
solid line represents the relationship used in the local estimation procedure. The difference
between the two curves is local RPE. The points scattered about the dashed line represent
measurement error. The local estimation procedure uses the solid curves to produce a
best estimate for Pu-fluence at each sampling location.

The last plot in Fig. 1 represents the results of the global regression procedure. In
this plot the estimated fluence is plotted against true fluence at each sample location.
Heasler et al. [4] includes more details, including some additional worst-case results in
which all error sources were increased to extremely large values, and and in one example,
the RPEs were forced to vary in the same direction. So, for example, both fuel pin radius
and temperature would be forced to have positive errors. These addition results resulted
in RMSEs of 2% to 6% (the 6% is arguably worse than worst-case).

4. DISCUSSION

We presented GIRM and a simulation method for assessing its RMSE. Local and global
RPEs have been considered, with local RPEs appearing to be the largest error source.
Although we focused on estimating Pu production for a specific example reactor, clearly
the approach can be applied to almost any graphite reactor.

Although some basic knowledge of the reactor operating parameters should be avail-
able, the methodology can be applied to reactors for which no detailed operating history
is available. If a sufficient number of samples (say 100 or so) can be taken, total Pu
production can be estimated to within a few percent. If, on the other hand, a basic shape
of the fluence profile can be calculated from operating history, a better estimate of total
Pu production can be obtained with fewer samples. For example, in the Trawsfynydd
exercise [3], estimates were produced from approximately 30 samples.

GIRM is a unique blend of reactor physics models and empirical data. Any error
associated with the local (WIMS) model or global 3D model has important consequences
for the resulting total Pu estimate. The simulation quantifies the effects of error sources,
and allows us to evaluate sampling schemes. Benchmark comparisons [3] add to our
confidence in the performance claims here. However, RPE remain the dominant error
source and it is important to understand potential pitfalls.

The local RPE considered here are due to improperly specified parameters; implicitly
we have assumed that the model is truth, provided the parameter values (such as fuel
pin radius) are accurately specified and that numerical accuracy is good. In experimental
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Figure 1. Local and Global Estimation Results
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data, any outlying ratios in curves such as in Fig. 1 are assumed to be due to sample
contamination or other measurement problems. The fact that other models give similar
results provides some assurance that pure model error is minimal, but the main assurance
is the experimental data such as in [3].

The impact of global (KENO) model error in predicting the 3D fluence field depends
critically on the GIRM strategy involving fitting the local Pu estimates using a special
set of basis functions, and sample size/location choice. Because there are constraints
on the 3D shape of the flux (it can have spikes near control rods, but generally it is
relatively smooth), it is reasonable to assume that not too large a basis set is required
for a good fit (allowing accurate integration of the local Pu estimates). Also because of
known constraints on flux shapes, we did not allow arbitrary true flux shapes. Instead,
in the simulations, the true flux was randomly selected to be one of the seven shapes
described. All seven shapes were relatively smooth, and it is possible in a new application
(although highly unlikely) that the true shape would have sharp peaks and valleys, leading
to understatement of the 3D model error. The use of basis functions to fit the 3D fluence
field has several advantages compared to using the single best-guess field shape. For
example, in the evaluation presented here if the true field shape were assumed to vary
randomly around the best-guess field shape then the estimated impact of global model
error would most likely have been too low. In addition, the sampling was optimized
under the assumption that the true shape was among the seven choices. However, a
linear combination of the basis functions can accurately approximate an arbitrary field if
enough terms are used. In the example provided, because sufficient detail was provided
for the target reactor to have a “best guess” shape that is close to the true shape, it is
unlikely that the 3D shape could be even as misspecified as assumed in the simulation,
so if anything, experts believe that Table 2 overstates, but not drastically, the impact of
global model uncertainty. Therefore, performance claims have not yet been attempted
for the situation where initial sample results indicated an extremely rough 3D flux field,
leading to a request for more samples at key locations. So, performance claims for the
situation in which test samples not used for fitting indicated a problem with the 3D fit
would be desired on an as-needed basis.
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Abstract: The evaluation of the exploration risk in the oil industry is a fundamental com-
ponent of the decision process related to the exploratory phase.   In this paper the two basic 
components of the exploratory risk: trap geometry and trapped hydrocarbon quantities (fluid), 
are compounded in a single coherent uncertainty and sensitivity approach.   The results clarify 
that the model geometry influences each Petroleum System Modeling step and that the geo-
metric uncertainty is correlated with the fluid uncertainty.   The geometric uncertainty evalua-
tion makes use of geostatistical techniques, that produce a number of possible realizations of 
the trap geometry, all compatible with available data.   The evaluation of the fluid uncertainty, 
through a Montecarlo methodology, allows to compute the possible quantities of oil and gas, 
generated in a basin and migrated from the hydrocarbon source location to each single trap.   
The final result is the probability distribution of oil and gas for each trap in the basin, together 
with other useful indicators like: the hydrocarbon filling probability map, the closure prob-
ability map, the drainage area probability map, the spilling paths probabilities, the trap filling 
scenarios. 

Keywords: Hydrocarbon exploration, petroleum system modeling, uncertainty, sensitivity, 
risk evaluation 

1. INTRODUCTION 
In the hydrocarbon exploration activities the main goal is to find traps where oil and/or 

gas were accumulated and retained in quantities that are greater than a variable economic 
threshold.   Neglecting all the economical variables that come into play, the basis of any 
drilling decision is associated to the presence/absence of hydrocarbons (hydrocarbon risk) in 
the potential traps of the basin. This evaluation is the result of the joint efforts undertaken by a 
team of geologists, geochemists, geophysicists and engineers, in trying to get the best picture 
of the prospects that may be potentially drilled. 

This study can be schematically splitted into two components: the geometric one and the 
fluid one.   The first one is the object of Basin Modeling (BM) * activity, that gives a 4D (in 
space and time) description of the basin status and evolution.   The fluid one is the objective 

                                                 
* Historically the term “Basin Modeling” has been used with slightly different meanings.   In this 

paper it is used to describe the rocks properties distribution in space and evolution in time.  In practice 
this is strictly correlated to the fluid properties distribution and evolution and therefore a clear 
distinction between BM and PSM is partially subjective. 
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of the Petroleum System Modeling (PSM), that produces the history of the geologic processes 
that led to generation and accumulation of hydrocarbons in the current traps.  

2. METHODOLOGY 
Modeling geological processes is subjected to uncertainty because input data are scarce 

and imprecise and also because the used modeling algorithms are an approximation of the true 
geological processes.     This observation implies that a probabilistic approach is needed to 
account for the lack and imprecision of knowledge, enabling at the same time to compute the 
“hydrocarbon risk” for each trap of a basin. 

Regarding Basin Modeling, geostatistical techniques can be used to model the uncertain-
ties of both geologic layer geometries and facies* properties.   Geometric uncertainty is related 
to the process of depth converting interpreted seismic time reflections into depth reflectors, as 
a function of the uncertainty of seismic propagation velocities.   The evaluation of the uncer-
tainty of facies properties distribution refers both to seismic data attributes and to sedimen-
tological interpretation.   In this paper we are considering only geometric uncertainty, as the 
methodology to take into account facies uncertainty is quite complex to set up, in basins case. 

As the PSM is an inverse problem and the data available is scarce and uncertain, we have 
to deal with multiple possible “realizations” of the basin model as well as of the petroleum 
system evolution.  Even if all the “realizations” are fitted to known available data, this cali-
bration process just reduces the space of possible solutions but it is unable to justify by itself 
the choice of a unique, or most probable, or optimal solution. 

Each of the phases of the PSM (including Basin Modeling) contributes to the overall un-
certainty and can be explored with a sensitivity approach.  As shown in Ref. 1, where a brief 
summary of the different approaches is presented, almost all the papers deal with the uncer-
tainty evaluation of only some of the phases of PSM.   In fact, aside to the great amount of 
CPU time needed, the main difficulty in applying Uncertainty and Sensitivity Analyses 
(UASA) to the entire PSM is given by the complex management of the complete workflow. 

Another great source of uncertainty is given by the assumptions (the conceptual model) 
that are practically needed in the inversion of the scarce data available.   These alternative 
conceptual assumptions, or geological hypotheses, are dealt by means of scenario variables 
[2].    To drop a scenario, or one of the combinations of different scenarios, means to hide a 
component of the uncertainty and thus to increase the risk of biased choices.  

Our approach consists in considering all possible combinations of scenario variables and 
in producing, for each scenario, as many realizations as needed for uncertainty and sensitivity 
analyses. With regard to uncertain input variables these can be numerical (continuous or dis-
crete) or categorical (e.g. a set of functions or maps). 

Moreover the non linearities hidden in the modeled geological processes are such that 
there are threshold values of some variable or combination of variables that may trigger one 
event (e.g. generation of gas, …).    For this reason the use of UASA approaches that assume 
linearity or continuity hypotheses need great caution, so that, in our opinion, it is preferable to 
use a Montecarlo approach to the extent that is allowed by hardware constraints. 

                                                 
* A “facies” is a rock layer that differs from the others (as in composition, age, …) because of its formation . 
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2.1. Basin and Petroleum System Modeling 
A general introduction to BM and PSM  techniques can be found in many books (see for 

example Ref. 3), in the following only the main modeling steps are mentioned and the work-
flow that has been applied is described (see Fig. 1). 

The BM (for the purposes of this paper) consists of: the shape definition of the geologic 
structures; the spatial distribution of the geological properties of interest for each geologic 
layer in the basin model; the structural evolution of the basin during geologic time (in this 
study only vertical compaction of sediments due to overlying sediment load was taken into 
account); the definition of the history of the heat flow at the basis of the sediments (coming 
out from the basement, in the earth upper crust). 

The PSM can be grossly subdivided into: the description of the evolution of the Pressure 
& Temperature (P&T) fields in the sediments; the history of the Generation & Expulsion 
(G&E) of the hydrocarbons (oil and gas, in the simplest case) from source rocks; the Migra-
tion of hydrocarbons from source rocks to reservoirs and the preservation of Trapping condi-
tions of the hydrocarbons throughout the evolution of the basin (M&T). 

Figure 1. Workflow of the Basin Modeling and Petroleum System Modeling applied in this study.  
Boxes with rounded corners represent modeling steps.  Rectangular boxes represent data.  Repeated 
shadowed rectangular boxes represent multiple realizations/simulations of that data. 
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2.1.1. Basin Modeling  
At the basin scale the depth model is suitably built using the layer-cake vertical depth 

conversion method from interpreted seismic time maps.    This consists in the transformation 
of the time “thickness” into a depth thickness using the corresponding seismic layer velocity.   
In this way the depth model is constructed layer by layer, from top to bottom.    

Velocity maps are obtained using geostatistical techniques because they allows to produce 
an optimal velocity map integrating different data sources: seismic velocities, Well velocity 
measurements and geological knowledge (called a priori information).  

This approach has been applied in the current study to produce a basin model compound 
of 7 interfaces and 6 layers (see Fig. 2a).   Layer 1 (dark blue) and layer 4 (brown) are the 
hydrocarbons source rocks (respectively “Source 1” and “Source 2”), while layer 3 (green) is 
the carrier for hydrocarbons migration into potential traps (in the same layer).   In Fig. 2b the 
position of section AA’ is shown together with the top of layer 3 and the nine major traps. 

The description of the resulting Basin Model was completed with information about layers 
parameters (porosity, permeability, thermal conductivity, …) derived from Wells, literature 
and sedimentological studies.   The application of a decompaction law for each layer of the 
basin, allowed to recover the basin evolution history, that is the 4D Basin Model.   In practice 
this is a set of 3D models, one for each selected geological time step, describing the evolution 
of the 3D Basin Model through the geologic time.   According to the 4D Basin Model, a heat 
flow history can be established from tectonic modeling and Well data [4], resulting in a set of 
heat flow maps, one for each selected geologic time step. 

2.1.2. Thermal & Pressure Histories 
The distribution of temperature within the sediments is controlled by: the regional geo-

thermal regime (heat flow at the base of the sediments and paleo-temperature at the top), the 
thermal properties of the rocks and the fluid movements through rock pores.   The geothermal 
regime changes during the basin evolution in connection with variations of the basal heat flow 
and paleo-temperature fluctuations.    

 Figure 2a. Section of the basin model  Figure 2b. Top of layer 3  
Source Layers: 1 and 4.    Carrier and Reservoir layer: 3.    Potential Traps: T1, T2, T3, … , T9  
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At the same time, as the basin geometry changes due to accumulation and compaction of 
sediments, the bulk thermal properties of rocks are varying too.   The compaction, resulting 
from depositional overburden load, reduces rock pores volume and squeezes the water out, 
accordingly to the permeability of the layers. When a low permeability layer is involved, wa-
ter pressure departs from hydrostatic equilibrium and an overpressure results.  The duration of 
the pressure disequilibrium is controlled by the filtration velocity, that is by the overpressure 
gradient and the permeability of the layers.   The fluid flow is modeled through a Darcy equa-
tion.   The computation of thermal and pressure histories is performed solving the corre-
sponding equations of energy and momentum conservation through a finite element approach.  
The resulting pressure and temperature fields are obtained for each geologic time step. 

2.1.3. Generation & Expulsion Histories 
The “source rock” is a part of a low permeability layer (the source rock layer) and it is 

such that within it there is an abundance of organic matter that is playing the role of kerogen.   
The initial kerogen degrades through a number of parallel reactions (primary cracking) into 
hydrocarbons, which are more stable components (oil and gases).   This is followed by secon-
dary cracking, which transforms oils and wet gases into lighter components (dry gases) and 
coke.   Both primary and secondary reactions are assumed to be independent of pressure and 
their temperature dependence is given by an Arrhenius type equation. 

Expulsion of the generated hydrocarbons from the source rock is a very complex and still 
poorly constrained process.   It is modeled as a multiphase flow (hydrocarbons and water) 
within a low permeable porous medium (the source rock itself), controlled by the relative 
permeability of each fluid phase.   In practice hydrocarbon flow is driven by the overpressure 
resulting by the compound effect of the sediment compaction and of the hydrocarbons gener-
ated (by the transformation itself).  

The result of this modeling step is a set of expulsion maps, one for each selected geologic 
time step and for each hydrocarbon component (oil and gas in the simplest case).   These 
maps represent the result of the expulsion out of the source rock layer. 

2.1.4. Hydrocarbon Migration & Trapping 
Once the hydrocarbons are expelled out of the source rock layer, they move (secondary 

migration) along permeable rocks until they reach a trap.   The simplest approach to model 
secondary migration is based on the so-called ‘ray-tracing technique’.   This technique as-
sumes that hydrocarbons move, because of buoyancy, just at the top of a permeable layer 
overlain by an impermeable one (acting as a seal) and following the steepest path.   Subse-
quent processes, like spillage and leakage, may cause hydrocarbons to migrate out of traps.   
All the processes are modeled over the geologic time scale, taking into account the evolving 
basin geometry and changing properties of rocks and fluids.    

The final results of the whole PSM workflow (modeling of temperature and pressure, gen-
eration and expulsion, secondary migration and entrapment) are the total amounts of hydro-
carbons (oil and gas) that fill at the present time each trap of the basin area. 

2.2. Uncertainty and Sensitivity Analyses 
As already mentioned, this study addresses both geometric and fluid uncertainty and sen-

sitivity evaluation in a 3D study.   Even if it is possible to add more sources of uncertainty, 
this is the first time, to our knowledge, that such a complete approach is proposed. 
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2.2.1. Basin Modeling Uncertainty and Sensitivity Approach 
The main sources of uncertainty of a basin depth model are the interpretation of seismic 

times and the estimation of seismic velocities.   Disregarding the radical error of having mis-
interpreted seismic reflection (travel) times, the greatest uncertainty is associated to seismic 
velocities, as they are indirectly estimated from seismic signal coherency [5].  

The geostatistical techniques used to produce an optimal velocity map, allow also to gen-
erate an infinite number of equally-probable simulated velocity maps.   In this study the seis-
mic velocity field of the most critical layers for the depth conversion was simulated using a 
specific geostatistical technique for probabilistic depth conversion [6]. 

As a result of this approach 100 simulated depth models have been computed, all of them 
geostatistically equally-probable but quite different from one another if compared with their 
possible effect on the PSM result.   As 100 depth models were too many to be dealt with, a se-
lection of 8 representative depth models was performed in such a way that they “optimally” 
sampled the “uncertainty space of the basin depth model”.   They are the ones that are the 
most different from one another in the main area of interest, that of trap T5, the biggest one. 

A similar approach was used to select 4 heat flow maps, that is the selected ones are the 
most different from one another and they optimally sample the heat flow uncertainty space. 

Both the depth models and the heat flow maps have been treated as scenario variables, 
which means that all the combinations among them have been considered, producing 32 dif-
ferent 4D basin models as input to the following PSM study. 

2.2.2. PSM  Uncertainty and Sensitivity Approach 
In practice the P&T phase was run 32 times, one for each scenario, and for each of these 

P&T runs, the subsequent phases (G&E and M&T) were run 32 times. This produced 1024 
runs with a LP-τ sample on all uncertain input variables associated to: Basin Model, P&T, 
G&E and M&T.   This UASA approach extends that proposed in Ref. 7 where: the geometry 
of the Basin Model was kept fixed (instead of having 8 scenarios), the 3D P&T runs where 
only 8 (instead of 32), the G&E runs where 32 in total (instead of 1024). 

Moreover this paper applies the method proposed in [8] as it allows to compute the un-
certainty of the hydrocarbon trapped quantities (oil and gas) and evaluate, at the same time, 
the sensitivity indices of the first order, using the same set of 1024 runs.   In order to analyze 
non linear effects between variables, a Neural Network (NN), trained on the set of 1024 runs, 
was then used to compute the sensitivity indices of the first and second order and the total ef-
fects, using the method of Sobol’ with the extension described in Ref. 9 and Ref. 10.  

2.2.3. Uncertainty and Sensitivity Evaluation 
Fifteen uncertain variables were used, grouped in 4 subsets: 

•  Basin (2 variables) : 8 model geometries combined with 4 heat flow maps to get 32 
Basin Models; 

•  Source (6 variables) : Total Organic Carbon, Porosity-Stress Curve, Water Threshold 
Saturation, for Source 1 (layer 1) and Source 2 (layer 4);  

•  Migration (4 variables) : Expulsion Efficiency from Source 1 and Source 2, Leakage of 
Gas and Leakage of Oil from a trap;  
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•  Trap (3 variables) : Net to Gross ratio; Water Irreducible Saturation, Thickness of the 
reservoir layer. 

The uncertainty evaluation of the trapped oil and gas quantities in each of the 9 main traps 
(Fig.2b) is based on LP-τ sampling of 13 uncertain variables for each of the 32 basin model 
scenarios.   This means that the output variables are 18 (oil and gas volume in each trap). 

At the same time first order sensitivity indices were computed in order to identify the driv-
ing factors of the G&E and M&T processes that cause an accumulation of oil and/or gas. As 
mentioned we have applied the method based on “State Dependent Parameter models” (SDP) 
[8] to estimate sensitivity indices of first order.    

In order to estimate sensitivity indices of the second order it would be necessary to run a 
huge number of times the entire BM and PSM workflow, requiring an unaffordable CPU 
time.   This suggested the use of a NN approach [11] to model the global PSM workflow.   
For this purpose the NN was trained on the 1024 uncertainty runs, using all the 15 input vari-
ables and the 18 output variables.   The goal of this NN was the computation of Sobol’ indices 
and in particular of second order indices, in order to better understand non linear interactions 
between variables.    

3. RESULTS 
The analysis of the results shows that, as expected, some non linear relationships among 

variables exist (Fig. 3a shows an example for an input and an output variable).   Moreover 
some scenario yields “discontinuous” results, as (Fig. 3b) for model geometry 3 where trap T4 
never contains oil and always gas, while all the other model geometries “convey” both oil and 
gas in trap T4 (in the Fig. 3b they are in gray). 

The spilling from one trap to outer regions of the modeled area or to other traps is quite im-
portant in the correct evaluation of the hydrocarbon trapped quantities.   This is better under-
stood looking at the spilling scenarios,  shown in Fig. 4a, where also the probabilities of each 
spilling path has been computed, using a statistics of 30 model geometries (including the 8 
ones used for UASA).   It is important to remark that the spilling paths coming out of a single 
trap are alternative cases, as only one of them could be the real one.    

Taking a look to the hydrocarbon quantities that may have filled a trap, as is shown for trap 
T5 in Fig. 5a for gas and in Fig. 5b for oil, the total amount coming out from all the simula-
tions summarizes the contributions due to the different spilling scenarios.   For example the 
case “no spill-in” represents all the simulations where trap T5 was filled only directly from 
the drainage area, while the case “T4” is the set of all the simulations in which trap T5 was 
filled both directly from source and from the spilling of trap T4.   For the filling of trap T5, 
only the 6 scenarios listed in Fig. 5a and in Fig. 5b are possible and again they represent alter-
native cases as only one of them could be the real one. 

Other useful statistical results are the probability maps that summarize the probability of 
presence of a characteristic of interest for each point of that map.   For example Fig. 4a shows 
the “Hydrocarbon Filling Probability” map that represents the probability that each point has 
to be inside an hydrocarbon (gas and/or oil) accumulation.   While the “Closure Probability 
map” measures the probability that each point has to be inside a closure, defined as the maxi-
mum volume available to hydrocarbon accumulation for that trap (trap T5 in Fig. 4b) before 
that a spilling out will take place.    
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  Figure 3a. Figure 3b.  

Trap T5 – Non linear relationship  Trap T4 for Model 3: never oil and always gas 

    
 Figure 4a. Top Layer 3 in gray - Hydrocarbon Figure 4b. Zoom on Trap T5 – Migration paths in 

Filling Probability in color -  Spilling Scenarios dashed light blue - Drainage Area and Closure  
probabilities as vectors connecting Traps. Probability Maps in color. 

 

 Figure 5a. Trap T5 – Volumes of Gas   Figure 5b. Trap T5 – Volumes of Oil   
Colors are related to the different trap spilling scenarios (e.g. T4 means: gas/oil from spilling of T4) 
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The Filling Probability can be computed even if the model geometry is fixed, while the 
Closure Probability requires a number of different model geometries (in the example 30).    
The same is true also for the “Drainage Area Probability map”, that describes the probability 
that a point has to be inside the drainage area of a trap (as trap T5 in Fig. 4b). 

As regards the trapped hydrocarbon quantities, the result of the study is that all the traps 
are filled by gas and, as only traps T4 and T5 have a median value of the oil probability dis-
tribution greater than zero, only these actually contain both oil and gas.   To be precise only 
trap T6, among others, has the 3rd quartile of the oil probability distribution greater than zero.  

The analysis of the first order sensitivity indices (computed with the SDP method) can be 
only shortly summarized.   The observation just mentioned on gas prone traps is reflected in 
the sums of the first order indices, in fact these are less than 0.40 for the (improbable) oil ac-
cumulations of these traps.   In all other cases the sum of first order indices of hydrocarbon 
accumulations (gas or oil) is greater than 0.70, with the exception of trap T6 which is in the 
middle with a value that sum to 0.56 for the oil accumulation. 

According to the sensitivity analysis, based on (reliable) first order indices, the most criti-
cal parameter for the gas prone traps (T1, T2, T3, T6, T7, T8, T9) is the Model Geometry.   
For traps T4 and T5 the most critical parameter for gas accumulation is related to Trapping 
Conditions (Net/Gross and Gas Leakage, respectively), while for oil accumulation it is related 
to Model Geometry for trap T4 and to Source parameters (Porosity-Stress curve of Source 2) 
for trap T5. 

A double comparison was done between the first order indices computed with SDP 
method on real data (from model simulations) and those computed with SDP and Sobol’ 
methods on data produced by the trained NN.   The result is that the first two most critical 
parameters are found all the same as far as gas accumulations are concerned and also oil ac-
cumulations but only for traps T4 and T5.   This justify the use of second order indices, com-
puted on NN data, to understand possible correlations among variables.   In synthesis this 
analysis reveals as critical the interactions among Model Geometry and : Source parameters 
(TOC, Porosity-Stress Curve), Migration parameters (Expulsion Efficiency, Gas Leakage) 
and Trapping parameters (Net/Gross, Reservoir Thickness). 

4. DISCUSSION 
The current study was possible thanks to the porting of the G&E modeling phase on a par-

allel platform, in practice a cluster of Linux workstations that amounts to 24 CPU (including a 
Linux cluster of 16 CPU).    The CPU time needed to perform the study, with this setting, was 
about 84 hours (72 hours only for the 1024 runs of the G&E phase). 

Obviously the use of a NN could reduce the CPU time needed, but as mentioned above, 
this can not be a straightforward or blind choice, in fact  the analysis of the results confirms 
that the NN has a tendency to linearize the model behavior and has difficulties in modeling 
categorical variables.   This do not exclude that a more advanced NN could give better results.  

As the sensitivity study has suggested, the Model Geometry plays an important role in the 
different modeling phases, its effect on the results is non linear and it may also introduce dis-
continuities in the space of results.   All this claims for a more systematic use of Model Ge-
ometry uncertainty, which means the ability to manage at least 32 model geometry simula-
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tions, that in turn requires the setting of a semi-automated procedure in substitution for the 
manual one used in this preliminary study.  

The scenario approach is, as already mentioned, the only way to properly manage an in-
terpretative uncertainty, but as the analysis of the results has shown (see Fig. 5a and Fig. 5b) it 
is not possible to identify a priori a set of parameters that will produce a pessimistic result or 
an optimistic one.   On the contrary we have to look for pessimistic/optimistic cases only a 
posteriori, applying a careful analysis of the behavior and of the characteristics of the basin 
model and of the petroleum system under study. 
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Abstract: Pilot plant work is considered a reasonable intermediate step when chemical 
processes are moved from lab to commercial scale.  Unfortunately, pilot plants are not easy or 
cheap to operate and modelers are faced with the problem of getting the most information out 
of the least expensive pilot plant experimental plan.  We have developed a kinetic model for a 
catalytic reaction mechanism using lab scale experiments in an Accelerating Rate 
Calorimeter.  Under isothermal conditions in a continuously stirred tank reactor, the catalyst 
exhibits three steady states, one of which is unstable.  Our kinetic model is now part of steady 
state and dynamic models for reactors in the pilot plant.  In this work, we compare the 
performance of our mechanistic models against that of empirical models obtained by analysis 
of the chosen statistical experimental design, we point out the potential pitfalls of the 
empirical models, and we suggest ways around those pitfalls for systems with complex 
dynamic behavior.  The combination of mechanistic and empirical modeling offers a balanced 
approach. Mechanistic models provide insight that is useful in dealing with complex dynamic 
behavior, while empirical models allow analysis and optimization of system responses for 
which mechanistic models are not available. 

Keywords: pilot plant, process scale up, state multiplicity, catalytic reaction mechanism, 
chemical reactor, reaction ignition and extinction, mechanistic and empiric models 

1. INTRODUCTION 
Using only lab data to design and build a commercial chemical plant is considered risky 

since limitations that are not present at the smaller scale can become dominant at the larger 
scale.  Mass and heat transfer limitations, for example, play an increasing role during plant 
scale up.  Pilot plants are useful in making the transition form lab to commercial scale.  
Unfortunately, pilot plants are viewed more as means to generate product samples for market 
testing than as devices to use for model validation, despite the great need to have models that 
can be scaled up reliably. 

In our system, choosing the operating conditions and the catalyst level that will favor the 
desired stable steady state is difficult, since process economics demand low catalyst levels 
and this constraint pushes the system towards the low activity region.  In other words, a 
delicate balance has to be established between process economics and the ability to control 
the process. 

In the absence of a kinetic model for a strongly non-linear system like the one considered 
in this work, a purely empirical approach to experimental planning and plant scale up is at risk 
of failing or it has to be constrained to small regions in parameter space where linear 
approximations are valid and other stable steady states are far enough from the desired stable 
steady state.  Unfortunately, these regions are likely to be of little or no value from a practical 
viewpoint. 
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2. METHODOLOGY 

2.1. Accelerating Rate Calorimeter 
In preparation for pilot plant experiments, kinetic modeling work was initiated in an 

Accelerating Rate Calorimeter (ARC).  The ARC was developed at the Dow Chemical 
Company in the late 70’s as a tool for thermal hazard evaluation [1].  Our system involves 
two reactants and a catalyst.  Reactant A is nonvolatile while reactant B is highly volatile.  
The reaction is strongly exothermic and, for safety reasons, only low concentrations of B are 
allowed in pilot plant and commercial reactors.  In a typical experiment, a spherical container 
with a mass of 16 grams would be loaded with a sample containing 20 parts per million 
catalyst, 4 grams of A, and 1 gram of B.  The temperature profile observed during the reaction 
period is shown in Fig. 1.  The ARC is particularly useful in systems where strongly 
exothermic reactions are possible and where a pressure build-up occurs because of the release 
of gaseous substances.  In addition to providing a safeguard against thermal hazards during 
the phases of production, storage, and transport of chemicals, the ARC is also a valuable tool 
in thermokinetic analysis.  It is with this application in mind that we selected the ARC. 
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Figure 1.  Temperature profile in ARC during exothermic reaction between 4 grams of A and 1 gram 

of B in the presence of 20 ppm catalyst 
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With catalyst concentration and initial weight fraction of B as factors, ARC experiments 
were chosen at the following conditions: 

Run Number Catalyst Level, ppm Initial weight fraction of B 

1 10 0.2 

2 60 0.2 

3 10 0.4 

4 60 0.4 

 Temperatures observed in ARC experiments were transformed to weight fractions of B 
during the reaction by making use of Eq. (1), which assumes fixed values for heat capacities 
and heat of reaction. 
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where  is weight fraction of B at a chosen temperature,  is weight fraction of B at the 
initial temperature,  is sample mass,  is heat capacity of sample,  is sphere mass, 

 is heat capacity of sphere, T  is temperature,  is initial temperature, and  is heat 
of reaction. 
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2.2. Pilot Plant 
The pilot plant uses a continuous stirred tank reactor (CSTR) followed by a plug flow 

reactor (PFR).  Additional tanks are available for storage of catalyst, reactants, and product.  
Near Infrared sensors provide measurements of the concentration of reactant B at points of 
interest.  The pilot plant has been designed for temperatures in the range from 90 to 130 ºC 
and overall flowrates as high as 50 kilograms/hour.  Unlike ARC experiments, the pilot plant 
experiments were conducted isothermally and with a continuous flow of materials.  The 
factors chosen for study were in this case catalyst concentration and temperature in the CSTR.  
Conversion of B in the CSTR was chosen as the main system response. 

3. RESULTS 

3.1. Kinetic Mechanism 
The results of ARC experiments show an important trend for this system: when the 

temperature of the sample reaches a high enough value, often in the neighborhood of 145 ºC, 
the reaction nearly dies.  Based on this, we have suggested a kinetic mechanism where the 
catalytic sites are assumed to exist in two forms: fast and slow.  When the catalyst is fresh, all 
sites are fast.  Exposing the catalyst to reactant B and to high temperatures promote the 
irreversible transformation of fast sites into slow sites.  This mechanism leads to Eqs. (2) and 
(3) for the rates of consumption of B in the main reaction and the rate of site transformation, 
respectively. 
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where Pθ  is the fraction of fast catalytic sites,  is the reaction coefficient for the main 
reaction at the fast sites,  is the reaction coefficient for the main reaction at the slow sites, 
and  is the reaction coefficient for site transformation. 
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The rate expressions in Eqs. (2) and (3) can be used in macroscopic mass balances [2] 
describing the behavior of the reacting system in the ARC.  The necessary balances are given 
by Eqs. (4) and (5). 

 MC
B Rw

dt
dw

−=  (4) 

 T
P R

dt
d

−=
θ

 (5) 

where t  is time, and  is the concentration of catalyst. Cw

In the system of Eqs. (1) through (5), the three reaction coefficients depend on 
temperature, as described by the Arrhenius expression: .  There will be two 
adjustable parameters for each reaction coefficient,  and , for a total of six adjustable 
parameters.  As illustrated by Eq. (1), temperature is not an independent variable but is linked 
to the weight fraction of B.  Fig. 2 shows the fit of this model to the experimental data 
obtained in the ARC, with conversion defined for the ARC runs as 

RTE
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3.2. CSTR Model 
Macroscopic mass balances provide again a description of the dynamic behavior of the 

reacting system in a CSTR.  Eqs. (6) through (8) correspond to balances for B, catalyst, and 
fast catalytic sites, respectively, assuming the density of the mixture is independent of 
composition and the reactor is always full:  
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where τ  is reactor residence time,  is weight fraction of B in the feed stream, and  is 
concentration of catalyst in the feed stream.  At steady state, the accumulation terms in the left 
hand sides of Eqs. (6) through (8) will be zero. 
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3.3. Steady State Multiplicity 
At steady state, the system described by Eqs. (2), (3), and (6) through (8) leads to Eq. (9), 

which allows calculation of the concentration of catalyst needed in reaching a chosen degree 
of conversion of B, defined for the CSTR as BfBB wwX /1−= . 
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The second term on the right hand side is used to correct for the amount of catalyst that is 
killed by impurities.  These are suspected to come in mostly through reactant A.  Fig. 3 shows 
curves created using Eq. (9) at two temperatures.  Reactor residence time is 5 hours and the 
weight fraction of B in the feed is 0.8.  The curve at the lower temperature illustrates the 
behavior one would typically expect, with a monotonic increase in the degree of conversion of 
B as the concentration of catalyst is increased.   
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Figure 2.  Experimental results and model predictions for conversion of B in ARC runs 
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The curve at higher temperature reveals that as many as three steady states are possible for 
a given concentration of catalyst.  State multiplicity is thus more likely to appear at higher 
temperatures, when site transformation has a more noticeable effect on the main reaction. 

Steady state multiplicity has been studied in great detail for non-isothermal reactors [3].  
Isothermal reactors also display this kind of behavior [4].  Reaction mechanisms similar to 
ours have been reported in biochemical systems [5]. 

3.4. Model Validation 
Eq. (9) was used in choosing the set of operating conditions for pilot plant experiments.  

Pilot plant experiments were allowed to reach steady state by running them for at least 25 
hours, or five times the chosen residence time of 5 hours.  The feed weight fraction of B was 
approximately 0.8 in all runs.  These conditions were expected to lead to significant monomer 
conversion in the pilot plant, since conversions lower than 0.75 were considered unsafe.  
Slight differences in the type and quality of the reactants used in pilot plant experiments, 
when compared to the reactants used in ARC experiments, led however to lower catalyst 
activity than expected. 
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Figure 3.  Effect of catalyst concentration on conversion of B at low and high temperatures 
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As implied by the first few pilot plant experiments, the estimates supplied by ARC 
experiments for the parameters of Eq. (9) could not accurately describe the behavior of the 
pilot plant.  Because of these differences, the original experimental plan was not followed 
strictly and modifications were needed.  The first modification involved an overall increase of 
20 ppm in the concentration of catalyst.  Additional complications led to further modifications 
in the experimental plan.  Fig. 4 compares the runs of the original plan to the actual runs 
executed.  Missing from the later set are some of the runs at low catalyst concentration and 
high reactor temperature.  Various attempts at executing these runs were unsuccessful since 
the conversion of reactant B would quickly move away from conversion levels considered 
safe and the pilot plant had to be shut down.  This is consistent with the trend displayed in 
Fig. 3 as the temperature goes up. 

Despite all the complications, Eq. (9) was a good starting point since it provided 
reasonable estimates of the conditions to expect at steady state for all runs.  When things did 
not go as expected, Eq. (9) still helped in locating problem causes and in choosing corrective 
actions.  Additional help was provided by the full dynamic model described by Eqs. (2), (3), 
and (6) through (8). 
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Figure 4.  Planned (O) and actual (●) runs of experimental design for the pilot plant  
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3.5. Mechanistic vs. Empirical Models 
Fig. 5 compares predicted and observed values of conversion of B during pilot plant 

experiments.  One set of predictions was generated using Eq. (9) and the parameter estimates 
obtained by fitting the ARC data.  This model has a tendency to underestimate the activity of 
the catalyst when it is present in high concentrations and to overestimate it at low 
concentrations.  The other set was generated by a linear empirical model whose parameters 
were fitted to the pilot plant results. 

The fit provided by the linear empirical model is excellent.  Even though an improved fit 
is obtained when the parameters in Eq. (9) are adjusted to match the pilot plant results, the 
predictive ability of this mechanistic model can only get as good as that of the linear model, 
but not better.  Add to this the fact that there are product properties for which only the 
empirical approach is possible and the advantages of this approach become clear.  
Unfortunately, in its current form the empirical model knows nothing about time.  Eq. (9), on 
the other hand, includes the residence time as a variable.  The dynamics of the system are 
modeled by Eqs. (2), (3), and (6) through (8), with the corresponding steady state solution 
provided by Eq. (9).  One may argue, however, that data from dynamic pilot plant 
experiments could be used to include time as an independent variable in the empirical model. 
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Figure 5.  Fits generated by empirical (o) and mechanistic (●) models of conversion of B 
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The most troublesome aspect of the empirical model is the way it handles conditions of 
low catalyst activity, which correspond to high temperature and low catalyst concentration.  
At 116 ºC and 79 ppm, for example, a conversion of B of 0.89 is predicted by the empirical 
model.  In the pilot plant, however, the conversion had already dropped to 0.75 and would 
have continued dropping if a plant shut down had not been ordered.  The chosen conditions 
thus fall in a region that the mechanistic model can handle better than the empirical model, as 
illustrated by Fig. 6. 

An improved set of parameters for Eq. (9) was used to create the corresponding curve in 
Fig. 6.  More impurities are expected in pilot plant experiments than in ARC experiments and 
for this reason a higher catalyst level at zero conversion is observed in Fig. 6 than in Fig. 3. 
This level, like the prediction of 0.5 for the conversion of B at 79 ppm are not supported by 
experimental data since conversions lower than 0.75 were not allowed in the pilot plant.  
Thus, while the mechanistic model is in principle capable of generating predictions over the 
entire conversion range, it can only be built by using high conversion data.  ARC and 
dynamic experiments should provide, however, the information needed in validating a given 
kinetic mechanism and set of kinetic parameters for the mechanistic model. 
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Figure 6.  Conversion of B predicted by empirical and mechanistic models at 116 ºC 
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4. DISCUSSION 
Our validated reactor models are going to be used as part of a process intensification 

strategy that will search for optimum operating conditions of commercial plants and will 
choose product grade transition strategies for those plants.  At the commercial scale, the 
energy balance plays a more important role and the combination of this balance with the 
reaction mechanism for the catalyst will introduce complications that process control systems 
will have to deal with.  Those systems should be designed to avoid reaction extinction 
episodes or the cycling behavior that results from process configurations and process 
conditions that favor sustained oscillations. 

We continue to develop empirical and mechanistic models for reactant conversion and for 
product properties of interest in this system.  We view the approaches as complementary, 
rather than contrary.  Empirical models can provide excellent fits over the experimental 
region and they are often the only available option.  Mechanistic models, when properly 
validated and when extrapolated with care, can help in the analysis of possible scenarios at the 
commercial scale even before a commercial plant becomes available.   

One of the key aspects of this work has been the early detection of state multiplicity 
during ARC experiments.  Had it not been for such detection, execution of the pilot plant 
experimental plan would have been plagued by far too frequent reaction extinction episodes.  
Thanks in part to this knowledge we have been able to push our experiments to the lowest 
catalyst concentration and thus more economic operating region without considerable waste 
of resources.   

We are dealing with a strongly exothermic reaction and a highly volatile reactant. We are 
thus constrained to low concentrations of unreacted B in pilot plant reactors and in larger 
reactors.  This represents a major limitation in model validation since the low conversion 
region is rich in information but unreachable.  Despite such limitation, we already have steady 
state and dynamic reactor models that are very helpful in evaluating multiple catalysts and 
products, and should be very helpful in facilitating the transition to commercial scale reactors. 
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ABSTRACT

A parametric sensitivity analysis is carried out on a radiological impact software describ-
ing the radionuclides transfer to the man following a chronic gas release of a nuclear
installation. An effective dose received by age group can thus be calculated according to
the duration of the release. Due to the large number of input parameters (more than fifty
for each output variable) a methodology is proposed. The generation of one thousand
Monte-Carlo simulations allows to calculate correlation coefficients between input param-
eters and output variables, which give a first overview of important factors. Least-squares
multiple regression is used to construct response surfaces in polynomial form for each
output variable. Then using these polynomials, we calculate the global sensitivity indices
of Sobol by the Monte-Carlo method. We show the application of this method to one site
of study and to one reference group, for two radionuclides: iodine 129 and uranium 238.

Keywords: Uncertainty, sensitivity analysis, environmental transfer, radiological impact

1. INTRODUCTION

The present study presents the global sensitivity analysis of a radiological impact software
called GASCON. GASCON (developed by CEA/DAM/DASE) is dedicated to chronolog-
ical atmospheric releases and dosimetric impact which is used for CEA facilities safety
assesment. This software evaluates the doses received by a population (called reference
group) exposed to the cloud of radionuclides and via the food chains. It takes into ac-
count the interactions which exist between the man, the plant and the animal, the different
ways of transfer (wind, rain, . . . ), the distance between emission and observation, the time
passed between emission and calculation, . . .

Various stages in the analysis of a process (software, measurement, experiment, . . . )
introduce potential errors, in particular in the construction of the various models: real
phenomenon with the physical model, physical model with the mathematical model, and
mathematical model with the numerical model. The principal sources of uncertainties
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are in the approximation made by the modeling of the physical phenomenon, the ap-
proximations made on the parameterization of the model, the input data and the input
parameters. The uncertainty analysis is used to evaluate the confidence interval or the
probability distribution of the result. The global sensitivity analysis is used to quantify
the influence of the input parameters uncertainties on the output variables uncertainties.
Recent studies have applied different uncertainty analysis and sensitivity analysis methods
to environmental models (Helton [6], Campolongo and Saltelli [2], Hedin [5]).

The results provided by GASCON are in the form of annual effective doses (Sv/yr)
received by a reference group, divided into three age compartments: adult, child and baby.
We also distinguish three operating cycles of the release installation: one year, ten years,
fifty years. In our study the reference group is a village near the release installation, and
we consider two radionuclides 129I and 238U. There is thus eighteen output variables.

The main ways of exposure taken into account in GASCON are:

� external exposures: radioactive cloud and soil deposits;

� internal exposures: inhalation, ingestion of plants contaminated by direct way
(foliar transfer by contact with the radioactive cloud) and indirect way (soil
deposit then root transfer), ingestion of contaminated animal productions.

Some input data are specific of the studied radionuclide or of the studied site (meteoro-
logical conditions, soils nature, feed rations, . . . ). We have deduced from the literature
the variation ranges of parameters considered for the sensitivity analysis, which are:

� dose factors for external irradiation, effective ingestion, effective inhalation;

� transfer factors to animal productions (milk, meat of cow, ewe, goat, pig . . . );

� factors of soil-plant transfer (vegetables, cereals, fodder, . . . );

� translocation factors (fruits, vegetables, cereals, . . . );

� sorption coefficients Kd (sands, silts, clays and organic matter);

� dry deposit rate for each radionuclide;

� local feed rations of the reference group for the various age compartments
(vegetables, fruits, cereals, milk, meat, egg, . . . ), and animal feed rations
(grass, hay, corn) related to the products eaten by the reference group.

The following section presents the four stages of our methodology: uncertainty anal-
ysis via Monte-Carlo calculations, fast sensitivity analysis with correlation coefficients
between input and output variables, construction of response surfaces requiring negligi-
ble computation times, calculations of Sobol sensitivity indices. In the third section this
methodology is applied to the GASCON software using specific nuclear installation and
reference group. We discuss the result of this approach and conclude in the last section.

2. METHODOLOGY

2.1. Uncertainty analysis

The general objective of our uncertainty analysis is to evaluate uncertainty on a computa-
tion result Y taking into account uncertainties on the input parameters Xi (i = 1, . . . , Np).
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It is necessary for each input parameter to evaluate a probability density function (by ex-
pert opinion or by a data statistical analysis). The results of the uncertainty analysis is
conditioned with the choices of these probability densities. To propagate uncertainties, we
use the pure Monte-Carlo strategy: random generation of N samples of input parameters,
then software calculation for each sample.

Because of our lack of knowledge, we choose the uniform law for the distribution of all
input parameters. Moreover, it requires only the bounds of the parameter variation ranges.
However for the majority of the GASCON parameters, an order of magnitude separates
the minimal and nominal values (min ∼ nominal/10) and the nominal and maximal
values (max ∼ nominal × 10). Thus, if we choose the uniform function on [min; max],
the majority of the simulated values will be included in the interval [nominal; max]. To
counter this problem, each simulation proceeds in the following way:

� we simulate a uniform random variable u on [0; 1];

� if u ≤ 0.5: the simulation value is 2u(nominal−min)+min ∈ [min; nominal];

� if u > 0.5: the value is (2u − 1)(max−nominal) + nominal ∈ ]nominal; max].

From the Monte-Carlo simulations, we obtain for each output variable the elementary
statistical parameters (average, minimum, maximum , standard deviation, variation co-
efficient, skewness and Kurtosis coefficients) and the probability distribution. From the
distributions, we can observe the spreading out of the output variables, the confidence
intervals, the multiplicity of modes, . . . Statistical comparison tests can also be made. In
our study, we analyze nine output variables for each radionuclide, and we deduce by the
Kolmogorov-Smirnov test (Saporta [11]) which variables are statistically similar.

2.2. Sensitivity analysis with correlation coefficients

The global sensitivity analysis is used to quantify the contribution of each input parameter
to the response variability. The linear correlation coefficient ρ (or Pearson coefficient)
between two random variables X and Y is the simplest sensitivity index. If ρ is close to
+1 or −1, the assumption of linearity between X and Y is valid. If Y is an output variable
and if there are several input variables Xj (j = 1, . . . , Np), the correlation coefficients
between Y and each Xj have not quantitative sense, but can reveal the linear character
of some dominant variables (Saporta [11]).

If the behavior of Y compared to each parameter is overall linear, it is possible to obtain
quantitative measurements of their influence from the standard regression coefficients
(linear regression connecting Y to the Xj). To obtain a measurement of the linearity
of the relation between Y and Xj, we use the partial coefficients of correlation pj. In
opposition to the standard regression coefficients, the partial correlation coefficients allow
to eliminate the influence from the other variables (Saltelli et al. [9]). If the relation
between X and Y is not linear, the correlation coefficients of the ranks (or Spearman
coefficients) can be used. By replacing the values of parameters X1, . . . , XN and of
output variable Y 1, . . . , Y N by their rank, the assumption of linearity is thus replaced
by the assumption of a monotonous relation.

The regression or correlation coefficients are related to linear or monotonous assump-
tions. Moreover, they study only the relations between the output variable and an input
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parameter independently of the other parameters. However, many problems are neither
linear nor monotonous, and reveal physical dependences between parameters. Global sen-
sitivity analyses more adapted to these conditions are available, but they are definitely
more expensive in computing times (Saltelli et al. [9]). In order to test them on GASCON,
it is necessary to simplify this software and to replace it by a response surface.

2.3. The response surface method

The response surface method (Box and Draper [1], Kleijnen [8]) is used to build a function
which simulates the behavior of a physical or chemical phenomenon in the field of variation
of the influential parameters, starting from a certain number of experiments. In our study,
an experiment is a calculation by the GASCON software. Building a response surface (RS)
aims to obtain a mathematical model representative of the studied software, having good
capacities of prediction, and whose computing time to evaluate an output variable is
negligible. Such a RS will be thus effective for the uncertainty and sensitivity analyses,
requiring several thousands of simulations.

To build a RS, it is necessary to have the software H which models the studied phe-
nomenon, a sample D of N points (x(i), z(i)), where x(i) is a vector of the Np random
input parameters and z(i) = H[x(i)] (i = 1 . . . N) is the software response, and a family
F of functions f(x, c), where c is a vector of parameters (parametric regression) or indices
(nonparametric regression) which makes possible the identification of the various elements
of F . There are multiple RS families (Hastie et al. [4]): polynomials, interpolating ra-
dial functions, splines, generalized linear models, partial least squares, neural networks,
support vector machines, . . . In this work, we use only polynomials, because they have
a simple physical interpretation and the majority of the GASCON equations are linear
formulas compared to each variable.

In general, we use the technique of least squares to obtain the best representing f0

in the family F . We minimize the function
∑N

i=1{z(i) − f [x(i), c]}2 in relation to the
parameters c, to obtain c0 and the RS f0(x) = f(x, c0). The RS quality of approximation
is given from a statistical analysis on a construction basis, whereas the quality of prediction
is deduced from a prediction basis. A simple method to qualify a RS is to compare on the
two bases some indicators obtained from the RS with those obtained directly with software
H. In our study, we initially compare their average, standard deviation, minimum and
maximum. In addition, a regression analysis allows to determine the share of variability
of the output variable explained by the model. Other possibilities to validate RS are the
cross-validation or bootstrap techniques (Hastie et al. [4]). For simplicity, we just present
two statistics which give global measurements of correlation between two data sets A and
B: the Pearson correlation coefficient ρ and the coefficient of determination R2 which
writes

R2(A,B) = 1 −
∑N

i=1(Ai − Bi)
2

∑N
i=1(A − Ai)2

, (1)

where A is the average of A. The coefficient R2 represents the fraction of the variation
compared to the average explained by the smoothed model, i.e. the percentage of output
variables explained by the response surface. In our case, A is the software response
Ai = z(i) = H[x(i)] and B is the model (RS) response Bi = f [x(i), c0].
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These criteria are global and it is possible that the data adjusted are not homogeneous.
It is the case when the studied variable covers a broad range of variations with multiple
orders of magnitude. In this case, the contributions of the low values to the R2 mea-
surement are negligible. To cure this problem, the study of residual statistics gives some
indications of the regression accuracy. The residuals ε have to be centered with a standard
deviation σε small compared to the GASCON standard deviation σA. We also examine
the average and the standard deviation of the relative residuals εi/Bi = (Ai − Bi)/Bi.

2.4. Global sensitivity analysis

We consider methods of variance analysis which aim at determining the weight of the
variance of the response Y = f(X) resulting from a variable or a group of variables
(McKay [7], Saltelli et al. [9]). Their objective is to calculate the global sensitivity index
Sti defined as the sum of all the sensitivity indices implying parameter Xi. The Sobol
method allows a relatively simple evaluation of the terms Si, Sij, . . . (Saltelli et al. [9]).

In practice, we can evaluate Sobol indices by a Monte-Carlo method, which require
a very significant number of simulations, typically Ns = 10000 to estimate an index of a
parameter (Si, Sij, . . . or Sti). This justifies the use of response surfaces to minimize the
computing times. Although the calculation of Sobol index with FAST method is definitely
less expensive, we use the Monte-Carlo method because we obtain a realistic confidence in-
terval on the Sobol index by repeating the index calculation. This information is essential
if we want to rigorously classify the influence of the various input variables. In our study,
we carry out Nic = 200 calculations of each Sobol index. Moreover, the Monte-Carlo
method calculates all the Sobol indices (Si, Sij, . . . or Sti), which bring information on
the interactions between the input parameters. In our study, we just calculate Si and Sti
to measure the influence that the variable Xi has while acting alone. The Monte-Carlo
method calculates these two indices using the same Ns simulations (Saltelli [10]), whereas
FAST calculates them starting from two different sets of simulations.

For the model Y = f(X) where X is a vector of Np parameters, we need Nic × Ns ×
(Np + 2) evaluations of f to calculate the first order indices Si and total indices Sti
for all the parameters Xi, and to allocate a confidence interval to them. In our study,
Ns = 10000 and Nic = 200. The value of Np depends on the model of response surface
which is adjusted. For GASCON, we try to take into account no more than ten parameters
in each response surface. For Np = 10, there will be 2.4 × 107 calculations of f .

3. RESULTS

The GASCON software is applied to a French nuclear research center. The gas release is
fixed at a symbolic value of 1 Bq/year which does not represent a realistic release. This also
induces non realistic effective dose rates. We perform one thousand independent Monte-
Carlo simulations of the GASCON software (30 seconds per simulation). In Figure 1,
the distributions of the 18 output variables are represented. For a given radionuclide, the
output variable distributions seem very similar. We carry out statistical tests between the
coherent output variables (same radionuclide, same age compartment or same operating
cycle) by the Kolmogorov-Smirnov test which evaluates if there are or not statistically
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significant differences between the two distributions on the degree of confidence 95%. For
129I, there is no difference at 95% between all the distribution couples, except between
(adult, operating cycle of 50 years)/(baby, operating cycle of 1 year) and (adult, operating
cycle of 50 years)/(baby, operating cycle of 10 years). For 238U, all distribution couples
have differences at 95%, except for (adult, 1)/(adult, 10), (child, 1)/(child, 10), (baby,
1)/(baby, 10). In summary, the variables at ten years have approximately the same
distributions than the variables at one year, and for 129I the variables ”child” have the
same distributions than the variables ”adult”. Thus for 129I and 238U, it is sufficient to
study four output variables: (adult, 1), (adult, 50), (baby, 1), (adult, 50).

Table 1 shows the largest Pearson and Spearman correlation coefficients between input
and output variables. All the output variables reveal five important input parameters:
the dose factor of effective ingestion ingeff, the human feed ration of goat’s milk ra gmilk,
the goat feed ration of grass ra grass, the dry deposit rate dep, and the transfer factor to
the goat’s milk gmilk. For 238U, some additional parameters appear: the goat feed ration
of cereals ra cer and the transfer factor of the vegetables fruits vegfr.

ρ ρS ingeff gmilk ra gmilk ra grass dep ra cer vegfr

Ad I 1 33 55 09 16 31 46 28 41 21 38
Ad I 50 33 56 09 16 31 45 28 41 21 39
Bb I 1 32 54 09 16 31 47 28 42 21 37
Bb I 50 32 54 09 16 31 47 28 42 21 38
Ad U 1 28 55 20 24 21 29 18 26 15 20 08 11
Ad U 50 36 62 17 19 18 21 15 20 20 29 10 19
Bb U 1 25 53 21 33 21 37 18 33 15 26 08 10
Bb U 50 27 59 20 29 21 32 18 28 16 21 08 08

Table 1. Correlation coefficients (in %) of Pearson ρ and Spearman ρS between the output and
input variables (selected if ρ and ρS are higher than 8%). The notation Ad I 1 means (adult,
129I, one year of release).

At present, for each output variable, we want adjust a response surface by a polynomial
model obtained by multiple regression. By selecting and combining the parameters found
in Table 1, the best results are obtained when the regressions are made according to
certain food chains, which are linear combinations of the various terms contributing in
each chain. For example, the food chain of the goat’s milk is

α1 ∗ ingeff ∗ gmilk ∗ ra gmilk ∗ ra grass ∗ dep + α2 ∗ ingeff ∗ gmilk ∗ ra gmilk ∗
ra grass ∗ dep2 + α3 ∗ ingeff ∗ gmilk ∗ ra gmilk ∗ ra hay ∗ dep + α4 ∗ ingeff ∗ gmilk ∗
ra gmilk ∗ ra hay ∗ dep2, where αi (i = 1, . . . , 4) are regression coefficients.

For all the output variables in 129I and for the variables (238U, baby, 1) and (238U,
baby, 50), the response surfaces are polynomials based on the food chains of the goat’s
milk and the ewe’s milk (the same than the goat’s milk by replacing the goat by the ewe).
For the variables (238U, adult, 1) and (238U, adult, 50), response surfaces include also the
effective inhalation term α1 ∗ inheff . For (238U, adult, 50), we add the food chain of the
pig’s meat and the food chain of the vegetable fruits by indirect transfer:

α1 ∗ ingeff ∗ vegfr ∗ ra vegfr ∗ dep + α2 ∗ ingeff ∗ vegfr ∗ ra vegfr ∗ dep2.
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Figure 1. Output variable distributions (Sv/year).
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The statistical validity of the RS is studied on a basis of construction (of size 2/3 of
the data base) and on a basis of prediction (of size 1/3 of the complete data base). For
129I, the statistics of the R2 and ρ are excellent: they are equal to 99% for all the variables
and on the two bases. The responses in 129I of the GASCON software are almost entirely
explained by the terms of the food chain of the goat’s milk. For 238U, the statistics R2

and ρ are also satisfactory (all higher than 92%). It is necessary to integrate in the model
the food chains of the goat’s milk, the ewe’s milk, the effective inhalation, and the pig’s
meat. In addition, at fifty years, the food chains of vegetables by indirect transfer seem
essential. It is noticed that the dry deposit rate dep operates linearly and quadratically
in the food chains. This is due to the fact that the relations in GASCON utilize dep like
a power of another factor.
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Figure 2. For the adult, 129I and one year of release, comparisons between response surface
and GASCON calculations for the two bases (construction and prediction). Unities have to be
multiplied by 10−14 Sv/year.

It thus seems that the RS are valid but the relative statistics balance our judgement:
the relative standard deviations σε/σA are worth roughly 10% for 129I and 20% for 238U.
This lets suppose that the adjustments are not good everywhere. The calculation of the
averages and standard deviations of the relative residuals confirms this judgement. For
129I, the representativeness of GASCON by the RS is on average of −30%. For 238U, the
representativeness of GASCON by the RS is on average of −15%. The Figure 2 (left)
makes it possible to locate the problem thanks to a comparison on the Ad I 1 variable
between GASCON and RS in logarithmic scale. It is noted that the high values (> 10−14

Sv/yr) are well adjusted, whereas the low values are completely over-estimated by the
RS. To cure this, we propose to separate the construction and prediction bases in two
parts each one (one with values higher than 10−14 Sv/yr and the other with values lower
than 10−14 Sv/yr). We choose the same factors of regression for the calculation of the
RS. The adjustments are presented in Figure 2 (right). The two RS correctly explain the
data in each field of variation with the same factors of regression. This is confirmed by
the averages and standard deviation of the relative residuals on the basis of construction
which are equal to −13.7% and 22.2% for the raised values, and −4.6% and 22.2% for the
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low values, instead of −28.6% and 36.2% on all the variation domain. This problem of
regression on a field of several orders of magnitude can be solved in a more satisfactory
maneer by using the technique of weighted least squares. In the minimization of the
functional, we allocate larger weights to low values. This makes it possible to have a
homogeneous response surface on all the field of variation.

Now, the GASCON software can be replaced by the RS (polynomial model) which
can be used to calculate Sobol indices by extensive Monte-Carlo computations. Figure
3 gives for each output variable the Sobol indices of the most influential variables, with
their error bars. Having repeated 200 times the Sobol calculations, the average values are
good estimates of the true Sobol indices. We conclude that for 129I, the most influential
parameters are the dose factor of effective ingestion and the feed ration of the goat’s milk.
For 238U, the most influential parameters are the dose factor of effective ingestion, the
transfer factor of the goat’s milk and the feed ration of the goat’s milk.
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Figure 3. Sobol indices for each parameter. Uncertainty bar represents the minimum, average
and maximum indices obtained with 200 Sobol calculations.

By carrying out calculations of the Sobol indices on the RS obtained by distinguishing
high values (> 10−14 Sv/yr) and low values (< 10−14 Sv/yr), we find exactly the same
results in the field of high values. In the field of low values, the classification is similar
except that the dry deposit rate is placed in first position at equality with effective inges-
tion. It is thus considered that our results are valid in the field of the high values and are
approximately correct in the field of the low values.
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4. CONCLUSION

The four steps of our methodology (Monte-Carlo simulation, correlation coefficients anal-
ysis, response surfaces, Sobol indices) have allowed to quantify the influence of input
parameters on the GASCON software response (annual effective dose received by the
man), for a specific nuclear installation, a specific population, and for two radionuclides
(129I and 238U). During the correlation coefficient analysis, the calculations of standard
regression coefficients would allow to have more information on important input param-
eters. During the response surface construction, other statistical validation methods like
cross-validation or bootstrap technique could also be useful (Hastie et al. [4]). In this
work, the response surfaces found are in simple polynomial form explicit for the physicist
understanding. For the approximation of software simulating more complex phenomena,
more elaborated and not explicit response surfaces, like neural networks (Devictor and
Martinez [3]), can be used.

ACKNOWLEDGMENTS

This work was supported by the MRIMP project of the “Risk Control Domain” which
depends on CEA/Nuclear Energy Division/Nuclear Development and Innovation Division.

REFERENCES

1. G. Box and N. Draper. Empirical model building and response surfaces, J. Wiley, New
York, 1987.

2. F. Campolongo and A. Saltelli. Sensitivity analysis of an environmental model: an
application of different analysis methods, Reliability Engineering and System Safety, 57:49-
69, 1997.

3. N. Devictor and J.-M. Martinez. Non linear regression methods in uncertainty and sen-
sitivity studies and reliability computations, In Proceedings of ESREL ’2000, Edinburgh,
UK, May 2000.

4. T. Hastie, R. Tibshirani and J. Friedman. The elements of statistical learning, Springer,
2002.

5. A. Hedin. Probabilistic dose calculations and sensitivity analyses using analytica models,
Reliability Engineering and System Safety, 79:195-204, 2003.

6. J. C. Helton. Uncertainty and sensitivity analysis techniques for use in performance assess-
ment for radioactive waste disposal, Reliability Engineering and System Safety, 42:327-367,
1993.

7. M. D. McKay. Non parametric variance-based methods of assessing uncertainty importance,
Reliability Engineering and System Safety, 57:267-279, 1997.

8. J. Kleijnen. Sensitivity analysis and related analyses: a review of some statistical tech-
niques, Journal of statistical Computer Simulation, 57:111-142, 1997.

9. A. Saltelli, K. Chan, and E. M. Scott (Eds). Sensitivity analysis, J. Wiley, Wiley Series
in Probability and Statistics, 2000.

10. A. Saltelli. Making best use of model evaluations to compute sensitivity indices, Computer
Physics Communication, 145,:280-297, 2002.

11. G. Saporta. Probabilités, analyse des données et statistique, éditions Technip, 1990.
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Abstract: Successful reservoir prediction requires an accurate estimation of paramet-
ers to be used in the reservoir model. This research focuses on developing error models
for simulation error within the petroleum industry, enabling accurate parameter estima-
tion. The standard approach in the oil industry to parameter estimation in a Bayesian
framework includes inappropriate assumptions about the error data. This leads to the
parameter estimations being biased and over confident. An error model is designed to
significantly reduce the bias effect and to estimate an accurate range of spread. A 2D
viscous fingering example problem will be used to demonstrate both construction of the
error model, and the benefits gained in doing so.

Keywords: Error model, parameter estimation, simulation error, likelihood, viscous
fingering

1. INTRODUCTION

The accuracy of reservoir forecasting is limited by both the accuracy of the input data
and of the method chosen for solving the system. If the data is accurate, it is expected
the use of a detailed geological model to solve the flow equations representing the system
will provide more accurate results compared with a reduced model. The sheer size of a
reservoir makes it impossible to physically measure the properties, such as porosity and
permeability in each cell for a detailed model. However an accurate description of the
reservoir is needed to make an accurate forecast, leaving the true parameter values to be
estimated. This problem of accurate parameter estimation is common to many applied
scientific disciplines, such as weather forecasting, contaminant transport and reservoir
simulation. This paper focuses on developing simulation error models for accurate para-
meter estimation research in the oil industry.

History matching in a Bayesian framework allows likely regions of parameter space to
be identified. By simulating oil production with initial estimates from possible parameter
values and comparing the simulated results with early production data, Bayesian ana-
lysis provides a formal framework for revising the parameter estimate values, [1]. Coarse
models are favoured in the history matching process for time saving purposes, however
this produces poor estimates for parameter space as simulation errors are introduced from
using an approximate model. To over come this problem of simulation error, the idea of
using an error model has been introduced. An error model is based on using simulation
results from a fast model, such as an up-scaled model, together with statistical error data
which is collected using a limited amount of detailed model data. The goal of an error

270

Sensitivity Analysis of Model Output  
Kenneth M. Hanson and François M. Hemez, eds. 
Los Alamos National Laboratory, 2005; http://library.lanl.gov/



model is to produce parameter estimations with an accuracy comparable to that of a full
field model, yet with a speed similar to that of a coarsely gridded model.

This paper is organised as follows. We start with a review of how parameter estim-
ation is typically carried out under a Bayesian framework, and examine the associated
assumptions. In section 3, a viscous fingering example will be set up to show the import-
ance of an error model. This problem will also be used to show how an error model is
constructed and demonstrate the benefits gained in doing so. Finally, factors input to the
error model are examined in more detail to optimize results with respect to the amount
of computation.

2. HISTORY MATCHING IN A BAYSIAN FRAMEWORK

Bayesian analysis is applied in the history matching process to determine parameter es-
timates for use in reservoir simulation and prediction. Bayes theorem, (1) is used to find
appropriate regions of parameter space.

p(m|O) =
p(O|m)p(m)∫
p(O|m)p(m)

(1)

The posterior probability, p(m|O), is calculated from a combination of the prior and the
likelihood function, p(O|m). The prior is set by initial knowledge or beliefs of the para-
meters. Correctly calculating the likelihood function, (2), is key in defining an accurate
posterior distribution. In the oil industry, the likelihood commonly assumes a Gaussian
distribution for the error data.

p(m|O) = exp(−M) (2)

The probability p for the observation O to occur assuming the model m is correct, is
measured in terms of likelihood function. The misfit, M in Equation (2), measures the
mismatch between observed and simulated data (3).

M = 〈o − s|C−1|o − s〉 (3)

For a given property to be estimated, o represents the observed data, and s the simulated
data. Together with the inverse covariance C−1 the misfit is defined. The inverse covari-
ance constructed in full represents spread of both data and simulation error, Cd and Cs

respectively. Tarantola [2], shows under Gaussian assumption the observational error and
simulation error can be combined by addition of the covariance matrices, (4).

C = Cd + Cs (4)

In this paper we are concerned with quantifying simulation error only. Studies regarding
simulation error have been recorded in the literature, [3],[4],[5],[6].
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2.1. The Misfit Function

Typically in the oil industry, the misfit is simplified to a least squares model (5). This
approach is characterised by a sum of squares of the difference between observed and
simulated data and has a single value, σ2, to represent the variance of this difference.

M =
n∑

i=1

(oi − si)
2

2σ2
(5)

From Gaussian statistics, this least squares method assumes the data values are inde-
pendent, that is, the error is randomly spread.

Measurement of rock properties are limited by both the equipment and the user, which
contributes error to the final solution. These types of data error are time independent
so the least squares approach is valid for this case. Finite difference methods used in
simulation progress using the solution from previous steps with an adjustment involving
a time and flux combination. Thus the solution follows an evolution in time, and as such,
the simulation error will also [7]. As simulation error is correlated in time the least squares
method does not hold when used in conjunction with a coarse model.

By using a single value for σ2, time dependent variance is not represented. Too small
a value for σ2 can give an over confident prediction in parameter estimation. Using an
approximate reservoir model can give consistently wrong results causing heavily biased
parameter predictions when using a standard least squares misfit.

3. VISCOUS FINGERING EXAMPLE

The following viscous fingering example is a relatively simple yet realistic problem for
demonstrating parameter estimation. This 2D model has a set of injector wells spanning
the left hand side of the reservoir, and a set of producers down the right hand side. Gas is
injected into the reservoir, forcing the oil toward the producer wells. Due to the difference
in mobilities between the two fluids, the injected gas fingers through the oil, Figure 1.
These fingers cause early breakthrough, reducing recovery, [8],[9],[10].

The challenge is to determine a probability distribution for the viscosity of the oil
given the concentration data, Figure 2, of the fluids output at the producer wells. The
concentration data represents measured history data although the reservoir in this ex-
ample is synthetic, thus the data is also. The data is treated as if the viscosity used in
the simulation is unknown. The prior assumption is the viscosity value lies in the range
µ = 5 . . . 25.

There are two main ways to solve this challenge. Using a fine grid model of the
reservoir, we expect to find an accurate estimation for the oil viscosity. However, a fine
grid model is too time consuming to be practical, so we compare this method with using a
coarse grid model. The coarse grid model introduces errors due to using a limited amount
of information but is extremely fast and simple.
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Figure 1. Viscous fingering.
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Figure 2. Concentration data for unknown viscosity value.

3.1. The Fine Grid Solution

The exact permeability field for the reservoir is unknown, thus a number of fine grid
simulations are used, obtaining a mean solution with some degree of uncertainty. This
method produces reasonable results, however the simulation time is long taking of the
order hours on a standard work station, depending on the level of detail used in the
model.

Figure 3 shows three realisations each (from sets of 20) for viscosity of µ = 5, 10,
and 15, as well as the unknown viscosity data. Although the results vary, Figure 3,
the unknown viscosity looks to be somewhere between µ = 10 and 15. At this stage, if
we were to obtain a smaller range for the true viscosity value, we would proceed with
further fine grid simulations, trying viscosity values in the range µ = 10 . . . 15. For each
viscosity value chosen for simulation, each of the 20 realisations would need to be used
in the simulations. It is easily seen that this method of parameter estimation is too time
consuming and is thus impractical in an industry based situation.

For this viscous fingering example, the true value of the ‘unknown’ viscosity is µ = 13.
The fine grid solution above, although time consuming, has proven accurate.
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Figure 3. Fine grid approximation to the unknown data.

3.2. The Coarse Grid Solution

A coarse grid model usually consists of an up-scaled version of the fine grid model. The
averaging behaviour of the up-scaling process means the full details of the reservoir are
not available, hence different results are generated when compared with the fine grid
solution in this viscous fingering example. Here the Todd & Longstaff model is used
to approximate the average concentration at the production well in lieu of an up-scaled
model [11],[12].

The Todd & Longstaff model is a well-known model which approximates the average
response of the viscous fingering in the reservoir. Like up-scaled models, the Todd &
Longstaff model is also subject to inaccuracies. The fractional flow in the Todd & Long-
staff model is found simply from equation (6), where c is the average concentration and
Meff is the effective viscosity ratio.

f(c) =
c

c + (1 − c)/Meff

(6)

Meff is defined by equation (7), where M is the true viscosity ratio, µo/µs.

Meff = (0.78 + 0.22M
1
4 )4 (7)

In this case, µs = 1. The effective viscosity is found from using coefficients which are
determined by fitting to Blackwell’s experiment [13]. This model is extremely fast to
solve and very simple to use.

The solution from the Todd & Longstaff model needs to be in a comparable form to
the fine grid solution, which is given as concentration with time. Concentration is input
to equation (6) as a linear drop across the reservoir from 1 to 0, defining the fractional
flow. The derivative of the fractional flow describes the speed at which the fingers travel,
[11], and can therefore be expressed as,

df

dc
=

x

t
. (8)
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The Todd & Longstaff model is scalable, giving x = 1 at the producer wells. This enables
t to calculated as 1/(df/dc). This construction of the Todd & Longstaff model does not
contain the details of the permeability field. This is evident in Figure 4 where the Todd
& Longstaff model fails predict a value for viscosity near the true value, which was noted
in section 3.1 to be µ = 13.
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Figure 4. Todd & Longstaff model.

4. THE ERROR MODEL

The goal of an error model is to reduce bias and over confidence in predictions introduced
from using a coarse model in the history matching process, so that accurate parameter
estimates can be obtained by using limited fine grid simulations. The proposed way
to achieve these goals is to include the mean error and time dependent covariance in
the history matching process. An error model is incorporated into a solution by way of
the misfit function defined in Bayes theorem. In this paper, three misfit definitions will
be studied. The first is the least squares misfit, which has already been described as
inappropriate for simulation error,

M =
n∑

i=1

(oi − si)
2

2σ2
.

The second takes the same form as the least squares misfit, and also includes the mean
error,

M =
n∑

i=1

(oi − si − ē)2

2σ2
. (9)

The third definition includes both mean error and full covariance,

M =
1

2
(o − s − ē)T C−1(o − s − ē). (10)
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If the fine grid simulation is taken as truth, then the simulation error (11), can be calcu-
lated from the fine grid simulation minus the coarse grid (Todd & Longstaff) result,

ej = FGj − CGj. (11)

In equation (11), j is the realisation number. Figure 4 shows 20 fine grid simulations
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Figure 5. The Todd & Longstaff approximation and mean error.

and the Todd & Longstaff approximation. Todd & Longstaff has an early break through
point and is late in sweeping all the oil to the producer well. However it approximates the
average behaviour of the concentration quite well. Figure 5 shows the error plots, that is,
ej from equation (11). The curve in bold is the mean error (12), for the chosen viscosity.
The covariance is also calculated from the 20 realisations, (13), [14]. Three sets of mean
error data and covariance data for error are calculated for viscosity values µ =5, 10 and
15 and these points are known as the base points for this example.

ē(ξ) =
1

n

n∑
j=1

ej(ξ) (12)

C(s, t) =
1

n − 1

n∑
j=1

(ej(t) − ē(t))(ej(s) − ē(s)) (13)

4.1. Interpolated Data

The next stage in constructing the error model is to approximate the mean and covariance
between the base points, limiting the fine grid realisations to just the base points of the
error model. This means Bayes theorem can be applied over regions for which no fine
grid simulations have been run. In this case, MATLAB’s linear interpolation function was
used. Figure 6 shows the interpolated errors at integer values between the base points.

Observing the peaks and troughs of the interpolated error data, it is seen that this
scheme is not ideal. However outside the peaks and troughs, the interpolation scheme
performs well, and is for now, used in the model. The interpolation scheme will be
reviewed in section 6. For viscosities greater than µ = 15 the data has been set to that
of µ = 15, satisfying the prior, 3. Now we have sufficient data for the error model.
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5. RESULTS

The three misfit definitions defined in the previous section, will be used to define the
likelihood functions, giving 3 probability distribution curves. Recall the true value of the
viscosity of the ‘unknown data’ is µ = 13. The three definitions are referred to as

• LSQ
Least squares model, (5)

• PME
Least squares with mean error included, (9)

• FEM
Full error model, which includes mean error and covariance, (10)

The prior model states the viscosity is given by a uniform probability distribution function
in the range µ = 5 . . . 25. Using the data with ‘unknown’ concentration the three likelihood
functions are calculated, predicting the probability distribution functions shown in Figure
7. The likelihoods were obtained by the coarse grid model and the interpolated fine grid
model being defined at 0.1 viscosity increments up to 0.7 pore volumes injected. The LSQ
misfit predicts a maximum likelihood of µ = 25 for viscosity. The true value is µ = 13,
showing the LSQ model has given a heavily biased result. The other two misfit models
show the bias effect to be almost completely removed.

The main difference between these two distributions is the variance, or width of the
probability distribution. The PME model used a guessed variance of σ2 = 0.01, which
gives a fairly wide likelihood curve. The FEM model predicts close to the actual truth
with a tighter distribution.

A benefit to having a more exact range for variance lies in the history matching process.
When using a single value for variance, parameter space maybe defined either unneces-
sarily large, extending computation time as the prior contains unnecessary information,
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Figure 7. Comparison of likelihood functions, mean of 20 realisations.

or too narrow so that some important parts of parameter space are neglected. Using a
correct variance we can home in on the correct region of parameter space more quickly.

5.1. Overall Performance

Figure 8 shows the overall performance of the different misfit functions. The x-axis shows
the true viscosity that was input to the Todd & Longstaff model, and the y-axis shows
the predicted value or maximum likehood prediction. The least squares approach over
predicts the viscosity value in each case and quickly reaches the prior restriction set in
the model, µ = 25 for viscosity. The remaining two misfits perform better than the least
squares approach, lying closer to the ideal case. Figure 8 shows the FEM to predict
only slightly closer to the ideal case than PME, that is, it appears there is no noticeable
advantage in using the full error model. If this is the case, it would make sense to use
PME misfit to reduce the computing time. Figure 9 shows error bounds (p10 and p90
estimates) on the maximum likelihood predictions for the two mean error models. Also
plotted on both graphs is the ideal case. It is clear the full error model shows a smaller
range of viscosity predictions than the PME case, making the full covariance calculation
worthwhile.

5.2. Compared with Detailed Simulation

The averaged set realisations provided as production data was accurately shown to have
a maximum likelihood value of near µ = 13 when tested with the FEM. The likelihood
function for this realisation can be compared with the likelihood function created from
using detailed simulation as simulation data.

Fine grid simulations were run for viscosities at integer values between µ = 5 . . . 15,
and the error computed (11). The errors at these integer values are then interpolated
with MATLAB’s linear interpolation function at 0.1 increments to produce fine grid data
over a range of viscosity values. It has been shown in section 3.2 that using a coarse

278



5 6 7 8 9 10 11 12 13 14 15
5

10

15

20

25

True µ

P
re

di
ct

ed
 µ

Ideal
LSQ
PME
FEM

Figure 8. Overall performance of the misfit functions.

grid model in simulation gives a significant model error which is correlated in time. This
correlation stemmed from the coarse grid model predicting early break through and being
late in sweeping the oil to the producer well. When fine grid simulation is used as the
simulated data this error correlation does not exist, as for this example the observed data
and the simulated data were created with the same grid size and set of statistics. The
likelihood for the detailed simulation case has therefore been created with least squares
model alone as an error model for simulation is not required. The LSQ likelihood function
for fine grid simulation is shown in Figure 10 with the FEM likelihood result.

A calibration curve is plotted to demonstrate how close the two likelihoods are in their
predictions. This is done by calculating the cumulative probabilities from the likelihood
curves. Figure 10 plots the cumulative data for the likelihood belonging to the FEM
on the x-axis, and the cumulative data for the detailed simulation on the y-axis. The
resulting curve is close to the ideal case, which is shown as the straight line. If the
two likelihood functions were indistinguishable the calibration plot would show this as a
straight line. This is represented in the calibration plot Figure 10 as the ideal case. The
actual calibration plotted in the figure does not stray too far from the ideal case.

6. ISSUES

The results from the previous section are promising and the rest of the paper is dedicated
to studying details of the error model. We investigate whether similar results can be
obtained for less computation effort. Also other aspects are investigated such as the
interpolation method.

6.1. Base Points

The first part of the error model to be revisited is the number of base points. Previously
3 base points were chosen, at µ = 5, 10 and 15. As the base points are the part of the
model that requires some fine grid simulation, it is the most computationally expensive
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Figure 9. Error bounds for PME (left) and FEM (right).
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Figure 10. Comparison of Todd & Longstaff model and detailed simulation likelihoods, mean
of 20 realisations (left) and calibration plot based on mean of 20 realisations (right).
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Figure 11. Overall performance: two base points (left) and four base points (right).

part. For this reason, including more or fewer base points than 3 is studied to see the
effect on parameter estimation.

First two base points, at µ = 5 and 15 are examined, Figure 11. Only the PME
and FEM are compared, as the LSQ model is not competitive against these two models.
Near the base points, PME and FEM are able to predict viscosity well. Away from the
base points, both likelihoods begin to show signs of bias. The two models have similar
behaviour and again as in the case with 3 base points, the FEM is slightly more accurate
in predicting the maximum likelihood value. While bias effects are visible away from the
base points, they are not as extreme as in the LSQ model.

Figure 11 shows predictions from both models from using 4 base points, at µ = 5, 8, 12
and 15. Again the FEM narrowly obtains more accurate predictions. Overall there doesn’t
appear to be much gained in using 4 base points over 3. As the fine grid realisations are
expensive to compute, it would be advised not to compute them unless necessary.

Table 1 shows results for PME and FEM with 2, 3 and 4 base points. All scenarios
correctly predict at the base points, as that is how the error model is defined. Between
the base points, typically the likelihoods slightly over predict rather than under predict
and this is most noticeable with just two base points.

6.2. How Many Realisations Should be Used?

Different realisations created by a random permeability field generator give rise to differing
predictions. This study has used a set of 20 realisations to compute the likelihoods at
each base point. Although the results are not presented in this paper, it was found that
using different sets of 20 realisations gave differing results for parameter predictions. As a
consequence, we investigate how many realisations are required in simulation for optimum
results. Figure 12 shows likelihoods created by using increasing numbers of realisations.
The first likelihood curve has used 5 realisations in the error model, the second 10, and
so on. As more realisations are used, the maximum likelihood is converging to a value,
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Table 1. Comparison of 2,3 and 4 base points.
PME FEM

True 2 3 4 2 3 4
5 5.0 5.0 5.0 5.0 5.0 5.0
6 5.4 5.7 6.0 5.6 5.8 6.0
7 7.9 7.8 7.5 7.5 7.5 7.4
8 9.8 8.7 8.0 9.2 8.5 8.0
9 10.9 9.2 9.0 10.3 9.1 8.9

10 12.5 10.0 10.6 12.1 10.0 10.3
11 13.2 10.5 11.2 12.8 10.8 11.0
12 13.9 11.5 12.0 13.7 12.1 12.0
13 13.8 12.4 12.7 13.6 12.5 12.7
14 14.6 14.0 13.6 14.5 13.9 13.6
15 15.0 15.0 15.0 15.0 15.0 15.0
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Figure 12. Likelihoods for increasing numbers of realisations.
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Figure 13. Convergence of likelihood functions, µ = 8, 9, 11 and 12.

however it is not to the true viscosity, showing there is still a slight presence of bias. Figure
13 shows as the number of realisations used increases, the predicted viscosity tends toward
some value. Although some bias is still present, there is not much variation in prediction
with the full error model after 20 realisations. 20 realisations seems an appropriate number
in this case.

6.3. Interpolation Scheme

As stated earlier, the interpolation scheme used thus far is MATLAB’s linear interpolation
scheme, Figure 14. This interpolation scheme did not adequately represent the peaks and
troughs for the error data. An interpolation scheme has been created to produce a fair
representation for the expected form of the error, Figure 14. This interpolation scheme
focused on 3 points. The first point being where the mean error plot left zero, A. The
second at its maximum, B, and the third, the end point, C. Between µ = 5 and 10,
the necessary number of evenly separated points were added, giving new A, B, C for
intermediate viscosities. To link the points, the shapes of the two outer curves were
followed. Some smoothing was necessary. The same was done for between µ = 10 and 15
and the final effect is shown in the Figure 14.

The next step is to compare the maximum likelihood estimates with both schemes. The
results are shown in Figure 15. By eye, looking at the limited examples, one interpolation
scheme does not appear more favourable over the other. A more thorough investigation
took place, studying the 5 . . . 100 sets of realisations with both interpolation schemes. 121
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Figure 14. MATLAB’s interpolation scheme (left) and improved interpolation scheme (right).

Table 2. Comparison of interpolation schemes.
5. . . 100 PME FEM
MATLAB 19 30
IMPROVED 57 40
EQUIVALENT 45 51

comparisons are made, 11 different sets of realisations for 11 viscosities. The results are
summarised in Table 2, showing on how many occasions each method performed best or
if they were equivalent. The improved scheme produced a more accurate estimate more
often than MATLAB’s linear interpolations scheme. They performed equally well on a
number of occasions.
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Figure 15. Comparison of interpolation schemes.
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Figure 16. Error model prediction.

7. PREDICTIONS

The error model has shown to significantly reduce the bias introduced from using a coarse
model, giving an accurate estimation of the parameter with limited effort. The purpose
of determining properties for the system in this way is to be able to use the values to
make accurate predictions for oil recovery. The next step is to check how well the error
model is able to make a prediction.

The concentration data output from the simulator was defined for each cell in terms
of ξ = X/T . The data is converted to units of time by realising the length of the reservoir
is 1 when compared it to the scalable Todd & Longstaff model, thus T = 1/ξ, section
3.2. Hence, we can look forward in time. The 20 fine grid realisations for µ = 13 are
extended to T = 1.5 and are shown as black dotted curves on Figure 16. To see how
the error model solution compares with these fine grid simulation results, the Todd &
Longstaff result was calculated for µ = 13 and the error model applied. The error model
data consists of mean error and covariance for a range of viscosity values. To apply the
error model to the coarse grid solution, the mean error from the error model for µ = 13
is added to the coarse grid solution. This removes the bias incurred from the Todd and
Longstaff solution. This is shown by the black solid curve in the figure. Next, ±2σ for
µ = 13 from the error model was added to the newly calculated mean solution. These are
bands are the spread of results predicted from using the error model with the coarse grid
solution. These bands do encompass most of the fine grid results, making an accurate
prediction.

8. CONCLUSIONS AND DISCUSSION

Using a coarse model in simulation for parameter estimation is necessary for a practical
computation time. Using a least squares misfit in combination with a coarse grid model
introduces simulation error, giving biased and overconfident parameter estimates. This
provides a motivation for error modelling in reservoir prediction.

285



A 2D viscous fingering example was introduced, providing a means for explaining how
an error model should be constructed and tested for parameter estimation. The parameter
to be estimated is the viscosity of the oil. The error model was constructed in the following
way.

• 20 fine grid realisations were generated at 3 base points, µ = 5, 10 and 15.

• A coarse grid approximation known as the Todd & Longstaff model was calculated
for the same three viscosity values.

• The simulation error for each viscosity in the example is found by subtracting the
coarse grid solution from the fine grid solution.

• The mean and variance of the error for each base point is calculated and MAT-
LAB’s linear interpolation function is used to predict the mean error and variance
at intermediate viscosity values.

• The error data is added to the coarse grid solution producing a fast simulation model
with the bias removed by including mean error and overconfidence avoided by using
a fair representation of the spread of error.

A number of variables were studied to minimise the amount of work put into the model
with maximised results.

• It was found for the example given that 3 base points were sufficient. There was
no significant gain in accuracy for the work put in with using 4 base points. Fewer
than 3 base points increased bias effects.

• The number of realisations used for fine grid simulations was varied from 5 . . . 100.
20 realisations were more than adequate, with no further improvement gained from
using 100 realisations.

• The interpolation scheme was improved, allowing peaks and troughs of the error
data to be accurately resolved. This had a positive effect on parameter estimation,
predicting values closer to the actual value than with the initial scheme.

Finally the error model was used to make a prediction. The coarse grid result was shown
to make an accurate prediction when the error model data was added. The mean error
significantly reduced the bias effects while the covariance gave a realistic spread from the
mean prediction.
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Abstract: Computer modelling plays a crucial part in the understanding of complex chemical 
processes. Parameters of elementary chemical and physical processes are usually determined 
in independent experiments and are always associated with uncertainties. Two typical 
examples of complex chemical kinetic systems are the combustion of gases and the 
photochemical processes in the atmosphere. In this study, local uncertainty analysis, the 
Morris method, and Monte Carlo analysis with Latin hypercube sampling were applied to an 
atmospheric and to a combustion model. These models had 45 and 37 variables along with 141 
and 212 uncertain parameters, respectively. The toolkit used here consists of complementary 
methods and is able to map both the sources and the magnitudes of uncertainties. In the case of 
the combustion model, the global uncertainties of the local sensitivity coefficients were also 
investigated and the order of parameter importance based on local sensitivities were found to 
be almost independent of the parameter values within their range of uncertainty.  

Keywords: local uncertainty analysis, Morris method, Monte Carlo method, atmospheric 
chemistry, combustion modelling, mechanism validation 

1. UNCERTAINTY ANALYSIS METHODS 
Uncertain parameters used in a model give rise to uncertainties in simulation results. Highly 
nonlinear models tend to magnify the uncertainty of some parameters and damp the 
uncertainty of others. There is a wide range of methods for uncertainty analysis [1], which 
differ from each other in their applicability to different types of models, in the scope of 
information provided, and in the level of sophistication and computational demand. For 
chemical kinetic models, the most comprehensive task is the conversion of the joint 
probability density function (pdf) of the parameters into the pdf’s of the simulation results. A 
more modest request is the estimation of the variance of results from the variance of 
parameters. In this work, several types of uncertainty methods were used and the uncertainty 
indicators obtained from them were compared. 

1.1. Local Uncertainty Analysis 
Local uncertainties were calculated by combining local sensitivity coefficients sij [2] with 
uncertainty estimates of the input parameters [3]. An individual contribution σj

2(ci) of rate 
coefficient kj to the total uncertainty of concentration ci can be expressed as: 
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where σ 2(ln kj) is the variance of the logarithm of rate coefficient kj. The overall variance 
σ 2(ci) of the output concentration ci is: 

 ( ) ( ) .22 �=
j

iji cc σσ  (2) 

The individual contribution of kj can be expressed as percentage sij %: 

 ( ) ( ) .100/% 22 ×= iijij ccs σσ  (3) 

The main drawback of this method is that the linearity assumption is applied for a highly 
nonlinear chemical kinetic model. 

1.2. Morris Method 
Morris method is a screening method [1]. Screening methods are relatively cheap, compared 
to Monte Carlo (MC) type methods, but are investigating the model on a global range, i.e. the 
input parameters are varied over the whole range of their possible values. In the Morris 
method, the uncertainty is characterised by a value called effect, which is assigned to each 
uncertain parameter for each investigated output result. This effect is calculated several times, 
by varying the input parameter set according to a given algorithm. The results of the Morris 
analysis are usually shown on a graph, where the horizontal axis refers to the mean of the 
calculated effects, while the vertical axis represents the standard deviation of the effects.  

This procedure enables the selection of important parameters, by evaluating the model 
with various input parameter sets. Besides importance, information on the type of the effect of 
the parameter is also obtained: it is possible to distinguish parameters with linear effects from 
parameters with nonlinear or interaction effects. The drawback of this method is that it does 
not provide information on the magnitude of the uncertainty of the output variables. The other 
weakness of this method is that it does not take the shape of the pdf of the parameters into 
account.  

1.3. Monte Carlo Simulations with Latin Hypercube Sampling 
The above methods are computationally cheap, but are not able to provide the exact and 
unbiased pdf of the output values. For this reason, Monte Carlo type simulations were also 
carried out. To keep the number of runs as low as possible, Latin hypercube sampling was 
applied. This sampling covers the parameter space with minimal sample size and in an 
unbiased manner [1]. The number of runs was 3000 in all calculations. 

1.4. Assignment of Uncertainties to Parameters 
Great attention was paid to the careful selection of input uncertainties. Uncertainty factors 
were collected from chemical databases [4-7], which are critically evaluated and are frequently 
updated. These factors were converted to the variance of the parameters using the method 
described in article [3]. If no uncertainty factor was found for a reaction, then a thorough 
literature search was carried out and this factor was estimated. The pdf of the parameters were 
also established; lognormal distribution was assumed for rate coefficients, normal distribution 
for heat-of-formation data, and uniform distribution for parameters of other type (e.g. channel 
ratios). 
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2. UNCERTAINTY ANALYSIS OF A PHOTOCHEMICAL AIR POLLUTION 
MODEL 

2.1. Brief Description of the Model 
Detailed uncertainty analysis was carried out on the photochemical degradation model of 
ethene that is implemented in the Master Chemical Mechanism version 3 (MCMv3) [8]. The 
MCMv3 is an explicit chemical mechanism, containing the photochemical degradation 
scheme of more than 120 volatile organic compounds, and incorporating approximately 10000 
reactions of 2500 species. The initial compounds in our model were ethene (C2H4) and 
nitrogen oxides (NOx). The submechanism of ethene degradation contains 141 reactions of 45 
chemical species. For brevity, in this paper the results concerning the uncertainty of ozone 
(O3) concentration are discussed only. Ozone is one of the most important photochemical 
pollutants and the prediction of its concentration from the initial concentration of pollutants is 
crucial. More results are presented in a recently submitted paper [9].  

2.2. Experimental Results 
The methods of uncertainty analysis were developed for comparison with measurements made 
in the European Photoreactor (EUPHORE) at Valencia, Spain. This is a so-called smog 
chamber, where the chemical compounds are injected into a tent having Teflon walls, and their 
concentration–time profiles are followed by state-of-the-art analytical instrumentation. There 
are three sources of error when chemical models are tested against smog chamber 
measurements: (i) measurement errors, (ii) errors introduced by chamber specific effects and 
(iii) errors and uncertainties in the model itself. Our work aimed to reveal the significance of 
the various error sources.  

The ethene oxidation model was tested at two experimental circumstances: one with a 
high, the other with a low initial NOx concentration. Fig. 1 shows that the slope of the 
calculated maximal ozone concentration depends on the ratio of the initial ethene and NOx 
concentration. The two cases that we selected represent two fundamentally different regions 
according to this plot. In the low NOx case, changing the initial ethene concentration does not 
effect the maximal ozone concentration, while in the other case ozone increases with increased 
initial ethene concentration. 
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Figure 1. Simulated maximal ozone concentrations as a function of initial concentrations. The ‘X’ 
signs show the initial concentrations for the two investigated experiments.  
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Figure 2. Contribution of the uncertainty of the rate coefficients to the uncertainty in the calculated 
ozone concentration at the end of the experiment at (a) low and (b) high NOx conditions as determined 
by local uncertainty analysis. 

2.3. Results for the Atmospheric Chemical Model 
2.3.1. Local uncertainty analysis 
Fig. 2 shows reactions with the highest uncertainty contribution sij % (see Equation (3)) to the 
calculated final O3 concentration. The cut-off criterion was 1 % compared to the reaction 
having the highest uncertainty contribution. It is well visible that in the low NOx case more 
reactions have significant contribution to the uncertainty of the ozone concentration.  

In the low NOx case reactions HOCH2CH2O2 + NO = HOCH2CH2O + NO2, OH + NO2 = 
HNO3 and NO2 = NO + O account for about 50 % of the total O3 uncertainty. The overall 2σ 
uncertainty for ozone, calculated by Equation (2), is 20 %. In the high NOx case, more than 
50 % of the total uncertainty in ozone originates from reactions HCHO + hν  = 2HO2 + CO 
and OH + NO2 = HNO3. The overall uncertainty of calculated ozone concentration at the final 
time was found to be 29 %.  

2.3.2. Morris analysis 
Fig. 3 shows the results of the Morris analysis for ozone. The mean values are in excellent 
accordance with the results of the local uncertainty analysis. The standard deviations provide 
interesting insights into the linearity assumption used, because ranking the rate coefficients 
according to their standard deviation differs from the ranking that results from the means. 
Under both conditions, the reactions of the HOCH2CH2O2 and HOCH2CH2O molecules are 
ranked higher on the standard deviation scale than on the mean scale. This can be due to the 
fact, that these parameters are important only in a period of the oxidation.  
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Figure 3. The mean and the standard deviation effects, calculated with the Morris method for O3 in the 
(a) low and (b) high NOx case. 

In both cases, less than 20 out of the 141 reactions are responsible for most of the 
uncertainties in the final ozone concentration. The mean values of the effects in the high NOx 
case are twice those in the low NOx case. However, the standard deviations are about the 
same, which suggests that the nonlinear behaviour is about the same for the two experiments. 
There is a significant correlation between the mean and the standard deviation: rate 
coefficients with great absolute effects tend to have high nonlinear effects as well. 
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Figure 4. Comparison of modelled and measured concentrations of ozone and their associated 
uncertainties. Measurement and associated uncertainty (2σ): black line with grey band; model mean 
and its uncertainty (2σ): black dots and error bars; simulation with nominal parameter values: dotted 
line.  
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2.3.3. Monte Carlo simulations 
Fig. 4 compares the uncertainty ranges of the measurements with that of the MC analysis 
results. The latter indicated that the distribution of the calculated ozone concentration is 
always nearly lognormal, while measurement uncertainties were assumed to be normally 
distributed. The overlap of the 2σ uncertainty limits of the measurement and model calculation 
is marginal, which suggests a systematic over-prediction of ozone concentration. There are 
difficulties in simulating both the rise time and the peak O3 concentration. The uncertainty 
contribution of reaction OH + NO2 = HNO3 is high to the ozone concentration uncertainty (see 
Figs. 2 and 3). The rate coefficient of this reaction has been extensively studied recently [4], 
therefore it is expected that the uncertainty of the rate coefficient of this reaction will decrease 
significantly in the near future. In this case, uncertainty in the high NOx case will drop 
significantly and consequently the overlap is likely to disappear. 

3. UNCERTAINTY ANALYSIS OF A METHANE FLAMES 

3.1. Brief Description of the Methane Oxidation Mechanism 
Until recently, there are only few applications of uncertainty analysis to the investigation of 
complex combustion mechanisms. In our combustion calculations, a stationary, laminar 
methane flame was investigated and the simulations were performed with the Leeds Methane 
Oxidation Mechanism [10]. This chemical mechanism contains 175 chemical reactions and 37 
chemical species. Our aim was to determine the uncertainty of simulation results caused by the 
uncertainty of thermodynamic and kinetic parameters. The investigated results included the 
concentration maximum of some important species (H, O, OH, CH, CH2), the maximum 
temperature, and the laminar flame velocity (vL); the latter number is characteristic to a freely 
propagating flame and is often used when model and measurement are compared [11]. The 
simulations were carried out with the CHEMKIN-II package [12] and with program KINALC 
[10]. In this paper results only for the stoichiometric case are presented. 
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Figure 5. The percentage contributions are shown for those input parameters (rate coefficients of 
reactions and heat-of-formation of species), which contribute at least by 1 % to the uncertainty of at 
least one investigated result (see the horizontal axis). Uncertainty contributions are expressed in 
percentages, and the thickness of the line is proportional to the percentage value (see scale). 
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3.2. Results for the Combustion Model 
3.2.1. Local Uncertainties 
The results of the local uncertainty are summarised on a blob graph, show in Figure 5. It can 
be seen that only 33 out of the 212 parameters contribute at least with 1 % to the total 
uncertainty to any of the investigated parameters. Moreover, there are only few really 
important contributors, from which the most important is reaction of O2 + H = OH + O. 

In Figure 6, the contributions of the kinetic and thermodynamic parameter uncertainties 
are compared. For most of the investigated outputs, the effect of kinetic uncertainties is much 
greater than that of the thermodynamic ones. The two exceptions are the calculated flame 
temperature and the calculated OH concentration. Therefore, uncertainties arising from 
thermodynamic data cannot be neglected in a mechanism validation procedure.  

3.2.2. Morris Method 
Results of Morris method are in accordance with the local uncertainty analysis. The tendency 
that greater standard deviation belongs to greater mean effect is also observed in this case. 

3.2.3. Monte Carlo Analysis 
As a result of MC simulations, pdfs of the monitored output variables were obtained, from 
which a selection can be seen in Figure 7. These distributions have a high variability in both 
shape and width. The overall 1σ standard deviation for the laminar flame velocity is 12 %, for 
the temperature 0.1 %, while for the concentration of the CH radical is 46 %. 
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Figure 8. Result of global sensitivity analysis of the local sensitivity coefficients for the laminar flame 
velocity of a stoichiometric methane–air flame. Only those reactions are shown, whose rate parametric 
sensitivities are greater than 5% of that of the highest sensitivity one. Grey stripes refer to the local 
sensitivity coefficients at the nominal parameter set, small bars interconnected with a vertical line 
indicate the 1σ uncertainty interval of local sensitivity coefficients, and outer larger bars show the 
attainable minimum and maximum sensitivity coefficients at any parameter set within the uncertainty 
limits of parameters. 

3.3. Global Uncertainty of Local Sensitivity Coefficients: A Numerical Approach 
During the MC simulations, all parameters were varied simultaneously within their uncertainty 
limits and the first-order local sensitivity coefficients of rate parameters were calculated in 
each run. By processing the results, the global uncertainties of the local sensitivities were 
obtained. Figure 8 shows that for the laminar flame velocity sensitivities the 1σ uncertainty 
limits are relatively narrow. Looking at the possible extremes of the calculated local sensitivity 
coefficients, it can be seen that the sensitivity coefficients almost never change their sign. The 
small variation of the calculated sensitivity coefficients within the uncertainty range of 
parameters means that the rank order of importance of kinetic parameter as deduced by the 
local sensitivity coefficients is basically independent of the values of parameters within their 
range of uncertainty. This figure shows only a representative example, but very similar figures 
were obtained for the other variables and at other fuel-to-air ratios.  

4. CONCLUSIONS 
The two most significant areas of applications of large reaction mechanisms are the simulation 
of tropospheric chemical systems and the combustion of fuels. In these fields, the most 
important topics include the prediction of maximum generated ozone concentration at given 
conditions, and the simulation of methane flames. In this paper, we presented uncertainty 
analysis results for models of both types. Uncertainties of simulation results were calculated 
by local methods and Monte Carlo analysis, and also contribution of the various parameters to 
the uncertainty of the results were investigated by local sensitivity analysis and the Morris 
method. The surprising joint experience from the two calculations is that few parameters cause 
most of the uncertainties. The atmospheric chemical and the combustion models contained 
141 and 212 uncertain parameters, respectively, and only about 30 parameters had noticeable 
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contribution to the uncertainty of any of the important results. This means that knowing better 
a few parameters only may significantly improve the quality of simulations in atmospheric 
chemistry and combustion science, which are among the most important fields of application 
of complex reaction mechanisms. 
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Abstract: In this paper we describe the multi-run simulation experiment environment SimEnv and its
application in quality assurance matters for computer models. SimEnv has been developed to provide
key working techniques for experimenting with complex models. This includes a wide range of
simulation and model output evaluation methods in combination with corresponding visualization
techniques. The SimEnv framework facilitates the easy execution of multi-run model simulation
experiments for standardized, pre-formed experiment types which represent different sampling
strategies of the model’s input space. Further experiment types may easily be included, making
SimEnv an open experimentation system. The coupling of models to the environment is supported by
a simple interface, requiring only minimal model source code modifications. Uncertainty and
sensitivity analyses are enabled in SimEnv by combining experiments available from the pool of pre-
defined experiment types with interactive post-processing, applying sequences of related operators to
both model output and reference data. Use of SimEnv as an experimental framework for models in
global change research demonstrates the applicability of the approach to multi-input / multi-output
problems with large amounts of spatio-temporal model output and emphasizes the importance of
graphical result presentation and evaluation by appropriate visualization techniques.

Keywords:simulation environment, multi-run experiments, uncertainty analysis, sensitivity analysis

1. INTRODUCTION
Dealing with uncertainty and communicating it to decision makers and the general public is
crucial in climate change research [1]. Recent papers address this issue for climate projections
e.g., [2] on the basis of the findings of the Third Assessment Report of the Intergovernmental
Panel of Climate Change. Identifying uncertainty in climate predictions requires
comprehensive experiments for the diagnosis of the models used. The design of such models,
simulation and evaluation are cornerstones in climate impact and global change research. In
the past, chains of stand-alone model simulations were performed to derive from an input
scenario (e.g., of greenhouse gas emission over time) of one model, outputs (e.g., climate
change over time) then used as inputs to a succeeding model. The complete system can be
studied and investigated this way. Nowadays, one of the challenges in global change research
is the development of integrated models, which is being achieved mainly by the additional
knowledge gained through feedbacks between the studied sub-systems on one hand, and
through increasing computing power on the other.

Such complex simulation models are often based on legacy source code applications
written in a programming language rather than in a model design language. They produce a
large amount of (spatio-temporal) model output that has to be handled in the course of model
validation, corroboration and/or scenario analyses. These aspects hamper the application of
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quality assurance techniques to this kind of models, since source code is not always well
known by model users and intensive code manipulations are normally beyond the scope of the
work. Additionally, the computational costs for models in global change are often very high,
which demands structured experimentation approaches.

2. GENERAL SIMENV APPROACH
SimEnv [3] has been developed to provide a toolbox-oriented simulation environment that
enables the modeller and/or model user to deal with model-related quality assurance matters
and scenario analyses for such models as described above. Both foci require flexible
experiment design and model output evaluation to enable model inspection, validation /
corroboration, uncertainty and sensitivity analyses without the necessity to change a complex
model in general.

With respect to systems theory we consider a dynamic model M that can be formulated
for the time dependent, time discrete, and state deterministic case - without limitation of
generality - as

M : Z(t) = ST ( Z(t-�t) , ... , Z(t-n*�t) , X(t) , T )

Y = OU ( Z(t) , T ),

with ST state transition description
OU output function
Z state vector
X input vector
T parameter, initial value Z(t0), and/or boundary value vector
t time
�t time increment
n time delay
Y output vector

In the following, z and t are components of the vectors Z and T respectively.

The basic idea for the system design of SimEnv is to study M in dependence on numerical
changes of a subset t of the parameter, initial value, and/or boundary value vector T:

z = M ( t ),
where z is normally associated with large-scale multi-dimensional state vectors, defined over
time and (geographic) space.

Simulation studies in SimEnv are supported by introducing standardized, pre-formed
experiment types. An experiment type represents a multi-run simulation experiment technique
with a sequence of co-ordinated single runs. According to the strategy of a selected
experiment type the experiment inputs t (so-called targets) are sampled in the target space {t}.
For each realization from the sample, a single simulation run of the run ensemble is
performed. After setting up an experiment by equipping an experiment type with related
information about the sample in {t} all single runs from the run ensemble are performed
independently of each other. Consequently, they can be performed sequentially or in
distributed mode on a cluster of networking computers using the generic Message Passing
Interface MPI [4].
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Preparation of a model for coupling it to SimEnv involves minimal source code
manipulations for a set of supported model programming languages. Experiment-specific
model output post-processing enables navigation in the combined experiment - model output
space {tUz} spanned up from the considered targets t and the multi-dimensional state vectors
z. Application of built-in and user-defined post-processing operator sequences enables
interactive filtering of model output and of reference data. Visualization of post-processed
model output with pre-formed visualization modules forms a major component within the
result evaluation component. Fig. 1 shows the general pathway for experimenting within
SimEnv.

Figure 1. SimEnv System Design.

3. MODEL COUPLING
The SimEnv approach to plug in models to the simulation environment demands the
availability of source code for minimal source code adaptations in order

� to map targets t with which the modeller wants to experiment and numerical adjustments
of these from the simulation environment to the model M, and

� to store (n-dimensional) state variables z and targets t from M to SimEnv data structures
for later post-processing

for each realization from the total sample on {t}.

The coupling interface is available for models implemented in C, Fortran, Python and in
the General Algebraic Modeling System GAMS [5] for mathematical programming problems.
It supports all numerical data types. Plugging the model into SimEnv requires for the model
source code additional implementation of

� one function call simenv_get for each target t to re-adjust its value numerically according
to the current single run of the experiment and

� one function call simenv_put for each model output variable z to store it in SimEnv output
files during the current single run for later post-processing.

Additionally, at the UNIX command shell level analogous scripts are available. Among
other things, they enable manipulation of model control files or forwarding re-adjusted target
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values as arguments to the model before each model run without changing the model at all.
SimEnv-related model output storage uses self-describing Network Common Data Form
NetCDF format [6] or IEEE compliant binary format.

A model description file specifies in detail the model state variables z and the grid on
which a state variable is defined. SimEnv supports usage of rectilinear (orthogonal with
variable distance) grid definitions. Due to a flexible assignment of model variables to grids,
model variables can exist on the same grid or on completely or partially disjointed grids.

4. EXPERIMENT TYPES
SimEnv aims at a well-tailored and co-ordinated simulation approach by performing run
ensembles instead of single simulation runs. Co-ordination is achieved by use of pre-defined
experiment types representing multi-run simulations. An experiment type scans a multi-
dimensional target space {t} with a specific sampling strategy. Experiment types implemented
so far are

� Behavioural analysis
Deterministic inspection of the model's behaviour with a flexible sampling strategy in the
target space

� Monte-Carlo analysis
Probabilistic sampling of targets according to pre-defined distributions using different
sampling methods

� Local sensitivity analysis
Deterministic sampling in a local neighbourhood of the control scenario as the numerical
nominal (default) target constellation of the model M.

Experiments are specified in an experiment description file by selecting an experiment
type and defining the target space {t} and the sampling strategy.

SimEnv behavioural analysis is a generalization of the one-dimensional case, where the
model behaviour is scanned in dependence on deterministic adjustments of one target t. The
n-dimensional case demands a strategy for scanning multi-dimensional spaces in a flexible
manner. On the basis of the SimEnv predecessors [7] and [8] subspaces of {t} can be scanned
on the subspace diagonal (parallel on a one-dimensional hyperspace) or completely for all
dimensions (combinatorial on a grid) and both techniques can be combined. Besides this
regular sampling method an irregular, file-based technique is provided.

Fig. 2 describes the regular scanning technique by an example. In the left scheme the two-
dimensional target space {t} = {p1 , p2} is scanned in a combinatorial manner, resulting in 4*4
= 16 model runs, while the middle scheme represents a parallel scanning pattern of the two
targets at the diagonal by 1+1+1+1 = 4 model runs. The scheme on the right shows a
combined scanning strategy of the 3-dimensional target space {t} = {p1 , p2 , p3} with
(1+1+1+1)*3 = 12 model runs. Each filled dot represents a single model run.

In Monte-Carlo analysis pre-defined distributions can be used to generate a sample in the
target space. Random and Latin hypercube sampling [9] is supported for uniform, normal,
log-normal and exponential distributions. Currently, SimEnv only supports sampling of
uncorrelated targets; as a workaround, there is an interface to import external samples.
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Figure 2. Behavioural analysis: Deterministic sampling of multi-dimensional target spaces.

For local sensitivity analysis the experiment is set up by single model runs in ε-
neighbourhoods of the control scenario in the target space {t}. For each target ti from the
control scenario t = (t1, …,tn) and each εj from εj = (ε1,…, εm) two runs are performed for the
both target constellations (t1,…,ti-1,ti±εj,ti+1,…,tn).

5. EXPERIMENT POST-PROCESSING AND VISUAL EVALUATION
Interactive post-processing is applied to compute output functions y from the model’s outputs
z by state space transformation operators and to derive uncertainty and sensitivity measures
from these output functions by experiment type-specific operators. For this purpose, the
SimEnv post-processor enables application of operator sequences to both model output and
reference data. Currently, about 100 built-in operators are available. An interface enables
users easily to declare their own operators and plug them into the environment. Each operator
assigns to its result output a unique grid definition, derived from the operator definition and
the grids of its operands. SimEnv post-processor output can be stored in NetCDF, IEEE
compliant binary or ASCII format.

State space transformation operators cover elemental, selective, analytical, and statistical
techniques, among others. The main focus is reduction of and aggregation in the output model
state space to cope with its potentially high dimensionality and extent. Selective operators
provide methods to access to a selected single run, to external data and other SimEnv
experiments and to clip the extents or to reduce the dimensionality of an operand on its
assigned grid. Statistical operators supply basic statistical information from operands on the
whole grid or on grid layers for single grid dimensions.

Analysis and evaluation of post-processed data derived from large amounts of relevant
model output benefit from visualization techniques. Based on metadata information about the
post-processed experiment type, the applied operator sequence, and the dimensionality of the
post-processor output, pre-formed visualization modules are evaluated by a suitability
coefficient to determine how they can map post-processor output in an appropriate manner.

The visualization modules offer a high degree of user support and interactivity to cope
with multi-dimensional data structures. Among others, they cover standard techniques such as
scatter and parallel coordinate plots (the latter for abstract data visualization), and isolines,
isosurfaces, direct volume rendering and 3D difference visualization techniques. Furthermore,
approaches to navigate intuitively through large multi-dimensional data sets have been
applied, including details on demand, interactive filtering and animation [10]. Using the open
source visualization platform OpenDX [11] based on IBM’s Data Explorer, extended

301



OpenDX techniques have been designed and implemented, suited to the context of analysis
and evaluation of simulated multi-run output functions.

6. UNCERTAINTY AND SENSITIVITY ANALYSES
The key methodological approach for uncertainty and sensitivity analyses in SimEnv is the
combination of experiments from the set of pre-defined experiment types with interactive
exploration of the model output variables’ set from the run ensemble in experiment post-
processing, applying sequences of experiment-specific operators to both state space model
output functions and reference data. Derived from the general experiment layout, SimEnv
experiment types are associated with uncertainty and sensitivity analyses techniques in the
following way:

� Behavioural analysis
Can be used for uncertainty analysis, factorial screening, general one-factor-at-a-time
approach, (fractional) factorial experiments and response surface methodology. All
methods benefit from the flexible screening strategy of multi-dimensional target spaces in
SimEnv.

� Monte-Carlo analysis
Can be used for uncertainty analysis and global sensitivity analysis.

� Local sensitivity analysis
Can be used for local first order sensitivity analysis by investigating finite difference
approximations of derivatives.

During post-processing uncertainty and/or sensitivity measures are provided by
experiment-specific operators. A general behavioural analysis operator enables the
modeller/user to navigate in the target space {t} and to derive aggregations and moments in its
sub-spaces in a flexible manner. Monte-Carlo analysis operators support (among other things)
computation of extremes, moments, quantiles and heuristic probability density functions from
targets and output functions as well as regression, correlation, and covariance measures from
targets, model output, or both of these together. For local sensitivity analysis a set of
sensitivity operators (linear, squared, absolute, relative, symmetric) are available as finite
approximations of the classical local sensitivity measure ∂z/∂t.

7. EXAMPLE
We show from an ongoing study sensitivity results for CLM, a regional meteorological model
CLM [12] in climate mode [13] where parameters controlling both the dynamic forecast part
and the parametrization part for subgrid-scale diabatic source and sink processes in their
relation to diagnostic and prognostic model output variables have been under investigation.

CLM is used with a horizontal resolution of 0.5° x 0.5° latitude/longitude and with 20
layers in the vertical for a region covering the Baltic Sea and most of Northern and Central
Europe. The model time step is 90 seconds and output is stored every six hours. The model is
based on the non-hydrostatic, fully compressible primitive equations of the atmospheric
motion without scale approximations. The model uses a generalized terrain-following vertical
coordinate and rotated geographical coordinates. It is subdivided into a so-called dynamic
part, where the basic equations, spatially discretized by use of second-order finite differences,
are solved for the prognostic variables wind velocity in x- and y- direction of the orthogonal
z-system, perturbation pressure, to the hydrostatic basic stage, temperature, specific humidity,
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cloud water content and (optionally) cloud ice content. Sub-grid scale source- and sink-
processes have to be parametrized and are computed before the dynamic part. Among others,
also soil hydrological and thermal processes are described by such a parametrization.

In our investigations, we consider the hydrological section of the soil parametrization in
CLM. One of the components of the near-surface water balance is transpiration by plants from
two soil layers with a depth of 10 cm and 90 cm. This process is described by a Biosphere-
Atmosphere Transfer Scheme [14]. The basic idea is to apply a resistance concept as in
electricity to compute plant transpiration affected by atmospheric and stomatal factors. One of
the used transpiration reduction factors accounts for the reduction of transpiration by the
stomatal resistance rs.

rs is described by the two parameters crsmin and crsmax and various influence functions F. For
crsmin = crsmax transpiration is not reduced by any of the influence functions. In the function

for the influence of the surface temperature Ts the empirical constant Tend describes optimal
conditions for plant transpiration. Ftemp reaches its maximum for Ts ≈ Tend/2.

We apply a behavioural analysis to assess the effect of the empirical parameters crsmin and
Tend on latent and sensible heat fluxes lhf and shf from soil in a deterministic manner for
crsmax = 1000 s/m. Both fluxes are defined on a grid spanned up from latitude, longitude and
time. In Box 1 the experiment description file to scan the 2-dimensional parameter space
{crsmin , Tend} combinatorially is shown. Additionally, in the model source code crsmin and
Tend have to be re-adjusted by a simenv_get-call for each of both parameters.

target crsmin adjusts 30.(5.)120. # specifies 19 adjustments for crsmin
target crsmin default 60. # default model value of crsmin
target crsmin type set # do not modify adjustments by default
target Tend adjusts 273.15(5.)333.15 # specifies 13 adjustments for Tend
target Tend default 313.15
target Tend type set
specific comb crsmin*tend # factorial screening: 19*13+1=248 runs

Box 1. Experiment description file for a behavioural analysis.

Post-processed results for a simulated period of seven days are shown in Fig.3. The
influence of the variation of crsmin and Tend on lhf and shf anomalies from the model nominal
constellation is shown on the left. To produce during SimEnv post-processing this result from
model output the applied operator sequences are

behav(‘ ‘, avg(shf))  -  run(‘default’, avg(shf))        and
behav(‘ ‘, avg(lhf))  -  run(‘default’, avg(lhf)),
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where behav is the general behavioural operator to navigate in the experiment space, the
operator run addresses one single run from the whole run ensemble, and the operator avg
supplies the total average from a multi-dimensional model output variable. To get area-
averaged flux anomalies for each time step time dependent on crsmin and for the default value
of Tend we have to apply in post-processing

behav(‘sel_t(Tend=313.15)‘, avg_l(‘time’, shf)) - run(‘default’, avg_l(‘time’, shf))

where avg_l supplies area averages for each time step. Fig. 3 on the right is the corresponding
graphical representation.

Figure 3. Surface heat flux anomalies from soil. Dynamic was compiled in SimEnv post-processing
from the results of the 248 single runs of the experiment.
Left: Area and temporal mean dependent on Tend and crsmin.
Right: Area mean for each time step dependent on crsmin.

First it becomes visible from the right panel of Fig. 3 that both heat fluxes behave
inversely to the changes in crsmin. As to be expected, the latent heat flux lhf decreases with
increased resistance values, whereas the sensible heat flux shf increases to transport heat back
from the surface to the atmosphere in this case and to maintain the surface energy balance.
Secondly, the reaction of both heat fluxes is rather linear for the entire parameter space.
Together with changes in Tend, however, the behaviour of the heat fluxes is significantly
different: As shown on the left, only for rather high values of Tend the heat fluxes change with
crsmin as for the default of Tend on the right. For Tend below about 273.15 K, this parameter
dominates the reaction of the sensible and latent heat fluxes and nearly no modifications in the
results due to crsmin can be identified.

The results of a Monte-Carlo study on Tend and crsmin for a simulated period of seven days
are shown in Fig. 4. Both parameters are drawn from a normal distribution with a Latin
hypercube sampling technique where the mean is the nominal parameter value and variance is
set to 20. Sample size is 150 runs. For the left panel of Fig. 4 the applied operator sequence is

hgr_e(15, avg_l(‘time’, shf) – run(‘default’, avg_l(‘time’, shf))),

where the operator hgr_e supplies for each element of its second argument a heuristic
probability density function over the whole run ensemble with 15 bins.
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Figure 4. Probability density functions of surface heat flux anomalies from soil for time steps 2 -
28. Left: lhf, right: shf. lhf anomaly values range from -5.02 (bin # 1) to 2.03 (bin # 15),
shf anomaly values from -1.51 to 3.87.

8. RESULTS AND CONCLUSIONS
The methodology presented here and its implementation have been proven to support the
process of model evaluation from various perspectives of both model developers and users. In
contrast to other simulation environments (e.g., SimLab [15], SCIRun [16], and Pingo [17])
that also focus on uncertainty and sensitivity matters, with SimEnv we try to support all steps
in experimenting with models from easy-to-use model coupling to the system via experiment
design, experiment load distribution, and model output post-processing to visual evaluation.
The supported languages cover most of the model sources codes used in global change
research. The concept of pre-defined experiment types seems to be an appropriate way to
guide model developers and/or users in the process of experimenting with models and frees
them from expensive workload. The plug-in interface for user-defined operators opens the
post-processor to permit coupling to special-purpose applications or libraries on user demand.
Additionally, output formats from the post-processor can be used to export model results to
other applications, e.g. as statistical diagnosis and analysis tools, for in-depth investigations of
specific research goals. One of the strengths of SimEnv is its support of multi-dimensional
model output data on rectilinear grids in a persistent manner for model plug-in, post-
processing, and visualization.

On the other hand, this holistic approach is at the same time one of the weaknesses of
SimEnv. With SimEnv, we provide a general simulation environment for a broad spectrum of
tasks without supporting special features in detail. For example, sampling strategies and built-
in operators especially for uncertainty and sensitivity analyses techniques are limited.

9. PROSPECTS
The following work packages are planned for further development of SimEnv:

� Special-purpose sampling designs: Support of special uncertainty and sensitivity
experiments, e.g., the Fourier amplitude sensitivity test FAST and/or the method of Sobol
[18] and implementation of corresponding post-processing operators and visualization
techniques.

� Simulation-based optimization: Application of gradient-free methods for (mono- and)
multi-criterial optimization of cost functions fi(z) in the target space {t}.
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� Support of distributed models across computer networks or the Internet: Setting up a
SimEnv experiment server to handle target dissemination and model output collection.
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Abstract: Dynamic models are often used to predict the effects of farmers’ practices on 
crop yield, crop quality and environment. These models usually include many parameters 
that must be estimated from experimental data before practical use. Some of the parameters 
may vary across genotypes. Such genetic parameters may be estimated from plant breeding 
experiments but this is very costly and requires a lot of experimental work. Moreover, 
some of the genetic parameters may account for only a very small part of the output 
variance and, so, do not deserve an accurate determination. This papers shows how 
methods of global sensitivity analysis can be used to evaluate the contributions of the 
genetic parameters to the variance of model prediction. Two methods are applied to a 
complex nonlinear dynamic crop model for estimating the sensitivity indices associated to 
13 genetic parameters. The results show that only 5 genetic parameters have a significant 
effect on yield and grain quality.          

Keywords: Crop model, fast, genetic parameter, global sensitivity analysis, winding stairs 

 

 1. INTRODUCTION 
Crop models are complex nonlinear dynamic models simulating several output variables 
related to crop yield, crop quality, farmer’s income and environment. These models are 
valuable tools for crop management because they can be used to predict the effects of 
farmers’ practices in function of soil type, climate, and crop characteristics.  

Crop models can include up to 200 parameters whose values must be estimated 
from past experiments. The estimation of these parameters is an important problem 
because crop model performances depend for a large part on the accuracy of the parameter 
estimates. Results obtained with crop models are not reliable when inaccurate parameter 
values are used. A large amount of data is always required for estimating accurately crop 
model parameters, in particular when the model includes genetic parameters. As genetic 
parameters vary across genotypes, the estimation of these parameters must be based on 
specific measurements collected for each genotype. Such measurements can be performed 
in plant breeding experiments but this is very costly and requires a lot of experimental 
work. Moreover, recent studies have shown that crop model predictions are not always 
improved when genotypic parameters are estimated genotype per genotype. This may be 
due to the small contribution of some of the genetic parameters to the total model output 
variance.  

In this study, we investigate how methods of sensitivity analysis can be used to 
reduce the quantity of field experiments performed for estimating genetic parameters. The 
basic principle consists in evaluating the contributions of the genetic parameters to the 
variance of the model prediction and in estimating genotype per genotype only the key 
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parameters whose uncertainty affects most the outputs. This approach is illustrated below 
with the AZODYN crop model [1] developed for simulating winter wheat crops. Two 
methods of global sensitivity analysis are applied to this model in order to evaluate the 
contribution of 13 genetic parameters to the variances of several output variables of 
agronomic interests.   

 

2. METHODOLOGY 

2.1. The AZODYN model 
The AZODYN crop model [1] is a nonlinear dynamic model simulating winter wheat crop 
in function of numerous input variables describing the characteristics of the crop at the 
end-of-winter (initial biomass and nitrogen content), soil characteristics (soil texture, 
organic matter, soil mineral nitrogen), climate (daily radiation and temperature), and 
nitrogen fertilization (dates and rates of fertilizer applications). In this paper, the input 
variable are set equal to values obtained in a field located in the north of France (Grignon) 
and harvested in 2001.  

AZODYN is a useful tool for studying the effects of nitrogen management on crop yield, 
grain quality and risk of pollution by nitrate [2]. The model includes several state variables 
that are simulated at a daily time step. One of the state variable, namely the nitrogen 
nutrition index (NNI), indicates if the nitrogen content of the crop is at its optimal level or 
not. AZODYN can be used to predict the characteristics of the crop at harvest, notably 
grain yield and grain protein content at harvest. Grain yield is an important variable 
because it determines the farmer’s income. Grain protein content is a major grain quality 
criterion for agro-industries. 
    

 
Table 1. The 13 genetic parameters of AZODYN and their ranges of variation. 

 
Parameter Definition  Range  Unit 

RDTMAXVAR Maximal yield 100-137 q.ha-1 

Ebmax Radiation use efficiency 2.7-3.3  g.MJ-1 

D Ratio of leaf area index to critical nitrogen  0.02-0.045  - 

REM2 Fraction of remobilized nitrogen 0.5-0.9  - 

K Extinction coefficient 0.6-0.8  - 

Eimax Ratio of intercepted to incident radiation 0.9-0.99   

Tep.flo Duration between earing and flowering 100-200 °C.day 

R Ratio of total to above ground nitrogen 1.0-1.5  - 

P1GMAXVAR Maximal weight of one grain 47-65 Mg 

Lambda Parameter for calculating nitrogen use efficiency 25-45  - 

Mu Parameter for calculating nitrogen use efficiency 0.6-0.9  - 

DJPF Temperature threshold 150-250 °C.day 

NGM2MAXVAR Maximal grain number 107.95-146.05  - 
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The AZODYN crop model includes 69 parameters whose values must be estimated 
before practical use. Among all the parameters, 13 parameters were found to vary across 
genotypes in past studies. Their values are not perfectly known. The genetic parameters 
and their ranges of variation are described in table 1. The purpose of this paper is to 
evaluate the contributions of the 13 genetic parameters to the variances of three model 
outputs, namely yield, grain protein content and nitrogen nutrition index (NNI).     

2.2. Comparing different sensitivity analysis methods on AZODYN 

2.2.1. Sensitivity indices 

We note further Y  the output variables of AZODYN. Y  will represent in turn yield, grain 
protein content, and the daily values of NNI. Yield and grain protein content are calculated 
only at harvest, whereas NNI is calculated each day between the end-of-winter and harvest. 
Our approach consists in partitioning the total variance of ( )V Y  as follows [3]: 

( )
13

1,2...,13
1

i ij ijm
i i j i j m

V Y V V V V
= < < <

= + + +∑ ∑ ∑ ,   (1) 

where  is the total variance of the output variable Y  induced by the 13 genetic 

parameters, 

( )V Y

( )iV V E Y x=  i   measures the main effect of the parameter ix , i=1, …, 13, 
and the other terms measure the interaction effects. The decomposition (1) is used to derive 
two types of sensitivity indices defined by  

( )
i

i
VS

V Y
= ,      (2) 

( )
( )

i
Ti

V Y V
S

V Y
−−

= ,     (3) 

where V  is the sum of all the variance terms that do not include the index i.  is the first-
order sensitivity index for the i

i− iS
th parameter. This index measures the main effect of 

parameter ix  on the output variable Y .  is the total sensitivity index for the iTiS th parameter 
and is the sum of all effects (first- and higher-order) involving the parameter ix .  takes 
into account the interactions between the i

TiS
th parameter and the other 12 parameters. The 

total sensitivity index can be though as the expected fraction of variance that would be left 
if only the parameter ix  were to stay undetermined.  and  are both in the range (0, 1). 
The sensitivity indices  and  do not differ much from zero when the parameter 

iS TiS

iS TiS ix  has 
a small effect on the output variable Y . On the contrary, if the parameter i has a strong 
effect on Y , the indices take values near from one. The two sensitivity indices  and  
are equal if the effect of the i

iS TiS
th parameter on the model output is independent from the 

effects of the other parameters.  

In  the next two sections, we present two methods for estimating the indices (2) and 
(3) for each parameter and each output variable.  
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2.2.2. Winding stairs 

The calculation of the indices (2) and (3) requires the knowledge of V Y , , and V( ) iV i− . 
The computations can be performed by using a Monte Carlo method [3, 4]. The principle is 
to generate randomly samples of parameters and to estimate ( )V Y , V , and V  as follows: i i−

( ) ( )
2

2
0

1

1 ˆˆ
N

m
m

V Y f X f
N =

= −  ∑ ,    (4)  

where  is a sample of 13 parameter values drawn in the ranges of 

variation displayed in table 1, 
( 1 ,..., ,...,m m im mX x x x= )13

)( mf X  is the simulated value of the output variable, and 

( )
1

1 N

m
m

0̂f f X
N =
∑= . 

( ) ( )(1) (2) 2
( ) ( ) 0

1

1 ˆˆ , ,
N

i i m im i m im
m

V f X x f X x
N − −

=

= −∑ f ,   (5) 

where imx is the mth value of the ith parameter, and  and  are two different 
vectors including values of the 12 other parameters defined by 

 and 

(1)
( )i mX −

(2)
( )i mX −

( )(1) (1) (1) (1) (1)
( ) 1 ( 1) ( 1) 13,..., , ...,i m m i m i m mx x x− − +X x= ( )(2) (2 (2)

( ) 1 1) 13,i m m m mX x x x+= ) (2)
(,..., i− −

(2)
( 1) ...,i mx . 

( ) ( )(1) (2) 2
( ) ( ) 0

1

1 ˆˆ , ,
N

i i m im i m im
m

V f X x f X x
N− − −

=

= −∑ f    (6) 

where (1)
imx  and (2)

imx  are two different values of the ith parameter and  is a vector 
including the values of the 12 other parameters.  

( )i mX −

 Different sampling methods can be used to generate the parameter values and 
organize the computations. Here, we apply the winding stairs sampling scheme [5].  This 
method was designed to make multiple use of model evaluations. With a single series of N 
model evaluations, it can compute both the first-order and the total sensitivity indices. The 
winding stairs method consists in computing the model outputs after each drawing of a 
new value for an individual parameter. Various procedures can be used to generate the 
parameter values. Here, the parameter values are generated by Latin hypercube sampling.  

The sequence of model outputs generated by the Winding stairs method is shown is 
table 2. The model outputs are grouped by pairs and are used to compute all the sensitivity 
indices. For example, the variance (6) is estimated for the first parameter by using the 
following pairs of model outputs: {1, 2}, {13+1, 13+2},  …, {(N-1)*13+1, (N-1)*13+2}. 
The variance (5) is estimated for the first parameter by using {2, 13+1}, {13+2, 2*13+1}, 
…{(N-2)*13+2, (N-1)*13+1}.  

The number of model evaluations required for calculating the indices associated to 
the 13 genetic parameters is equal to 13N (table 2). The winding stairs sampling scheme is 
applied here with two values of N, specifically N=5000 and N=10000. The Winding stairs 
method is run 15 times in order to obtain 15 estimates of the first-order and total sensitivity 
indices for each N value and each parameter. The 15 estimates are averaged and their 
accuracy is evaluated by computing standard deviation and 95% confidence interval.     
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Table 2. Sequence of model outputs generated by the Winding stairs method. 

 

Simulation number Output 

1 ( )1,1 2,1 3,1 13,1, , ,...,f x x x x  

2 ( )1,2 2,1 3,1 13,1, , ,...,f x x x x  

3 ( )1,2 2,2 3,1 13,1, , ,...,f x x x x  

4 ( )1,2 2,2 3,2 13,1, , ,...,f x x x x  

…  

13+1 ( )1,2 2,2 3,2 13,2, , ,...,f x x x x  

13+2 ( )1,3 2,2 3,2 13,2, , ,...,f x x x x  

…  

(N-1)*13+1 ( )1, 2, 3, 13,, , ,...,N N N Nf x x x x  

(N-1)*13+2 ( )1,1 2, 3, 13,, , ,...,N N Nf x x x x  

(N-1)*13+3 ( )1,1 2,1 3, 13,, , ,...,N Nf x x x x  

…  

N*13 ( )1,1 2,1 2,1 12,1 13,, , ,..., , Nf x x x x x  

 

2.2.3. Extended FAST 

The sensitivity indices are estimated by using a second method named extended FAST [3, 
6]. In extended FAST, the sensitivity indices are evaluated by a search curve that scans the 
space of the 13 parameters, in such a way that each parameter is explored with a selected 
integer frequency. The basic idea of the method is to convert the 13-dimensional integral in 
the parameters into a one-dimensional integral by using the transformation function G  for 
i=1, …, 13 defined by 

i

( )sini i ix G sω=     (7) 

where ] [,s π π∈ −  and { }; 1,...,13i iω =  is a set of integer angular frequencies. The function 
(7) allows each parameter to be explored globally across its range of variation, as the 
parameter s is varied over ] [,π π− . The implementation of the FAST and extended FAST 
methods is described in detail in [6].  

 The method is applied here by using the transformation function 

(1 1 arcsin sin
2ix )i s iω ϕ

π
= + +   where iϕ  is a random phase-shift parameter drawn in 
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[ ]0, 2π . The frequencies { }; 1,...,13i iω =  are chosen according to the method described by 
Saltelli [6]. The method requires the computation of several integrals by using a set of 
model simulations. Here, the indices are calculated from 5000 simulations for each 
parameter. So, the total number of model simulations is equal to 13*5000. The extended 
FAST method is run 15 times with different values for the shift parameters in order to 
derive 15 different estimates of first-order and total sensitivity indices.  Like with the 
Winding stairs method, the 15 estimates are averaged and their accuracy is evaluated by 
computing standard deviation and 95% confidence interval.     
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3. RESULT 

3.1. Sensitivity indices for yield and grain protein content 

Figure 1 shows the total sensitivity indices calculated for the 13 genetic parameters with 
the Winding stairs method and N=10000. For yield, the parameter RDTMAXVAR has the 
highest total sensitivity index. Its value is equal to 0.77. It means that about 77% of yield 
variance would be left if only the parameter RDTMAXVAR were to stay undetermined. The 
strong influence of RDTMAXVAR is logical because this parameter determined the 
maximal yield values in the model equations. Two other parameters have a significant 
influence on yield, namely Ebmax and D. The total sensitivity indices calculated with the 
Winding stairs method are equal to 0.18 and 0.17 for these two parameters. The indices of 
the 10 other parameters are lower than 0.07.  

Figure 1 shows that, for grain protein, the parameter with the highest total 
sensitivity index is REM2 (index=0.49). This parameter is used by the model to calculate 
the fraction of the total plant nitrogen that can be allocated to the grains after flowering, 
and this fraction determines for an important part the value of the grain protein content at 
harvest. Two other parameters have a total sensitivity index higher than 0.1, namely R and 
RDTMAXVAR.  
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Figure 1. Total sensitivity indices for the output variables yield and grain protein content obtained 
with the methods Winding stairs (N=10000). The horizontal bars show the average values of the 
sensitivity indices calculated from 15 estimates for the 13 genetic parameters. Error bars indicate 
the 95% confidence interval. 
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Table 3. Sensitivity indices (first order and total effect) for yield and for the 13 genotypic 
parameters. Mean and standard deviation are calculated from 15 estimates. 

                 Winding stairs N=10000                   Winding stairs N=5000                        Extended Fast   

       Total sensitivity   First order sensitivity        Total sensitivity  First order sensitivity        Total sensitivity   First order sensitivity 

Parameter mean sd   mean sd  mean sd  mean sd  mean sd   mean sd 

RDTMAXVAR 0.769 0.033   0.622 0.036  0.753 0.049  0.627 0.052  0.766 1.2E-02   0.627 8.6E-03 

Ebmax 0.184 0.048   0.061 0.045  0.092 0.095  0.155 0.090  0.179 2.6E-03   0.074 1.5E-03 

D 0.170 0.032   0.055 0.029  0.161 0.053  0.071 0.047  0.159 8.8E-03   0.067 2.8E-03 

REM2 0.062 0.059   -0.010 0.057  -0.032 0.122  0.079 0.119  0.043 1.3E-03   0.014 4.7E-04 

K 0.042 0.069   -0.010 0.070  -0.007 0.103  0.050 0.090  0.036 1.5E-03   0.008 4.7E-04 

Eimax 0.041 0.066   0.010 0.066  -0.015 0.110  0.075 0.097  0.046 1.5E-03   0.015 6.8E-04 

Tep.flo 0.016 0.078   -0.015 0.081  -0.039 0.108  0.050 0.098  8.25E-03 7.3E-04   1.08E-03 1.1E-04 

R 0.013 0.042   -0.003 0.039  0.064 0.054  -0.046 0.052  1.35E-02 3.0E-03   7.14E-04 1.1E-04 

P1GMAXVAR -0.003 0.047   0.007 0.041  0.055 0.070  -0.042 0.070  1.05E-02 3.9E-03   4.17E-04 1.6E-04 

Lambda -0.007 0.042   0.009 0.038  0.057 0.067  -0.045 0.066  9.58E-03 2.3E-03   3.85E-04 1.6E-04 

Mu -0.012 0.042   0.010 0.038  0.052 0.071  -0.045 0.071  5.50E-03 1.1E-03   5.77E-05 3.5E-05 

DJPF -0.012 0.041   0.008 0.037  0.051 0.067  -0.046 0.069  4.03E-03 4.6E-04   4.37E-06 2.2E-06 

NGM2MAXVAR -0.012 0.041   0.008 0.037  0.051 0.067  -0.046 0.069  4.03E-03 4.6E-04   4.37E-06 2.2E-06 

 
 
Table 4. Sensitivity indices (first order and total effect) for grain protein content and for 
the 13 genotypic parameters. Mean and standard deviation are calculated from 15 
estimates. 

                 Winding stairs N=10000                   Winding stairs N=5000                        Extended Fast   

       Total sensitivity   First order sensitivity        Total sensitivity   First order sensitivity        Total sensitivity   First order sensitivity 

Parameter mean sd   mean sd  mean sd  mean sd  mean sd   mean sd 

REM2 0.486 0.013   0.480 0.013  0.495 0.024  0.473 0.021  0.493 5.0E-03   0.475 5.1E-03 

R 0.345 0.009   0.341 0.007  0.339 0.017  0.351 0.013  0.349 2.3E-03   0.337 2.4E-03 

RDTMAXVAR 0.149 0.015   0.111 0.009  0.143 0.016  0.111 0.013  0.144 2.1E-03   0.114 1.6E-03 

Lambda 0.024 0.014   0.009 0.011  0.017 0.015  0.017 0.012  0.018 2.4E-04   0.012 4.3E-04 

Mu 0.016 0.016   -0.002 0.011  0.008 0.015  0.007 0.010  0.008 2.5E-04   0.004 1.2E-04 

D 0.014 0.015   0.013 0.011  0.013 0.013  0.011 0.017  0.024 7.2E-04   0.006 2.8E-04 

P1GMAXVAR 0.011 0.018   -0.005 0.010  0.004 0.018  0.002 0.011  2.8E-03 5.6E-04   5.4E-05 2.2E-05 

DJPF 0.010 0.017   -0.005 0.010  0.003 0.017  0.002 0.011  2.0E-03 8.2E-05   3.7E-07 1.8E-07 

NGM2MAXVAR 0.010 0.017   -0.005 0.010  0.003 0.017  0.002 0.011  2.0E-03 8.2E-05   3.7E-07 1.8E-07 

Ebmax 0.008 0.020   0.009 0.014  0.021 0.020  -0.003 0.023  1.9E-02 4.1E-04   2.9E-03 1.2E-04 

Eimax -0.005 0.020   0.006 0.015  0.005 0.023  -0.002 0.024  6.5E-03 2.1E-04   5.5E-04 3.9E-05 

K -0.007 0.019   0.008 0.015  0.004 0.020  -0.001 0.019  6.0E-03 1.6E-04   4.1E-04 3.7E-05 

Tep.flo -0.010 0.018   0.008 0.016  0.002 0.020  -0.003 0.018  2.7E-03 9.4E-05   1.7E-04 1.0E-05 
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Tables 3 and 4 show the average values and standard deviations of the first-order 
and total sensitivity indices obtained for yield and grain protein content with Winding 
stairs (N=1000 and N=5000) and extended FAST. The average sensitivity indices obtained 
with the different methods confirm the results shown in figure 1. For yield, the three 
parameters with the highest sensitivity indices are RDTMAXVAR, Ebmax and D. For grain 
protein content, the parameters REM2, R and RDTMAXVAR have the highest indices.  

The average values of the indices obtained with the different methods are quite 
similar in most cases (tables 3 and 4). For example, the total sensitivity index obtained for 
grain protein content and parameter REM2 is equal to 0.486 with Winding stairs N=10000, 
to 0.495 with Winding stairs N=5000, and to 0.493 with extended FAST. There are few 
discrepancies between methods. For example, the parameter with the second highest total 
sensitivity index is Ebmax with Winding stairs N=10000 and extended FAST, but is D with 
Winding stairs N=5000.    

The standard deviations of the indices are very different among the methods. With 
Winding stairs, the standard deviation is lower when the computations are performed from 
N=10000 simulations than from N=5000. For example, for REM2 and grain protein 
content, the standard deviation of the total sensitivity index is equal to 0.013 when 
N=10000 but is equal to 0.024 when N=5000 (table 4). The use of only 5000 simulations 
can lead to inaccurate estimations of sensitivity indices. Consequently, with the Winding 
stairs method, it seems necessary to use at least 10000 simulations to obtain accurate 
results. Tables 3 and 4 also show that the standard deviations of the indices are much lower 
with extended FAST than with Winding stairs. For instance, for REM2 and grain protein 
content, the standard deviation of the estimated values of the total sensitivity index is only 
equal to 0.005 with extended FAST (table 4). With extended FAST, the variability of the 
estimated values is due to the variability of the random phase-shift parameter. Note that the 
results of extended FAST are based only on 13*5000 simulations. Consequently, in terms 
of efficiency, the extended FAST method seems to perform better than Winding stairs.  

Another advantage of the extended FAST method is that it does not give negative 
estimated values. Negative values are obtained with the Winding stairs method for the 
parameters that have a very small influence on the model outputs. Of course, such values 
are unrealistic. For example, for yield and parameter P1GMAXVAR, the total sensitivity 
index is equal to –0.003 with the Winding stairs method and N=10000 (table 3). The value 
of the same index is equal to 0.001 when computed from the extended FAST method. 
Negative values could be avoided with the Winding stairs method by calculating the 
correction term suggested by Homma and Saltelli [4]. But the calculation of this correction 
term requires additional model evaluations.   

The comparison between the first-order and total sensitivity indices allows us to 
study the contribution of the main effect of the genetic parameters to the total output 
variances (tables 3 and 4). In most cases, the first-order indices represent an important 
fraction of the total indices, notably for grain protein content. For example, for REM2 and 
grain protein content, the estimated value of the first order index is in the range 0.47-0.48 
depending on the method. These values are very near from the average of the 15 estimated 
values of the total sensitivity index (~0.49).    
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3.2. Sensitivity indices for NNI 
The Winding stairs and extended FAST methods were also applied to compute sensitivity 
indices for the state variable NNI (nitrogen nutrition index). This variable is calculated 
each day between end-of-winter and harvest by the model. Sensitivity indices were 
computed for each daily value of NNI. The results obtained with Winding stairs and 
extended FAST for parameter D (ratio of leaf area to critical nitrogen) are shown in figure 
2. At the beginning of the growing period the total sensitivity indices are in the range 0.6-
0.8. After day 60, the index decreases sharply and is almost equal to zero after day 100. 
This result is easily explained by studying the model equations. With AZODYN, NNI is 
calculated in function of the crop biomass and the biomass depends on the leaf area. The 
leaf area is calculated in function of parameter D only at the beginning of the growing 
period. The leaf area reaches its maximal value after few month of growing. After this 
stage, the leaf area does not depend on D anymore.    

 As for yield and grain protein content, the results obtained with Winding stairs for 
NNI are inaccurate when N=5000; the confidence intervals are larger with N=5000 than 
with N=10000. Also, with N=5000, the first-order sensitivity indices are higher than the 
total sensitivity indices at the beginning of the growing period. This is an unrealistic result.  
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Figure 2. Total sensitivity indices (continuous line) and first-order sensitivity indices (dashed line) 
for the output variable NNI (nitrogen nutrition index) and for parameter D (ratio of leaf area to 
critical nitrogen) obtained with the methods Winding stairs (N=10000 and N=5000), and Extended 
FAST. The curves indicate the average values of the sensitivity indices calculated from 15 
estimates between the end-of-winter and harvest. The vertical bars indicate the 95% confidence 
intervals at four dates.  
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4. CONCLUSION 
Our study demonstrates that global sensitivity analysis can be used to identify the genetic 
parameters that must be estimated from plant breeding experiments. The methods 
considered in this study allow agronomists to determine which subset of parameters 
accounts for most of the output variance. These methods are useful and easy to interpret. 
Those factors with a small contribution can be set equal to any value within their range. 
This contributes to a model simplification and a reduction of the number of experiments 
performed for estimating crop model parameters.  

Our application shows that only 5 parameters have a significant influence on the 
yield and grain protein content values simulated by the AZODYN crop model. Among 
these parameters, some can be easily estimated from plant breeding experiments like, for 
instance, the parameter RDTMAXVAR that represents the maximal yield value of a wheat 
genotype. Others are much more difficult to estimate like the parameter R (ratio of total to 
above ground nitrogen). Note that these results were obtained by running the crop model 
for a single field and a single year. It would be useful to repeat the analysis for other fields 
and several years.  

The results obtained with the Winding stairs and extended FAST methods are quite 
similar but the extended FAST method seems to be more efficient. With the Winding stairs 
method, it is necessary to use at least 10000 model evaluations per parameter for 
estimating accurately the first-order and total sensitivity indices. With 5000 model 
evaluations, the Winding stairs method gives inaccurate estimates of sensitivity indices for 
the parameters that have a small influence on the model outputs.    
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Abstract: First motivation of this work is to take into account model uncertainty in sensitivity
analysis. So, we present in a first part, with some cases, an outline of the methodology used
to treat uncertainty due to a mutation of the studied model. Development of this methodology
have highlighted an important problem, frequently encoutered in sensitivity analysis: how to
interpret sensitivity indices when model random inputs are non-independent? Also, we present
a method to solve this problem, which introduce multidimensional sensitivity indices. Practical
and theoretical applications will illustrate interest of this method.

1. INTRODUCTION

In many fields like reliability of mechanical structures, behavior of thermohydraulic systems,
or nuclear safety, mathematical models are used, for simulation, when experiments are too
expensive or even impracticable (nuclear accident), and for prediction.
In this context, sensitivity analysis is often used for model calibration or model validation, and
to find which variables mostly contribute to output variability. In this paper, we consider global
sensitivity analysis, like named in [3], based on the study of the variances of model variables.
Those methods consist in the computation of sensitivity indices, which apportion the sensitivity
of model output variance to model inputs. For a model���������
	���
�
�
����������
first order sensitivity indices are defined by��� ��� ����� �"! � �$# �� ���%� �

(1)

and express the part of variance of model output
�

due to model input
� �

. Higher order indices
are also defined, to express effect of input interactions and total indices for total effect of one
input. An important property, which enables us to easily interpret sensitivity indices values,
is that the sum of all these indice is equal to 1, when inputs are independent (for more details
on this property, the reader is referred to [5]). Methods of estimation of those indices are in-
troduced by Cukier (FAST [1], [4]), Sobol [5], McKay [2], among others. We will use Sobol
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method for numerical experiments.
The purpose of our works is to take into account a particular characterization of model un-
certainty in sensitivity analysis. First of all, let us present this problem, often encountered in
practice: consider that a model, on which sensitivity analyse have been made, undergoes a
transformation, or, in other words, a mutation. In this case, is it possible to obtain information
about sensitivity analysis of the mutated model, without doing a new complete analysis, but by
using sensitivity results on the original model? In the first part, we will present an outline of
the methodology which we used to answer to this question. For some possible mutations, we
will mathematically relate sensitivity indices of original model with those of mutated model.
Following nature of the mutation, some assumptions are necessary, and which one is most of-
ten met, is independence of the model inputs. As this last assumption is sometimes difficult to
justify in practice, and as usual sensitivity indices (1) aren’t meaningful when inputs are non-
independent, we will present in a second part a new method of sensitivity analysis for those
models.

2. IMPACT OF MODEL UNCERTAINTY ON SENSITIVITY ANALYSIS

Assume that a sensitivity analysis have been made on a model & ' �(�)���*�+	���
�
�
��������
, where

the , inputs variables
� �

are independent. Let us suppose that new informations about the
model, new measurements, or even changes in the modelled process, oblige us to consider a
new model &.-0/�1 , that is also a mutation of the original model & . Rather than to make an
exhaustive list of all possible mutations, let us present only some usefull mutations, for which
interesting results have been obtained.
Firstly, consider a model & ' �2�3�4	5�*�
	6��78�:9:���;95��
�
�
��������

, where
���"	��5
�
�
��6�<�=�

are independent
random variables, and suppose that & undergoes a mutation, and is also transformed in a new
model &.-0/�1 where

�
	
is fixed to its mean > 	?� �@� �
	 #

. Thus, this new model is
� - ��A	5� > 	6�B7C�:9��*�89���
�
�
������:�

. Writing definition of sensitivity indices, we show that &D-E/�1 sensitivity
indices (

� - ) can be express from sensitivity indices (
�

) of & by:� - � �GF � ���H�� ��� - � for first and higher order sensitivity indices.

and by: � -I �2JLKM�NJOK � I � F � ���%�� �P� - � for all total sensitivity indices.

Of course, all indices relating to variable
�+	

disappear.
Let us consider now inverse case, which can be view as introduction of noise in the model,
and which consist to consider a deterministic parameter like a random variable. So the model& ' �)�Q�A	R� > �S7��:9:�*�
	��5
�
�
��6�<�=�

is mutated in a model &T-E/�1�' � - ���A	��*����U�	6�S7��:9:�*�
	��5
�
�
��6�<�=�
.

In this case, sensitivity indices of &V-E/�1 , are given by those of & multiplied by � �P�W�
and

divided by � �X�A	5�*����U�	6���Y7 � ���H�
. For the new variable, only first order indice are non zero, and

is given by � �X�B	R�*����U�	6���� ���A	5�*����U�	N�6�Z7 � �P�%� 
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For the same mutation carried out on the model & ' �[�\�]	R� > � F ��9��*�
	���
�
�
��������
, sensitivity

indices of &T-E/�1 can be obtain multiplying indices of & by� �P�%�� ��� - � F�^ �@� �A	R�����RU�	N� #�B	R� > � _ 9 

Now, if we consider the new variable

�H��U�	
as dependent from the others variables, we are again

confronted with the problem of sensitivity analysis for model with dependent inputs previously
evoked. Also, we don’t know to deduce sensitivity indices of the mutated model from the
knowledge of the & model.
Let us finally present an other type of mutation. Assume that two analysis have been made
on two models & 	 ' �`	8�a�B	R�*�
	���
�
�
��������

and & 9 ' �b9
�a�:9=�*����U�	���
�
�
�������UdcS�
, and also that

sensitivity indices
� 	

for & 	
and

� 9
for & 9

have been computed. We suppose that inputs
variables of the two models are different and independent. Let us create a new model &e-E/�1f'� - �g�Z	`7h�i9

. Sensitivity indices of &T-0/�1 are obtained by multiplying

those of & 	
by

� ���`	6�� ���`	6�Z7 � �P�i9j� and those of & 9
by

� �P�i9j�� �P�Z	N�Z7 � �P�i9�� 

All sensitivity indices, relative to interaction between & 	

variables and & 9
ones are equal to

zero. If we suppose that there are dependences between variables of the two models, we are
afresh confronted with the same problem of sensitivity analysis for dependant or correlated
inputs.
To conclude, if an original model, on which sensitivity analysis have been made, is transformed,
it’s possible to deduce sensitivity indices of the mutated model, without starting again heavy
calculation of Monte Carlo, in a given number of cases. Those cases are principally deletion
of variables or introduction of new independent variables. On the other hand, introduction of
dependent variables, or even of existing variables poses the problem of sensitivity analysis with
dependent inputs, for which we propose a new method.

3. SENSITIVITY ANALYSIS FOR MODEL WITH DEPENDENT OR CORRELATED
INPUTS

Highlighted in previous section, the problem of sensitivity analysis for model with dependent
inputs is a real one, because naturally frequently met in practice.
This problem concern the interpretation of sensitivity indices values. When inputs are indepen-
dent, I.M.Sobol demonstrates that the sum of all sensitivity indices is equal to 1. Effectively,
in Sobol’s decomposition of model function, all term are mutually orthogonal if inputs are in-
dependent, and so we can obtain a variance decomposition of model output. Dividing this
decomposition by output variance, we obtain exactly that the sum of all order indices is equal to
1. If we don’t assume that the inputs are independent, the terms of model function decomposi-
tion are not orthogonal, and so it appears a new term in the variance decomposition. That’s this
term which implies that the sum of all order sensitivity indices is not equal to 1. We can give
the following interpretation to this : when we study sensitivity of one input, which is correlated
with another one, we study too sensitivity of this last. Effectively, variabilities of two correlated
variables are link, and so when we quantify sensitivity to one of this two variables, we quantify
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too a part of sensitivity to the other variable. And so, in sensitivity indices of the two variables,
the same information is taken into account several times, and sum of all indices is thus greatest
than 1.
Natural idea is also coming: to define multidimensional sensitivity indices for groups of corre-
lated variables.

3.1. Multidimensional sensitivity analysis

Consider the model ���������
	���
�
�
����������
wherek$l 	�mjnononom l �BpZq krl 	sRtSu5vw`x mjnononom l �sRtjuRvwby m l � U�	�mjnononom l � Udz xs tSu vwby|{ x m l � Udz x U�	 mjnononom l � Udz6}s tSu vw~y�{ } mjnononom l � Udz6��� x U�	 mjnononom l �s tju vw y�{ � p
�*�
	���
�
�
���� � �<�����L	:�5
�
�
��6� � �

are independent inputs, and
�*� � U�	���
�
�
���� � Ud���

are � groups of intra-
dependent or intra-correlated inputs (

� �
are independent of

���
, for all

J<�M�6���;� � ).
We wrote monodimensional non independent variables

�*�+	���
�
�
��������
like multidimensional in-

dependent variables
����	:��
�
�
���� � Ud�P�

.
Thus, we define first order sensitivity indices� ��� � ����� �"! ��� # �� �P�%� � ���e�oJB�S�i7 � #
To connect this to monodimensional variables, if

�e���oJB��
�
�
��S� #
, we have well define the same

indice: � ����� �P�@���+! ��� # �� ���W� �\� ����� �C! �<� # �� �P�%� (2)

and if
�8�e����7�JB��
�
�
��S�i7 � # , for example

�%�g�i7��
:� ��� �Z� � Udz x U�	���������� � Udz�}�� � � ����� �"! � � Udz x U�	���
�
�
���� � Udz6} # �� ���%� (3)

Now, like in classical analysis, we can also define higher order indices and total sensitivity
indices. Second order indices are given by� �6zL� � ���@���C! ���A����z # Ke�@���C! ��� # Ke�@���C! ��z # �� ���%� �
and so on for higher order indices. And finally, total order indices are defined by :� IS� �3� zS d� � z¡�
where ¢ �

represent all subsets of £ J¡��
�
�
��S�b7 �¥¤ which include
�
.

It’s very important to note that if all input variables are independent, those sensitivity indices are
clearly the same than (1). And so, multidimensional sensitivity indices can well be interpreted
like a generalization of usual sensitivity indices (1).
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3.2. Numerical estimation

Like in classical analysis (Sobol), Monte-Carlo estimations are possible.
We estimate mean and variance of

�
by :¦�:§�� J¨ ©� zjª�	 ����« z 	 �5
�
�
��6« z� Ud� � ¦¬­�)K ¦�:§ 9 7 J¨ ©� zjª�	 � 9 �*« z 	 ��
�
�
���« z� Ud� ���

and first order indice by
¦� ��� ®¯Y�®¯ with :¦¬°��� J¨ ©� zjª�	 ���*« z 	 ��
�
�
���« z�j±~	 ��« z� ��« z�6U�	 ��
�
�
���« z� Ud� �6���*« z 	 ��
�
�
���« z��±~	 ��« z� ��« z��U�	 ��
�
�
���« z� Ud� ��K ¦� 9§ �

where
�*« z 	 ��
�
�
���« z� Ud� �NzSª�	�� © and

��« z 	 ��
�
�
���« z� Ud� �Nzjª�	�� © are two independent sets of
¨

(multidimen-
sional) inputs simulations. Equivalent estimations for higher order and total indices exist.

3.3. Application in nuclear field - epithermal indice

Study presented here is a sensitivity analysis of a model, which compute an epithermal indice for
a given nuclear reactor. The epithermal indice is defined by the value of the neutron epithermal
flow divided by the neutron thermal flow. This indice is useful in studies of nuclear reactor
vessel dosimetry.
This model is made of 4 inputs, of which two are correlated:

resonance integral of Co59 ' �C	³²�´���µB�Y��µ]
¶� 9 �
factor Fcd ' �;9�²�´��*·$¸B¹d�NJB
|ºrJ=»¡¼B»A���Sºr
�ºYJ�½4µ¡ºA¾]J 9 �

activity of the dosimeter Co59 ”nu” ' �@¿�²�´��*½d
�µ¡ºBÀ F J=º¡Á5��JBJ�½AµBµ¡ÀA� 9 �
activity of the dosimeter Co59 under Cadmium ' ��ÂÃ²�´����Y
�¾B�B� F J=º¡Á5�jÄrJ�¾ÅÀBÄB¼ 9 �

with correlation coefficient ÆAÇ`È¥Ç`É �3ºY
�¼A¾]�
one output

� ' epithermal indice, and one function which links inputs and output:�)�­Ê�ËYÌ �89��ÍJB
|ºBºB¼B¼¡½BÀÎKÏºr
|ºA�YJBJ�½BÀrJ=ÄÅ�
	�7G»Y
�¼A¾Å¼BºB¼Bºr
�J=º ±]Ð � 9	 7gJB
|»BÀrJ�»B¼B¼r
�J=º ±]Ñ �ÒÂR��NJOK Ê�ËYÌ �89 Ç`ÉÇ`È �R�NK�ºr
|ºBºA¾BµB¾ÅºAµBµ�7GÀY
¶µ¡À¡»BÀA¾Y
�J=º ±]Ñ �;¿j� 

Like explicited previously, as two inputs are correlated, it’s useless to compute usual sensitivity
indices, because results will not be meaningful. We thus carried out a multidimensionnal sen-
sitivity analysis. Numerical experiments have been made repeating all indices computations 20
times, with

¨Ó���¡º¡ºBºBº
Monte-Carlo iterations. Mean of these 20 estimations, represented on

figure 1, are the following:� 	ÕÔ�ºY
�¼A¾ � 9�Ô�ºr
|ºB» �Z� ¿�� Â6� Ô�ºr
|ºAµ� 	P9�Ô � 	 � ¿�� Â6��Ô � 9 � ¿�� Â6��Ô � 	P9 � ¿�� Â6��Ô�º
where

�Ö� ¿�� Â6�
are the first order sensitivity indices of the multidimensional variable £ �@¿����ÒÂ ¤ .

Multidimensional analysis allows us to conclude that this model is sensitive essentially to input

321



 S1 S2 S{34} S12 S1{34} S2{34} S12{34}  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 1. Sensitivity indices of epithermal indice model�
	
(resonance integral of Co59), and that others variables are less significant. But in this

application, the interest of our method is not very well exhibit. Effectively, as
�?	

and
�;9

are
independent from the other variables, we can apply classical sensitivity analysis and find the
same value for

� 	
and

� 9
. And also, as the sum of this two indices are equal to

ºr
|»¡½
, we can

deduce that the other variables and all the interaction with them, have only small importance.
We will present a theoretical application, which emphasizes more multidimensional sensitivity
analysis.

3.4. Theoretical application

Consider the model �2�Q×B�
	��89�7GØS�8¿S�8Â�7hÙ��8Ð��8Ú=�
where

� � ²Û´��Pºr��J��
, for

�O�ÜJ
to

Ä
, and where

��¿
and

�ÒÂ
are correlated ( ÆAÇ`È � Ç�É � Æ 	

), like�8Ð
and

�8Ú
( ÆBÇZÝ � Ç`Þ � Æ 9

). Sensitivity indices are the following:� 	P9ß� × 9× 9 7GØ 9 �ÍJ�7 Æ 	�� 9 7GÙ 9 �NJ�7 Æ 9�� 9� � ¿�� Â6�Ó� Ø 9 �NJ�7 Æ 	6� 9× 9 7GØ 9 �ÍJ�7 Æ 	�� 9 7GÙ 9 �NJ�7 Æ 9�� 9� � Ð�� ÚN�Ó� Ù 9 �NJ�7 Æ 9�� 9× 9 7GØ 9 �ÍJ�7 Æ 	�� 9 7GÙ 9 �NJ�7 Æ 9�� 9
and all the other indices are equal to 0. We constate that the value of the numerator of the
interaction sensitivity indice

� 	P9
is a function of the coefficient

×
. The values of numerators of

the non zero sensitivity indices
� � ¿�� Â6�

and
� � Ð�� ÚN�

are function of the model coefficients
Ø

and
Ù
,

but too of the correlation coefficient Æ 	
or Æ 9

. To illustrate this, let us present some numerical
values of those indices, for different values of the coefficients of the model (

×
,

Ø
and

Ù
) and the

correlation coefficients.

situation a b c Æ 	 Æ 9 � 	P9 �Z� ¿�� Â6� �Z� Ð�� ÚN�
(i) 1 1 1 0.8 0.8 0.2336 0.3832 0.3832
(ii) 3 1 1 0.8 0.8 0.7329 0.1336 0.1336
(iii) 1 1 3 0.8 0.8 0.0575 0.0943 0.8483
(iv) 1 1 1 0.8 0.3 0.2881 0.4397 0.2922
(v) 1 1 3 0.8 0.3 0.0803 0.1317 0.7880
(vi) 1 1 3 0.3 0.8 0.0593 0.0647 0.8760
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First of all, let us underline that as
�C	

and
�;9

are independent variables, indices
� 	

,
� 9

, and
� 	P9

are usual sensitivity indices, and can also be computed without our multidimensional method.
In the situation (ii), as

�"	
and

�89
are independent variables, usual sensitivity indices allows us

to conclude that variance of
�

is essentially (
µÅÀAà

) due to interaction between
�á	

and
�89

. But in
the others situations, when

�C	
and

�;9
are less important, we need multidimensional sensitivity

indices to apportions effect to the two couple
�*�@¿��6�8Â��

and
�*�8Ð����8Ú��

. These multidimensionnal
indices allow us to know that couple

���@¿5���ÒÂ��
and

���;Ð5���8Ú��
have the same importance in the

situation (i), and that
�*�;Ð����8Ú��

is the most important in situation (iii). Effectively, in situation (i)
couples

�*�8¿����ÒÂ��
and

���;Ð=�6�;Új�
are symmetric in the model, and so they have same importance.

In (iii) a coefficient equal to 3 is multiplying the product
�@ÐS�8Ú

, that’s why the couple
����Ð��6�;Új�

is most important than
����¿5���ÒÂ��

.
Situations (iv), (v) and (vi) illustrate that indices

�E� ¿�� Â6�
and

�Ö� Ð�� ÚN�
are function to the correlation

(
� 	P9

is too function to the correlation, but it’s due to its denominator, which is the variance of�
). As couples

�*�;¿��6�8Â��
and

�*�8Ð����8Ú��
are in the model in a product form:

��¿��ÒÂ
and

�8ÐS�8Ú
,

greater is the correlation, greater is the importance of the couple, and so greater is the value of
the sensitivity indices. In (iv) the correlation of

���@¿����ÒÂ��
is greater than correlation of

�*��Ð��6�;Új�
,

and so
�Z� ¿�� Â6�

is greater than
�Ö� Ð�� ÚN�

. In situations (v) and (vi), we can see the same behaviour.

4. CONCLUSION AND FUTURE WORK

We have presented in this paper two works : the first concern integration of a view point of
model uncertainty in sensitivity analysis, which we interpret like a model mutation. We drew
up an outline of the employed methodology, which consists in a listing of possible mutations,
for each one which we examine the impact on the computing of sensitivity indices. Second work
introduces a new method which allows to compute useful and comprehensible sensitivity indices
for a model with non-independent inputs. Practical and theoretical illustrations of interest of this
method have been presented.
Further applications and developments are envisaged, in particular when there are many model
inputs.
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Varying Correlation Coefficients Cannot Account for Uncertainty About 
Dependence, But There Are Comprehensive Methods to Do So 

S. Ferson 

Applied Biomathematics, 100 North Country Road, Setauket, New York 11733, USA 
E-mail: scott@ramas.com 

Abstract: In accounting for the dependencies among variables in probabilistic (convolution) 
models, a sensitivity study that varies a correlation between plausible values, even the 
extremes of +1 and −1, cannot characterize the possible range of results that could be entailed 
by nonlinear dependencies.  Because a functional modeling strategy that seeks to model 
mechanistically the underlying sources of the dependencies will often be untenable, a 
phenomenological approach will often be needed to handle dependencies.  We summarize 
recent algorithmic advances that allow the calculation of results under particular bivariate 
dependence functions, under only partially specified dependence functions, or even without 
any assumption whatever about dependence. 

Keywords: dependence, correlation, copula, comonotonicity, functional modeling 

 

1. INTRODUCTION 
Although risk analyses often still assume independence among input variables as a matter of 
mathematical convenience, most analysts recognize that intervariable dependencies can 
sometimes have a substantial impact on computational results. In the face of epistemic 
uncertainty about dependencies, analysts occasionally employ a sensitivity study in which the 
correlation coefficient is varied between plausible values.  This strategy is insufficient to 
explore the possible range of results however, as can be shown by simple examples. 
Fortunately, comprehensive bounds on convolutions of probability distributions (or even 
bounds thereon) can be obtained using simple formulas that are computationally cheaper than 
Monte Carlo methods.  We review the use of these formulas in the cases of variously 
restricting assumptions about dependence, from no assumption at all, to specified sign of the 
dependence, to a particular dependence function.  

2. FUNCTIONAL MODELING 
Some analysts argue that it is best to reduce any problem involving dependent variables into 
one with only independent variables. This changes the problem of statistically representing 
dependent variables into a modeling problem of reproducing the functional or mechanistic 
relationships that induce the dependence. It is not sufficient to transform the model into one in 
terms of uncorrelated variables; they must be statistically independent variables. Of course, 
this functional modeling approach could entail considerable effort far beyond the scope of the 
immediate assessment. The extra modeling effort required by this strategy may not be 
workable in many situations. For instance, a dam safety engineer worried about computing 
risks to a water control structure from hydrological factors influenced by weather patterns 
would need to model various meteorological and even climatological phenomena. At some 
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point, the analytical demands of a functional modeling approach will likely become 
prohibitive.  

3. STOCHASTIC MODELS OF DEPENDENCE: THE COPULA 
There are three other approaches to the problem of accounting for dependence among 
variables: (i) assume a particular dependence function, (ii) make no assumptions about 
dependence, and (iii) relax assumptions to a partial specification of dependence. In the first 
approach, one must assume a particular dependence function among the variables. Assuming 
independence is of course a special case of this approach. Another special case is assuming 
perfect dependence among variables such that each variable is almost surely a monotonically 
increasing function of the other. In general, the dependence function is specified as some 
copula [1]. A copula is the function that characterizes how the marginal distributions are 
knitted together to form the joint distribution. In the two-dimensional case, a copula is just a 
bivariate distribution function from the unit square onto the unit interval that has uniform 
marginals. A bivariate distribution function F(x, y) can be expressed in terms of the copula C 
as C(F(x), G(y)) where F(x) and G(y) are its marginal distribution functions. The dependence 
function could be specified by selecting a copula from a parameterized family of copulas such 
as the Frank, Mardia, normal or Clayton families [1, 2]. It could also be specified with an 
empirical copula, which is an analog for dependence of an empirical distribution function.  

4. COMPUTING WITH A SPECIFIED COPULA 
In risk analyses, distributions characterizing random variables are convolved together to 
estimate arithmetic functions (such as sums, products, differences, quotients, etc.) of the 
random variables. For instance, if X and Y are random variables with distributions F and G 
respectively, the distribution of the sum Z = X+Y can be obtained with the Lesbesgue-Steiltjes 
integral 

( )∫
<+

+ =

zyx

C yGxFdCzGF )(),())(,(,σ  

which always exists. This formulation includes the independence case where C(u,v) = uv. 
Similar formulas are available to compute distributions of products, differences, quotients, 
etc. We describe a straightforward numerical procedure to compute σ given discretizations for 
the marginal distributions F and G and an arbitrary copula C. The numerical methods extend 
easily to other arithmetic operations. Note that this approach can handle arbitrarily 
complicated dependence between the input variables. This makes the approach significantly 
more general than methods implemented in common risk analysis software packages which 
model correlations but not dependencies in general.  

5. COMPUTING WITHOUT ANY ASSUMPTION ABOUT DEPENDENCE AT ALL 
The second approach to accounting for dependence is to make no assumptions whatever about 
the dependence between variables. In this approach, bounds on the distribution of an 
arithmetic function can be computed directly using infimal and supremal convolution of the 
marginal distributions of the addends. For example, if X and Y are random variables with 
marginal distributions F and G respectively, then the bounds on the distribution of Z = X+Y 
are 

325



( ) (











+−+

+=+=
0),()(mininf,0,1)()(maxsup yGxFyGxF

yxzyxz
) . 

where the supremum gives the left bound on the distribution (i.e., the upper bound on the 
cumulative probability associated with any value of the sum z), and the infimum gives the 
right bound on the distribution function (the lower bound on the value of the cumulative 
probability). These bounds satisfy a problem originally posed by Kolmogorov of finding 
bounds on the distribution of a sum given only distributions of the addends. Kolmogorov’s 
problem was solved by Makarov [3] and Frank et al. [4]. Analogous bounds on distributions 
of products, differences, quotients, etc., can likewise be obtained from similar supremal and 
infimal convolutions of the marginal distributions of the factors, etc. Williamson and Downs 
[5] described convenient numerical algorithms to compute these bounds in a way that 
accounts for discretization error introduced by encoding the marginal distribution with a finite 
computer representation. With their algorithms, the bounding convolutions are generally 
much less expensive than ordinary convolution computed via Monte Carlo simulation. The 
bounds obtained by the supremal and infimal convolutions are guaranteed to rigorously 
enclose all distributions that could arise for the sum (or product, etc.), no matter what 
dependence there may be between the addends (or factors, etc.). Furthermore, these bounds 
are also best possible, that is, they are as tight as can be justified without any knowledge about 
the dependence. The breadth between the bounds characterizes the specificity of the answer 
under the relaxed dependence assumption. It is interesting that these bounds cannot be 
obtained with the standard σ-convolution described above such as by varying the correlation 
between +1 and –1. Even varying the dependence function C between perfect dependence 
(maximal correlation and comonotonicity) and opposite dependence (minimal correlation and 
countermonotonicity) will generally underestimate the breadth of the bounds. The difference 
is due to nonlinear dependencies which are ignored by merely varying correlations between 
extreme values. This approach can be combined with independence assumptions, so that some 
variables are assumed to be independent and no assumptions are made about the dependence 
between other variables. 

6. COMPUTING WITH ONLY PARTIALLY SPECIFIED DEPENDENCE 
The third approach to account for dependence in risk assessments is to make some 

qualitative or quantitative assumptions about the dependence function that partially specify 
the copula. For instance, a promising approach to tighten risk calculations is to make use of 
information about the sign of the dependence between the variables. The most common 
notion of sign dependence is positive quadrant dependence. Random variables X and Y with 
distribution functions F and G whose joint distribution is H are positively quadrant dependent 
if H(x, y) ≥ F(x) G(y) for all x and y, so that if the probability that the random variables are 
both small (or large) is at least as great as if they were independent. There are several 
conditions that imply variables will be positively quadrant dependent, including when each is 
a stochastically increasing function of the other, i.e., P(Y > y | X=x) is a non-decreasing 
function of x for all y, and P(X > x | Y=y) is a non-decreasing function of y for all x. Positive 
quadrant dependence implies non-negative Pearson, Spearman and Kendall correlations, 
although the mere observation that a correlation is positive does not imply the variables are 
positively quadrant dependent. This idea has been used in many statistical and engineering 
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settings, and seems to capture one sense analysts have in mind when they use the phrase 
‘positively depends’.  

Risk assessments can make use of assumptions about the sign of the dependence among 
variables with easy-to-compute convolutions. For example, bounds for a sum of positively 
quadrant dependent variables whose marginals are F and G are 

( ) ( )(( )











−−−

+=+=
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These bounds are similar to the supremal and infimal convolutions in the sense that they are 
guaranteed to bound the distribution function of the sum and are the tightest possible such 
bounds given only the marginal distributions F and G and the positivity of their dependence. 
Note that these formulas give bounds that are not the same as an envelope of the perfect and 
independent convolutions (which would be narrower). There are similar formulas for the other 
arithmetic operations, as well as complementary formulas that assume negative quadrant 
dependence (variables X and Y are negatively quadrant dependent if X and –Y are positively 
quadrant dependent). The intersection of the convolution bounds for positive and negative 
dependencies is not the same as the distribution(s) obtained under independence.  

One could also make a quantitative assumption about dependence such as that the 
correlation coefficient has a particular magnitude. In such cases, convolutions between 
distributions can be computed using mathematical programming, although it turns out that 
specifying only the correlation often provides very little improvement in the specificity of the 
result. For example, assuming that random variables X and Y are uncorrelated (that is, have 
Pearson correlation coefficient equal to zero) produces almost no improvement over the 
bounds obtained by the supremal and infimal convolutions.  

7. CONCLUSIONS 
The three approaches described above give analysts considerable flexibility to account for 

knowledge and uncertainty about correlations and dependencies. By making more 
assumptions, one can increase specificity of the answers that can be obtained. In a sensitivity 
analysis, of course, an analyst often desires to relax his assumptions and explore how the 
results might vary in consequence. It is possible to mix strategies so that one could posit 
independence among some variables, assume particular copulas for some variables, and make 
limited or no assumptions about the dependence among other variables. This allows an 
analyst to obtain a sensitivity analysis that reflects what is well known about dependencies 
and what is in contention about them. 
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Abstract:

As part of the production of an integrated modelling system for lowland permeable
catchments, a stochastic framework is being developed to allow quantification of uncer-
tainty in the representation of catchment response and impacts of management scenarios,
and to investigate how capable various conceptual models are of adequately characterising
water flow, nitrate and phosphorous transport given a reasonably calibrated and, where
applicable, physically realistic parameter set. To address these considerations, a collection
of stochastic routines, including Markov chain Monte Carlo capabilities, have been inte-
grated with a semi-distributed nitrogen model. This Integrated Nitrogen in Catchments
model (INCA) simulates flow, nitrate and ammonium and tracks the temporal variations
in flow and nitrogen mass operating in both land and river phases. This paper discusses
some of the issues and initial results arising from the first application of Markov chain
Monte Carlo (MCMC) to scenarios utilising the INCA model. Performance is illustrated
with data from the Kennet catchment in southern England. The results demonstrate
the power of Markov chain Monte Carlo methods to quantitatively examine the inter-
relationship between model structure, parameter identifiability and data support, but also
the reliance of MCMC and other heuristic methodologies on objective function choices
and model robustness.

Keywords: Markov chain Monte Carlo, calibration, catchment modelling, nitrate

1. INTRODUCTION

An integrated nitrogen model has been developed to investigate the fate and distribu-
tion of nitrogen in the aquatic and terrestrial environment. This Integrated Nitrogen in
CAtchments model (INCA) simulates flow, nitrate and ammonium over the catchment
scale, coupling land processes and in-river processes. Dilution, natural decay and bio-
chemical transformation processes are included in the model as well as interactions with
plant biomass. It is semi-distributed to account for spatial variations in land use, human
impacts, effluent discharges and varying deposition levels, and produces daily estimates of
the stream water flow and nitrate and ammonium concentrations, in addition to estimates
of annual, land-use specific, N fluxes. The original model was described in Whitehead et
al. (1998), while more recent additions to the model structure are contained in [1]. The
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model has been successfully applied to a range of catchments in the U.K. and Europe,
and is still being refined to extend its applicability to a variety of catchment management
needs. However, little work on parameter sensitivity and identifiability has been carried
out on it to date.

A detailed study of these issues should aid the successful calibration of further catch-
ment applications by highlighting the most significant parameters and allowing informed
decisions as to the areas in which experimental resources and measurements should be
allocated. For catchment management purposes, there is also a need to provide measures
of the uncertainty present due to measurement errors in the inputs, parametric uncer-
tainty, and issues related to model conceptualisation. To address these considerations,
methods for propagating uncertainty, analysing parameter sensitivity and model struc-
ture, and optimisation are placed within a subjective probability framework, along with a
collection of appropriate “objective functions” to specify criteria for successful calibration.
The more efficient methodologies utilise heuristic guidance to explore parametric spaces
and model output distributions through an automatic semi-random exploration of the pa-
rameter space. Included in these routines are Markov chain Monte Carlo methods (using
Metropolis Hastings formulae), used to sample parametric and uncertain quantities. The
framework permits both parametric and model structural uncertainty to be interrogated,
and allows effective calibration and confidence predictions through optimisation of model
inputs to fit observations or other criteria, with explicit consideration of effects of data
uncertainty.

MCMC methods possess the general virtue of simulation methods, with information
regarding parametric probability distributions easily collected along with optimal pa-
rameter sets. However, other sampling methods generally fail when the posterior involves
many variables or is otherwise intractable. Markov chain methods are capable of sampling
from posterior distributions of arbitrary complexity, through the Metropolis Hastings al-
gorithm, which provides simple conditions under which the chain will equilibrate to the
required distribution. Since such methods sit naturally within a subjective probability
framework, they are also capable of quantifying distortions produced on the outputs by
noise. Such a capability is indispensable for rigourous analysis of an environmental model
such as INCA, as the input is subject to extreme uncertainty.

The performance of the modelling framework is illustrated with data from the Ken-
net catchment in southern England. To understand the characteristics of both overall
uncertainty and particular parametric sensitivities in INCA, the effect of changes in the
parameters and inputs are examined using the Markov chain sampling described above.
Response surfaces, in this case distributions of input parameters against single-valued
measures of performance (derived from the output parameters and optimality criteria),
are examined, and the biases caused by differing optima considered. The influence of such
biases on subsequent decisions regarding parameter sensitivities and “optimal” parame-
ter sets is examined. The efficiencies of differing Metropolis proposal functions applied
to sample both the “minima” and entirety of a given response surface are also being
investigated.

The results demonstrate the power of Markov chain Monte Carlo methods to quanti-
tatively examine the inter-relationship between model structure, parameter identifiability
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and data support, and also provide an efficient means of addressing the problem of cal-
ibration given large parameter sets and the presence of measurement error and other
uncertainties. In the context of model development, however, the need for alternate,
non-heuristically guided methodologies to be included in such stochastic tools is also
demonstrated.

2. THE STOCHASTIC FRAMEWORK

Any model describing nutrient transport within a catchment, the result of complicated
environmental processes with dependencies on both space and time, is necessarily a sim-
plified representation of the phenomena being studied. This imposes a limit upon one’s
confidence in its responses or outputs, regardless of the accuracy of any input information.
The input itself is subject to many sources of uncertainty, including measurement errors,
absence of information, temporal and spatial variability, and incomplete understanding
of underlying driving forces and mechanisms. Adequate spatial representation is particu-
larly difficult, due to the intrinsic variability present within the environment, such as the
continuous variation in soil properties and nitrogen inputs over space, and the difficulty
of characterising properties in the subsurface.

To give a measure of confidence in scenario predictions, a reliable catchment modelling
tool should provide measures of the uncertainty present due to measurement errors in the
inputs, parametric uncertainty, and issues related to model conceptualisation, and be able
to translate these measures into prediction confidence limits for management purposes [2].
Where models are still in development, stochastic analysis can also aid in identifying the
components of model structures that are most significant in the simulation of nutrient
dynamics in river systems, aspects that appear redundant, and the inter-relationship
between model structure, parameter identifiability and data support. This allows informed
decisions as to the areas in which experimental resources and measurements should be
allocated. The relative importance of differing measurands over space is also important.

To address all these concerns within one framework, methods suitable for prediction
uncertainty, model sensitivity to parameters and data error and calibration must be as-
sociated with appropriate catchment scale models. For successful calibration, collections
of appropriate “objective functions” to specify optimal criteria, data processing capabili-
ties for handling and analysing errors and guidelines for choosing calibration criteria and
parameter distributions given specific modelling tasks must also be included.

3. UNCERTAINTY AND SENSITIVITY METHODOLOGIES

To address prediction uncertainty and model sensitivity, three possible Monte Carlo
methodologies have been implemented: basic Monte-Carlo simulation, Latin hypercube
sampling and Markov-chain Monte-Carlo techniques (Metropolis and Metropolis Hast-
ings). The classic Monte Carlo method samples the input parameter space using the exact
probability distribution assigned to it, which, given an exact mathematical description of
the model, must converge eventually to the precise output distribution. The simulation’s
main impediment is its high computational cost, with the run numbers necessary for a
successful analysis of a model’s outputs typically running into the thousands [2]. A degree
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of computational efficiency can be accomplished through the use of efficient input sam-
pling methods, which may include heuristic search procedures (purposeful or partially
informed searches using heuristic functions for guidance), or less informed approaches
where segments of the probability distributions are split or stratified, and systematically
explored. The latter approach is contained within the framework through inclusion of the
Latin Hypercube method [3].

To formally include subjective probability to be used within the framework, Markov
chain Monte Carlo methods (using Metropolis Hastings formulae) are used to sample
parametric and uncertain quantities. These methods sample from the input, or posterior,
distribution, and sit naturally within a subjective probability (Bayesian) framework. A
Markov chain is a series of random variables {X(0), X(1), X(2), . . . , X(N)} for which the
conditional probability of a transition from any state X(i) to any other state X(j) depends
only on the current state, and not on any previous states. The construction of a Markov
chain requires two basic ingredients, namely an initial distribution (a first approximation
to the probability of being in each the states X(i)) and a transition matrix [4]. This
transition matrix is a matrix of probabilities, defining all the associated probabilities
(transition probabilities) of the chain moving from state X(i) to state X(j), i, j ∈ (1, N).

Markov chain Monte-Carlo methods draw samples from a Markov chain rather than
from the probability distribution f(x). When constructed carefully, these can be very
efficient approximators. Most Markov chain schemes in use today, such as the popular
Gills sampler, are a variant of the Metropolis Hastings approach. For details, see Gilks et
al. (1996). The Markov chain is constructed such that its equilibrium distribution is that
of the posterior distribution of interest. In this context, such a distribution might be that
of the INCA parameters conditional on measured “output” observations and optimality
constraints, or the uncertainty present in a prediction given uncertainty in measurands
and model structure.

Each state is visited the required number of times to satisfy the conditional distribu-
tion of the parameters given the data. This is achieved through satisfying appropriate
conditions of reversibility (detailed balance) and ergodicity (Hastings 1970). By giving
the microscopic dynamics of the Markov chain (that is, an algorithm that determines
X(i + 1) given X(i)), the transition matrix and consequently the (unnormalised) input
distribution is implicitly fixed. Markov chain methods are capable of sampling from pos-
terior distributions of arbitrary complexity, through the Metropolis Hastings algorithm,
which provides simple conditions under which the chain will equilibrate to the required
distribution [5]. They have been successfully applied in hydrological modelling by Kuczera
and Parent [6].

The draws from the Markov chain are accomplished through variants of the pleasingly
simple Metropolis Hastings formulae, involving proposals of candidate values through a
proposal function and rejection/acceptance steps. This proposal function is constructed
such that it implicitly defines the required conditional distributions, along with satisfying
the necessary Markov chain conditions. At any time, it describes the current knowledge
regarding parameter distributions, given initial knowledge and information from prior
runs. By equating the posterior with Bayes’ rule, it also allows potential for converging
upon the “true” input distributions through incorporation of learnt information [7].
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Bayes’ rule is derived from basic axioms of probability. In the context of this work,
it is best viewed in terms of updating belief in a hypothesis H given new evidence D.
A posterior belief P (H|D), giving the probability of hypothesis H after considering the
effect of new data is calculated by multiplying the prior belief P (H) by the likelihood
P (D|H) that D will occur if H is true. There is no fundamental distinction between
observable quantities and parametric inputs to a model; both can be considered to be
random quantities. The theorem can be written as follows,

p(H|D) =
p(H)p(D|H)

p(D)
. (1)

A first quantification of P (H) is provided before any data is gathered; this is the prior
probability of H. In the context of calibrating a physically based model, the “hypotheses”
are the parameter value probability distributions adopted before a simulation commences.
These are generally determined subjectively in terms of prior beliefs or knowledge, such
as what are realistic ranges of the parameters from previous knowledge of their properties
and of the specific scenario situation. Physical constraints, such as non-negativity of
concentrations, are also generally included.

In the case of continuous problems, the hypotheses become one continuous parametric
distribution. To avoid confusion with the discrete case, this will be denoted by θ, and the
outcomes (data) by y. These could be scalars or vectors. Prior beliefs are specified as a
probability density function p(θ), while the outcomes conditional on the hypotheses are
the conditional density p(y|θ), often referred to as the likelihood function [2]. This prior
and conditional density fully specify the joint density p(θ, y) over all hypotheses and data,

p(θ, y) = p(θ)p(y|θ) (2)

The marginal distribution p(y) of y can be calculated from this joint distribution by
integrating over θ,

p(y) =
∫

θ
p(θ, y)dθ =

∫

θ
p(θ)p(y|θ)dθ. (3)

The posterior probability distribution is therefore given by

p(θ, y) =
p(y|θ)p(θ)∫

θ p(y|θ)p(θ)dθ
. (4)

This is the continuous form of Bayes’ Theorem. The denominator, or marginal prob-
ability, is easily calculated by recognising that it can, given all other quantities, be con-
sidered as a normalising constant.

4. CALIBRATION METHODOLOGIES

The Monte Carlo routines above are suitable for both sensitivity and uncertainty analysis,
as they preserve distributional information, and yield information on the total parameter
and output spaces. However, in calibration, one is usually interested in locating only a
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limited part of the above distributions: generally the global optimum (given appropriate
parameter constraints), or, where data error, model structure error, or multiple objectives
prevent a single optimum being achievable or meaningful, sets of acceptable local or
Pareto-optimal parameters. While full explorations combined with additional information
can produce information on “optimal” regions of this space, they are rarely an efficient
means of doing so. Therefore, extra routines suitable for calibration have been included in
the framework. These are: the Levenburg Marquadt method [8] and the SCEA (Shuffled
Complex Evolution Algorithm) [9], neither of which will be considered further in this
paper, and finally the addition of simulated annealing to the Markov chain Monte Carlo
scheme.

Simulated annealing is a heuristic search procedure based on the metaphor of how
annealing works [7]. It aims to reach a global minimum through a procedure that incor-
porates a decreasing random component to avoid trapping at a local minimum, by allowing
a non-improving move to a neighbour with a probability that decreases over time. Since
the random component is decreasing, the magnitude of any non-improving change also be-
comes smaller with time. The rate of this decrease is determined by the cooling schedule,
often an exponential decay (in keeping with the thermodynamic metaphor).

To calibrate a model effectively, the “objective” of the calibration must be specified.
An objective may be singular, or include several independent criteria that may need to be
traded off against each other. They are very application, as well as model, specific, but
generally include measures of fit applied to the model output against observed data, and
often criteria aimed at minimising risks or costs (economic, environmental, etc). If a model
is manually calibrated, the objective may be stated qualitatively: fits may be obtained
by eye and intuition then play a part in choosing appropriate calibrated parameter sets.
For automated calibration, an ‘objective function” or functions giving a mathematical
definition of how good a solution is must be formally specified.

Multiple objectives can arise from multiple types of output, emphasising different
aspects of model performance, and also from time or space series of one quantity. The
latter is generally compacted into one measure through application of a norm (such as
least squares). However, different measures of fit will favour different aspects of a series
[10]. For example, fits to the variation of stream flow over time may favour the overall
water balance, overall shape, or weight the calibration to good agreement of low flow or
peak flows. The chosen measure of fit may vary according to the modelling task; flood
management may require good estimates of peak flows and overall shape, whereas low
flows may be of more important for agricultural management.

One approach is to aggregate the multiple objectives into one single objective function,
and optimise to the single-valued best fit. The result is then strongly dependent on the
aggregation, or weighting of the objectives. An increasingly common alternative is to
employ the concept of Pareto optimality [11]. A set of parameters is said to be Pareto
optimal if an improvement in any one criteria will lead to another criteria being degraded;
no criteria dominates. This concept does not give a single solution, but rather a set of
solutions called the Pareto optimal set. Parameter sets corresponding to these solutions
are called non-dominated, and give a visual trade-off between competing objectives. The
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user can then choose a solution according to his or her preference. However, in a guided
calibration, or to explore posterior distributions conditional upon data, optimality must
still be reduced to one measure, perhaps through a normalised weighting of the objectives.
One popular means of achieving this is through calculating the coefficient of determination
R2 (widely known in the hydrological literature as the Nash-Sutcliffe efficiency criterion),
given by

R2 = 1−
∑n

i=1(xi − yi)
2

∑n
i=1(xi − x)2

, (5)

where yi is the simulated value, xi is measured value, x is the mean of the measured values
and n is the number of samples. This is the measure used in the forthcoming application,
although a variety of approaches are being explored and added to the toolbox capabilities.

5. APPLICATION

To test performance of the integrated model stochastic framework, Markov chain Monte
Carlo methods were applied to a model application utilising data from the Kennet catch-
ment in southern England. This is a groundwater-dominated catchment draining an area
of 1164 km2, with a chalk aquifer supplying approximately 95% of its water. As it has
been a focus of a variety of water quality and ecological concerns, there is a relatively
large amount of data available to compare model response against.

An initial goal was to provide the INCA model with an automated calibration routine
in place of the manual calibration procedure used previously, with the aim of enhancing the
reliability of calibrated parameters due to a more exhaustive exploration of the parameter
space and shortening implementation time. A second purpose was to highlight the most
significant parameters for such a calibration, and to identify areas in which model structure
could be strengthened. Thirdly, the reliance of results on differing calibration criteria is
being investigated.

A one-year simulation period was chosen, from 1st January 1998 to 31st December
1998. Daily precipitation and air temperature were provided, and hydrologically effective
rainfall along with soil moisture deficits obtained from MORECS (the U. K. Met Office
Rainfall and Evaporation Calculation System). This extracts the relevant quantities from
atmospheric data using a Penman-Monteith type routine. Geospatial and other relevant
information (e.g. farming practices, proportional land use, base flow indexes, dry depo-
sition data) were obtained from national databases and other sources where available. A
hand-calibrated parameter set provided other parameters needed by the model, and was
also used as the starting state for the Markov chain Monte Carlo simulations.

To address the first two purposes of the performance test, twenty-six parameters were
varied within ranges constrained by existing calibration guidelines and literature values.
These parameters are shown in Table 1.

Two scenarios were considered: the first treated the 26 parameters as spatially homo-
geneous in both land and river phases, and the second allowed for heterogeneity. This
heterogeneous scenario had 6 unique land types, and divided the river Kennet into 25
“reaches”, or contiguous lengths. Each reach is then associated with a subcatchment, and

335



Table 1. Calibration/Sensitivity Parameters examined in Markov Chain Monte Carlo Kennet
simulations, January-December 1998.
Name Units Distribution Minimum Maximum
initial soil flow m3s−1 land use 0.0 1.0
initial groundwater flow m3s−1 land use 0.0 0.1
initial soilwater nitrate mg.l−1 land use 0.0 10.0
initial groundwater nitrate mg.l−1 land use 0.0 8.0
initial soilwater ammonium mg.l−1 land use 0.0 2.0
initial groundwater ammonium mg.l−1 land use 0.0 1.0
initial soil drainage volume m3 land use 105 2 ×107

initial ground drainage volume m3 land use 106 108

initial in-stream flow rate m3s−1 top reach 0.0 2.0
initial in-stream nitrate mg.l−1 top reach 0.0 10.0
initial in-stream ammonium mg.l−1 top reach 0.0 2.0
denitrification rate m.day−1 land use 0.01 19.0
nitrogen fixation kg.ha−1day−1 land use 0.0 0.0001
plant nitrate uptake m.day−1 land use 0.0 162.0
nitrification rate m.day−1 land use 1.0 54.0
mineralisation kg.ha−1day−1 land use 1.0 292.0
immobilisation rate m.day−1 land use 0.0 1.0
ammonium addition rate kg.ha−1day−1 land use 0.0 100.0
plant ammonium uptake m.day−1 land use 0.0 162.0
Reactive zone residence time days land use 0.5 5.0
Groundwater residence time days land use 10.0 200.0
Maximum soil water retention† m land use 0.0 1.0
velocity flow a parameter (Qa) - by reach 0.001 0.2
velocity flow b parameter Qb - by reach 0.3 0.99
Denitrification rate day−1 by reach 0.04 0.09
Nitrification rate day−1 by reach 0.1 5.0

this association allows for the coupling of in-river and land processes (for more details,
see [12]). This discretisation in space resulted in 215 unique parameters. The objectives
for calibration were taken to be least squares fits to in-river flow, nitrate, and ammo-
nium concentrations, with the Nash-Sutcliffe criterion providing a means to weight these
appropriately for heuristic guidance.

The first implementation of the tool was only partially successful, as the model was not
robust over the entire parametric space. Such problems are common in a first application
of a full sensitivity analysis to a model, as an automated routine is likely to discover (by
brute force) subtle instabilities in a model formulation, and also extract any parameter
constraints that have not been explicitly specified. This interfered with the ability of the
heuristically guided Markov chain Monte Carlo and calibration methodologies to explore
model input and output distributions.

When tested on sub-sets of parameters where the model was robust, Markov chain
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Monte Carlo analysis results were encouraging, and the annealing approach to calibration
substantially reduced run-time needed to locate optima. The hand calibrated and auto-
mated river flow optima were almost identical; for this particular only two parameters
were significant. However, in most reaches the automated calibration improved upon the
nitrate concentration optima by a factor of 3 to 6 (using a least squares objective func-
tion). An example, showing data, hand and automated calibrations is shown in Figure
1. Ammonium is disregarded for comparison purposes, as the hand-calibration did not
seek to optimise this. Figure 2 shows plots of the most sensitive parameter against the
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Figure 1. “Hand” versus automated calibration for nitrate in reach 10.

least squares nitrate objective function, for several reaches along the river. Figure 3 shows
the combined posterior distribution of two parameters; groundwater drainage volume and
initial groundwater nitrate concentration, conditioned on a data fit measure derived from
least squares fits to measured in-river nitrate concentrations and flows. Equal importance
was given to each reach, and the Nash-Sutcliffe efficiency measure used for normalisation
purposes. A flat prior was used with a simple random walk Metropolis proposal function,
and the chain was visited two million times. Quantitative convergence diagnostics have
not yet been included, partly due to the debates surrounding the issue [?]. However, a
preliminary diagnostic, dividing the chain into four sub-intervals, showed almost identical
distributions. This, along with the long length of the chain, provides a strong argument
for acceptance.

The influence of differing data fit measures on the above posterior distribution has also
been examined. However, the presence of small instabilities in model responses for all the
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Figure 2. Response of in-river nitrate objective function against initial groundwater nitrate
values over space.

posteriors somewhat obscured the biases caused by differing optima. This is continuing
to be addressed as the model is refined.

6. CONCLUSIONS

A framework for stochastic analysis of catchment scale modelling scenarios, utilising
Markov chain Monte Carlo along with other methodologies, has been developed and in-
tegrated with an existing nitrogen in catchments model (INCA).

It has become evident that, while MCMC provides an efficient means of investigating
various conditional distributions and model responses, its relevance as an aid to developing
models is limited unless it is complemented with cruder, set search methods and tools to
identify structural problems and problematic parameter sets. This is a consequence of
its reliance, in this context, on heuristic searches, which demand a certain degree of
smoothness within the explored response surfaces.

The framework presented here is being extended to include a range of multi-variate
analysis tools to investigate and isolate non-viable parameter combinations and structural
issues. It is our view that this will be a useful, and arguably necessary, aid to any
environmental model that has not already undergone substantial automated testing in its
current form.

Implementation of the Markov chains produced successful results in parameter re-
gions with stable model response, and has demonstrated the ability of the Metropolis
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Figure 3. Posterior distribution of initial groundwater nitrate and drainage volume, conditional
upon normalised least squares in-river flow and nitrate levels.

Hastings scheme to efficiently recover conditional distributions given appropriate data.
To further test its efficiency against other methodologies, and parameterise its heuristics
appropriately, model robustness is being tested and improved, and further information on
parameter interactions investigated.

Further work is seeking to extend the robustness of the INCA model under automated
calibration, through model component changes and further constraints upon parameters,
and investigations into how conditional distributions are affected by aspects of model
response and the optimality criteria imposed upon an analysis are ongoing. Proposal
functions constructed with the aim of allowing sampling to be efficiently weighted towards
subsets of the distribution are also being examined.
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Abstract: The National Research Council is charged with producing mathematical models 
of nutrient requirements of domestic animals.  In ruminants, protein supply is derived from 
two sources:  a fraction of the feed protein unaltered by ruminal fermentation, and microbial 
protein (MiN) synthesized by the ruminal micro-flora.  Measurements of MiN rely on 
surgically altered animals and inert markers.  The prediction of MiN is based on total 
digestible nutrients, a function of the uncertain composition of feedstuffs.  Both observed and 
predicted MiNs have errors from measurements, parameter estimates, and structural forms.  
The question is whether predicted MiN can replace measured values when estimating 
requirements.  The concordance correlation coefficient (ρc) has been suggested as an omnibus 
statistic to jointly assess precision and accuracy.  Application to a dataset of 256 measured 
and predicted values of MiN from 56 published studies shows that predictions and 
measurements are concordant (ρc = 0.476), have small scale shift (1.54) and location shift (-
0.02), and are accurate (0.913) but that they lack precision (0.522).  The deviance (0.573) is 
composed of a small bias (0.0003), a small scale shift (0.095), and a large imprecision 
(0.479).  Little gain in model precision can be expected until more precise methods of 
measurements are found. 

 
Keywords: concordance correlation coefficient, precision, accuracy, nutrient requirements 

1. INTRODUCTION 
Mathematical models are now frequently used to quantify complex biological systems [1, 

2].  The validation of such models is done by comparing model predictions to observed data.  
Various statistical methods have been suggested and used to assess a model’s validity: the 
Pearson correlation coefficient, the paired t-test, the least-square analysis of slope (=1) and 
intercept (=0), and the coefficient of variation or the intraclass correlation coefficient.  None 
of these can completely assess the desired reproducibility characteristics.  The Pearson 
correlation coefficient only measures precision of a linear relationship, not accuracy.  Both the 
paired t-test and least squares analysis can falsely reject (accept) the hypothesis of high 
agreement when the residual error is small (large).  The coefficient of variation and the 
intraclass correlation coefficient assume a dependent and an independent variable.  More 
importantly, they fail to recognize the duality (interchangeability) of predictions with 
observations.  Both are mathematical transforms of measurements.  Both have random errors 
from measurements and parameter estimates.  And both have structural errors due to the 
simplification of the complex real world.  The relevant question is not whether a model 
predicts observed data but whether the model and the observation method measure the same 
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thing, whether the methods agree and how good is the agreement.  This requires a joint 
assessment of precision and accuracy.   

The Committee on Animal Nutrition of the National Research Council (NRC, [3]) is 
charged with producing tables of nutrient requirements of various classes of animals.  
Nutrient requirements are expressed in the form of computerized mathematical models.  In a 
recent publication, the NRC [3] produced a new model for estimating the nutritional 
requirements of dairy cattle.  A key step in the calculation of protein and amino acid 
requirements is the estimation of the amount of bacterial protein synthesized in the rumen.  In 
ruminants, the net supply of protein and amino acids is derived from two separate fractions:  a 
variable portion of the feed protein not broken down by the ruminal micro-flora passes to the 
duodenum (small intestine) where it can be digested and absorbed by the animal.  The second 
portion consists of microbial protein synthesized by the ruminal micro-flora using carbon 
skeletons, ATP, ammonia, amino acids, and short peptides.  The quantification of the net 
supply from each process is very important to the optimal feeding of ruminant animals and for 
reducing their environment impact from N excretion [4].  The measurements of microbial and 
undegraded feed protein to the duodenum must rely on surgically altered animals and inert 
markers [5].  Thus, the measurements of microbial protein (MiN) and non-ammonia-non-
microbial protein flows (NANMN) to the duodenum are subject to substantial errors of 
measurements, plus structural errors (i.e., the non-digestible markers are not perfect markers) 
and possibly errors in parameter estimates.  The prediction of MiN is based on total digestible 
nutrient intake (TDN) which is a function of the (uncertain) chemical composition of the 
feedstuffs and their (uncertain) bio-availabilities.  Thus, both observed and predicted MiN and 
NANMN have errors from measurements, parameter estimates, and structural forms.  This 
situation, where predictions and observations are interchangeable is very frequent in biology.  
The question is whether we can use predictions of MiN and NANMN to replace measured 
values when estimating nutrient requirements. 

In this paper, we first review the model used by NRC [3] to predict MiN in dairy cattle 
and the proper statistical model linking predictions to observations.  Results from applying 
traditional methods of model validation are presented followed by the application of the 
concordance correlation coefficient (CCC) of Lin [6].   

2.    METHODOLOGY 

2.1  Prediction of microbial protein synthesis by the National Research Council 
In high producing ruminants, microbial protein synthesis is primarily determined by the 

availability of energy to the micro-organisms [7].  Although various expressions of available 
energy have been proposed and used to express the availability of feed energy for microbial 
growth, the total digestible nutrient (TDN) system is still favored in the U.S. due to the 
considerable literature reporting actual measurements in lactating and non-lactating animals.  
The measurement of TDN is a tedious process and requires urine and fecal collection in a 
digestibility study performed over several days (generally 5-7) with multiple animals.  The 
TDN of a feed can also be estimated from its proximate composition using the following 
system of equations [8]: 

TDN =  tdNFC  + tdCP + tdFat  + dNDF - 7,          (1) 

tdNFC = 0.98 x (100 – NDFn – CP – Fat – Ash) x PAF, 
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tdCP = EXP(-1.2 x (ADFIP / CP)) x CP, 

tdFat = (Fat – 1) x 2.25, 

dNDF = 0.75 x (NDFn – L) x [1 – (L/NDFn)0.67] , 

NDFn = NDF – NDFIP, 

 

where TDN is the estimated total digestible nutrients (%), tdNFC is true digestible non-fiber 
carbohydrates (%), tdCP is true digestible crude protein (%), tdFat is true digestible fat (%), 
dNDF is digestible neural detergent fiber (%), NDFn is NDF corrected for NDFIP (%), CP is 
the crude protein content (%), Fat is the fat content (%), Ash is the ash content (%), PAF is a 
processing adjustment factor, ADFIP is the acid detergent insoluble N x 6.25 (%), NDFIP is 
the neutral detergent insoluble N x 6.25 (%), L is the lignin content (%), and NDF is the 
neutral detergent content (%) of a given feedstuffs.  Although the proximate composition (CP, 
Fat, Ash, etc.) is determined analytically in a laboratory, this is not done without analytical 
errors, which typically range between 2 and 10% of the true mean depending on the assay and 
feedstuff involved.  Digestibility coefficients (e.g., 0.98, 0.75) are estimates subject to errors.  
Also, although the structure of the set of equations in (1) was derived mechanistically, it is 
nevertheless a simplification to the true, unknown, and far more complex system in nature.  
Thus, TDN values estimated using the system of equations in (1) are subject to measurement 
errors (feed composition), parameters in the equation are estimates (thus subject to errors), 
and the functional form itself is an approximation to the complex world. 

In NRC [3], estimated TDN values from the set of equations in (1) are used to estimate 
MiN according to the following equation: 

MiN  =  130 x TDN,           (2) 

where MiN is net microbial protein synthesis (expressed in g of N/d).  The coefficient 130 
was estimated using an independent set of experimental data where both TDN and MiN had 
been measured.  Clearly, it is an estimate also subject to error.  By combining Eqs. (1) and (2), 
the NRC calculates the predicted MiN resulting from a given diet.  This prediction is subject 
to measurement errors (feed composition), as well as errors in estimates of parameters 
(coefficients in Eqs. (1) and (2)), and errors in functional forms used. 

Measurements of MiN are not without errors.  Various experimental methods have been 
suggested in the scientific literature.  All have limitations [7].  The prevailing method 
involves the marking of feeds and fluids with three indigestible markers each associating 
more predominantly with one of the three major digesta fractions (large particles, small 
particles, and fluid).  Animals must be surgically altered with a large rumen cannula for the 
infusion or dosage of marker, and a duodenal cannula for sampling digesta leaving the 
stomach.  Multiple samples are taken over time and the concentration of the three markers is 
then determined in a laboratory for each sample.  Assuming first order, steady-state kinetics, 
forestomach digestibility of feed components can be calculated as well as flow of MiN [9] 
based on a marker of microbial protein (e.g., purines).  It is clear that measured MiN are 
subject to considerable errors resulting from true measurement errors (concentrations of 
indigestible markers, concentration of microbial marker) as well as errors in parameter 
estimates, and error in the functional form (first-order, steady-state kinetics). 
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In this context, observations and predictions play a symmetric role because they are both 
functional transforms of other variables.  This situation is actually quite frequent when 
modeling biological systems.  The symmetric role of observations and predictions, however, 
has been largely ignored when models are being validated 

2.2 Statistical Model 
The following model, which naturally models comparison studies when both observations 

and predictions are subject to multiple errors, is commonly known as errors-in-variables 
regression [10, 11]: 

      Xi  =   ξi  +  δi ,  

 Yi  =  ηi  +  εi ,  i  =  1, …, n,          (3)  

 ηi  =  α   +  βξi,  

where Xi is the prediction from the mathematical model and Yi is the observed value of the ith 
observation, ξi and ηi are the unobserved mean parameters (“true values”) of Xi and Yi 
respectively, δi and εi are the errors on the predicted and observed values (generally assumed 
to be independent, bivariate Gaussian), α is the overall bias of the prediction model, and β is 
the linear scale difference between the predicted and the observed values.  The variance of the 
two errors, σ2

δ and σ2
ε, are the precision parameters for the predictions and observations, 

respectively.  With known or estimable σ2
δ and σ2

ε (or more accurately, an unbiased estimate 
of  λ = σ2

δ / σ2
ε ), the maximum likelihood estimate  of β is [11]: 

 β  =  SYY - λ SXX +  ((SYY - λ SXX)2 + 4 λ S2
XY)½.     (4) 

                                              2 SXY   

An estimate of σ2
ε  can be calculated from experimental data.  Because of the nonlinearity of 

the system of equations in (1), an analytical estimate of σ2
δ does not exist.  Numerical 

methods could possibly be used but would require knowledge about the variances and 
covariances of all random variables in the equation.  This information is currently not 
available. 

2.3  Concordance correlation coefficient 

Lin [6] proposed a statistic termed the concordance correlation coefficient (CCC) to 
evaluate the agreement (reproducibility) between two readings.  In short, the degree of 
concordance between pairs of sample (Yi1, Yi2), i = 1, 2, …, n, can be characterized by the 
expected value of the squared difference, i.e., 

E(Y1 - Y2)2  =  (µ1 - µ2)2 + (σ1 - σ2)2 + 2(1 - ρ) σ1σ2,        (5) 

where ρ is the Pearson correlation coefficient.  This expectation also represents the expected 
squared perpendicular deviation from the 45o line, multiplied by 2.  Standardizing both sides, 
we get: 

E(Y1 - Y2)2  =  (µ1 - µ2)2 + (σ1 - σ2)2 + (1 - ρ) ,     (6) 

    2 σ1σ2       2 σ1σ2        2 σ1σ2  

which has a sample equivalent: 
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E(Y1 - Y2)2  =    (Y1 - Y2)2   +      (s1 - s2)2    +  (1 - r).    (7) 

 (n-1) 2 s1s2        (n-1) 2 s1s2        (n-1) 2 s1s2  

In (7), a form that has been called deviance analysis, the total deviance, represented by the 
left-hand side is partitioned into three right-hand side components: bias (first term), scale 
difference (second term), and imprecision (third term).  The deviance is equal to zero when all 
(non-negative) terms on the right-hand side are exactly zero, i.e., when the two means are 
equal, the two variances are equal, and the correlation is equal to 1. 

The CCC is defined as follows: 

 ρc =  1 – {E(Y1-Y2)2 / E[(Y1-Y2) | Y1, Y2 are uncorrelated]},   (8) 

 ρc =  2 σ12 / [σ2
1 + σ2

2 + (µ1 - µ2)2],       (9) 

 ρc =  ρ12 χ12,          (10) 

where µ1 = E(Y1), µ2 = E(Y2), σ2
1 = Var(Y1), σ2

2 = Var(Y2), and σ12 = Cov(Y1, Y2) = σ1 σ2 
ρ12.  The CCC is a product of two components: precision (ρ12) and accuracy (χ12), where χ12 = 
2 σ1 σ2 / [σ2

1 + σ2
2 + (µ1 - µ2)2]  =  [(ν12 + 1/ν12 + u2

12) / 2]-1, with ν12 = σ1 / σ2 representing 
scale shift, and u12 = (µ1 - µ2) / (σ1 σ2)1/2 representing location shift relative to the scale.  The 
CCC is an omnibus statistic used to test simultaneously and jointly for accuracy and precision.   

2.4  Dataset  
The data used are described at length in the NRC publication [3].  In short, feed 

composition and measured MiN were gathered from 56 published, peer-reviewed studies of 
which 27 involved growing cattle and 29, lactating dairy cows.  In total, the dataset comprised 
256 records of observed MiN (oMiN, g/d) and predicted MiN (pMiN, g/d). 

3.    RESULTS 

3.1 Pearson correlation  
The Pearson correlation, which measures the degree of linear association (relationship) 

between two random variables has been used for comparing mathematical model predictions 
to observed values.  In our application, this correlation is equal to: rpMiN, oMiN = 0.52, P < 
0.0001.  This statistic shows that oMiN and pMiN have a significant association.  The Pearson 
correlation, however, is invariant to location and scale.  Agreement is a much more stringent 
concept than correlation because both the scale of the measurements and the slopes are 
important.  Also, observations are not random samples from a population (i.e., the sample of 
observed and predicted values was not drawn at random from the population of all cows in the 
world).  Thus, the Pearson correlation coefficient fails to determine whether pMiN and oMiN 
are equivalent. 

 3.2 Paired t-test 
Applying the paired t-test on the data (mean oMiN = 244.91, mean pMiN = 246.36, SEdiff 

=  4.16, t255 = -0.35, P = 0.73), we conclude that there is no significant difference between the 
mean oMiN and the mean pMiN.  This test provides information only for the overall bias 
(location shift).  Because of its structure, the t-test can falsely reject the null hypothesis of 
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high agreement when the residual error is small.  That is, the larger the precision, the more 
likely you are to conclude that the two methods are not equivalent. 

3.3 Least-squares analysis 
The linear regression of oMiN on pMiN is presented in Figure 1.  The model: 

 oMiN  =  B0  +  B1 pMiN  +  e       (11) 

is theoretically incorrect because both oMiN and pMiN have errors.  Under least-squares 
analysis, the null hypothesis is that the two methods are concordant.  Thus, small datasets will 
generally lack power resulting in the conclusion that the two methods are concordant.  
Likewise, large datasets will result in rejecting the null hypotheses for the intercept (B0 = 0) 
and the slope (B1 = 1) when differences are relatively trivial.  This is what occurs with the 
dataset at hand where the two null hypotheses are rejected.  A casual inspection of the 
regression line in Figure 1 reveals the trivial difference between the regression line and the 
line of unity when the spread of the data points from either line is considered.   
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Figure 1.  Linear regression of observed microbial flow to the duodenum (oMiN) on predicted 
microbial N flow (pMiN) using the National Research Council model. 
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This is quite clear when the differences between oMiN and pMiN are plotted against pMiN as 
in Figure 2.  This plot, however, raises the legitimate question as to which variable should be 
used on the X-axis? 
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Figure 2.  Plot of residuals vs. predicted microbial N flow to the duodenum (pMiN) ) using the 
National Research Council model to calculate predicted microbial N flow (pMiN). 

Recall that both oMiN and pMiN are measurement with errors.  In Figure 2, pMiN was 
chosen on the X-axis because this is the correct variable to use in residual plots when the 
independent variable is assumed to be errorless, as in the linear regression paradigm [12].  
Because of the duality of oMiN and pMiN, one could have chosen oMiN for the X-axis, 
resulting in a different conclusion regarding the presence or absence of bias (Figure 3).   

Recognizing this problem, Altman and Bland [13] suggested using the mean of oMiN and 
pMiN for the X-axis (Figure 4).  In fact, this is the correct axis if, and only if the precisions of 
both methods are equal (i.e., when σ2

δ = σ2
ε, or simply that λ = 1).  In the data at hand, 

however, the precision of pMiN is unknown.  Thus the correct residual plot lies somewhere 
between the two extremes presented in Figures 2 and 3.  Unless a satisfactory estimator for 
σ2

δ can be identified, residual plots will invariably lead to the paradox depicted in Figures 2, 
3, and 4, where one cannot decide whether a linear bias is present or not. 
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Figure 3.  Plot of residuals vs. observed microbial N flow to the duodenum (pMiN) using the National 
Research Council model to calculate predicted microbial N flow (pMiN). 

 

3.3 Deviance analysis 

Application of equation (7) using the following estimates: s1 = 50.16, s2 = 77.23, s12 = 
2020.2, mean (Y1) = 246.4, mean (Y2) = 244.9, and r = 0.522 (where the subscript 1 refers to 
pMiN and the subscript 2, to oMiN) results in the following: 

        0.5733   =     0.0003  +               0.0945      +     0.4785             (12)   
 Deviance  =      Bias    +     Scale difference  +  Imprecision 

The deviance is composed of a very small bias (0.0003; or 0.05% of the deviance), a small 
scale shift (0.0.95; or 16.5% of the deviance), and a large imprecision (0.479; or 83.5% of the 
deviance).  Thus, it is clear that most of the deviance is the result of imprecision.  The 
expression of deviance in (7) is in the form of the mean of squared deviations standardized by 
the product of standard deviations.  The unit for deviance does not correspond to the unit of 
the physical variables being measured or predicted.  Thus, although the method is useful, 
biologists struggle with the physical interpretation of the analysis.  However, biologists are 
very familiar with the Pearson correlation coefficient, so that the expression of deviance re-
scaled with a lower bound of -1 and an upper bound of 1 is certainly appealing.  In essence, 
this is what is accomplished by the CCC. 
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Figure 4.  Plot of residuals vs. the mean of observed microbial N flow to the duodenum (pMiN) and 
predicted microbial N flow (PMiN) using the National Research Council model. 

 

3.3 Concordance correlation coefficient 

Application of equation (10) to our dataset results in ρc = 0.476.  Using the inverse 
hyperbolic tangent transformation (or Z-transformation) suggested by Lin [6], and under the 
assumption of asymptotic normality, one concludes that predictions and measurements are 
concordant (P = 0.22).  The accuracy statistic (χ12) is equal to 0.913, whereas the precision 
statistic (ρ12) is equal to 0.522.  Recalling that ρc = 0.476 = 0.913 x 0.522, it becomes evident 
that precision and not accuracy is the issue.  The CCC is equal to 1 when there is no location 
differential, no scale differential, and perfect correlation between the two variables.  It is an 
omnibus statistic that tests jointly precision and accuracy.  In our application, measurements 
are too imprecise to allow the development of a model with acceptable prediction error.  Thus, 
gains in the prediction of MiN can only be achieved with the development of superior 
methods of measurements, with much greater precision than the methods currently in use. 

4.    CONCLUSIONS 
The validation of quantitative biological models is not a simple problem.  Methods must 

account for the multiplicity of errors in both the observed and the predicted values.  That is, 
methods must recognize the symmetric role of observations and predictions because both are 
algebraic transforms of other variables.  The CCC shows potential in this regard. 
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Abstract: The quantification of the quality of a structural mechanical model remains a
major issue today, with the use of an increasing number of methods in order to validate
a model in comparison with an experimental reference. This paper presents a new theory
based on the concept of Lack of Knowledge combining convex uncertainty models with
probabilistic features by introducing for each substructure two bounds of the strain en-
ergy as stochastic variables. A general strategy of reduction of the lack of knowledge is
discussed and applied to academic as well as industrial cases.

Keywords: Lacks of Knowledge, reduction, model validation, structural dynamics

1. INTRODUCTION

Today, the problem of quantifying the quality of a structural mechanical model remains a
major issue. As far as the comparison with an experimental reference is concerned, many
approaches can be used to update a deterministic, dynamic model (stiffness, mass and
damping) based on free or forced vibration tests [1],[2]. After this process, there may be
some phenomena that still cannot be described properly: some uncertainties remain in the
material properties, or the model of some parts (e.g. joints) may be simplified. In order
to describe these uncertainties, the use of probabilistic methods has become increasingly
popular: generally, these methods consist in studying the effects of the uncertainties which
affect the input on the variability of the output. This can be done in various ways and
has led to major improvements: for example, meta-models have been built by spanning
the space of the most influential parameters and applying a specific technique to reduce
the computational effort drastically [3],[4].

In [5], we introduced the concept of Lack of Knowledge (LOK), which combines con-
vex uncertainty models [6],[7] with probabilistic features. The basic principle consists in
globalizing the uncertainties on a substructure by means of an internal variable, called
the basic Lack of Knowledge (basic LOK ), which is included within an interval whose
upper and lower bounds are stochastic variables. From these basic LOKs, one can derive,
for the whole structure, the effective Lack of Knowledge (effective LOK ) of a quantity of
interest α, which leads to a stochastically bounded interval which can be compared with
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experimental values derived from a family of similar real structures. In [8], this theory was
successfully applied to a simple problem, which proved its identification and prediction
capabilities. In this paper, we establish the first bases of a general strategy of reduction
of the lacks of knowledge and we present applications on academic as well as industrial
cases.

2. BASIC LOKS

2.1. Basic concept

Each similar structure can be divided into several substructures; by the way, joints can
also be treated as substructures. Only the errors concerning structural stiffnesses are con-
sidered, hence the use of substructural strain energies in the following definition; indeed,
we associate to any substructure E a lack of knowledge m located anywhere within an
interval whose the two bounds are two internal variables m+

E
and m−

E
defined by

(

1 − m−

E

)

eE ≤ eE ≤
(

1 + m+
E

)

eE, (1)

where e
E

and eE are the strain energies associated respectively with the deterministic,
theoretical model and with one of the real structures. m+

E
and m−

E
are the upper basic

LOK and the lower basic LOK respectively.

The basic LOKs m+
E

and m−

E
are sampled using a probabilistic law; the nature of this

law is chosen a priori and its characteristics are defined by two values m+
E

and m−

E
:

• for example, if the distribution chosen is uniform, these two values include all pos-
sible sampled values of m+

E
and m−

E
;

• in some particular cases of imperfect modelings (e.g. nonlinear joints represented
with linear models), characterized by a severe lack of information, one cannot deter-
mine precisely the distribution of lack of knowledge and it can only be stated that
m is somewhere within [−m−

E
; m+

E
].

In the absence of specific information, it is reasonable to choose the previous description.
We can also consider that a normal distribution is appropriate in cases in which the
sources of errors are material uncertainties.

2.2. Illustration

Let us consider the case of a lack of knowledge of the material properties: for a family
of similar real structures, we assume that the lack of knowledge m of a substructure E is
defined by a centered normal distribution whose Probability Density Function (PDF) is
written as follows:

m ∈ [−m−

E
; m+

E
] with PDF p(m) =

1
√

2πσ2
e−

m
2

2σ2 . (2)

The standard deviation σ can be associated to the values m+
E

and m−

E
by stating for

example that
∫ m

+

E

−m
−

E

p(m)dm = 0.99; the PDF is then set to zero below −m−

E
and beyond

m+
E
, and can be normalized again.
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The probability of having m within a given interval [−m−

E
; m+

E
] is

P (−m−

E
≤ m ≤ m+

E
) =

∫

m
+

E

−m
−

E

p(m)dm. (3)

Since the basic LOKs are defined on both sides of the theoretical model, this occurrence
can be described by two independent events:

• m ∈ [0; m+
E
], i.e. the event (m−

E
= 0,m+

E
) occurs with probability P +(m+

E
);

• m ∈ [−m−

E
; 0], i.e. the event (m−

E
,m+

E
= 0) occurs with probability P−(m−

E
).

Of course, one has P +(∞) + P−(∞) = 1. In this special case of a centered distribution,
one even has P+(∞) = P−(∞) = 1

2
. This situation is depicted in Figure 1. This case

illustrates how the basic LOKs should be sampled: depending on the value of m obtained,
one gets two distinct types of intervals: [0; m+

E
] and [−m−

E
; 0].

2.3. Definition of an Interval Probability

Since the use of two distinct probabilities P + and P− is rather impractical, we developed
in [9] some mathematical tools in order to circumvent this difficulty.

Let us consider a family of intervals [−m−

E
; m+

E
] 3 m with m+

E
+ m−

E
= L. An in-

terval [−m−

E
; m+

E
] is called a standard interval I(L) if, for a given interval length L, the

probability of m being in I(L) is the greatest of all such intervals of length L, i.e.

I(L) = arg max
[−m

−

E
;m+

E
]

m
+

E
+m

−

E
=L

P+(m+
E
) + P−(m−

E
). (4)

From this definition, we can introduce the concept of interval probability P (L) by stating
that for a given length L, P (L) is the probability of having m in I(L), i.e.

P (L) = P (m ∈ I(L)) = max
[−m

−

E
;m+

E
]

m
+

E
+m

−

E
=L

P+(m+
E
) + P−(m−

E
). (5)

One interpretation of these definitions is that if one wants to determine an interval such
that m has a given probability P of being inside, one has to select the standard interval
I(L) whose probability interval P (L) is equal to P , and one can show that this interval
is the smallest interval [−m−

E
; m+

E
] such that P+(m+

E
) + P−(m−

E
) = P , i.e.

I(L) = arg min
[−m

−

E
;m+

E
]

P+(m+

E
)+P−(m−

E
)=P

m+
E

+ m−

E
. (6)

One can also prove that the bounds of I(L) verify the equality: p(m+
E
) = p(m−

E
). These

remarks are summarized in Figure 2 in the case of a non-centered normal law.
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3. THE USE OF LOK

3.1. Principle

Let us consider a certain quantity of interest α.

• for every sample of (m−

E
,m+

E
)E∈Ω, one can calculate two bounds α− and α+ of the

quantity of interest αmod relative to the model, as will be shown in Section 3.2. If
one knows the stochastic laws for the basic LOKs, one can obtain the probabilistic
distribution of these bounds α− and α+ by means of an interval probability Pα(L)
such that P (αmod ∈ Iα(L)) = Pα(L)∀L. Remembering the previous interpretation
of an interval probability, one can get for a given probability value P the associated
standard interval Iα(L) such that P (αmod ∈ Iα(L)) = P . We will refer to the two
bounds of this interval as the effective Lack of Knowledge (effective LOK ), and
denote them αlow and αupp.

• based on the similar real structures, one can derive in the same way two bounds
αlow

exp
and αupp

exp
which include P% of the experimental values αexp.

The experimental data and the values obtained from the LOK model are then com-
pared as in Figure 3. In order for the model to be conservative, the basic LOKs should
be such that

P (αexp ∈ Iα(L)) ≥ Pα(L)∀L. (7)

This means that one should have αlow ≤ αlow

exp
≤ αupp

exp
≤ αupp for any given probability

value P . Note that this last interpretation is a generalization of the 99%-bounds described
in [5] and [8].

3.2. Effective LOKs

The comparison between the results of the model and reality is made using quantities
which are standard in the field of modal analysis: in this paper, we use free-vibration
tests; therefore, our quantities of interest α are eigenfrequencies and eigenmodes. The
previously defined pair of quantities αlow and αupp is called the effective LOK and the
corresponding values for eigenfrequencies and eigenmodes are reviewed below.

3.2.1. Effective LOK of an Eigenfrequency

If the modes φ
i
are mass-normalized, a first-order approximation (φi ' φ

i
) gives

ω2
i
− ω2

i
= φT

i
Kφi − φ

T

i
Kφ

i
' φ

T

i
(K − K)φ

i
= 2

∑

E∈Ω

(

eE(φ
i
) − e

E
(φ

i
)
)

. (8)

From relationship (1), one has for a given sample (m−

E
,m+

E
)E∈Ω

ω2−
i

≤ ω2
i
≤ ω2+

i
(9)
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with

ω2−
i

= ω2
i
− 2

∑

E∈Ω

m−

E
e

E
(φ

i
), (10)

ω2+
i

= ω2
i
+ 2

∑

E∈Ω

m+
E
e

E
(φ

i
) (11)

Thus, for a given probability value P , one can derive the two bounds ω2 low

i
and ω2 upp

i
of

the associated standard interval Iω2
i

(L), i.e. the effective LOK of an eigenfrequency.

3.2.2. Effective LOK of an Eigendisplacement

For small values of the basic LOKs, we can approximate the variation of an eigendisplace-
ment (defined as the value at a Degree of Freedom of an eigenmode) by writing

φki − φ
ki
' UT ∆Kφ

i
=

∑

E∈Ω

UT
(

KE − KE

)

φ
i

(12)

where U is a given vector. Using UT KEφ
i
= 1

2
eE(U + φ

i
)− 1

2
eE(U − φ

i
) and relationship

(1), one gets for a given sample (m−

E
,m+

E
)E∈Ω

φ−

ki
≤ φki ≤ φ+

ki
(13)

with

φ−

ki
= φ

ki
−

1

2

∑

E∈Ω

{

m−

E
e

E
(U + φ

i
) + m+

E
e

E
(U − φ

i
)
}

, (14)

φ+
ki

= φ
ki

+
1

2

∑

E∈Ω

{

m+
E
e

E
(U + φ

i
) + m−

E
e

E
(U − φ

i
)
}

(15)

Thus, for a given probability P , one can derive the two bounds φlow

ki
and φupp

ki
of the

associated standard interval Iφki
(L), i.e. the effective LOK of an eigendisplacement.

4. DETERMINATION OF THE BASIC LOKS

The purpose of determining the basic LOKs is to find the values of m+
E

and m−

E
which

are the most representative of the dispersion. The process we introduce here is based on
the idea that the more abundant the experimental data, the better we can reduce the
LOK-level within the structure. Therefore, the first step of the process consists in setting
initial, overestimated values of the basic LOKs for all the substructures; this can be done
by applying one’s a priori knowledge or experience of the structure being studied. Indeed,
it is not vital to use accurate estimates; the most important point is to use overestimated
values (m+0

E
, m− 0

E
)E∈Ω of the basic LOKs for each substructure.

The reduction process consists in using relevant experimental data to reduce the LOK-
level individually for each substructure. Let us consider a given substructure E∗. One
has to find smaller values of m+

E∗ and m−

E∗ , which, in terms of interval probabilities, yields
the following relationship:

P 0
E∗(L) ≤ PE∗(L) ∀L. (16)
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This reduction should be carried out with the constraint created by the experimental
information selected:

αlow ≤ αlow

exp
≤ αupp

exp
≤ αupp. (17)

In fact, as one is interested in the minimization of the lack of knowledge of Substructure
E∗, one intends to take into account the worst happening case concerning all the other
substructures. We can write formally for each given sample (m−

E
,m+

E
)E∈Ω:

αworst + = α + SE∗∆α+
E∗ +

∑

E 6=E∗

∆αworst +
E

(18)

αworst− = α + SE∗∆α−

E∗ +
∑

E 6=E∗

∆αworst−

E
. (19)

This worst-case analysis is completed by the introduction of a coefficient quantifying
whether the experimental information is more or less representative of the behavior of the
structure; this value SE∗ ∈]0; 1] is called test severity coefficient for Substructure E∗ and
is maximal when the test fits perfectly the global mechanics of the structure. Then we
can associate to these bounds αworst + and αworst− an interval probability Pαworst(L) and
derive the two bounds αworst upp and αworst low of the associated standard interval Iαworst(L)
for a given probability P .So the following constraints are introduced:

αworst low ≤ αlow

exp
≤ αupp

exp
≤ αworst upp. (20)

So as a summary, the problem consists in finding

max PE∗(L, m) ∀L (21)

with the previous constraints, and for several given values of L.

5. APPLICATION TO A SIMPLE PROBLEM

5.1. Definition of the Structure

5.1.1. Deterministic Theoretical Model

The structure being considered is a plane truss similar to that studied in [8]; it consists
of six bars connected by spherical joints, as shown in Figure 4. We assume that the bars
are solicited only in traction-compression and that the connections between the ground
and the structure at Nodes 1 and 2 are perfectly rigid links. The material properties of
the associated theoretical model are given in Table 1.

5.1.2. Experimental Data

A family of such actual trusses is simulated and their eigenfrequencies and eigenmodes
constitute the data which is then used in the reduction process described in Section 4: the
‘experimental’ data are simulated by using the theoretical model and introducing some
stochastic distributions in the stiffness characteristics of the substructures; these changes
are summarized in Table 1. Note that material “X” is considered to be imperfectly known;
hence the uniform law chosen for the simulation. For each of these ‘real’ structures,
we are able to calculate eigenfrequencies and eigenmodes and, thus, derive experimental
distributions of the eigenfrequencies or eigendisplacements associated to the real structures
(see for example the distribution of ω2

exp
for Mode 6 in Figure 5).
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exp for Mode 6

Table 1. Properties of the deterministic plane truss and of the simulated structures, with Bars
1-3, 3-5, 4-5 and 2-4 constituting Group g1, bar 2-3 as Group g2 and bar 3-4 as Group 3.

Gp Material Young’s modulus Density Law Mean/Range Simulated stiffnesses

g1 aluminium Eg1 = 72GPa 2700kg/m3 normal 0%/5% ∈ [0.95Kg1; 1.05Kg1]

g2 steel Eg2 = 210GPa 7800kg/m3 normal −5%/10% ∈ [0.85Kg2; 1.05Kg2]

g3 “X” Eg3 = 10GPa 1500kg/m3 uniform 5%/15% ∈ [0.90Kg3; 1.20Kg3]

5.2. Reduction of the Basic LOKs of the Structure Being Considered

The reduction process is carried out by assuming a priori an initial LOK-level of 50%
for each substructure, which guarantees overestimated starting values. We also assume
a normal LOK-distribution for the aluminum and steel bars and select a uniform LOK-
distribution for the “X” bar. From the measured distributions of eigenfrequencies, we
decide to keep in mind the values ω2 upp

i exp
and ω2 low

i exp
that include 99% of the experimental

eigenfrequencies; this means that we do not care any more about the distribution of these
experimental eigenfrequencies within the two 99%-values. If we wanted a more precise
description, we could also take the 50%-values in order to have an estimation of the
standard deviation of the experimental values.

Next, it is important to select the most relevant experimental tests to carry out the
successive processes. An effective method consists in using the fact that the sensitivities
of the effective LOKs to the basic LOKs are directly related to the modal strain energy of
the theoretical, deterministic model (see Section 3.2 for more details). The most relevant
modal tests for reducing the basic LOK of Substructure E∗ are those in which the modal
strain energy is contained mainly within Substructure E∗. As we are interested with
experimental eigenfrequencies, the modal strain energies e

E
(φ

i
) are considered for Modes

1 to 6 and are listed in Table 2 where the largest substructural energies are emphasized.

Table 2. Modal strain energies for Modes 1 to 6.
e
E
(φi) i=1 i=2 i=3 i=4 i=5 i=6

E=g1 3.3.105 1.3.106 7.6.106 3.8.106 2.5.107 6.0.107

E=g2 1.4.105 6.7.104 9.9.103 1.0.107 2.0.106 1.7.105

E=g3 2.5.105 1.7.106 6.1.105 4.7.105 6.9.104 1.9.105

The reduction is achieved by selecting as relevant experimental tests ω2 upp

i exp
ans ω2 low

i exp

derived from Modes 6, 4 and 2 for Groups 1, 2 and 3 respectively, and by considering
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that these data are representative of the global behavior of the structure (test severity
coefficients equal to one). The results come out as

m+
g1 = 0.032 m+

g2 = 0.034 m+
g3 = 0.205

m−

g1 = 0.034 m−

g2 = 0.092 m−

g3 = 0.101.

In this very special case, with a first-order assumption, these results are to be compared
directly with the stiffness distributions introduced into the deterministic model to simulate
the experimental data: [(1 − 0.05)Kg1; (1 + 0.05)Kg1], [(1 − 0.15)Kg2; (1 + 0.05)Kg2] and
[(1 − 0.10)Kg3; (1 + 0.20)Kg3]. We can conclude that the agreement is rather good. The
choice of the relevant experimental data is crucial; if one tried to reduce the LOKs of any
group using Mode 1, the minimization process would not lead to any reduction because
the influence of the other two groups is not small enough.

5.3. Capacity of Prediction

With the values just obtained, we are able to calculate the effective LOKs for the three
other modes (1, 3 and 5) in order to evaluate the results of the reduction process. The
basic LOKs are sampled with the values determined and the probabilistic laws chosen;
the corresponding calculated 99%-values are listed and compared with the experimental
99%-values in Table 3 below. The constraints are successfully respected for Modes 1, 3
and 5, which shows the consistency of the results obtained with Modes 2, 4 and 6.

Table 3. Comparison of eigenfrequencies and eigendisplacements (99%-values) for Modes 1, 3, 5.

i ω2 low
i

ω2 low
i exp

ω
i
2 ω

2 upp

i exp
ω

2 upp

i
φlow

ki
φlow

ki exp
φki φ

upp

ki exp
φ

upp

ki

1 1.36.106 1.35.106 1.43.106 1.53.106 1.54.106 0.85 0.88 0.95 0.99 1.01
3 1.58.107 1.58.107 1.64.107 1.71.107 1.70.107 −1.00 −0.98 −0.95 −0.91 −0.90
5 5.28.107 5.29.107 5.51.107 5.68.107 5.69.107 −0.74 −0.72 −0.68 −0.62 −0.62

6. STUDY OF A STRUCTURE WITH A MODELLING ERROR

6.1. Presentation of the Structure

6.1.1. Deterministic Theoretical Model

In this example, we want to study the ability of our theory to describe a modelling error
in the theoretical model. The studied structure is a beam clamped at one end; we are
interested with its bending vibrations. The theoretical model consists of 100 standard
Bernoulli-Euler elements based on a cubic interpolation of displacements.

6.1.2. Experimental Data

The experimental structure is simulated by inserting a joint in the middle of the beam:
the two corresponding ends of the two half beams are linked by two linear springs:
one concerning the vertical translation (k = 7.107N/m) and a rotational one (K =
1000N.m/rad), as in Figure 6. We then compute the eigenfrequencies and eigenmodes of
this structure.
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Figure 6. Theoretical model and experimental simulation of the clamped beam.

6.2. Calculation of the Basic LOKs

Before determining the Lacks of Knowledge, the model is updated with the first 15 modes
of the experimental structure according [2]. This method leads to the correction of the
stiffnesses of the two elements at both sides of the joint (with a factor of 0.41). After
updating, we still have a global residual error of 4%, and no further improvement can be
made, which means that the model cannot represent the experimental data in a better
way.

The determination of the Lacks of Knowledge is achieved on three different groups:
Group g2 corresponds to the two elements at both sides of the joint, Group g1 and Group
g3 to the other elements located before and after the joint respectively, as indicated in
Figure 6. We use the eigenfrequencies of Modes 4, 8 and 12, by considering them as
extreme values describing the distribution coming from the reality; moreover, the test
severity coefficients are set to one. With an initial LOK-level of 50% and a normal law
assumption for each group, we obtain the following results:

m+
g1 = 0.003 m+

g2 = 0 m+
g3 = 0

m−

g1 = 0 m−

g2 = 0.040 m−

g3 = 0,

which means that the actual structure is perfectly described by the theoretical model,
excepted in the neighborhood of the joint where we find a lack of knowledge of 4%.
This example shows that the theory of the Lacks of Knowledge is useful to indicate the
areas where the model is not good enough to represent the global behavior of the whole
structure, and gives an estimate of its accuracy.

7. STUDY OF A REAL CASE

7.1. Description of the Structure

We will now present the application of the method to an actual, industrial structure:
the Sylda5 satellite support developed by the EADS company is capable of carrying two
individual satellites and is represented in Figure 7. Vibration tests were performed by
IABG for DASA/DORNIER under contract with CNES: the test setup consisted of 5
exciters and 260 sensors. The model proposed by EADS represents both the support
itself and a payload simulating the presence of a satellite; it consists of 38 substructures
with various materials, including orthotropic sandwiches, aluminum and steel. The first
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tests have shown that it was essential to take the ground into account in the model; this
was done using 3 rotational springs, one translation spring and a rigid-body-movement
constraint for all the bottom nodes. In the end, the model consists of 27648 DOFs and
9728 elements.

We consider as experimental data the extreme values of the eigenfrequencies and
eigenmodes measured from a series of tests, without caring about their distribution.

7.2. Determination of the Basic LOKs

First, the model is updated with the first 12 modes using the method described in [2]. At
this point, we want to describe the remaining lacks of knowledge. In order to do that, we
divide the whole structure into 4 main groups of substructures, depicted in Figure 8:

• Group g1 is associated with the payload substructure;

• Group g2 represents the junction between the payload substructure and the Sylda
support itself;

• Group g3 is the Sylda support;

• Group g4 is associated with the ground model.

Figure 7. The Sylda5 satellite support.

Payload


Junction

SYLDA 5


Ground

Figure 8. Model associated to Sylda5.

The objective is to carry out the reduction of the most influential lacks of knowledge.
An initial value of 50% is assumed for each pair (m+ 0

E
, m− 0

E
), where E ∈ {g1, g2, g3, g4}.

In the first 8 modes, only Group 1 and Group 3 have significant modal strain energy levels
and, thus, they are for the moment the only ones involved in the reduction process. We
consider as experimental data the extreme values of the eigenfrequencies measured from
a series of tests, without caring about their distribution.
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With such values from Modes 7 and 8 on the one hand, and from Modes 4 and 5 on
the other hand, we reduce the basic LOKs of Group 1 and Group 3 respectively to

m+
g1 = 0.154 m+

g3 = 0.001

m−

g1 = 0.009 m−

g3 = 0.012,

by using test severity coefficients equal to one. As a conclusion, we can stress that these
results corroborate the quality of the updated Sylda support model (Group 3) and give
an estimation of the accuracy of the model used to describe the payload (Group 1).

8. CONCLUSION

We showed in this paper some applications of the theory of the Lacks of Knowledge
which combines convex uncertainty models with probabilistic features. The method is
able to quantify local uncertainties by using quantities of interest defined on the whole
structure and it can also be useful to the estimation of modelling accuracy. The reduction
process that we introduced in this paper consider experimental data as information usable
to reduce the overestimated basic LOKs assumed for each substructure. This approach
should lead the way to the development of a general method for reducing the lacks of
knowledge for predetermined families of parameters by designating what tests should be
performed or which substructure models should be improved.

REFERENCES

1. J.E. Mottershead and M.I. Friswell. Model updating in structural dynamics: A survey.
Journal of Sound and Vibration, 167(2):347–375, 1993.
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Modeling uncertainty in population biology: how the model is

written does matter

Janos G. Hajagos∗

March 2, 2004

1 An alternative to second-order Monte Carlo

Monte Carlo based approaches are used to calculate the risk of extinction for threatened
species. In the risk assessment the exact values of the statistical moments of the input
distributions need to be known. At best, the mean and variance for the growth rate of
the population might be known plus or minus ten percent of the estimated value. The
normal course of action is to perform a second-order Monte Carlo analysis. In such an
analysis, a second statistical distribution is sampled for the moments of the first distribu-
tion. Second-order Monte Carlo adds an additional factor of computation time and makes
more assumptions about the distribution of moments; when data is sparse, like in the case
of endangered species, these additional probabilistic assumptions might not be supported.

An alternative to second-order Monte Carlo analysis is presented in this paper. Instead
of sampling from a second statistical distribution, the uncertainty around the moments will
be bound, and then propagated through a numerical simulation of population dynamics
using interval analysis. With interval analysis no additional assumptions except that the
moments are bounded need to be made. It will be shown that there are two ways to write
the equation for population growth. The correct equation to use will depend on what is
meant by an interval. If one believes that an interval represents a bounded set of possible
values then Equation 8 should be used, but if one believes that an interval represents
uncertainty of not knowing a fixed value then Equation 9 should be used. The choice is
not without consequences: the bounds on the quasi-extinction decline risk will be tighter
with Equation 9.

∗Department of Ecology and Evolution, State University of New York at Stony Brook, Stony Brook,
NY 11794-5245, U.S.A.; email: jhajagos@life.bio.sunysb.edu; fax: 631-632-7626
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2 Population models

The basic model for growth of an animal population is the exponential growth function,
written here in its continuous form

f(t) = N0 exp (rt) , (1)

where N0 is the initial population size, t is time, and r is the per capita rate of growth.
This function arises from a solution to the simple differential equation

dN

dt
= rN, (2)

where N is the population size.
Discrete deterministic population models are normally written in the form

Nt+1 = RNt, (3)

where R is a per unit time multiplier, Nt is the population at time t. For predicting NT ,
such that, T ∈ {0, 1, 2, . . .}, one has

Nt+T = RT Nt. (4)

An important relationship exists between R and r, the finite rate of increase and the per
capita rate of growth, that is,

R = exp (r) . (5)

From this point the notation used to write a discrete function of population growth
will change. We will now consider the population abundance at time T to be a function
of the size of the population at time 0, the time horizon T (the length of the simulation),
and the per-capita growth rate r. The equation of population growth rewritten in terms
of the new notation is

f(N0, r, T ) = N0 exp (rT ) = NT . (6)

3 Adding stochasticity

For real biological populations, that is, those that are observed in nature, the per-capita
rate of population growth is not fixed through time but varies. Equation 6 can be rewritten
to take into account varying rates of r

f(N0, {r1, . . . , rT }, T ) = N0 exp

(
T∑

i=1

ri

)
= NT , (7)

where ri is a random variate from G, a statistical distribution. It is assumed here that G
is a normal distribution with a mean r̄ and with a standard deviation of σr; ri = g(r̄, σr)
is a random variate from the normal distribution G(r̄, σr) [Lewontin and Cohen, 1969].

To simulate the potential dynamics to the populations, we make K runs or realizations
of the model.

2
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4 Adding measurement uncertainty

To propagate epistemic uncertainty, that is, uncertainty which can reduced through effort,
interval analysis [Moore, 1966] will be used. An interval X is defined as a closed set on the
real line, such that, x ∈ X ⊆ R where X ≤ x ≤ X, and X and X are the infinimum and
supremum, respectively of X. The set of all intervals on the real line is denoted IR. Given
intervals X and Y addition is defined as

X + Y = [X + Y ,X + Y ] = {x + y : x ∈ X, y ∈ Y}

There are interval definitions for a wide range of basic mathematical operators, such as,
{−,×, /,2 }, and for functions, such as, {exp, log, sin, cos}. To propagate epistemic errors
through a simulation of population dynamics two additional operators need to be defined:

X×Y = [min(XY ,XY ,XY ,XY ),max(XY ,XY ,XY ,XY )] = {xy : x ∈ X, y ∈ Y}

exp (X) = [exp (X) , exp
(
X
)
] = {exp (x) : x ∈ X}.

By outwardly rounding the endpoints of an interval operation the interval is guaranteed
to contain the true value. For the simulation of population dynamics the Intlab toolbox
[Rump, 1999b, Rump, 1999a] for Matlab is used.

The algebra on intervals differs from the algebra on real numbers. For example,

C× (A + B) ⊆ C×A + C×B

this is known as the subdistributive law [Moore, 1979]. In the non-strict inequality, equality
will hold when A,B > 0. Of more importance is Moore’s single use theorem which states
that if each variable in a mathematical expression occurs only once then the resulting
bounds from applying interval operators will be optimal [Hansen, 1997]. The effect of
repeated variables is that, in some cases, the bounds on the evaluated expression will be
conservatively suboptimal or too wide [Kreinovich et al., 2002]. In the continuous and
discrete models of exponential growth, Equations 1 & 5, each variable appears only once,
therefore interval arithmetic can be naively applied.

A statistical distribution can have uncertain moments, for example, bounds on the mean
or standard deviation (c.f. [Ferson, 2002]). To propagate epistemic uncertainty through a
Monte Carlo simulation interval analysis is used.

Equation 7 can be written in two intervalized forms

h(N0, r̄, σr, T ) = N0 exp

(
T∑

i=1

gi(r̄, σr)

)
= NT (8)

j(N0, r̄, σr, T ) = N0 exp

(
T r̄ + σr

T∑
i=1

gi(0, 1)

)
= NT (9)
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If all the parameters for Equations 8 & 9 are degenerate intervals then the two functions
are equivalent given the same set of random deviates. A degenerate interval is defined as
X = [x, x], where x = x. If N0 ∈ IR is the only non-degenerate parameter the expressions
are still equivalent because N0 appears only once in each of the expressions. When r̄ ∈
IR or σr ∈ IR then the expressions do not give equivalent results, and it follows from
subdistibutivity of interval arithmetic j(N0, r̄, σr, T ) ⊆ h(N0, r̄, σr, T ).

In Equation 8 the dependency between the statistical moments for the individual vari-
ates in the sum g1(r̄, σr) + g2(r̄, σr) + . . . + gT (r̄, σr) is not accounted for. The dependency
occurs in that the r̄ and σr occur repeatedly in the expression as statistical moments for
g. Due to the ability to factor out the mean and variance from a normal variate the sum
of variates can be algebraically rearranged to take into account that r̄ ∈ r̄ and σr ∈ σr are
fixed values:

r̄ + σrg1(0, 1) + r̄ + σrg2(0, 1) + . . . + r̄ + σrgT (0, 1) = T r̄ + σr

T∑
i=1

gi(0, 1).

The question then becomes which of the formulations, Equations 8 or 9, is correct.
The answer to this question depends on one’s philosophical view of what an interval is. If
the belief is that there exists a single fixed value bounded by an infinimum and supremum
which bounds the uncertainty about ones estimate of the fixed value, then Equation 9 gives
the optimal answer. However, if one thinks of an interval as representing a closed bounded
set then there is no reason to believe that the r̄ is fixed at each point in time. Allowing r̄
or σr not to be fixed leads to widening bounds on NT .

5 Quasi-extinction risk

The study of population viability is focused on quantifying the risk of a population falling
below a critical period over a fixed time period. Rather then focusing entirely on total ex-
tinction, N = 0, the concept of quasi-extinction risk has been developed [Ginzburg et al., 1982].
Quasi-extinction risk is the probability that a population will fall below a given thresh-
old during the simulation. Because intervals were used to propagate uncertainty through
the simulation upper and lower bounds on the quasi-extinction risk curve must also be
generated.

For Monte Carlo simulations of population dynamics the quasi-extinction decline curve
is generated from the minimum of each k series of abundance.

Nmink
= min (N1,k, N2,k . . . , NT,k) . (10)

Note that the initial abundance N0,k is not included in the calculation of the minimum
[Akçakaya et al., 1999]. For a sorted list of abundances Nmin1 ≤ Nmin2 ≤ . . . ≤ NminK ,
where K is the total number of simulations, a cumulative probability pk = k 1

K is associated
with each Nmink

.

4

366



For interval data the minimum is defined as

min (X1,X2, . . . ,Xn) =
[
min(X1, X2, . . . , Xn),min(X1, X2, . . . , Xn)

]
(11)

Nmink
= min (N1,k,N2,k . . . ,NT,k) . (12)

To generate the quasi-extinction decline risk curve — the cumulative distribution function
of minimum abundances — for interval data the infinimum and supremum are sorted
separately

Nmin1
≤ Nmin2

≤ . . . ≤ NminK

Nmin1 ≤ Nmin2 ≤ . . . ≤ NminK .

A probability mass pk = k 1
K is associated with each sorted Nmink

and Nmink
. To conser-

vatively bound the quasi-extinction decline curve a step function is used. The bounds on
the infinimum of the CDF are

CDF(x) =


if Nmin1

≤ x < Nmin2
then 1/K

if Nmin2
≤ x < Nmin3

then 2/K
...
if NminK−1

≤ x < NminK
then 1

(13)

and the bounds on the supremum are

CDF(x) =


if Nmin1 < x ≤ Nmin2 then 1/K

if Nmin2 < x ≤ Nmin3 then 2/K
...
if NminK−1 < x ≤ NminK then 1

. (14)
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Abstract: The screening method proposed by Morris (1991) and recently improved by 
Campolongo et al. (2003) is very effective to screen a subset of few important input factors 
among a large number contained in a model. In this work the enhanced Morris method is first 
confronted with the variance based methods and then employed to assess the sensitivity of a 
financial model for option pricing. 
Keywords: sensitivity analysis, screening designs, Morris method, variance based sensitivity 
indices, the Heston model, option pricing. 

 

1. INTRODUCTION 
 

A sensitivity analysis method widely used to screen factors in models of large 
dimensionality is the design proposed by Morris [1]. The Morris method deals efficiently with 
models containing hundreds of input factors without relying on strict assumptions about the 
model, such as for instance additivity or monotonicity of the model input-output relationship.  

The Morris method is simple to understand and implement, and its results are easily 
interpreted. Furthermore it is economic in the sense that it requires a number of model 
evaluations that is linear in the number of model factors. The method can be regarded as 
global as the final measure is obtained by averaging a number of local measures (the 
elementary effects), computed at different points of the input space.  

In very recent work [2] Campolongo and coworkers proposed an improved version of the 
Morris measure µ, denoted as µ*, which is more effective in ranking factors in order of 
importance. Furthermore, they extended to the Morris measure a desirable property of the 
variance based methods: the capability to treat group of factors as if they were single factors.  

Here we extend the study in [2] by testing the performance of µ and µ* by groups on an 
analytical test function recently proposed by O’Hagan [3]. Results of the enhanced Morris 
method are also compared with those obtained by making use of the variance based sensitivity 
measures. The motivation for this comparison lies in the present trend that sees the variance 
based methods as particularly apt to sensitivity analysis, because of their desirable properties 
in terms of model independence, global nature, ease of interpretation and others [4]. At the 
same time the method of Morris is considerably cheaper than the variance based methods in 
terms of model evaluation, hence the interest in this comparison.   
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Results confirm that the Morris method, in its new version µ*, is as efficient as the 
variance based techniques in identifying irrelevant factors, i.e. those factors that can be fixed 
at any given value within their range of uncertainty without significantly affecting the total 
output variance. Hence, it is recommendable as a valid alternative to the variance based when 
the problem is such that the cost of the variance based techniques is too high.  

A theoretical link between the Morris and the variance based measures is also argued for 
by expressing the measure µ* in terms of conditional variances.  

Section 4 of this work is dedicated to an application of the enhanced Morris method to a 
real test case, a financial model here used to price a European call option. Results of the 
sensitivity analysis confirm the good quality of the model and encourage to extend its use to 
more delicate problems such those of pricing exotic options. 

 

2. METHODOLOGY  

2.1. The Morris method and its improved version 
 

The experimental plan proposed by Morris is composed of individually randomized 'one-
factor-at-a-time' experiments: the impact of changing one factor at a time is evaluated in turn. 
Each input factor may assume a discrete number of values, called levels, which are chosen 
within the factor range of variation.  

The sensitivity measures proposed in the original work of Morris [1] are based on what is 
called an elementary effect. The elementary effect for the ith input is defined as follows. Let ∆  
be a predetermined multiple of 1/(p-1). For a given value of x, the elementary effect of the ith 
input factor is defined as 

∆
−∆+

= +− )]x(),..,,,,..,([)x( yxxxxxyEE kiii
i

111  

where ),...,,(x kxxx 21=  is any selected value in Ω such that the transformed point (x + 

ie ∆), where ie  is a vector of zeros but with a unit as its ith component, is still in Ω for each 
index i=1,..,k. The finite distribution of elementary effects associated with the ith input factor, 
is obtained by randomly sampling different x from Ω, and is denoted by iF . 

In Morris [1], two sensitivity measures were proposed for each factor: µ, an estimate of 
the mean of the distribution iF , and σ, an estimate of the standard deviation of iF . A high 
value of µ indicates an input factor with an important overall influence on the output. A high 
value of σ indicates a factor involved in interaction with other factors or whose effect is non-
linear. Here we consider a third sensitivity measure, µ*, which is an estimate of the mean of 
the distribution (here denoted as iG ) of the absolute values of the elementary effects  [2].  

We believe that µ* is better than µ to rank factors in order of importance. The reason is 
that if the distribution iF  contains elements of opposite sign, which occurs when the model is 
non-monotonic, when computing its mean some effects may cancel each other out. Thus a 
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factor which is important but whose effect on the output has an oscillating sign may be 
erroneously considered as negligible, thus generating a mostly undesirable Type II error.  

The performance of µ* is tested on the analytical function presented in Section 3 and 
compared with that of the variance based methods described in the following subsection.  

2.2. The variance based measures 
 

Variance based methods choose as a measure of the main effect of a factor iX  on the 

output, an estimation of quantity 
( )( )
)(YV

XYEV iX ii −X , which is known in the literature as the 

“first order effect” of iX  on Y , and denoted by iS . Reasons for this choice are detailed in 
[4]. 

Another sensitivity measured based on the variance decomposition is the total sensitivity 
index, 

iTS . The total index is defined as the sum of all effects involving the factor iX . TiS  is 

estimated by the quantity 
( )( )
)(YV

YVE iXii −−
XX .  

The total index is the appropriate measure when the problem is that of Factors Fixing [4], 
i.e. that of identifying those factors that can be fixed to any given value within their range of 
variation because they are non influent on the total output variance. A necessary and sufficient 
condition for factor iX  to be totally non- influent is that 0=TiS . In fact, if factor iX  is totally 
non- influent, then all the variance is due to i−X , and fixing this vector results in 

( ) 0=
−iX YV

i
X , as well as in ( )( ) 0=

−− iX YVE
ii

XX . The reverse is also true: if ( ) 0=
−iX YV

i
X  

at all fixed points in the space of i−X , then iX  is non- influent, so that 0≡TiS . 

Variance based techniques have several desirable properties. They are “model free”, in the 
sense of independent from assumptions about the model such as linearity, additivity and so 
on. They are global, i.e. they explore the entire interval of definition of each factor and the 
effect of each factor is taken as an average over the possible values of the other factors. They 
are usually quantitative, which is they can tell how much factor a is more important than 
factor b. They are able to treat grouped factors as if they were single factors, a property of 
synthesis that may be essential for the agility of the interpretation of the results.   

The main drawback of the variance based measures is their computational cost, as they 
require a number of model evaluation such as )( 2+× kN  where k is the number of input 
factors and N is of the order of N = 500, 5000…, [4] which in some instances may result to be 
unaffordable. Note that this number can be lowered considerably if one desires to compute 
only the first order sensitivity indices, as shown by Ratto et al. [6]. Design based strategies to 
estimate sensitivity indices at low sample size are also proposed in [3].  

In this work it is shown that the improved Morris measure represents a valid alternative to 
the variance based one when the aim of the analysis is that of screening few important factors 
among a large number, and the cost of applying variance based techniques would be 
excessive. 
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3. TESTING THE METHOD 
 

In this Section we propose to test the performance of µ* and that of the Morris strategy 
extended for groups on the analytical function recently proposed by Oakley and O’Hagan [3].  

The test function is the following: 

Mxxxaxaxax TTTT +++= )sin()cos()( 321η  

where x is a fifteen dimensional input vector while a1, a2, a3 and M are respectively three 
(1×15) row vectors and a (15×15)  matrix of parameters (Table 1). The unknown input factors 
are assumed to be independent and to follow a normal distribution N(0,1). In [3] the emphasis 
in on computing first order sensitivity measures, and the test case is designed to have three 
groups of factors, with respectively high ( 1511 xx − ), medium ( 106 xx − ) and low ( 51 xx − ) 
values of iS . 

Table 1: Parameters of the analytical function proposed by O’Hagan. 

 

The total variance of the output can be computed analytically and decomposed as the sum 
of first and second order effects: 

nd

i
i VVV 2+= ∑  
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where ( )•E  indicates the mean operator. All the terms of higher order are zero. 

a1 a2 a3 M
0.01 0.43 0.10 -0.02 -0.19 0.13 0.37 0.17 0.14 -0.44 -0.08 0.71 -0.44 0.50 -0.02 -0.05 0.22 0.06
0.05 0.09 0.21 0.26 0.05 0.26 0.24 -0.59 -0.08 -0.29 0.42 0.50 0.08 -0.11 0.03 -0.14 -0.03 -0.22
0.23 0.05 0.08 -0.06 0.20 0.10 -0.29 -0.14 0.22 0.15 0.29 0.23 -0.32 -0.29 -0.21 0.43 0.02 0.04
0.04 0.32 0.27 0.66 0.43 0.30 -0.16 -0.31 -0.39 0.18 0.06 0.17 0.13 -0.35 0.25 -0.02 0.36 -0.33
0.12 0.15 0.13 -0.12 0.12 0.11 0.05 -0.22 0.19 -0.07 0.02 -0.10 0.19 0.33 0.31 -0.08 -0.25 0.37
0.39 1.04 0.75 -0.28 -0.33 -0.10 -0.22 -0.14 -0.14 -0.12 0.22 -0.03 -0.52 0.02 0.04 0.36 0.31 0.05
0.39 0.99 0.86 -0.08 0.004 0.89 -0.27 -0.08 -0.04 -0.19 -0.36 -0.17 0.09 0.40 -0.06 0.14 0.21 -0.01
0.61 0.97 1.03 -0.09 0.59 0.03 -0.03 -0.24 -0.10 0.03 0.10 -0.34 0.01 -0.61 0.08 0.89 0.14 0.15
0.62 0.90 0.84 -0.13 0.53 0.13 0.05 0.58 0.37 0.11 -0.29 -0.57 0.46 -0.09 0.14 -0.39 -0.45 -0.15
0.40 0.81 0.80 0.06 -0.32 0.09 0.07 -0.57 0.53 0.24 -0.01 0.07 0.08 -0.13 0.23 0.14 -0.45 -0.56
1.07 1.84 2.21 0.66 0.35 0.14 0.52 -0.28 -0.16 -0.07 -0.20 0.07 0.23 -0.04 -0.16 0.22 0.00 -0.09
1.15 2.47 2.04 0.32 -0.03 0.13 0.13 0.05 -0.17 0.18 0.06 -0.18 -0.31 -0.25 0.03 -0.43 -0.62 -0.03
0.79 2.39 2.40 -0.29 0.03 0.03 -0.12 0.03 -0.34 -0.41 0.05 -0.27 -0.03 0.41 0.27 0.16 -0.19 0.02
1.12 2.00 2.05 -0.24 -0.44 0.01 0.25 0.07 0.25 0.17 0.01 0.25 -0.15 -0.08 0.37 -0.30 0.11 -0.76
1.20 2.26 1.98 0.04 -0.26 0.46 -0.36 -0.95 -0.17 0.003 0.05 0.23 0.38 0.46 -0.19 0.01 0.17 0.16
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Table 2 shows the rank of importance for the 15 input factors according to the revised 
Morris measure µ* and to the Sobol’ total effect index. The analytical values of the total 
effects are also reported. The total number of model evaluations needed to estimate each set 
of measures is reported in the first row. Results confirm that, with just 1024 model 
evaluations, the Morris revised measure is capable of identifying the subset of important 
factors ( 1511 xx − ). Note that when the total sensitivity indices are used, the factors end up 
partitioned in just two sets, that of the most influential factors ( 1511 xx − ), and that of the less 
influential ones (all others). Strictly speaking, none of the input factors of this test case can be 
fixed unless a rather high threshold is imposed. The least important factor’s bottom marginal 
variance is in fact as high as 2.6 %. Four factors could be fixed if the threshold were 5%, 
while ten could be fixed if the threshold were 10%.        
 

Table 2: Sensitivity analysis results for the test function in [3]. The analytical values of the 
total indices are reported together with the Sobol’ estimates. The correspondent ranks are 
compared with that obtained through the Morris experiment. 

Factor
ST(i) 

Analytics
ST(i) 

N=65563
Analytics 

Rank 
ST(i)  Rank 

N=65563

Morris 
Rank 

N=1024
X1 0.059 0.034 9 11 8
X2 0.063 0.032 8 12 9
X3 0.036 0.026 13 14 12
X4 0.055 0.035 11 10 10
X5 0.026 0.01 15 15 15
X6 0.041 0.038 12 9 13
X7 0.058 0.047 10 8 11
X8 0.082 0.067 7 7 7
X9 0.097 0.073 6 6 5
X10 0.036 0.027 14 13 14
X11 0.151 0.14 2 5 3
X12 0.148 0.172 3 2 2
X13 0.142 0.152 4 3 4
X14 0.141 0.143 5 4 6
X15 0.155 0.175 1 1 1

 

4. THE FINANCIAL PROBLEM 
 

The problem is that of pricing a European call option. Different scenarios are assumed, 
corresponding to different possible strike prices and times to maturity. The dynamic of the 
underlying stock price is modeled according to the Heston Stochastic Volatility model 
(HEST, [5]), where the stock price follows the Black-Scholes stochastic differential equation 
SDE in which the volatility behaves stochastically over time: 

tt
t dWdtqr

dt
d

σ+−= )(S
  00 ≥S . 

The (squared) volatility follows the Cox-Ingersoll-Ross process: 
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tttt Wddtkd ~)( θσσησ +−= 22   00 ≥σ , 

where },{ 0≥= tWW t  and },~{~
0≥= tWW t  are two correlated standard Brownian motions 

such that dtWddWCov tt ρ=]~,[ .  
Here we also consider an extension of the HEST model that introduces jumps in the asset 
price [5]. Jumps here are assumed to occur as a Poisson process and the percentage jump-
sizes are log-normally distributed. 

In the Heston Stochastic Volatility model with jumps (HESJ), the SDE of the stock price 
process is extended to yield: 

ttttJ
t ddWdtqr

dt
d

NJ
S

++−−= σλµ )(   00 ≥S , 

where },{ 0NN ≥= tt  is an independent Poisson process with intensity parameter 0>λ , i.e. 
tE t λ=][N . tJ is the percentage jump size (conditional on a jump occurring) that is assumed 

to be log-normally, identically and independently distributed over time, with unconditional 
mean Jµ . The standard deviation of )tJ1log( +  is Jσ : 














−++ 2

2

2
1logNJ1log J

J
jt σ

σ
µ ,)(~)( . 

The SDE of (squared) volatility process remains unchanged. tJ  and N are assumed to be 
independent, as well as of W and of ~ W. 
Sensitivity analysis is performed first on the HEST model and then on its extended version 
with jumps HESJ. For HEST the input variables considered in the analysis are 0σ , θη   ,  ,k  
and ρ. In the case where jumps are present JJ σµλ ,,  are added. The initial condition for the 
underlying price S0 is fixed at 100, while the interest rate r and the dividend yields q of the 
stock are respectively at 1.9% and 1.2%. The distributions chosen for the inputs are listed in 
Table 3. Both the Morris measure µ* and the total sensitivity indices 

iTS are computed for the 

input factors in 42 different scenarios, a scenario being determined by a different value of the 
option strike price and of the time to maturity. 
 
Table 3: Distributions for the inputs of the HEST and HESJ models.  

Input Distribution Minimum Maximum Input Distribution Minimum Maximum 

0σ  Uniform 0.04 0.09 ρ Uniform -1 0 

κ Uniform 0 1 λ Uniform 0 2 

η Uniform 0.04 0.09 µj Uniform -0.1 0.1 

θ Uniform 0.2 0.5 σj Uniform 0 0.2 

 
Tables 4 and 5 show the ranking of the input factors obtained according to the two 

measures for the two versions of the model, HEST and HESJ, in some of the scenarios. For 
the variance based method, which is a quantitative method (as each index represent the 
fraction of the output variance due to the effect of that factor), we also reported values of the 
indices. The total number of model executions for the total sensitivity indices is 20480. For 
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the Morris experiment four levels are considered and 60 model executions performed to 
obtain the distribution of elementary effects for each input. The variance based method has 
also been repeated doubling the sample size to verify the convergence of the obtained 
sensitivity ind ices. Results confirm that the sample size 20480 can be considered sufficient for 
the estimation of the indices. 
 

Table 4: Sensitivity analysis results of the HEST model for six selected scenarios 

 ST(i) 
N=14336 

ST(i) 
Rank 

N=14336 

Morris 
Rank 
N=60 

ST(i) 
N=14336 

ST(i) 
Rank 

N=14336 

Morris 
Rank 
N=60 

ST(i) 
N=14336 

ST(i) 
Rank 

N=14336 

Morris 
Rank 
N=60 

 Strike = 80 Strike = 100 Strike = 120 
 Time to maturity = 1y 
σ0 0.742 1 1 0.821 1 1 0.411 2 2 

κ 0.026 4 5 0.050 4 4 0.033 5 5 

η 0.055 3 3 0.075 3 3 0.045 4 4 

θ 0.013 5 4 0.084 2 2 0.110 3 3 

ρ 0.194 2 2 0.009 5 5 0.448 1 1 

 Time to maturity = 3y 
σ0 0.493 1 1 0.348 1 1 0.201 3 2 

κ 0.158 3 3 0.273 2 2 0.231 2 3 

η 0.362 2 2 0.267 3 3 0.182 4 4 

θ 0.065 4 4 0.165 4 4 0.149 5 5 

ρ 0.042 5 5 0.049 5 5 0.324 1 1 

 

Table 5: Sensitivity analysis results of the HESJ model for six selected scenarios. 
 ST(i) 

N=2080 
ST(i) 
Rank 

N=2080 

Morris 
Rank 
N=90 

ST(i) 
N=2080 

ST(i) 
Rank 

N=2080 

Morris 
Rank 
N=90 

ST(i) 
N=2080 

ST(i) 
Rank 

N=2080 

Morris 
Rank 
N=90 

 Strike = 80 Strike = 100 Strike = 120 
 Time to maturity = 1y 
σ0 0.342 2 3 0.317 2 3 0.191 3 3 

κ 0.012 7 6 0.019 7 7 0.013 8 8 

η 0.025 6 5 0.028 6 5 0.018 7 7 

θ  0.001 8 8 0.034 4 4 0.055 5 5 

ρ 0.060 4 4 0.010 8 8 0.151 4 4 

λ 0.264 3 1 0.308 3 1 0.297 2 1 

µj 0.040 5 7 0.030 5 6 0.044 6 6 

σj 0.366 1 2 0.379 1 2 0.369 1 2 

 Time to maturity = 3y 
σ0 0.166 3 3 0.125 3 3 0.086 4 5 

κ 0.061 5 5 0.092 5 6 0.084 5 7 

η 0.120 4 4 0.097 4 4 0.076 6 6 
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θ  0.028 7 6 0.060 6 5 0.065 7 4 

ρ 0.007 8 8 0.032 7 7 0.118 3 3 

λ 0.314 2 1 0.316 2 1 0.307 2 1 

µj 0.031 6 7 0.030 8 8 0.032 8 8 

σj 0.424 1 2 0.404 1 2 0.388 1 2 

 

From both Tables it emerges that the rankings obtained with µ* and with TiS are very 
similar in each of the scenarios, and in some cases even identical (especially for the HEST 
model), confirming reliability of the results.  

The few cases where Morris inverts the ranking of two factors are those where their 
sensitivity indices values are very similar. In the worst case (in all 84 simulations we 
performed) the Morris design inverts 2 factors whose difference in the total indices represents 
nearly 18% of the total output variance. In general Morris can be considered successful in its 
goal of screening a subset of factors that can be fixed, as it never confounds groups of 
important and unimportant factors. If a factor is high ranked according to TiS  it is also high 
ranked for Morris and vice versa.  

The Morris method has the great advantage of a low computational cost. However, as a 
drawback it is not quantitative; the value of its measures can only be used to rank factors but 
cannot be interpreted as percentages of output variance. For this reason the TiS  indices are 
used for analyzing the behavior of each input factors in different scenarios for example in the 
case of absence of jumps (Fig.1). In Figure 1 each dot refers to a scenario. The dot size 
highlights the importance of the factor in that scenario. The following conclusions can be 
drawn from the Figure: 

- The three model parameters θη ,,k  are not very relevant at low times to maturity, but 
their importance increases with increasing the time horizon. 

- The initial condition 0σ  is the most important factor when the time to maturity is rather 
small and its importance decreases with time. 

- The correlation ρ is also an influential parameter, especially when the option is not at-
the-money. 

When jumps are present the same conclusions can be drawn. Moreover the overall 
influence on the model outcomes of the three parameters related to jumps is relatively high, 
confirming the importance of the jumps inclusion. In particular, results show that λ and jσ  
are very much influential at all time horizons and strike prices (they are always among the 
three most important factors). 

We also applied the Morris method to work with groups. Four groups were considered: 
the group of model parameters ( θη ,,k ) relative to modeling the stochastic volatility; the 
initial condition 0σ , the group of model parameters ( JJ σµλ ,, ) relative to jumps; and the 
correlation ρ. Results are plotted in Figure 2. In the plots the relative importance of the four 
groups is shown for all the considered scenarios. The total number of model evaluations for 
each scenario is N=50  

The group of the jumps’ parameters results to be always the most important, while the 
influence of 0σ and ρ  depends upon the scenario characteristics. As expected, the group 
( θη ,,k ) is negligible at low times to maturity, but its importance increases with time horizon. 
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Figure 1: TiS  results for the HEST model. The differences in the size of the dots represent the 
differences in the importance of the fixed input factors in all the considered scenarios. 
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Figure 2: Screening results obtained through the Morris method for the HESJ model. 50 is 
total number of model evaluations for the Morris experiments. The bars plot the Morris 
revised µ∗, which can be used to screen the negligible factors in the model. 
 

5. CONCLUSIONS 
In this work we have confirmed the capability of the sensitivity measure µ*, an improved 

version of the Morris measure introduced by Campolongo et al. [2], to distinguish between 
important and negligible model input factors at low computational cost. Also the updated 
measure has proved to be effective when factors are grouped.  

Results of sensitivity analysis on the Heston model for pricing European option has 
allowed to concluding that jumps play a major role in determining the option price, thus 
stressing the need of including them in the model formulation. Furthermore results have 
underlined that, as expectable, at low time to maturity the initial condition for volatility needs 
to be accurately determined as the resulting option price is highly affected by its value. Its 
importance decreases as the time to maturity increases. Finally, it emerged that the correlation 
between the two Brownian motions needs to be carefully defined, especially when the option 
is not at the money, while the other model parameters are less important. 

 

REFERENCES 
1. M. D. Morris Factorial Sampling Plans for Preliminary Computational Experiments, 

Technometrics, 33, 161-174, 1991. 
2. F. Campolongo, J. Cariboni, and A. Saltelli. Sensitivity analysis: the Morris method versus the 

variance based measures. Submitted to Technometrics, 2003. 

Morris µ∗ , t=1.5 y

0

2

4

6

8

10

12

70 80 90 100 110 120 130

Strike

M
or

ri
s ∠

◊ volatility

v0
rho
jumps

Morris µ∗ , t=2 y

0

2

4

6

8

10

12

70 80 90 100 110 120 130

Strike

M
or

ri
s ∠

◊ volatility
v0
rho

jumps

Morris µ∗ , t=3 y

0

2

4

6

8

10

12

70 80 90 100 110 120 130

Strike

M
or

ri
s ∠

*

volatility

v0
rho
jumps

Morris µ∗, t=2.5 y

0

2

4

6

8

10

12

70 80 90 100 110 120 130

Strike

M
or

ri
s ∠

*

volatility

v0
rho
jumps

378



3. J. Oakley, and A. O'Hagan. Research Report No. 525/02 Department of Probability and Statistics, 
University of Sheffield. http://www.shef.ac.uk/st1jeo/#_Papers. Submitted to Journal of the Royal 
Statistical Society, Series B, 2003. 

4. A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice. A Guide 
to Assessing Scientific Models. John Wiley & Sons publishers, Probability and Statistics series, to 
appear March 2004. 

5. W. Schoutens, E. Simons, J. Tistaert. A Perfect calibration! Now What?  2003 
6. M. Ratto ,  S. Tarantola, A. Saltelli, P. C. Young Accelerated estimation of sensitivity indices using 

state dependent parameter models, SAMO 2004 
 

379



Initial Evaluation of Pure and “Latinized” Centroidal Voronoi Tessellation
for Non-Uniform Statistical Sampling*
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Abstract

A recently developed Centroidal Voronoi Tessellation (CVT) sampling method is investigated here to
assess its suitability for use in statistical sampling applications. CVT efficiently generates a highly uni-
form distribution of sample points over arbitrarily shaped M-Dimensional parameter spaces. On sev-
eral 2-D test problems CVT has recently been found to provide exceedingly effective and efficient
point distributions for response surface generation. Additionally, for statistical function integration and
estimation of response statistics associated with uniformly distributed random-variable inputs (uncor-
related), CVT has been found in initial investigations to provide superior points sets when compared
against Latin-Hypercube and Simple-Random Monte Carlo methods and Halton and Hammersley
quasi-Monte-Carlo sequence methods. In this paper, the performance of all these sampling methods
and a new variant (“Latinized” CVT) are further compared for non-uniform input distributions. Spe-
cifically, given uncorrelated normal inputs in a 2-D test problem, statistical sampling efficiencies are
compared for resolving various statistics of response: mean, variance, and exceedence probabilities.

Keywords: Centroidal Voronoi tessellation, statistical sampling methods, uncertainty propagation

1. INTRODUCTION AND BACKGROUND

It is often beneficial in statistical sampling and function integration to sample "uniformly" over the
applicable parameter space. Such uniformity, while conceptually simple and intuitive on a qualitative
level, is on a quantitative level somewhat complicated to describe and characterize mathematically.
Quantitative aspects of uniformity involve: 1) the equality with which points are spaced relative to one
another in the parameter space (are they all nominally the same distance from one another?); 2) uni-
formity of point density over the entire domain of the parameter space (i.e., uniform "coverage" of the
whole domain by the set of points, and not just good uniformity within certain regions of the space);
and 3) isotropy in the point placement pattern. Each of these aspects of uniformity can be quantified
by several mathematical measures as described in reference [2]. We will not discuss these measures
further here, but mention them to indicate that quantitative measures do exist for the notion of unifor-
mity.

____________________________________________
*This paper is declared a work of the United States Government and is not subject to copyright protection in the U.S.
§corresponding author email contact: vjromer@sandia.gov
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We find that for 2-D data sets the eye is an excellent integrator of the different aspects of
uniformity listed above. The intuitive sense of uniformity obtained from viewing sample sets in
a unit square (2-D hypercube) usually correlates very strongly with the quantitative measures.
Thus, for 2-D data sets like the ones we present later, fairly accurate visual judgements can be
made about whether one particular layout of sample points is mathematically more uniform than
another, or whether the uniformity varies significantly over the parameter space.

Achieving high sampling uniformity over generic domains is an area of active research.
Much effort has been applied to the problem of achieving uniform placement of N samples over
M-dimensional hypercubes, where M and N are both arbitrary. It is well recognized that Simple-
Random sampling (SRS) Monte Carlo does not do a particularly good job of uniformly spread-
ing out the sample points. The popular Latin Hypercube Sampling (LHS) method ([5]) generally
does a much better job of uniformly spreading out the points. This is due to the greater sampling
regularity over each individual parameter dimension before the individually generated parame-
ter values are randomly combined into parameter sets which define the coordinates of the sam-
pling points.

Recent efforts to modify LHS to get an even more uniform distribution of points over the
parameter space have included Distributed Hypercube Sampling (DHS, [12]) and Improved
[Distributed] Hypercube Sampling (IHS, [1]). The fundamentals and history of these are re-
viewed briefly in [18]. Though the quantitative measure of uniformity used for comparisons in
[1] and [12] was somewhat flawed, it does appear that DHS gives better sampling uniformity
than LHS, and IHS gives better sampling uniformity than DHS (but is increasingly more com-
putationally expensive as the dimensionality of the parameter space increases). We have recent-
ly become aware of another LHS variant, “Optimal Symmetric LHS” (OSLHS, [21]) which also
seems to improve the spatial uniformity of LHS samples. Its computational cost and perfor-
mance relative to DHS and IHS are not yet known, however.

A number of other potential approaches for achieving uniform point placement that are not
evolved from an LHS basis are reviewed (and some new ones are presented) in [7]. There, some
quantitative metrics related to visual/sensory perception of point uniformity in 2-D are reviewed
and some new ones are presented. Many of these non-LHS-based approaches appear to work
very well in 2-D, but it is said in [7] that some of the methods may not be applicable or may not
perform well in more than two dimensions, and some clearly will not scale up to high dimen-
sions affordably. Others seem more promising for high dimensions, but have not yet been inves-
tigated enough.

The so-called “Quasi- Monte Carlo” (QMC, see e.g. [14]) sub-random low-discrepancy se-
quence methods can often achieve reasonably uniform sample placement in hypercubes. The
strength of these sequence methods (Halton, Hammersley, Sobol, etc.), is that they can produce
fairly uniform point distributions even though samples are added one at a time to the parameter
space. The one-at-a-time incremental sampling of QMC (and SRS) enables these methods to
have better efficiency prospects than CVT and LHS-type methods in the area of error estimation
and control. Not only this, the results achieved are often quite good. For resolving the mean and
standard deviation of response measures, Hammersley sequences were found in [11] to con-
verge to within 1% of exact results 3 to 100 times faster than LHS over a large range of test prob-
lems. For resolving response probabilities, Hammersley and modified-Halton were found in
[15] to perform roughly the same as LHS on balance over several test problems.
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However, when the hyperspace dimension becomes moderate to large and/or the sampling
density becomes high, some (perhaps all?) sequences suffer from spurious correlation of the
samples. This is shown for standard Halton sequences in 16-D (ref. [12]) and 40-D (ref. [15]).
Sometimes a modification can be found to suppress or delay the onset of spurious correlation –
as a fix from the literature implemented in [15] shows for Halton sequences.

Recently, a long-recognized approach for achieving uniformity of point placement in M-di-
mensional volumes, called “Centroidal Voronoi Tessellation” (CVT), has been made compu-
tationally efficient ([10]) for implementing the principles of Centroidal Voronoi diagrams
([6],[13]). These diagrams subdivide arbitrarily shaped domains in arbitrary-dimensional space
into arbitrary numbers of nearly uniform subvolumes, or Voronoi cells/regions. Given a set of
N points {zi} (i=1,...,N) in an M-dimensional hypercube, the Voronoi region or Voronoi cell Vj
(j=1,...,N) corresponding to zj is defined to be all points in the hypercube that are closer to zj than
to any of the other zi’s. The set {Vi} (i=1,...,N) is called a Voronoi tessellation or Voronoi dia-
gram of the hypercube, the set {zi} (i=1,...,N) being the generating points or generators. A cen-
troidal Voronoi tessellation (CVT) is a special Voronoi tessellation with the property that each
generating point zi is itself the mass centroid of the corresponding Voronoi region Vi.

Although CVTs are deterministic, they can be converged to with probabilistic sampling
methods. In [10], new probabilistic CVT construction algorithms were introduced, implement-
ed, and tested. These methods are generally much more computationally efficient than previous
deterministic and probabilistic methods for constructing CVTs.

The CVT concept and the algorithms in [10] for their construction can be generalized in
many ways (see [3] for details). For example, instead of a hypercube, general regions in M-di-
mensional space can be treated. This feature has been exploited with great success (see [6]) for
discretizing arbitrary 2-D and 3-D domain volumes for computational mechanics analysis with
meshless analogues of finite element methods. Furthermore, points can be distributed non-uni-
formly according to a prescribed density function over the space (like the bi-normal density
function that Figure 7 corresponds to).

In initial investigations ([2]) for 2-D, 7-D, and 20-D test cases, CVT has provided greater
sampling uniformity than Halton, Hammersley, Sobol, SRS, LHS, DHS, and IHS according to
a meaningful subset of non-flawed quantitative quality measures. Additionally, no degradation
of sampling uniformity has been detected in higher dimensions (i.e., for the 20-D case).

It is therefore natural to ask whether CVT can be applied for: A) statistical sampling over
arbitrary-dimensional spaces of input random variables to calculate various statistics of output
response behavior; B) function integration over arbitrarily shaped domains; and C) whether it
can serve as a method for generating favorable point distributions for improved response-sur-
face accuracy.

A preliminary positive indication regarding item C) for response surface generation is pre-
sented in [18]. There, CVT was shown on several 2-D test problems to provide superior point
distributions for generating locally-conforming Moving Least Squares response surfaces. Point
distributions by CVT, SRS, LHS, and a structured sampling method with deterministically uni-
form point placement ([17]) were tried in the study.

Reference [19] compared the above sampling methods for sampling performance in 2-D test
problems of statistical function integration and estimation of response statistics associated with
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uniformly distributed random-variable inputs (uncorrelated). By the same weighted measure of
sampling effectiveness defined and used in Section 3.3 of this paper, CVT handily outperformed
SRS, LHS, Halton, and Hammersley in resolving various statistics of response: mean, variance,
and exceedence probabilities.

In this paper we take a first step toward examining the potential of CVT for improved sta-
tistical sampling given non-uniform inputs. Specifically, the performance of the above sampling
methods and a new CVT variant (“Latinized” CVT) are compared for non-uniform uncorrelated
input distributions in a 2-D test problem. Statistical sampling efficiencies are compared for cal-
culating response mean, variance, and exceedence probabilities.

2. UNIFORMLY DISTRIBUTED TEST POINT-SETS AND THEIR MAPPING TO BINORMAL JOINT

DENSITIES

Figure 1 shows three LHS and three corresponding CVT point sets for 100 samples in a 2D
unit hypercube. The three LHS point sets were generated with the software [9] for different ini-
tial seeds (Seed1 = 123456789, Seed2 = 192837465, Seed3 = 987654321) and a uniform joint
probability density function (JPDF) over the unit-square parameter space. The three corre-
sponding CVT point sets were generated with the software [4] by using the LHS sets as initial
conditions (starting point locations) from which the CVT iterations begin. In all cases each CVT
set is much more uniform visually (and quantitatively, see [2]) than its associated LHS set. All
three CVT sets are relatively similar visually and quantitatively, even though starting from three
very different initial conditions given by the LHS sets.

The LHS sets exhibit significantly more clustering and non-uniformity of the points than the
CVT sets. For a visual indicator of sampling uniformity, Figure 5 compares a 25-sample LHS
set and a 25-sample CVT set started from the LHS set. Non-overlapping circles are drawn in
each domain, where each sample point has a circle centered about it having a radius proportional
to the distance from the point to its nearest neighbor. The surrounding circles for the CVT set
are all fairly uniform in size, whereas the variance in circle size is very large for the LHS set.
Thus, the LHS point sets are relatively non-uniform in their “coverage” of the domain.

Besides the three LHS sets and three corresponding CVT sets shown in Figure 1, three SRS
sets generated from initial seeds 1, 2, and 3 will also be tested here. These point sets can be seen
in reference [18]. They exhibit even less uniformity than the LHS sets in Figure 1. Three CVT
sets derived from the three different SRS sets as initial conditions can also be seen in [18]. The
different LHS and SRS initial conditions do not have much of an impact on final CVT point uni-
formity, so the CVT algorithms appear to be robust in this regard.

Figures 2 and 3 show Halton and Hammersley point sets and the corresponding CVT sets
derived from them. Again, the resulting CVT sets are of essentially equivalent uniformity. The
Halton point set is noticeable and quantitatively more uniform than any of the LHS sets; the
Hammersley set is even more uniform than the Halton set; and the CVT sets in Figures 1, 2, and
3 are even more uniform than the Hammersley set.

In reference [19] we compared the mentioned point sets for effectiveness in 2-D test prob-
lems of statistical function integration and estimation of response statistics for the case of uni-
formly distributed input random variables (uncorrelated). The CVT point sets performed best,
as will be summarized in Section 4 of this paper. In this paper we focus on comparing the per-
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Level 4 Level 6

Figure 1. 100-point sample sets on a 2-D unit hypercube for: A) Left Column– uniform JPDF
LHS Monte Carlo with three different initial seeds; and B) Right Column–
corresponding uniform JPDF CVT sets starting from LHS sets as initial conditions.

LHS2 point set (from seed 2) CVT-LHS2 point set (from LHS2)

LHS3 point set (from seed 3) CVT-LHS3 point set (from LHS3)

LHS1 point set (from seed 1) CVT-LHS1 point set (from LHS1)
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formance of the above sampling methods and a new CVT variant (“Latinized” CVT, see [2]) as
starting sets for mapped non-uniform point distributions intended to reflect a JPDF of uncorre-
lated normal inputs.

Our 2-D test problem has two random inputs p1 and p2 from independent normal distribu-
tions having means 0.5 and standard deviations =0.5/3. The corresponding JPDF is shown in
Figure 4 after truncation of the function beyond the unit p1-p2 parameter space and renormal-
ization to integrate to one over the space.

The following procedure is used to map a set of uniformly distributed points to a set that
reflects the desired non-uniform JPDF. First, for each random variable p in the problem, we con-
sider its cumulative distribution function CDF(p), where

Figure 2. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Halton QMC sequence;
B) Right plot– corresponding CVT set starting from the Halton set as initial
conditions.

Figure 3. 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Hammersley QMC sequence;
B) Right plot– corresponding CVT set starting from the Hammersley set as initial
conditions.

σ
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EQ 1

and PDF(p) is the probability density function of the random input p. We note that the value of
the CDF ranges from 0 to 1 as the coordinate p ranges from 0 to 1 over our unit hypercube
domain. It can also be shown that realizations {pi} drawn at random from a density function
PDF(p) map through EQ 1 (setting p=pi) into a uniformly distributed set of realizations
{CDF(pi)}. This set is therefore distributed uniformly between 0 and 1.

Hence, we recognize that the above properties can be used to inverse-map numbers uniform-
ly distributed between 0 and 1 (produced, e.g., by a random number generator), into realizations
{pi} that would appear to be drawn from the density function PDF(p). In a multidimensional
problem, we inverse-map the coordinates of points uniformly distributed in the hypercube into
transformed point sets that reflect the individual or “marginal” PDFs of the random inputs con-
tributing to the Joint PDF. Figure 5 helps visualize the multidimensional mapping process. The
tick marks on the coordinate axes indicate the projections of the points onto the coordinate axes.
The (hopefully) uniformly distributed tick marks ranging from 0 to 1 on each coordinate axis
give the random values that are inverse-mapped through the marginal CDFs into transformed
tick locations ranging from 0 to 1 on the coordinate axes of the JPDF space. Thus, uniformly
distributed points in a unit hypercube are transformed to new locations in the unit hypercube.
The transformed coordinate sets define point locations distributed according to the target JPDF.
(Our transformation algorithm for mapping uncorrelated uniformly distributed points sets to bi-
normally distributed point sets was verified as described in Section 3.2.) Correlation between
random variables can be imparted with the rank correlation procedure described in [8].

Figure 4. Joint Probability Density Function describing the random variables in
the problem: normally distributed parameters p1 and p2 with means
0.5, std. deviations =0.167, and truncation of the unit square
parameter space at 3  above and below the mean values.
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The mapping transformation presupposes a point set in an M-dimensional unit hypercube
with point locations that project with uniform spacing onto all coordinate axes. However, con-
sider the point sets in Figure 5. Though the CVT set is more uniform volumetrically than the
LHS set, the LHS points clearly project more uniformly onto the coordinate axes. The projec-
tions of the CVT points occur in clusters that portray a “banded” distribution over the 0 to 1
range on each axis, as opposed to the desired uniform distribution. In the limit of a perfectly
volumetrically uniform distribution of points over the domain, say a 5x5 rectangular array of
points on the unit square, the points would project onto the coordinate axes making 5 uniformly
spaced tick marks. These marks would inverse map through the marginal CDFs into only 5 dif-
ferent values or samples of each input variable. Thus, out of twenty-five sampling opportunities,
each input variable is sampled at only five values. However, this is not automatically bad; the
25 particular sets or combinations of the five values of each input variable (when the uniform
5x5 grid of points is mapped to the JPDF space) may pose certain advantages over other point
layouts. We are presently striving to understand the particular benefits and disadvantages that
arise here.

The LHS point set, on the other hand, would sample each of the input variables at 25 differ-
ent values. By the nature of LHS ([5]), a sample value would be picked at random from within
each of the 25 equal intervals on the 0 to 1 range of each marginal CDF. These would map to 25
points in the JPDF space that each sample a different value of the input variables.

One measure of a point set’s uniformity of projection onto all the coordinate axes is called
its discrepancy. As uniformity increases, discrepancy decreases. LHS is a lower-discrepancy
sampling method than CVT is. Methods specifically designed with low discrepancy in mind are
the quasi- or sub- random low-discrepancy sequence methods Halton, Hammersley, Sobol, etc.
([14]). These can have both lower discrepancy than standard LHS and higher volumetric uni-
formity. Though CVT tends to have better volumetric uniformity than the sequence methods,
which helps its relative performance in other areas (cf. [18], [19]), it also has much higher dis-
crepancy, which hurts its relative performance as a sampling basis for non-uniformly-random

25 LHS points on Unit Square 25 CVT points on Unit Square
Figure 5. LHS and CVT sample sets showing relative uniformities of point spacing and

discrepancies of point projections onto coordinate axes.
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inputs. Therefore, a hybrid of CVT and LHS has recently been formulated ([2]) with appears to
have both lower discrepancy than pure CVT and higher volumetric uniformity than pure LHS.
In the next section we compare the performance of this hybrid “Latinized” CVT (LCVT) against
pure CVT and the other sampling methods.

Figure 6 shows uniformly distributed point sets from SRS, LHS, CVT, LCVT, Halton, and
Hammersley methods, and corresponding mapped bi-normal point sets. The SRS, LHS, CVT,
and LCVT uniform and mapped sets are typical of the three sets obtained from three different
initial seeds described at the start of this Section. The SRS, LHS, CVT, and LCVT sets plotted
in Figure 6 correspond to Seed 1. Our mapping process was checked by verifying that our bi-
normal results mapped from the Seed 1, 2, and 3 uniform LHS sets in Figure 1 were essentially
identical to bi-normal LHS sets generated directly from the LHS code ([8]) that produced the
three uniform LHS sets. Thus, our mapping process corresponds almost exactly to the mapping
process used in the well-pedigreed code [8].

The effect of high discrepancy in uniform CVT sets is immediately apparent in the mapped
set in Figure 6. The mapped CVT set has a rectangular shaped layout of points rather than a cir-
cularly oriented layout seemingly more appropriate for the circularly symmetric bi-normal
JPDF targeted (Figure 4). Unexpectedly, we find in the next section that this non-intuitive rect-
angular shaped set of points actually performs relatively well among the six types of mapped
sets shown in Figure 6. This rectangular-shaped set performs much better, in fact, than the much
more likely looking set shown in Figure 7, which was generated directly with density-weighted
CVT. The set mapped from uniform Latinized CVT appears much closer to a bi-normal density
than the rectangular mapped CVT set, but actually doesn’t perform quite as well. The perfor-
mance of the various mapped sets is examined more closely in the next Section.

3. EVALUATION OF STATISTICAL SAMPLING EFFECTIVENESS OF THE METHODS

3.1. 2-D Model Response Function and Statistical Measures of Response in Performance
Evaluation

Figure 8 shows an analytic multi-modal function describing system response r as a function
of two system inputs p1 and p2:

EQ 2

on the domain  and , where , .

A statistical problem arises if p1 and p2 are random variables. In that case, any particular
realization p1i and p2i of the stochastic variables yields a deterministic response ri as given by
the above functional relationship. An ensemble of responses accompanies the different realiza-
tions of p1 and p2 as they vary stochastically or randomly according to their individual propen-
sities, or joint propensities if the two variables are correlated.

The JPDF likelihood function for attaining various input combinations of p1 and p2 maps
through the response function r(p1,p2) into a corresponding likelihood function for response
values. Operationally, the resulting response probability density function, PDF(r), can be ap-
proached closer and closer via Monte Carlo sampling as more and more parameter sets or real-

r(p1,p2)= 0.8κ 0.35 2.4π κ
2

------- 
 sin+ 1.5 1.3θ( )sin[ ]

0 p1 1≤ ≤ 0 p2 1≤ ≤ κ p1( )2
p2( )2

+= θ p2
p1
------- 

 atan=
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Unmapped, Uniform Mapped Bi-normal

Figure 6. 100-point sample sets on a 2-D unit hypercube for:
Left Column– uniformly distributed point sets
Right Column– corresponding bi-normally distributed point sets
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izations (p1,p2)i are randomly generated from the governing input JPDF and are propagated
through the response function r(p1,p2) into response realizations ri. The response realizations
are distributed in the response space (i.e., along the response coordinate axis r) with a density
that, as more and more samples are added, trends toward the exact PDF of response.

Very often, only certain statistical measures of the PDF of response are desired or can be
reasonably estimated. Response mean, , and standard deviation, , can be estimated directly
from the mean and standard deviation of the population or set {ri} of realizations. We have
the following definitions:

Figure 7. 100-point set in a unit square, generated directly with density-weighted
CVT to model the bi-normal joint probability density function shown in
Figure 4.

Figure 8. 2-D model function for system response as a function of
input parameters p1 and p2.

µr σr

µ̂r σ̂r
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EQ 3

EQ 4

where N is the number of realizations or samples of response.

Also of interest is the probability of response exceeding (or not exceeding) some particular
threshold value rT. The former is equivalent to the volume integral of the joint probability den-
sity function JPDF(p1,p2) integrated over the region of the p1-p2 domain where response ex-
ceeds the stipulated threshold rT. Three such regions corresponding to thresholds rT=1.0, 0.5,
and 0.2 are shown in Figure 9 (as shaded areas on the cutting planes rT=1.0, 0.5, 0.2) for our
model function EQ 2.

Exceedence probability is very simply estimated as the ratio of the number of calculated re-
sponse values at or above the given threshold value, to the total number of samples N drawn
from the JPDF. As the number of response realizations increases, the estimate (quotient) trends
toward greater accuracy, i.e., toward the actual exceedence probability. This is of course also
true for the estimates  and  of response mean and standard deviation.

3.2. Comparison of Response Statistics from Various Sampling Methods

Here we compare estimates of response mean, standard deviation, and exceedence probabil-
ities as obtained from the various sample sets represented by the right column in Figure 6. We
map these {(p1,p2)i} sets through our response function EQ 2 to obtain corresponding response
sets, and then calculate the aforementioned statistics of the response populations. We then com-
pare the calculated statistics of each response set to reference values obtained from using three
million SRS samples at parameter values generated by the sampling code [9]. The reference val-

µ̂r
1
N
---- ri

i 1=

N

∑=

σ̂r
1

N 1–
------------- ri µ̂r–( )2

i 1=

N

∑
1
2
---

=

µ̂r σ̂r

Figure 9. Cutting planes through exact function showing associated exceedence
(shaded) and complement (unshaded) regions of the p1-p2 parameter space
for response threshold values of 1.0, 0.5, and 0.2, respectively.

(A) (B) (C)
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ues are actually averages of three results, each obtained from one million samples generated
from random initial seeds “X”, “Y”, and “Z” (different from seeds 1, 2, and 3 used to generate
the 100-sample sets).

Three “replicate” sets of one million samples each are used in preference to one set of three
million samples so that empirical confidence intervals (CI) on the calculated averages could be
compared against their classical CI to reaffirm or caveat them. (Recent research ([16], [20]) has
shown that for SRS, empirical CI appear to be somewhat more accurate than classical CI.) Em-
pirical CI are formed by assuming the calculated statistic (response mean, standard deviation,
or exceedence probability) is a random realization from a normal or nearly normal distribution
about the exact result. Hence a T-distribution with 3 - 1 = 2 degrees of freedom can be used to
get confidence intervals about the small-sample average of the three replicates. Thus, for 95%
empirical CI the following formula is used:

95% confidence half-interval = EQ 5

where  is the sample standard deviation (cf. EQ 4) of the three estimates.

Table 1 shows various estimates of response mean, standard deviation, and exceedence
probabilities calculated from the three one-million-sample SRS sets. The average and standard
deviation of the estimates is also shown in the table.

3.2.1. Mean of Response

The average of the three 106-sample estimates of mean response is taken as the reference
value, =0.511879 from Table 1. Empirical confidence intervals on this reference mean are
obtained by substituting the standard deviation of the estimates, =5.829E-05 from Table 1,
into EQ 5. Thus, empirical 95% half-CI are 0.000145. When the reference mean is calculated
based on the entire population of N=3x106 samples, the value doesn’t change from the averaged
value based on three separate 106-sample sets, but the classical CI can be computed. The clas-
sical 95% half-CI from standard statistical formulas is somewhat larger, at 0.000185. Using the
larger (classical) CI here to be conservative, we say that with at least 95% certainty the true re-

Table 1.  Calculated response statistics for reference values (10^6 samples, Bi-normal JPDF,
SRS

response statistic

R
E

A
LI

Z
AT

IO
N 1 0.511872 0.162834 0.984429 0.448457

2 0.511824 0.162733 0.984585 0.447915

3 0.511940 0.162737 0.984511 0.449029

average 0.511879 0.162768 0.984508 0.448467

std. dev. 5.829E-05 5.720E-05 7.803E-05 0.000557

4.303
σ̂est

3
---------

σ̂est

µ̂r σ̂r P̂0.2 P̂0.5

µ̂ref

σ̂est
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sponse mean lies within the range ±0.000185 = (0.511694, 0.512064). The CI range
±0.000185 is typically very small compared to the nominal differences listed in Tables 2 and 3
between  and the estimates of mean response from the 100-sample sets.

We take the differences from in Tables 2 and 3 as nominal measures of the error of the
estimates from the 100-sample sets. For SRS, LHS, CVT, and LCVT methods there is no unique
100-sample set. For SRS and LHS the sets depend on the initial seed and the particular pairing
of the 0 to 1 random variates on the p1 and p2 axes (of a uniform JPDF set). The CVT, and
LCVT sets further depend –fairly insensitively if enough iterations are performed to stabilize
certain uniformity measures, see [2]– on the starting sample set (initial condition). We therefore
use three instantiations of SRS, LHS, CVT, and LCVT sets to begin to obtain a representative
picture of the errors we might expect from a random realization of each of these types of sets.
For each of these methods we average the individual errors from the three instantiations to de-
termine an average magnitude of error. This measure reflects contributions from both the aver-
age error (bias) in the three estimates, as well as the variance of the three results. (This error
measure is zero only if both the average error (bias) is zero and the variance of the estimates is
zero.) Furthermore, this error measure applies as well to the Halton and Hammersley results
which consist of only one instantiation because they are deterministic sampling methods.

To also obtain a broad picture of the each method’s sampling efficacy across the different
types of statistics calculated, we just use a simple ranking scheme for method accuracy for each
of the various calculated statistics (response mean, variance, and exceedence probabilities). This
allows us to compare method performance across the different types of statistics calculated. This
is perhaps somewhat more satisfying than the piecemeal comparisons in, e.g., [15] and [19] that
fail to give an explicit impression (quantitative balanced indicator) of the overall performance
of the various sampling methods across a matrix of test problems. Hence, the accuracy ranking
of each method with respect to average magnitude of error is given on the final lines in Tables
2 and 3. Rank 1 indicates the method was the most accurate and therefore ranked first in perfor-
mance. Rank 6 indicates the method was the least accurate among the sampling schemes tried.

Table 2.  Calculated response means (100 samples, Normal 2D JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.49980 -0.01208 0.51466 +0.00278 0.51238 +0.00050

2 0.51058 -0.00130 0.51110 -0.00079 0.50780 -0.00408

3 0.50315 -0.00873 0.50752 -0.00436 0.51182 -5.867E-05

average 0.50451 -0.00737 0.51109 -0.00079 0.51067 -0.00121

std. dev. 0.00552 0.00552 0.00357 0.00357 0.00250 0.00250

avg. error mag. 0.00737
Rank 6

0.00264
Rank 4

0.00155
Rank 1

µ µ̂ref

µ̂ref

µ̂ref

µ̂r µ̂r µ̂r µ̂r µ̂r µ̂r
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3.2.2. Standard Deviation of Response

Tables 4 and 5 show the estimates of the standard deviation of response. Nominal errors
from the reference value =0.162768 are also shown. This value is the average of the three
standard deviations in Table 1 calculated from the three 106 SRS sets. The standard deviation of
these three estimates is =5.719E-05. Empirical 95% half-CI by EQ 5 are 0.000142. Accord-
ingly, we say that with 95% confidence the true response standard deviation lies within the
range ±0.000142 = (0.162626, 0.162910). The CI are negligibly small.

Table 3.  Calculated response means (100 samples, Normal 2D JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.50868 -0.00320 0.50565 -0.00623 0.51029 -0.00159

2 0.51148 -0.00040

3 0.50840 -0.00348

average 0.50952 -0.00236 0.50565 -0.00623 0.51029 -0.00159

std. dev. 0.00170 0.00170

avg. error mag. 0.00236
Rank 3

0.00623
Rank 5

0.00159
Rank 2

Table 4. Calculated response standard deviations (100 samples, Normal 2D JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.16874 +0.00597 0.18054 +0.01777 0.15782 -0.00495

2 0.16265 -0.00012 0.15570 -0.00707 0.15532 -0.00745

3 0.15699 -0.00578 0.14191 -0.02086 0.15554 -0.00723

average 0.16279 2.533E-05 0.15938 -0.00339 0.15623 -0.00654

std. dev. 0.00588 0.00588 0.01958 0.01958 0.00138 0.00138

avg. error mag. 0.00396
Rank 2

0.01523
Rank 6

0.00654
Rank 3

µ̂r µ̂r µ̂r µ̂r µ̂r µ̂r

σ̂ref

σ̂est

σ
σ̂ref

σ̂r σ̂r σ̂r σ̂r σ̂r σ̂r
394



3.2.3. Response Exceedence Probability for rT=0.2

Tables 6 and 7 show the estimates of the exceedence probability (EP) corresponding to a re-
sponse threshold level of rT=0.2. Nominal errors from the reference value =0.984508 are
also shown. This value is the average of the three EPs in Table 1 calculated from the three 106

SRS sets. The standard deviation of these three estimates is =7.803E-05. Empirical 95%
half-CI by EQ 5 are 0.000194. When the reference EP is calculated based on the entire popula-
tion of N=3x106 samples, the value doesn’t change from the averaged value based on three sep-
arate 106-sample sets, but classical CI can be computed. The classical 95% half-CI from stan-
dard statistical formulas is somewhat smaller, at 0.000140. Using the larger (empirical) 95%
half-CI for conservatism, we say that to 95% confidence the true probability P0.2 of response
exceeding the threshold value rT=0.2 lies within the range ±0.000194 = (0.984314,
0.984702). The CI are negligibly small. We note that the SRS and LHS results are both ranked
at 4.5 because together they occupy the 4th and 5th ranks and both have the same error magni-
tude.

Table 5.  Calculated response standard deviations (100 samples, Normal 2D JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.14804 -0.01473 0.15415 -0.00862 0.16077 -0.00200

2 0.14906 -0.01371

3 0.14615 -0.01662

average 0.14775 -0.01502 0.15415 -0.00862 0.16077 -0.00200

std. dev. 0.00148 0.00148

avg. error mag. 0.01502
Rank 5

0.00862
Rank 4

0.00200
Rank 1

σ̂r σ̂r σ̂r σ̂r σ̂r σ̂r

P̂0.2 ref,

σ̂est

P̂0.2 ref,
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3.2.4. Response Exceedence Probability for rT=0.5

Tables 8 and 9 show the estimates of the exceedence probability (EP) corresponding to a re-
sponse threshold of rT=0.5. Nominal errors from the reference value =0.448467 are also
shown. This value is the average of the three EPs in Table 1 calculated from the three 106 SRS
sets. The standard deviation of these three estimates is =0.000557. Empirical 95% half-CI
by EQ 5 are 0.001384. When the reference EP is calculated based on the entire population of
N=3x106 samples, the value doesn’t change from the averaged value based on three separate
106-sample sets, but classical CI can be computed. The classical 95% half-CI from standard sta-

Table 6. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Normal 2D
JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.97 -0.01451 0.98 -0.00451 0.99 +0.00549

2 0.99 +0.00549 0.99 +0.00549 0.98 -0.00451

3 0.99 +0.00549 1.00 +0.01549 0.98 -0.00451

average 0.98333 -0.00117 0.99 +0.00549 0.98333 -0.00118

std. dev. 0.01155 0.01155 0.01 0.01 0.00577 0.00577

avg. error mag. 0.00850
Rank 4.5

0.00850
Rank 4.5

0.00484
Rank 2

Table 7. Calculated response exceedence probabilities, threshold=0.2 (100 samples, Normal 2D
JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.99 +0.00549 0.97 -0.01451 0.98 -0.00451

2 0.99 +0.00549

3 0.99 +0.00549

average 0.99 +0.00549 0.97 -0.01451 0.98 -0.00451

std. dev. 0.0 0.0

avg. error mag. 0.00549
Rank 3

0.01451
Rank 6

0.00451
Rank 1

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2

P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2 P̂0.2

P̂0.5 ref,

σ̂est
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tistical formulas is considerably smaller, at 0.000563. Using the larger (empirical) 95% half-CI
for conservatism, we say that to 95% confidence the true probability P0.5 of response exceeding
the threshold value rT=0.5 lies within the range ±0.001384 = (0.447083, 0.449851). The
CI are negligibly small.

Table 8. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Normal 2D
JPDF)

SRS LHS Latinized CVT

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.43 -0.01847 0.44 -0.00847 0.46 +0.01153

2 0.41 -0.03847 0.45 +0.00153 0.43 -0.01847

3 0.43 -0.01847 0.45 -0.00847 0.47 +0.02153

average 0.42333 -0.02513 0.44667 -0.0018 0.45333 +0.00487

std. dev. 0.01155 0.01155 0.00577 0.00577 0.02082 0.02082

avg. error mag. 0.02513
Rank 6

0.00384
Rank 1

0.01718
Rank 5

Table 9. Calculated response exceedence probabilities, threshold=0.5 (100 samples, Normal 2D
JPDF)

CVT Halton Hammersley

 error  error  error

R
E

A
LI

Z
AT

IO
N 1 0.44 -0.00847 0.46 +0.01153 0.44 -0.00847

2 0.46 +0.01153

3 0.46 +0.01153

average 0.45333 +0.00487 0.46 +0.01153 0.44 -0.00847

std. dev. 0.01155 0.01155

avg. error mag. 0.01051
Rank 3

0.01153
Rank 4

0.00847
Rank 2

P̂0.5 ref,

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5

P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5 P̂0.5
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3.3. Weighted Measure of Statistical Sampling Merit

The performance rankings for the sampling schemes and statistical quantities tested are
summarized in Table 10. The last column contains a normalized weighted figure of merit which
is a broad measure of each method’s sampling performance across the different types of statis-
tics calculated. This figure of merit is obtained by first averaging the rankings for the (two) ex-
ceedence probabilities calculated, and then averaging this rank for EPs in with the ranks for the
mean and standard deviation calculations. These averages are then divided by the number of
sampling methods involved. Hence, the normalized ranks in this column add up to unity. This
type of normalization allows comparison to other investigations such as those in, e.g., [11], [15]
and [19], if their results are also normalized in this manner. The bar chart in Figure 10 helps
visually assess the relative performance of the sampling methods according to our normalized
figure of merit. The shorter the bar, the better the particular method ranks on balance across all
the statistical quantities calculated. We see that Hammersley sampling ranked overall best on
this series of test problems, then LCVT, CVT, LHS, SRS, and finally Halton.

A second bar chart corresponding to the investigation in [19] is plotted in Figure 10. The
investigation was similar to the one in this paper, but compared calculated statistics based on a
uniform JPDF, and did not include the LCVT sampling method. Since there is no mapping here
from uniform sets to nonuniform JPDFs, only volumetric uniformity matters here and discrep-
ancy properties are immaterial. Since pure CVT is more volumetrically uniform than LCVT,
and for that matter, more volumetrically uniform than all the other sampling methods we’ve test-
ed, CVT would be expected to generally rank best. This is the case shown in Figure 10 for the
set of test problems investigated in [19].

4. DISCUSSION AND CONCLUSION

According to our weighted figure of merit, Hammersley sampling strongly ranked overall
best on the set of bi-normal JPDF test problems in this paper, then LCVT, CVT, LHS, SRS, and

Table 10.  Sampling Method accuracy rankings for various calculated statistics of response

Sampling
Method

response
mean

response
standard
deviation

exceedence
probability

(0.2 threshold)

exceedence
probability

(0.5 threshold)

normalized
weighted
average

SRS 6 2 4.5 6 0.21

LHS 4 6 4.5 1 0.20

CVT 3 5 3 3 0.17

LCVT 1 3 2 5 0.12

Halton 5 4 6 4 0.22

Hammersley 2 1 1 2 0.07
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finally Halton. Furthermore, in [11], Hammersley was found to be significantly more efficient
than SRS and LHS for resolving mean and standard deviation of response over a large set of test
problems. For resolving response probabilities, Hammersley and modified-Halton were found
in [15] to perform roughly the same as LHS on balance over several test problems.

Hence, Hammersley is consistently the best performer or among the top performers in these
empirical studies. Hammersley is also the only one of the top contenders in these studies that
allows incremental addition of samples to the parameter space (as little as one at a time), which
enables it to have better efficiency prospects in both error estimation and control. Given these
apparent advantages, it seems that Hammersley sampling might be a superior choice in many
circumstances. However, when the number of random inputs grows beyond 10 or so dimensions
and/or the sampling density in the hypercube becomes high, Hammersley might suffer from the
spurious correlation effects that plague other sub-random sequence methods. This is shown,
e.g., for standard Halton sequences in 16-D (ref. [12]) and 40-D (ref. [15]). This is something
the authors need to further inquire about; the answer may already exist in the literature.

Furthermore, we cannot yet dismiss the competitive potential of CVT or LCVT based on the
single limited investigation conducted in this paper. In particular, more than three instantiations
of SRS, LHS, CVT, and LCVT point sets are needed to more reliably reflect the true perfor-
mance tendencies of these methods on our test problems. Also, sample sets of much larger size
than 100 would be valuable particularly to get another significant digit of resolution in the cal-
culated exceedence probabilities in the study. Moreover, our results are somewhat tied to the
specific figure of merit employed in this study. This figure of merit has the advantage that it al-
lows comparison of merit across different types of statistics calculated and different problem

Figure 10.Normalized weighted measure of sampling method relative error
tendency in calculated mean, standard deviation, and rT = 0.2 and 0.5
exceedence probabilities for uniform and bi-normal joint probability
densities in 2D test problems.
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sets, but other better measures may exist for our purposes. Certainly, our weighted metric does
not reveal method performance in the individual categories of response mean, standard devia-
tion, and exceedence probability (but these can be found in Table 10 for the problems in this
paper).

Finally, empirical studies are only point glimpses of the relative accuracy tendencies of one
method over another under a very specific set of conditions. Certainly, much more empirical
work needs to be performed to assess the performance of CVT and LCVT versus other sampling
methods over a diverse problem space, but even more valuable would be more theoretical work
to ascertain which method might be expected to perform best under given conditions (the char-
acteristics of the function involved; the number of input random variables/dimensions; character
of the JPDF, etc.).

This being said, we have early empirical indications of the promise of CVT in uniform JPDF
problems. In [19], CVT strongly ranked overall best as expected, then Hammersley, LHS, Hal-
ton, and finally SRS. In particular, for statistical integration of functions, which involves uni-
form sampling over the integration domain, CVT appears to be the natural best choice theoret-
ically, as corroborated by findings in [19]. Also, in point placement for response-surfaces, CVT
appears very promising relative to other structured and unstructured sampling methods (see
[18]). Already, for irregular (non-hypercube) interpolation and integration domains, the unifor-
mity of CVT sampling over the domain gives it a well recognized status in the application of 2-
D and 3-D meshless finite-element methods.

Hence, when volumetric sampling uniformity is desirable, early indications are that CVT
performs very well versus other sampling methods. However, to reiterate, much more empirical
and theoretical work remains to be done to broadly assess and characterize the potential of CVT
and LCVT for various sampling tasks.
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Abstract: The problem of calculating local parametric sensitivities is addressed. We
propose a computationally low-cost method to estimate local sensitivities in Bayesian
models. The proposed general method introduces a great flexibility because it can be
applied to complex models that need to be solved by MCMC methods, and it allows to
estimate the sensitivity measures and their errors with no additional random sampling.
This sensitivity analysis method is easy to apply in practice as we show with an illustrative
example.

Keywords: Sensitivity, Simulation, MCMC, Bayesian Inference, Bayesian Decision The-
ory.

1. INTRODUCTION

Many problems in statistics and operational research involve making decisions under un-
certainty. Bayesian statistical methods provide a complete paradigm for both statistical
inference and decision making under uncertainty. This methodology allows to combine
information derived from observations with information elicited from experts. The range
of its potential applicability is very wide. It is particularly useful for highly reliable com-
ponents and systems where failures in test and field operations are very rare, requiring
the use of all other engineering information. This methodology has become more popular
due to the appearance of Markov Chain Monte Carlo (MCMC) methods (see Brooks [1]
for a review). The application of these simulation techniques allows to obtain a numerical
solution of problems based on really complex models. Sometimes, MCMC methods are
the only computationally efficient alternative.

In addition to the solution, we need some description of its sensitivity with respect to
reasonable changes and uncertainties in the specification of the inputs. Sensitivity analysis
seeks to find out how the output of a model changes with variations in the inputs (see
Saltelli et al. [2]). Such knowledge is important for (a) evaluating the applicability of the
model, (b) determining parameters for which it is important to have more accurate values,
and (c) understanding the behavior of the system being modeled. The output needs to
be interpreted carefully whenever it changes significantly for input variations that are
within the bounds of possible error. There are two kinds of sensitivity analysis: local and
global. Local sensitivity studies parameter variations over neighborhoods around what
are believed to be appropriate values, while global sensitivity considers parameter changes
over the whole domain.

Further author information: (Corresponding author: C. Pérez)
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Sensitivity analysis is required in many applications, for example, in those arising in
engineering, medicine, archeology, or environment. It is particularly useful in reliability of
hardware systems, space systems probabilistic risk analysis, nuclear power risk analysis or
information security risk analysis. Sensitivity studies are demanded by several authors to
be applied in models solved by MCMC methods (see, for example, Ŕıos and Ruggeri [3]).
Some authors, like Hall et al. [4] and Halekoh and Vach [5], study parametric sensitivity
by solving the model for some values of the parameters. The main disadvantage of this
procedure is that they have to re-run the Markov chain, i.e, they have to generate new
samples for the different parameter values. Therefore, it would be convenient to develop
a general sensitivity method that can be applied to estimate local parametric sensitivities
in Bayesian models solved by MCMC techniques. We address that issue in this paper.

The outline is as follows. In Section 2, a computationally low-cost method to estimate
local parametric sensitivities is proposed. In order to show how the proposed method is
easily applied in practice, an illustrative example is presented in Section 3. Finally, the
conclusion is presented in Section 4.

2. LOCAL PARAMETRIC SENSITIVITY ESTIMATIONS

Suppose we are interested in the estimation of a quantity I that can be expressed as an
integral of a function f over a multiple dimension domain with respect to a density g, i.e:

I =

∫
Θ

f(θ) g(θ) dθ. (1)

When g is the posterior distribution for θ, i.e, g(θ|x), this quantity could be, for example,
the posterior mean. Note that g(θ) (f(θ)) could depend on parameters, so a more conve-
nient notation is gλ(θ) (fλ(θ)) where λ represents a possibly multidimensional parameter
in the space Λ. Firstly, we study the problem considering imprecision in gλ, later we
present a similar study for fλ. In the former case, expression (1) becomes:

Iλ =

∫
Θ

f(θ) gλ(θ) dθ, (2)

where Θ is independent of λ.

Suppose that sampling directly from gλ(θ) is so complex that we need to use MCMC
methods. Note that this is the case for most of the real problems. Let θ1, θ2, . . . , θn be a
sample generated from gλ0(θ) by MCMC methods, where λ0 is a fixed quantity interior
to Λ. Then, an estimate of Iλ0 is given by:

Îλ0 =
1

n

n∑
i=1

f(θi). (3)

Now, our interest is focused on evaluating the impact of changes on Iλ when λ varies in
an infinitesimal neighborhood of λ0, i.e, we want to make a local sensitivity analysis. The
choice of a sensitivity analysis method depends on a great extent on (a) the sensitivity
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measures employed, (b) the accuracy in the estimates of the sensitivity measures, and (c)
the computational cost involved. All these topics are studied in this section.

The first step is to define a local sensitivity measure. This measure must be easily
interpretable and efficiently computed. Sometimes sensitivity is characterized through
gradients or partial derivatives at the target point (see Turányi and Rabitz [6] and ref-
erences therein). Suppose that all the partial derivatives exist. As a local sensitivity
measure, we consider the gradient vector evaluated at λ0 , i.e:

∇Iλ0 = (∂λ1
Iλ0 , ∂λ2

Iλ0 , . . . , ∂λmIλ0) . (4)

Components in (4), i.e. the partial derivatives with respect to each λj evaluated at
λ0, indicate how rapidly Iλ is changing around an infinitesimal neighborhood of λ0 along
that axis. Therefore, they can be used as rates of change with respect to the parameter
components. Then ∇Iλ0 can be considered as a local sensitivity measure for the parameter
λ at λ0. The gradient vector represents the precise direction which has maximum increase
of Iλ at λ0. Furthermore, it indicates which component has the largest influence on the
output.

In this context, the main problem is to calculate the gradient vector. We present a
computationally low-cost method to estimate the components of (4). Under mild condi-
tions, each component of ∇Iλ0 can be expressed as:

∂λj
Iλ0 =

∫
Θ

∂λj
(f(θ) gλ0(θ)) dθ =

∫
Θ

f(θ)∂λj
gλ0(θ)dθ =

=

∫
Θ

f(θ)∂λj
gλ0(θ)

gλ0(θ)
gλ0(θ) dθ = Egλ0

(
f(θ) ∂λj

gλ0(θ)

gλ0(θ)

) (5)

and estimated by:

∂̂λj
Iλ0 =

1

n

n∑
i=1

f(θi) ∂λj
gλ0(θi)

gλ0(θi)
. (6)

Also, we can estimate the error committed when estimating (5) by using (6). For
each j, the estimate given in (6) is unbiased, so its error can be measured by its standard
error (see e.g. Tanner [7]). The estimation of the error can be easily obtained from the
generated sample that has been used to estimate Iλ0 and ∂λj

Iλ0 .

The advantages of this local sensitivity analysis procedure are mainly two. First, it can
be applied to complex models that need MCMC methods to sample from the objective
densities. Second, the computations generally represent a very low additional cost because
no further sampling is required. The same MCMC outputs obtained to estimate Iλ0 are
used to estimate its sensitivity and the errors in the estimations. However, this approach
can only be applied when we know a closed expression for gλ0 and we can calculate
its partial derivatives, what is not always possible. In fact, for complex models the
explicit form for gλ0 is usually analytically intractable. Nevertheless, we can obtain some
results studying the practical implementation when gλ0 is the posterior distribution. The
following two cases are considered.
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1. Prior sensitivity. Suppose that the prior distribution πλ(θ) depends on a parameter λ,
and let λ0 be interior to Λ, then:

Iλ0 =

∫
Θ

f(θ) pλ0(θ|x) dθ =

∫
Θ

f(θ) l(x|θ) πλ0(θ) dθ∫
Θ

l(x|θ) πλ0(θ) dθ
. (7)

Under mild conditions that allow a derivative-integral interchange (see Spall [8]), we
find that each component of ∇Iλ0 can be expressed as:

∂λj
Iλ0 =

∫
Θ

(f(θ) − Iλ0)
∂λj

πλ0(θ)

πλ0(θ)
pλ0(θ|x) dθ.

The proof is mainly based on the derivative-integral interchange. The posterior steps
are basic manipulations addressed to get the integral of a function with respect to the
posterior distribution.

If θ1, θ2, . . . , θn is generated from the posterior distribution pλ0(θ|x) (mainly by MCMC
methods), then the estimate of ∂λj

Iλ0 is given by:

∂̂λj
Iλ0 =

1

n

n∑
i=1

(
f(θi) − Îλ0

) ∂λj
πλ0(θi)

πλ0(θi)
, (8)

where Îλ0 = 1
n

∑n
i=1 f(θi) is the estimate of Iλ0 . The Monte Carlo standard error estimate

of (8) is given by:

ŜE(∂̂λj
Iλ0) =

√√√√ 1

n (n − 1)

n∑
i=1

(
(f(θi) − Îλ0)∂λj

πλ0(θi)

πλ0(θi)
− ∂̂λj

Iλ0

)2

(9)

Note that this case is more tractable because we need the partial derivatives for the
prior distribution instead of the partial derivatives for the posterior distribution.

2. Function f sensitivity. If we consider that f belongs to a parametric class of functions,
Fλ = {fλ, λ ∈ Λ}, then:

Iλ0 =

∫
Θ

fλ0(θ) p(θ|x) dθ =

∫
Θ

fλ0(θ) l(x|θ) π(θ) dθ∫
Θ

l(x|θ) π(θ) dθ
.

Under the mild conditions analogous to the previous case, for each j we have:

∂λj
Iλ0 =

∫
Θ

∂λj
fλ0(θ) p(θ|x) dθ,

and its estimate is given by:

∂̂λj
Iλ0 =

1

n

n∑
i=1

∂λj
fλ0(θi), (10)
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where θ1, θ2, . . . , θn ∼ p(θ|x). Now, the Monte Carlo standard error estimate of (10) is
given by:

ŜE(∂̂λj
Iλ0) =

√√√√ 1

n (n − 1)

n∑
i=1

(
∂λj

fλ0(θi) − ∂̂λj
Iλ0

)2

(11)

Note that if in any problem, the functions g and f depend on the same parameter λ,
then the sensitivity measure proposed in this section can be estimated in the same sense.
The estimate of each component can be expressed as the sum of analogous quantities to
(8) and (10).

As a particular case, we can study the practical implementation of the proposed sen-
sitivity measure in the context of Bayesian decision theory (among the many fine reviews
are, for example, Berger [9] and French and Ŕıos [10]). Bayesian decision theory and
inference describe a decision problem by a set of possible actions a ∈ ∆, a set of states, or
parameters, θ ∈ Θ, a prior distribution π(θ), a likelihood, l(x|θ) for the observed data x,
and a loss (utility) function l(a, θ) (u(a, θ)). The actions are ranked by the expected loss
(utility). The optimal decision a∗ is the action that minimizes (maximizes) the posterior
expected loss (utility):

a∗ = arg min
a∈∆

L(a),

L(a) =

∫
l(a, θ) p(θ|x) dθ =

∫
l(a, θ) l(x|θ) π(θ) dθ∫

l(x|θ) π(θ) dθ
.

Practical implementation is hindered by the fact that L(a) and hence the minimum
a∗ could be sensitive to the chosen prior π(·), likelihood l(·|·) and/or loss function l(·). A
skeptical decision maker will require, in addition to the optimal solution, some description
of the sensitivity of a∗ with respect to reasonable changes and uncertainties in the specifi-
cation of the inputs. This type of sensitivity is known as functional sensitivity because the
inputs are functions. Excellent summaries of Bayesian literature in this area are provided
by Berger [11] and Ŕıos and Ruggeri [3].

In this context, we can investigate the local parametric sensitivity of Lλ(a
∗) where λ

is a possibly multidimensional parameter that models the loss function and/or the prior
distribution. Now, fλ(θ) = lλ(a

∗, θ) and the quantity of interest Iλ0 is Lλ0(a∗). Note
that we refer to expected loss sensitivity instead of decision sensitivity (see Kadane and
Srinivasan [12] for a distinction).

In the next section, we show how the proposed computationally low-cost sensitivity
estimations and their errors can be easily calculated in practice.

3. APPLICATION

We consider an illustrative example relating to 10 power plant pumps. George et al. [13]
provided a complete Bayesian hierarchical analysis of the pump failure data previously
studied by Gaver and O’Muircheartaigh [14]. For the power plant pump i, the failure rate
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i 1 2 3 4 5 6 7 8 9 10
ti 94.32 15.72 62.88 12.76 5.24 31.44 1.05 1.05 2.09 10.48
xi 5 1 5 14 3 19 1 1 4 22

Table 1. Pump failure data.

is denoted by θi and the length of operation time (in thousands of hours) is denoted by
ti. The data are given in Table 1.

Conditional on θi, the number of failures Xi is assumed to follow a Poisson distribution,
Xi|θi ∼ Poisson(ηi), i = 1, . . . , 10, where ηi = θi ti and Xi is independent of Xj for i �= j.
Conditional on α and β, independent gamma prior distributions are adopted for the failure
rates, θi|α, β ∼ Gamma(α, β). We assume the following prior specification for α and β :

α ∼ Exp(λ1),

β ∼ Gamma(λ2, λ3),

where λ1 = 1, λ2 = 0.1, and λ3 = 1. The model is graphically represented in Figure 1.
This graph has been obtained by using DoodleBUGS that has been developed to specify
graphical models in Bayesian context. This tool is included in WinBUGS PACKAGE
(Spiegelhalter [15]).

Figure 1. Graphical model.

We carry out a sensitivity analysis in the terms described in the previous section. We
focus our interest on the posterior mean for the parameters θi, i = 1, 2, . . . , 10. Those
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quantities represent the means of the failure rates after the Bayes update has been done.
We study if the posterior means of the parameters are sensitive to the initial values of
the prior specification, i.e. we study local sensitivity with respect to the parameter λ =
(λ1, λ2, λ3) in the neighborhood of λ0 = (1, 0.1, 1). In this case, the quantities of interest
are Eλ0 [θi|x], and, in order to simplify, they will be denoted by Eλ0(i), i = 1, 2, . . . , 10 .

By using WinBUBS, we can generate MCMC samples from the posterior distributions
for all parameters. After we consider that the convergence has been achieved, we generate
a sample of size n = 10000. The estimations of Eλ0(i), are given in Table 2.

Parameters θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10

Êλ0(i) 0.059 0.102 0.089 0.116 0.604 0.609 0.893 0.881 1.584 1.992

Table 2. Estimations of the posterior means.

Table 3 shows the estimations of the partial derivatives ∂λj
Eλ0(i), j = 1, 2, 3, i =

1, 2, . . . , 10.

λ1 λ2 λ3

θ1 1.34 · 10−4 −7.11 · 10−5 7.25 · 10−5

θ2 4.34 · 10−4 3.46 · 10−4 −4.37 · 10−4

θ3 4.58 · 10−5 2.25 · 10−4 −2.09 · 10−4

θ4 1.13 · 10−5 2.69 · 10−4 −2.28 · 10−4

θ5 1.45 · 10−4 −1.41 · 10−3 7.66 · 10−4

θ6 1.13 · 10−4 3.69 · 10−4 −3.68 · 10−5

θ7 −2.27 · 10−3 −3.09 · 10−3 5.72 · 10−3

θ8 2.41 · 10−3 7.69 · 10−3 −7.33 · 10−3

θ9 3.83 · 10−3 −1.19 · 10−3 5.34 · 10−4

θ10 7.58 · 10−4 −8.09 · 10−2 6.83 · 10−3

Table 3. Estimations of the partial derivatives.

We consider that the rate of change for λ1, λ2 and λ3 are within the reasonable limits

with respect to the values of Êλ0(i), i = 1, 2, . . . , 10. So the components of ∇̂Eλ0(i) indicate
that we can consider λ0 = (1, 0.1, 1) as a robust value for the parameter λ in this model.

4. CONCLUSION

In Bayesian decision theory and inference the proposed local parametric sensitivity pro-
cedure can be very useful because it is a general technique applicable to complex models
that need to be solved by MCMC methods. Besides, the MCMC simulations can be re-
used to estimate the sensitivity measures and their errors, avoiding the need of further
sampling. This computationally low-cost method is easy to apply in practice and it is
specially recommended to study sensitivities in reliability models.
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Abstract:  Three applications of sampling-based sensitivity analysis in conjunction with 
evidence theory representations for epistemic uncertainty in model inputs are described:  
(i) an initial exploratory analysis to assess model behavior and provide insights for addi-
tional analysis, (ii) a stepwise analysis showing the incremental effects of uncertain vari-
ables on complementary cumulative belief functions and complementary cumulative 
plausibility functions, and (iii) a summary analysis showing a spectrum of variance-based 
sensitivity analysis results that derive from probability spaces that are consistent with the 
evidence space under consideration. 

Keywords:  Epistemic uncertainty, evidence theory, sensitivity analysis, uncertainty 
analysis 

1.  INTRODUCTION 
Uncertainty analysis and sensitivity analysis should be important components of any 
analysis of a complex system, with (i) uncertainty analysis providing a representation of 
the uncertainty present in the estimates of analysis outcomes and (ii) sensitivity analysis 
identifying the contributions of individual analysis inputs to the uncertainty in analysis 
outcomes[1].  Probability theory provides the mathematical structure traditionally used in 
the representation of epistemic (i.e., state of knowledge) uncertainty, with the uncertainty 
in analysis outcomes represented with probability distributions and typically summarized 
as cumulative distribution functions (CDFs) or complementary cumulative distribution 
functions (CCDFs) [2-4]. A variety of sensitivity analysis procedures have been devel-
oped for use in conjunction with probabilistic representations of uncertainty, including 
differential analysis [5, 6], the Fourier amplitude sensitivity test (FAST) and related vari-
ance decomposition procedures[7-11], regression-based techniques [12, 13], and searches 
for nonrandom patterns [14]. 

Although probabilistic representations of uncertainty have been successfully em-
ployed in many analyses, such representations have been criticized for inducing an ap-
pearance of more refined knowledge with respect to the existing uncertainty than is really 
present [15, 16].  Much of this criticism derives from the use of uniform distributions to 
characterize uncertainty in the presence of little or no knowledge with respect to where 
the appropriate value to use for a parameter is located within a set of possible values. As 
a result, a number of alternative mathematical structures for the representation of  
epistemic uncertainty have been proposed, including evidence theory, possibility theory, 
and fuzzy set theory [17]. 
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Evidence theory provides a promising alternative to probability theory that allows for 
a fuller representation of the implications of uncertainty than is the case in a probabilistic 
representation of uncertainty. In particular, evidence theory involves two representations 
of the uncertainty associated with a set of possible analysis inputs or results: (i) a belief, 
which provides a measure of the extent to which the available information implies that 
the true value is contained in the set under consideration, and (ii) a plausibility, which 
provides a measure of the extent to which the available information implies that the true 
value might be contained in the set under consideration. One interpretation of the belief 
and plausibility associated with a set is that (i) the belief is the smallest possible probabil-
ity for the set that is consistent with all available information and (ii) the plausibility is 
the largest possible probability for the set that is consistent with all available information. 
An alternative interpretation is that evidence theory is an internally consistent mathemati-
cal structure for the representation of uncertainty without any explicit conceptual link to 
probability theory. The mathematical operations associated with evidence theory are the 
same for both interpretations. Just as probability theory uses CDFs and CCDFs to sum-
marize uncertainty, evidence theory uses cumulative belief functions (CBFs), cumulative 
plausibility functions (CPFs), complementary cumulative belief functions (CCBFs), and 
complementary cumulative plausibility functions (CCPFs) to summarize uncertainty. 

Although evidence theory is beginning to be used in the representation of uncertainty 
in applied analyses, the authors are unaware of any attempts to develop sensitivity analy-
sis procedures for use in conjunction with evidence theory. Due to the importance of sen-
sitivity analysis in any decision-aiding analysis, the potential usefulness of evidence 
theory will be enhanced if meaningful and practicable sensitivity analysis procedures are 
available for use in analyses that employ evidence theory in the representation of uncer-
tainty. As a result, the focus of this presentation is on the development of sensitivity 
analysis procedures for use in conjunction with evidence theory representations of uncer-
tainty. 

After a brief overview of evidence theory (Sect. 2), the following topics are consid-
ered:  (i) exploratory sensitivity analysis (Sect. 3), (ii) use of sensitivity analysis results in 
the stepwise construction of CCBFs and CCPFs (Sect. 4), (iii) analysis of evidence theory 
representations of uncertainty (Sect. 5), and (iv) concluding summary (Sect. 6). 

2.  EVIDENCE THEORY 

Evidence theory is based on the specification of a triple (S, , m), where (i) S is the set 
that contains everything that could occur in the particular universe under consideration, 
(ii)  is a countable collection of subsets of S, and (iii) m is a function defined on sub-
sets of S such that m(E ) > 0 if E ∈ , m(E) = 0 if E ⊂ S and S ∉ , and ΣE∈  m(E) = 1.  
For a subset E of S, m(E ) characterizes the amount of �likelihood� that can be assigned 
to E but to no proper subset of E.  In the terminology of evidence theory, (i) S is the sam-
ple space or universal set, (ii)  is the set of focal elements for S and m, and (iii) m(E ) is 
the basic probability assignment (BPA) associated with a subset E of S.  The elements of 
S are often vectors x = [x1, x2, �, xn], where each element xi of x is a variable with its 
own evidence space (Si, i, mi).  When the xi�s are assumed to be independent, (i) m(E ) 
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= Πi mi(Ei) if E = E1 × E2 × � × En and Ei ∈ i for i = 1, 2, �, n and (ii) m(E) = 0 oth-
erwise.  An evidence space (S, , m) plays the same role in evidence theory that a prob-
ability space (P, , p) plays in probability theory, where P  is the sample space,  is a 
suitably restricted set of subsets of P (i.e., a σ-algebra), and p is the function (i.e., prob-
ability measure) that assigns probabilities to elements of . 

The belief, Bel(E ), and plausibility, Pl(E ), for a subset E of S are defined by 

( ) ( ) ( ) ( ) and .Bel m Pl m
φ⊂ ∩ ≠

= =∑ ∑U E U E
E U E U  (2.1) 

In concept, Bel(E) is the amount of �likelihood� that must be assigned to E, and Pl(E) is 
the maximum amount of �likelihood� that could possibly be assigned to E.  When the 
elements of S are real valued, a CCBF and a CCPF provide a convenient summary of an 
evidence space (S, , m) and correspond to plots of the points 

( ){ } ( ){ }, , and , , ,v vv Bel v v Pl v   = ∈ = ∈   CCBF S S CCPF S S  (2.2) 

where S v = {x:  x ∈ S and x > v}. 

An important situation in the application of evidence theory is the consideration of a 
variable y = f(x), where f is a function defined for elements x of the sample space X as-
sociated with an evidence space (X, , mX) and x is represented as a vector because this 
is the case in most real analyses.  The properties of f and (X, , mX) induce an evidence 
space (Y, , mY) on y, which provides a characterization of the uncertainty associated 
with y.  In turn, this uncertainty can be summarized with a CCBF and a CCPF defined by 

( ){ }{ } ( ){ }{ }1 1, ,  and , , ,X v X vv Bel f v v Pl f v− −   = ∈ = ∈   CCBF Y Y CCPF Y Y (2.3) 

where BelX and PlX denote belief and plausibility defined with respect to (X, , mX) and 
Yv = {y:  y ∈ Y and y > v}.  The generation and analysis of CCBFs and CCPFs of the 
preceding form are fundamental parts of the use of evidence theory to characterize the 
uncertainty in model predictions. 

3.  EXPLORATORY SENSITIVITY ANALYSIS 
An initial exploratory sensitivity analysis plays an important role in helping to guide any 
study that involves uncertain inputs.  This is particularly true in uncertainty analyses 
based on evidence theory as the uncertainties are likely to be large and an appropriate un-
derstanding of these uncertainties and their implications can provide insights that facili-
tate the computational estimation of beliefs and plausibilities. 

Given that large uncertainties in many variables are likely to be present, a sampling-
based approach to sensitivity analysis with Latin hypercube sampling [18, 19] is a 
broadly applicable procedure for an exploratory analysis in conjunction with an evidence 
theory representation for uncertainty.  Use of this approach requires the specification of 
distributions for the uncertain variables for sampling purposes.  This specification should 
provide for an adequate exploration of the range of each uncertain variable and be consis-
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tent, in some sense, with the evidence theory specification of the uncertainty associated 
with individual analysis inputs. 

A distribution that meets the preceding criteria can be obtained by sampling each fo-
cal element associated with a variable in consistency with its BPA and then sampling uni-
formly within that focal element.  With the assumption that each focal element for a 
variable xi with an evidence space (X i, i, mi) is an interval, this corresponds to defin-
ing a sampling distribution with a density function di given by 

( )
( )

( ) ( ) ( )
     

1

i
C

i ij i ij ij ij
j

d v v m b aδ
=

= −∑ E , (3.1) 

where (i) v ∈ Xi, (ii) C( i) is the cardinality of i, (iii) Eij = [aij, bij], j = 1, 2, �, 
C( i), are the focal elements associated with xi (i.e., the elements of i), and (iv) δij(v) 
= 1 if v ∈ Eij and 0 otherwise.  Appropriate modifications can be made to the preceding 
definition to handle focal elements with a finite number of elements and focal elements 
that are unions of disjoint intervals. 

Given that a relationship of the form y = f(x), x = [x1, x2, �, xn], is under considera-
tion, sampling according to the distributions indicated in Eq. (3.1) generates a mapping yk 
= f(xk) from uncertain analysis inputs to uncertain analysis results, where xk, k = 1, 2, �, 
nS, are the sampled values for x.  As previously indicated, Latin hypercube sampling is a 
likely candidate for the sampling procedure because of its efficient stratification proper-
ties.  Once this mapping is generated, it can be explored with various sensitivity analysis 
procedures to develop an understanding of the relationship between y and the individual 
elements of x. 

A variety of techniques are available for use in sampling-based sensitivity analyses 
[13, 20].  However, given that the analysis problem is based on evidence theory, sensitiv-
ity analysis procedures that do not place excessive reliance on the sampling distributions 
indicated in Eq. (3.1) are desirable.  Of course, no approach can fully divorce itself from 
these distributions because they ultimately give rise to the raw material of the sensitivity 
analysis (i.e., the mapping [xk, yk], k = 1, 2, �, nS); however, this is an unavoidable situa-
tion when the sample space associated with x is infinite as no approach can consider all 
values of x and so a subset of the values for x must be selected in some manner.  The ex-
amination of scatterplots is a natural initial procedure.  Then, rank-based procedures (e.g., 
rank repression, partial rank correlation, squared rank differences) are natural techniques 
to employ because they reduce the effects of both nonlinearities and the original sampling 
distributions [13, 21, 22]. 

If carried out successfully, an initial exploratory sensitivity analysis should provide 
important insights with respect to the relationship between y and the elements of x.  Of-
ten, only a few of the elements of x will have significant effects on y.  This is information 
that can be productively used in the estimation of the evidence theory structure associated 
with y. 
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4.  STEPWISE CONSTRUCTION OF CCBFs AND CCPFs 

For most models, the determination of beliefs and plausibilities for model predictions in 
general, and CCBFs and CCPFs in particular, is a demanding numerical challenge due to 
the need to determine the inverse of the model (i.e., function) involved.  Sampling-based 
(i.e., Monte Carlo) procedures provide one way to carry out such determinations.  With 
this approach, a sample xk, k = 1, 2, �, nS, is generated from X (e.g., with distributions 
for the elements of x of the form indicated in Eq. (3.1)), and y is evaluated for each xk to 
create the mapping [xk, yk], k = 1, 2, �, nS, from X to Y.  Then, the CCBF and CCPF for 
y can be estimated by 

{ }( ){ },1 : ,X k ky Pl y y y − ≤ ∈ ≅CCBF Yx  (4.1) 

and 

{ }( ){ }, : ,X k ky Pl y y y > ∈ ≅CCPF Yx , (4.2) 

respectively.  The approximation to CCBF for y in Eq. (4.1) is based on the equality 
Bel(E) + Pl(E 

c) = 1 and the fact that the subset criterion in the definition of belief (see 
Eq. (2.1)) does not allow for the direct estimate of belief with a finite sample when sets 
with infinite numbers of elements are under consideration.  In general, the same approach 
can be used to estimate the belief BelY(E) and plausibility PlY(E) for any subset E of Y. 

The problem with the preceding approach is that it can be prohibitively expensive 
computationally when the cardinality C( ) of  is high, which is usually the case in 
real analyses.  Specifically, C( ) = Πi C( i), where C( i) is the cardinality of i.  For 
example, if n = 8 and C( i) = 10, then C( ) = 108; and as a result, a very large sample 
would be required to converge the approximations to the CCBF and CCPF in Eqs. (4.1) 
and (4.2). 

The results of the exploratory sensitivity analysis described in Sect. 3 provide a basis 
for a potential path forward in developing the CCBF and CCPF approximations in Eqs. 
(4.1) and (4.2).  The uncertainty in most analysis outcomes is significantly affected by the 
uncertainty in only a small number of analysis inputs (e.g., 3-5).  Of course, this does not 
have to be the case but it does seem usually to be the case. In this situation, the approxi-
mations in Eqs. (4.1) and (4.2) can be determined by only considering the uncertainty 
(i.e., the evidence spaces (Xi, i, mi)) associated with the xi that significantly affect y.  
The remaining xi (i.e., those that do not have a significant effect on y) can be assigned 
degenerate evidence spaces (i.e., spaces (Xi, i, mi) for which mi(Xi) = 1) for use in 
evaluating the approximations in Eqs. (4.1) and (4.2). 

Increasing the resolution in the evidence spaces assigned to individual xi (i.e., by sub-
dividing elements of i and then apportioning the BPA for an original element of i 
over the subsets into which it is subdivided) tends to decrease, and can never increase, the 
uncertainty associated with evidence space for y.  Specifically, beliefs tend to increase 
(and can never decrease) and plausibilities tend to decrease (and can never increase); or 
put another way, beliefs and plausibilities for subsets of Y move closer together as the 
resolution in the characterization of the uncertainties associated with the xi is increased. 
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The preceding observations provide a basis for the use of sensitivity analysis results 
to guide a stepwise procedure for the construction of the CCBF and CCPF approxima-
tions in Eqs. (4.1) and (4.2).  At Step 1, the approximations in Eqs. (4.1) and (4.2) are de-
termined with the most important variable affecting the uncertainty in y assigned its 
original evidence space and all other variables assigned evidence spaces in which their 
original sample spaces are assigned a BPA of 1.  At Step 2, the approximations in Eqs. 
(4.1) and (4.2) are determined with the two most important variables affecting the uncer-
tainty in y assigned their original evidence spaces and all other variables assigned evi-
dence spaces in which their original sample spaces are assigned a BPA of 1.  Analogous 
steps follow for additional important variables determined in the sensitivity analysis until 
substantive changes in the CCBF and CCPF approximations in Eqs. (4.1) and (4.2) no 
longer occur, at which point the approximation procedure stops.  This approach can pro-
duce substantial computational savings over what would be incurred if the approxima-
tions in Eqs. (4.1) and (4.2) were evaluated with the original evidence spaces assigned to 
all the xi. 

The construction procedure just outlined can also can be viewed as a sensitivity 
analysis in the context of evidence theory.  The changes in the location of the CCBF and 
CCPF as additional variables are added in the preceding procedure provides an indication 
of the importance of individual variables with respect to the uncertainty in y characterized 
by (Y, , mY).  At an intuitive level, this approach is analogous to the use of stepwise 
regression analysis in traditional sensitivity analyses. 

5.  SUMMARY SENSITIVITY ANALYSIS 
Together, a CCBF and CCPF for y provide bounds on all possible CCDFs for y that could 
derive from different distributions for the xi that are consistent with their specified evi-
dence spaces (Xi, i, mi).  In particular, if (Pi, i, pi) is a probability space for xi that is 
consistent with the evidence space (Xi, i, mi) for i = 1, 2, �, n, then these probability 
spaces give rise to corresponding probability spaces (PX, X, pX) and (PY, Y, pY) for x 
and y with the CCDF associated with (PY, Y, pY) falling somewhere between the CCBF 
and CCPF for y.  Traditional sensitivity analysis methods can be used to investigate the 
relationships between the uncertainty in the xi characterized by the probability spaces (Pi, 

i, pi) and the uncertainty in y characterized by the probability space (PY, Y, pY).  A 
possible approach is a variance decomposition for y that partitions the variance for y into 
the contributions to this variance from the individual xi [8-10].  However, unlike a tradi-
tional sensitivity analysis in which the probability spaces (Pi, i, pi) are uniquely speci-
fied, there are many possibilities for the spaces (Pi, i, pi) in an evidence theory context 
and thus many possible variance decompositions for y.  In variance-based sensitivity 
analysis, the variance V(y) of y is expressed as 

( ) 12
1 1 1

,
n n n

i ij n
i i j i

V y V V V
= = = +

= + + +∑ ∑ ∑ !!  (5.1) 
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where Vi is the contribution of xi to V(y), Vij is the contribution of the interaction of xi and 
xj to V(y), and so on up to V12�n which is the contribution of the interaction of x1, x2, �, 
xn to V(y).  Possible sensitivity measures are provided by 

( ) ( )12 and ,i i iT i ij n
j i

s V V y s V V V V y
≠

 
= = + + +  

 
∑ !!  (5.2) 

where si the fraction of V(y) contributed by xi alone and siT is the fraction of V(y) contrib-
uted by xi and interactions of xi with other variables.  The term Vi is defined by iterated 
integrals involving the probability spaces for the individual variables.  For example, when 
n = 3, 

( ) ( ) ( ) ( ) ( )
1 2 3

2
2

1 1 2 3 3 3 2 2 3 2 1 1 1, , ,V f x x x d x d x dx dx d x dx E y = −  ∫ ∫ ∫P P P
 (5.3) 

where di denotes the density function associated with (Pi, i, pi) and E(y) denotes the 
expected value of y; similar defining integrals hold for V2 and V3, and related, but more 
complicated, integrals define V12, V13, V23 and V123.  Analogous relationships hold for n > 
3.  By suitably orchestrating an analysis, Vi and si for i = 1, 2, �, n can be estimated with 
two independent random or Latin hypercube samples; further, si and siT for i = 1, 2, �, n 
can be estimated with a total of n + 2 suitably defined samples. 

Three questions arise with respect to the implementation of a variance-based sensitiv-
ity analysis in the context of evidence theory:  (i) How to select an appropriate spectrum 
of distributions for each xi from the infinite number of distributions that are consistent 
with (Xi, i, mi)?, (ii) How to implement the analysis in a computationally practicable 
manner for multiple distributions (i.e., multiple probability spaces (Pi, i, pi)) for each 
xi?, and (iii) How to display the results of the sensitivity analyses for multiple distribu-
tions of the xi and hence multiple distributions for x and y? 

The first question arises because there is no inherent structure associated with the in-
finite number of distributions for xi that are consistent with (Xi, i, mi).  The situation is 
analogous to that encountered in an interval analysis for a real-valued quantity except that 
the uncertain quantity is now a probability space rather than a number.  As there is no 
way to consider all probability spaces consistent with (Xi, i, pi) and also no specific 
structure to guide the selection of individual probability spaces, some type of ad hoc pro-
cedure is needed to select representative probability spaces that are consistent with (Xi, 

i, pi).  Further, the number of selected distributions for each xi must be relatively small; 
otherwise, the total number of combinations of selected distributions for all n variables 
will be too large to be computationally practicable. 

An exploratory approach that should provide valuable information for many situa-
tions is to select three distributions for each xi, with (i) one distribution emphasizing the 
smaller values associated with each focal element, (ii) one distribution uniform over the 
range of each focal element, and (iii) one distribution emphasizing the larger values asso-
ciated with each focal element.  The distributions indicated in (i) and (iii) could be left 
and right triangular or left and right quadratic.  Left and right triangular distributions are 
actually quite similar to uniform distributions and thus may not be good choices.  For fo-
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cal element Eij = [aij, bij] associated with xi, the corresponding density functions dlij, duij 
and drij for left quadratic, uniform, and right quadratic distributions, respectively, over Eij 
are 

( )
( )
( )

( ) ( ) ( )
( )
( )

2 2

3 3

3 31, ,  and ij ij
lij uij rij

ij ijij ij ij ij

b v v a
d v d v d v

b ab a b a

− −
= = =

−− −
 (5.4) 

if v ∈ Eij and dlij(v) = duij(v) = drij(v) = 0 otherwise. In turn, the left quadratic, uniform and 
right quadratic distribution functions dli, dui and dri for xi are given by 

( ) ( ) ( )
( )    
      

1

i
C

ci i ij cij
j

d v m d v
=

= ∑ E  (5.5) 

for v ∈ Xi and c = l, u, r. 

The second question arises because computational cost can easily become unreason-
able unless the analysis is carefully planned.  As a first step, only those variables that ac-
tually affect y need to be considered.  The preliminary sensitivity analysis described in 
Sect. 3 should, in most analyses, identify the four or five variables that have significant 
effects on y.  It is only those variables that require consideration of their original evidence 
spaces as indicated in Eq. (5.5); the remaining variables can be assigned a uniform or 
some other convenient distribution.  For example, if four xi affect y and the three distribu-
tions defined in Eq. (5.5) are considered for each of these xi, then 34 = 81 different prob-
ability spaces result for x and hence for y.  As a second step, the analysis can be designed 
to use the same samples in the evaluation of si and siT for all probability spaces defined 
for x (e.g., the 81 spaces indicated above). For example, if Latin hypercube sampling is 
used, it is necessary to actually evaluate f for samples from only one of the probability 
spaces for x; after these evaluations for f are performed, results for the other probability 
spaces for x under consideration (e.g., the remaining 80 probability spaces in the example 
above) can be obtained by reweighting the results obtained for the individual sample 
elements on the basis of the changed distributions for the xi�s [19, 23].  A similar re-
weighting procedure is also available for random sampling [24]. 

The third question arises because of the difficulty of displaying the results of multiple 
sensitivity analyses for y in a reasonably compact and understandable format.  Presenting 
the sensitivity analyses individually is unlikely to be adequate because of the large num-
ber of analyses involved and the resultant difficulty of observing trends in variable 
importance across analyses.  A promising presentation format to employ for this 
representation is a cobweb plot, which provides a representation for a multidimensional 
distribution in a two-dimensional plot [25].  For example, if nPS probability spaces (PXj, 

Xj, pXj) for x are under consideration and 4 uncertain variables have been identified for 
analysis, the results of the sensitivity analyses for y might be of the form 

1 2 3 4, , , , , , 1, 2,  , ,j j j j j j je v s s s s j nPS = =  …s  (5.6) 
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where ej and vj are the expected value and variance for y that derive from the probability 
space (PXj, Xj, pXj) for x and sij, i = 1, 2, 3, 4, are the fractional contributions to vj as de-
fined in the first equality in Eq. (5.2) for the 4 uncertain variables under consideration. 

With a cobweb plot, the nPS vectors in Eq. (5.6) can be presented in a single plot 
frame.  Specifically, the individual elements of sj are designated by locations on the hori-
zontal axis and their values correspond to locations on the vertical axis.  In general, it 
may be necessary to use multiple axis scales for the vertical axis or to plot quantiles for 
the elements of sj rather than their actual values.  Each sj results in a single point in each 
of the vertical columns associated with its elements.  The identity of sj is maintained by a 
line that connects the values of its elements.  As desired, the cobweb plot allows the pres-
entation of all sensitivity analysis results in a single plot frame and also facilitates the 
recognition of interactions between variables. 

In summary, the approach presented in this section to the performance and presenta-
tion of a sensitivity analysis for a function defined on an evidence space has three com-
ponents:  (i) Definition of representative probability spaces for the analysis input x that 
are consistent with the evidence space for x, (ii) Use of efficient sampling-based numeri-
cal procedures to decompose the variance of the analysis outcome y for each probability 
space for x, and (iii) Use of cobweb plots to summarize the results of the sensitivity 
analyses for y carried out for the individual probability spaces for x.  Thus, rather than 
having a single set of sensitivity analysis results for y, a spectrum of sensitivity analysis 
results for y is obtained that is consistent with the evidence space that characterizes the 
uncertainty in x. 

6.  SUMMARY 

Three applications of sampling-based sensitivity analysis in conjunction with evidence 
theory representations for epistemic uncertainty in model inputs have been described:  (i) 
an initial exploratory analysis to assess model behavior and provide insights for addi-
tional analysis, (ii) a stepwise analysis showing the incremental effects of uncertain vari-
ables on CCBFs and CCPFs, and (iii) a summary analysis showing a spectrum of 
variance-based sensitivity analysis results that derive from probability spaces that are 
consistence with the evidence space under consideration.  It is hoped that the ideas asso-
ciated with these approaches will provide a start towards the development of effective 
sensitivity analysis procedures for use in conjunction with evidence theory representa-
tions for epistemic uncertainty. 
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Abstract: Experiment plans formed by combining two or more designs, such as orthogonal 
arrays, primarily with 2- and 3-level factors, creating multi-level arrays with subsets of 
different strength are proposed for computer experiments.  The specific illustrations are 
designs for 5-level factors with fewer runs than generally required for 5-level orthogonal 
arrays of strength 2 or more.  At least five levels for each input are desired to allow for runs at 
a nominal value, two values either side of nominal but within a normal, anticipated range, and 
two more extreme values either side of nominal.  This number of levels allows for a broader 
range of input combinations to test the input combinations where a simulation code operates.  
Five-level factors also allow the possibility of up to 4th order polynomial models for fitting 
simulation results, at least in one dimension.  By having subsets of runs with more than 
strength 2, interaction effects may also be considered.  Also, the resulting designs have a 
“checker-board” pattern in lower-dimensional projections, in contrast to the grid projection 
that occurs with orthogonal arrays. 

Keywords: Computer experiments, experiment design, fractional factorial design, orthogonal 
arrays, correlation coefficient 

1. INTRODUCTION 
The context for this paper is planning runs of a non-stochastic computer code for the 

purpose of assessing important inputs from among p inputs.  As in McKay (1995), 
“important” input(s) are identified based on comparison of R2, an estimate of the correlation 
coefficient associated with the goodness of fit to the simulated output Y of an analysis of 
variance model based on a subset of inputs Xs.   The following is a formula for R2 based on a 
subset of inputs Xs: 
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where the subscript i  varies over distinct values of the s inputs identified in Xs, the 
subscript j varies over “replicate” experiments corresponding to a fixed value of the inputs Xs, 
and the “dot” subscript indicates the standard average.  “Replicate” is in quotes since no true 
replicates are done.  The computer simulation output is non-stochastic in that the output is 
fully determined by specification of the input with no variation in output for repeated runs of 
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the code for identical input.  Variation in the output is induced solely by variation in the 
inputs.  The (p-s) inputs identified by X-Xs may differ while Xs is fixed and this is the basis of 
pseudo-replicate, or “replicate” runs for fixed values of Xs.  The value yi. will be identically 
yij if there are no pseudo-replicate runs.  If this is the case for every value of the inputs 
identified by Xs, then R2 will have a value identically 1.  Otherwise, R2 is between 0 and 1.  
This reasoning leads to considering experiment designs such that, for subsets of inputs of a 
specified size s<p, a sampling of values for that subset of inputs is required such that 
“replicates” determined by a sample of values for the remaining inputs occur, for at least one 
of the values of the subset of inputs.  This is a property of factorial experiment designs, or 
orthogonal arrays, which naturally suit this analysis approach, per Moore and McKay (2002).  
However, in order to obtain non-degenerate values of R2 for subsets of 2 or more inputs, 
orthogonal arrays of strength 2 or more are dictated.  

The specific illustrations of experiment designs are for 5-level factors with fewer runs 
than generally required for 5-level orthogonal arrays of strength 2 or more.  In statistical 
experiment design, particularly as used in industrial physical experiments, factorial 
experiments with 2 or 3 level factors are common.  Here, at least five levels for each input are 
desired to allow for runs at a nominal value, two values either side of nominal but within a 
normal, anticipated range, and two more extreme values either side of nominal.  This number 
of levels allows for a broader range of input combinations to test the input combinations 
where a simulation code operates.  Five-level factors also allow the possibility of up to 4th 
order polynomial models for fitting the simulation results, at least in one dimension.   

The requirement for strength 2 or more arrays, in addition to requiring factors to have 5 
levels, leads to orthogonal arrays with unacceptably large numbers of runs in some situations.  
Moore and McKay (2002) present a 625 run orthogonal array for up to 26 5-level factors that 
is strength 3.  In fact, for 625 runs the maximum number of 5-level factors for which a 
strength 2 orthogonal array exists is 156.  The maximum number for which a strength 3 array 
exists in 625 runs is 26 5-level factors, and the maximum number for a strength 4 array is 6 5-
level factors.  For 125 runs, the maximum strength for a 5-level orthogonal array is 3 and 
inequalities in Hedayat, et al (1999) show that the maximum number of 5-level factors that 
could be accommodated by a strength 3 orthogonal array in 125 runs is 5.  Although it is 
conceivable that in computer experiments hundreds of runs might be achievable, for the 
problem at hand less than, or on the order of 100 runs of the computer code are acceptable.  
Additionally, often computer codes have at least tens of inputs and for the illustrations here no 
fewer than 7 inputs are considered.   

As a result of these requirements, experiment plans formed by combining two or more 
designs, such as orthogonal arrays primarily with 2- and 3-level factors, creating multi-level 
arrays with subsets of different strength are proposed for computer experiments.  Experiments 
constructed in this way will be referred to as combined array experiments, or combined 
arrays.  Construction of combined arrays is illustrated in Section 2, specifically including 
investigation of 2-level and 3-level orthogonal arrays used to construct 5-level combined 
arrays.  Additional analysis considerations, optimal experiment design properties and space-
filling properties are discussed in Section 3 for combined arrays.  Conclusions are in Section 
4. 
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2. COMBINED ARRAYS 
In the following, combined array experiments are constructed by combining 2- and 3-level 

fractional factorial experiments, or orthogonal arrays, creating 5-level arrays with subsets of 
different strength.  The resulting combined array is not orthogonal although, obviously, 
subsets of runs are orthogonal arrays.  While 5-levels are formed and the underlying arrays 
are orthogonal, clearly the concepts can be extended to form any number of levels for the 
factors and to combine arrays that are not orthogonal although the arrays should have some 
specified, desirable properties.   

Factorial experiments are experiments for inputs, called factors, with a finite number of 
discrete values, referred to as levels, so if each input has K levels and there are p inputs then 
there are KP possible distinct runs referred to as the KP factorial design space.  The K levels 
could be associated with K equal probability content intervals for a continuous input.  If the 
experiment plan consisted of the entire KP factorial design space, then for each pair of inputs 
(subsets of size 2) there are K2 values (levels) with KP-2 “replicates” for each value.  
Obviously this extends to subsets of inputs of size s in the obvious way.  For relatively 
moderate K and even small sizes for p the full product space of possible experiment runs 
quickly becomes unmanageably large, even given the ability to run the simulation code 
thousands of times.  As stated previously, inputs with at least 5 levels are desired and only 5-
level factors are considered in the following.   

Orthogonal array experiment designs are subsets of full factorial designs, also referred to 
as fractional factorial designs, with reduced runs obtained by relaxing the property that for 
any subset of inputs there are “replicate” inputs for each value of the subset.    Wu and 
Hamada (2000) and Hedayat, et al (1999) are good references on orthogonal arrays, in 
addition to several older texts on statistical experiment design and fractional factorial 
experiments by John (1971) and Raktoe, et al (1981).  For K levels identified by elements in 
the set L={0,1,2,…,k-1}, an N×p array X with entries from L is an orthogonal array with K 
levels, strength t (0 ≤ t ≤ p) and index λ if every N× t sub-array of X contains each t-tuple 
based on L exactly λ  times as a row.  An array with parameters N (number of runs), p 
(number of factors), k (number of levels for each factor), and t (strength) is denoted 
OA(N,p,k,t).  From this definition, a strength t orthogonal array with index λ  is a set of p-
dimensional factorial design points such that if one considers any t-dimensional projection 
then every point in the Kt factorial design space is replicated λ  times.  Likewise, any 
projection of dimension smaller than t, say s<t, consist of λ *K(t-s) replicates of the KS 
factorial design space.  A full KP factorial design space is itself an OA(KP,p,K,p) with index 
unity, that is λ =1.  To reduce the number of runs from the full factorial design, a compromise 
is made on strength in orthogonal arrays.  In a strict sense, fractional factorial designs may be 
any subset of the full factorial design space but often this terminology, or the term regular 
fractional factorial, is reserved for subsets that form an orthogonal array.  For K prime, 
fractions of resolution III, IV and V defined in John (1971) or Raktoe, et al (1981) correspond 
to orthogonal arrays of strength 2, 3, and 4 respectively for which “replicate” runs occur for 
Xs including all values in the KS grid, where s<t and, respectively, t=2, 3, and 4 is the strength 
of the array. 

Again, experiment design options for 5-level factors are desired.  The number of levels is 
required to be 5: a nominal value (coded as 2), two values either side of nominal (referred to 
as inner limits, coded as 1 and 3) but with values that might be reasonably expected, and two 
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values either side set a little further out (referred to as outer limits, coded as 0 and 4).  The 
potential exists for failed runs at some of the extreme values.  Less than 100 runs, or on the 
order of 100, could be done.  Strength 3, at a minimum, is also desirable but that requires too 
many runs for a fully orthogonal array, on the order of 54=625 at a minimum, for 7 to 10 5-
level factors.  In reality, strength 3 is probably not absolutely required, that is the ability to 
assess a possibly unique effect for all 3 variable combinations of 5-level variables.  Instead, 
this strength requirement reflects the experimenter’s suspicion that there are potential 
interaction effects and the experimenter’s desire to obtain some information about interactions 
from the experiment.   

To obtain 5-level factors, 2-level and 3-level experiments designs are combined 
associating the levels of these two designs with 5-levels.  The 2-levels are assigned the 
reasonable values either side of nominal (inner limits) and 3-levels assigned to nominal and 
the two extreme values (outer limits) either side of nominal.  With this construct in mind, it is 
clear all that is required are desirable (high strength, allowing for run size limitations) 2-level 
and 3-level experiment designs.  It is expected that a good (high strength) 2-level factorial 
design would yield main effects assessments independent of (at least pair-wise) cross factor 
interactions while a riskier (lower strength) 3-level factorial design would give somewhat 
more limited information on code functioning at nominal and extreme values of the factors.  
One would not run as much risk of losing information if code runs at extreme values fail since 
results on a good 2-level design would be obtained.  However, there is potential for additional 
information over the limited 2-level factorial experiment, such as departure from linearity 
assessable with runs at the nominal values of factors as well as code performance at extremes.  
In the following, combined arrays are denoted CA(N,p,k,”i”t,”o”t) with parameters N 
(number of runs), p (number of factors), k (number of levels for each factor, here k=5), 
strength t labeled “i”t corresponding to the orthogonal array associated with the inner limits , 
and strength t labeled “o”t corresponding to the orthogonal array associated with the outer 
limits.   

Substantial research and continuing development exists for constructing 2- and 3-level 
fractional factorial designs and the variety of methods and results in the literature are not 
surveyed here.  Specific arrays are used to illustrate the construction of combined arrays.  
Hedayat, et al (1999) is a source of most constructions of these designs, and Tables 12.6 (c-e) 
on pages 326-327 of this text index constructed (fixed-level) orthogonal arrays for 2-level 
arrays with strength at least 3 and 3-level arrays with strength at least 2.  Electronic data-bases 
containing these, and other, arrays can be found at the website: 

www.research.att.com/~njas/oadir.  

For seven factors, there is an OA(16,8,2,3), a 16-run orthogonal array for eight 2-level 
factors that is strength 3, and an OA(18,7,3,2), an 18 run orthogonal array for seven 3-level 
factors.  Using only 7 of the 8 factors from an OA(16,8,2,3) combined with the OA(18,7,3,2), 
a CA(34,7,5,i3,o2) combined array is constructed.  An OA(16,8,2,3), 2-level array is defined 
by columns x1, …, x8 such that the first four columns are the full 24 array and the remaining 
columns are defined by the following equations (with modulus 2 addition): 

x5 = x1 +  x2 +  x3, 

x6 = x1 +  x2 +  x4, 
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x7 = x1 +  x3 +  x4, 

x8 = x2 +  x3 +  x4. 

Table 1 lists the 16 design points in this OA(16,8,2,3) with levels coded as 0 and 1 and then 
recoded to the values either side of nominal (inner limits) coded as 1 and 3 for the 5-level 
factors denoted f1, …, f8: 

Table 1:  OA(16,8,2,3) and associated points in CA(34,7,5,i3,o2) 
OA(16,8,2,3) 

Run/Input 

Coded {0,1} 

x1 x2 x3 x4 x5 x6 x7 x8 CA(34,7,5,i3,o2) 

Run/Input 

Coded {1,3} 

f1 f2 f3 f4 f5 f6 f7 f8 

1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

2 1 0 0 0 1 1 1 0 2 3 1 1 1 3 3 3 1 

3 0 1 0 0 1 1 0 1 3 1 3 1 1 3 3 1 3 

4 1 1 0 0 0 0 1 1 4 3 3 1 1 1 1 3 3 

5 0 0 1 0 1 0 1 1 5 1 1 3 1 3 1 3 3 

6 1 0 1 0 0 1 0 1 6 3 1 3 1 1 3 1 3 

7 0 1 1 0 0 1 1 0 7 1 3 3 1 1 3 3 1 

8 1 1 1 0 1 0 0 0 8 3 3 3 1 3 1 1 1 

9 0 0 0 1 0 1 1 1 9 1 1 1 3 1 3 3 3 

10 1 0 0 1 1 0 0 1 10 3 1 1 3 3 1 1 3 

11 0 1 0 1 1 0 1 0 11 1 3 1 3 3 1 3 1 

12 1 1 0 1 0 1 0 0 12 3 3 1 3 1 3 1 1 

13 0 0 1 1 1 1 0 0 13 1 1 3 3 3 3 1 1 

14 1 0 1 1 0 0 1 0 14 3 1 3 3 1 1 3 1 

15 0 1 1 1 0 0 0 1 15 1 3 3 3 1 1 1 3 

16 1 1 1 1 1 1 1 1 16 3 3 3 3 3 3 3 3 

 

Hedayat, et al (1999) lists an OA(18,7,3,2) on page 20 and discusses construction in 
Chapter 3.  The reader is referred to the text for construction and the design is listed here in 
Table 2 with standard {0,1,2} coding followed by coding for the nominal and extreme values 
(outer limits) for f1, …, f7:  
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Table 2:  OA(18,7,3,2) ) and associated points in CA(34,7,5,i3,o2) 
OA(18,7,3,2) 

Run/Input 

Coded{0,1,2} 

x1 x2 x3 x4 x5 x6 x7 CA(34,7,5,i3,o2) 

Run/Input 

Coded {0,2,4} 

f1 f2 f3 f4 f5 f6 f7 

1 0 0 0 0 0 0 0 17 0 0 0 0 0 0 0 

2 1 1 1 1 1 1 0 18 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 0 19 4 4 4 4 4 4 4 

4 0 0 1 2 1 2 0 20 0 0 2 4 2 4 0 

5 1 1 2 0 2 0 0 21 2 2 4 0 4 0 0 

6 2 2 0 1 0 1 0 22 4 4 0 2 0 2 0 

7 0 1 0 2 2 1 1 23 0 2 0 4 4 2 2 

8 1 2 1 0 0 2 1 24 2 4 2 0 0 4 2 

9 2 0 2 1 1 0 1 25 4 0 4 2 2 0 2 

10 0 2 2 0 1 1 1 26 0 4 4 0 2 2 2 

11 1 0 0 1 2 2 1 27 2 0 0 2 4 4 2 

12 2 1 1 2 0 0 1 28 4 2 2 4 0 0 2 

13 0 1 2 1 0 2 2 29 0 2 4 2 0 4 4 

14 1 2 0 2 1 0 2 30 2 4 0 4 2 0 4 

15 2 0 1 0 2 1 2 31 4 0 2 0 4 2 4 

16 0 2 1 1 2 0 2 32 0 4 2 2 4 0 4 

17 1 0 2 2 0 1 2 33 2 0 4 4 0 2 4 

18 2 1 0 0 1 2 2 34 4 2 0 0 2 4 4 

 

Table 3 lists additional examples of combined arrays that could be formed in a like 
fashion to CA(34,7,5,i3,o2) based on arrays that are indexed in Hedayat, et al (1999). 

Table 3:  CA formed from binary and ternary OA 

Binary OA Ternary OA CA 

OA(16,8,2,3) OA(18,7,3,2) CA(34,7,5,i3,o2) 

OA(24,12,2,3) OA(27,13,3,2) CA(51,12,5,i3,o2) 

OA(32,16,2,3) OA(27,13,3,2) CA(59,13,5,i3,o2) 

OA(64,14,2,3) OA(27,13,3,2) CA(91,13,5,i3,o2) 

OA(64,14,2,3) OA(54,25,3,2) CA(118,14,5,i3,i2)

OA(128,15,2,4) OA(54,25,3,2) CA(182,15,5,i4,i2)
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3. STATISTICAL ANALYSIS AND SPACE-FILLING FEATURES FOR 
COMBINED ARRAYS 

Examining CA(34,7,5,i3,o2) in a similar way as an orthogonal array is evaluated, lower 
dimensional projections may be considered or, equivalently, multi-way tables of the counts of 
values of the factors that occur in the experiment design.  For any two columns of the 
CA(34,7,5,i3,o2) experiment, the two-way table (Table 4) of values that occur in the design 
is: 

  Table 4 :  Incidence of values for any two columns in CA(34,7,5,i3,o2)      

“replicates” fj= 0 1 2 3 4 totals 

fi=        

0  2 0 2 0 2 6 

1  0 4 0 4 0 8 

2  2 0 2 0 2 6 

3  0 4 0 4 0 8 

4  2 0 2 0 2 6 

Totals  6 8 6 8 6 34 
runs 

        

For a strength 2 orthogonal array this table would have the same values in every cell.  For 
combined orthogonal arrays such as CA(34,7,5,i3,o2), there is a “checkerboard” pattern for 
the cells with non-zero and zero counts and the cells with non-zero counts may not have the 
same counts.   

Considering any three factors in CA(34,7,5,i3,o2), the tables of values that occur are 
variants of one of the three tables labeled below as Table 5 for f1, f2, and f3, Table 6 for f1, f2, 
and f7, or Table 7 for f3, f5, and f7.  The variations that occur are that the rows that correspond 
to the even values of a factor may be permuted, although the marginal count values stay the 
same.  There are 28 triples of factors, which have a 3-way table like Table 5, 6 triples 
correspond to Table 6, and factors f3, f5, and f6 are the only ones with the pattern in Table 7. 

Table 5:  Values of f1, f2, and f3 in the design CA(34,7,5,i3,o2). 
“reps” f3= 0 1 2 3 4 total 

 f2= 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4  

f1= 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 6 

 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 2 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 6 

 3 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 4 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 6 

Total  2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 34 
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Table 6:  Values of f1, f2, and f7 in the design CA(34,7,5,i3,o2). 
“reps” f7= 0 1 2 3 4 total 

 f2= 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4  

f1= 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 6 

 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 2 0 0 2 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 6 

 3 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 4 0 0 0 0 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 6 

Total  2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 34 

 

Table 7:  Values of f3, f5, and f7 in the design CA(34,7,5,i3,o2). 
“reps” f7= 0 1 2 3 4 total 

 f5= 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4  

f3= 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 6 

 1 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 2 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 

 3 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 2 0 2 0 0 0 0 0 0 8 

 4 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0 6 

Total  2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 0 4 0 4 0 2 0 2 0 2 34 

 

A strength 3 orthogonal array would dictate that every cell in the 3-way tables has the same 
non-zero count.  There are 125 cells, so, obviously, with only 34 runs not every cell can have 
a non-zero count.  The trade-off with fewer runs than cells is to have non-zero count in as 
many cells as possible and have these cells “spread” around as much as possible.  Visually, 
this is best achieved in Table 5 which is the associated table for 28 of the 35 possible triples of 
factors.  Based on this observation, combined array designs do a good job of space-filling in 
lower dimensional projections that correspond to the strengths of the combined arrays.  
Specifically, CA(34,7,5,i3,o2) is a good space-filling design in its 2- and 3-dimensional 
projections. 

Since the combined arrays have underlying structure of orthogonal arrays on subsets of 
runs, analyses investigating main effects and interactions are possible and there are  
“replicates” required for the comparison of R2 as in McKay (1995) for identifying “important” 
input(s).  In statistical experiments, 2- and 3-level experiments are common and relate to the 
fitting of polynomial regression models with degree 1 or 2, respectively.  For 2-level factors, 
at most a first order, or linear, polynomial in a single factor can be modeled.  For 3-level 
factors, a second order polynomial model can be fit.  In the analysis of variance paradigm, 2-
level factors allow fitting of linear main effects only while 3-level factors coincide with fitting 
linear and quadratic main effects.  The requirement of strength 2 or 3 orthogonal arrays is 
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associated with fitting of polynomial regression models without or with cross factor terms, 
respectively.  In an analysis of variance interpretation, strength 2 corresponds to the ability to 
fit main effects only where at least some main effects are biased by possibly significant two-
factor interactions.  In the experiment design literature this type of experiment is referred to as 
a resolution III design.  Strength 3 corresponds to a resolution IV design where only a main 
effects model is estimable but the main effects estimates are not biased by any two-factor 
interactions, although bias due to any higher order interactions exists.  Strength 4 corresponds 
to a resolution V design where main effects and two-factor interactions are estimable, 
although again biased by any potentially non-negligible higher order interactions.  The 
capacity of an experiment to evaluate assorted polynomial trends does not necessarily indicate 
that the polynomial is in any sense the replacement model, but as for analysis based on 
comparison of R2 for different sets of inputs, it provides a means for identifying inputs that 
are most influential subject to the limits of the experiment design.  

4. CONCLUSIONS 
Combining 2- and 3-level orthogonal arrays leads to designs with 5-level factors but with 

full orthogonality compromised.  The resulting array is not orthogonal but high strength is 
achieved with respect to some level combinations or a subset of runs and as a result there is 
the capacity to make assessment of important effects based on comparison of R2 for different 
input sets as in McKay (1995).  These properties are achieved with fewer runs than would be 
required for an orthogonal design for 5-level factors. 
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Halftoning and Quasi-Monte Carlo
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Abstract: The goal in Quasi-Monte Carlo (QMC) is to improve the accuracy of integrals
estimated by the Monte Carlo technique through a suitable specification of the sample
point set. Indeed, the errors from N samples typically drop as N−1 with QMC, which is
much better than the N−1/2 dependence obtained with Monte Carlo estimates based on
random point sets. The heuristic reasoning behind selecting QMC point sets is similar
to that in halftoning, that is, to spread the points out as evenly as possible, consistent
with the desired point density. I will outline the parallels between QMC and halftoning,
and describe an halftoning-inspired algorithm for generating a sample set with uniform
density, which yields smaller integration errors than standard QMC algorithms in two
dimensions.

Keywords: Quasi-Monte Carlo, Monte Carlo integration, low-discrepancy sequences,
Halton sequence, Sobel sequence, halftoning, direct binary search, minimum visual dis-
crepancy, Voronoi analysis

1. INTRODUCTION

The goal of the standard Monte Carlo (MC) technique[1] is to estimate the integral of a
function over a specified M-dimensional domain from evaluations of the function at points
that are randomly chosen within that domain. The objective in Quasi-Monte Carlo[2]
(QMC) is to improve those estimates through a suitable specification of the sample point
set. It has been shown that the errors from N samples for a fixed number of dimensions
typically fall off as N−1 with QMC, much more quickly than with MC, namely, N−1/2.

Digital halftoning is the process of creating a pattern of black dots on a white back-
ground to create the illusion of a gray-scale image.[3, 4] One of the principal goals in
halftoning is avoid introducing undesirable texture into the rendered image, which is typ-
ically caused by clumping of the dots, or uneven dot placement that accompanies random
dot distributions. In a sense, QMC has the same goal, whether it is implicitly or explic-
itly stated. The clumpiness in random point distributions also exists in standard Monte
Carlo, and lead to lower sampling efficiency than more uniformly distributed point distri-
butions. One observes that in regions of uniform low density, halftoned images seem to
have characteristics deemed desirable in QMC.

The heuristic reasoning behind selecting QMC point sets is similar to that in halfton-
ing, that is, to avoid clumping of the points (dots). The visual similarities between the
patterns generated in halftoning and QMC lead one to speculate whether halftoning tech-
niques might provide some useful lessons for quasi-Monte Carlo, or visa versa? I will
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demonstrate that a method for generating point sets, which is inspired by basic concepts
used in halftoning, yields more accurate estimates of 2D integrals than is obtained with
some standard QMC sequences. Of course, halftoning is conducted in only two dimen-
sions. It must be kept in mind that the same algorithms that work for 2D may not work
for higher dimensions. I will discuss the implications for higher dimensions and other
potential approaches to enhanced QMC methods.

The objective of the present study is to find improved QMC techniques to reduce the
number of function evaluations needed to achieve a specified accuracy in the estimate of
an integral. For example, the function to be integrated may depend on a simulation of a
complex physical process that might take several hours, or even several days, to calculate
on the fastest computers available. In such a situation, the time required to generate an
appropriate set of samples is inconsequential. Incidentally, intelligently selected point sets
can be used for purposes other than integration, for example, for performing sensitivity
analysis of computer models.[5, 6]

This paper summarizes the results presented in Ref. 7. Further details may be found
there.

2. HALFTONING

The goal of the halftoning process is to render a gray-scale image, subject to whatever
limitations are present in the printing or display process. Given the wide variety of con-
straints in printing technologies, a similarly wide variety of halftoning techniques exist[4].
For the purpose of the present study, I will focus on a single type of rendering, referred
to as digital halftoning, in which the printing process is only capable of putting black
dots on a white surface.[3, 8] The constraints on this process can include the dot size, the
minimum distance between dots, etc. Because halftoning is used in commercial printers,
which need to print pages rapidly, a large fraction of the published work on halftoning is
devoted to finding ways to speed up the halftoning process, through use of look-up tables,
for example. The trade-off between speed and rendition quality becomes a critical design
issue.

Figure 1 shows an excellent example of a high-quality halftoned image.[9] This figure
was produced using the direct-binary-search (DBS) technique, which will be described in
the following section.[8, 9] As in many halftoning techniques, DBS is based on minimizing
the perceived difference between the halftone image and the original gray-scale image that
it is supposed to represent. Because the judge of the quality of the halftoned image is
a human observer, halftoning algorithms are often are based on properties of the human
visual system (HVS).

In one simple description of the HVS[3, 4], it is assumed that the effective modulation
transfer function (MTF) for the eye is proportional to an exponential of −c |f |, where f
is the radial spatial frequency on the observed page, and the factor c is related to the
distance of the observer from the page. The 2D inverse Fourier transform of this MTF
yields a blur function of the form

h(r) ∝ (w2 + r2)−3/2 , (1)
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Figure 1. An example of a digital halftone image generated with the direct-binary-search
algorithm taken from Ref. 9, which shows the high quality that is achievable with state-of-the-
art halftone rendering of gray-scale images. ( c©IEEE)

where r is the radial distance in the printed image. The width of this 2D Cauchy distri-
bution is characterized by the parameter w. The full-width at half maximum (FWHM)
of the radial profile of this distribution is 1.553 w. An important feature of h(r) is that it
has a long tail, behaving like r−3 for large r.

Assuming a position-invariant blur function h(x, y), the difference between the two
perceived images is the convolution:

e(x, y) = h ∗ [d − g] =

∫
h(x − x′, y − y′) [d(x′, y′) − g(x′, y′)] dx′ dy′ , (2)

where ∗ denotes the convolution operation, d(x, y) is the dot image, and g(x, y) is the
original gray-scale image to be rendered. Because the convolution redistributes intensities,
it is necessary to specify what to use outside of the domains of images d and g. This topic
is not often mentioned in discussions of halftoning but will be dealt with in Sect. 4. To
quantify the perceived discrepancy between the halftone image and the actual gray-scale
image, the most-often-used cost function is the total power in the error image

ϕ =

∫
R

|e(x, y)|2 dx dy . (3)

A variety of simplifying assumptions go into this formula, but it seems to be adequate for
producing halftone images of high visual quality.

The DBS algorithm[8, 9] is a specific approach to minimizing the HVS-motivated cost
function given by Eq. (3). The following is a simplified description of the DBS algorithm.
It is assumed that the halftone dot pattern is represented in terms of a discretized image
in which each pixel represents a dot and has one of two values, either black or white.
An initial pattern of dots is produced in which the density of the dots is approximately
proportional to the gray-scale image being rendered. Any one of several methods may be
used to generate this initial image, for example, thresholding of a set of random numbers.
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In this iterative algorithm, each pixel in the image is considered one at a time. The change
in ϕ produced by swapping the pixel’s value with each of its eight nearest neighbors is
calculated. The effect on ϕ of toggling, or reversing, the pixel’s value is also calculated.
If any of these options results in a decrease in ϕ, the change that reduces ϕ the most
is kept. One pass through all pixels in the halftone image is counted as one iteration.
The number iterations can vary from a half dozen to many times that, depending on
the characteristics of the initial image and the stopping criterion. Although the DBS
algorithm yields halftoned images of excellent quality, it requires intensive calculation.[9]

3. QUASI-MONTE CARLO

In standard Monte Carlo techniques[1], one evaluates integrals on the basis of a set of
point samples. The integral of a function f() of the parameter vector x is estimated as

∫
R

f(x) dx =
VR

N

N∑
i=1

f(xi) , (4)

where R indicates the domain of integration in M dimensions, VR is the volume of R,
and the N samples xi are randomly drawn from a uniform probability density function
defined over R.

The objective of the quasi-Monte Carlo technique is to reduce the number of function
evaluations needed to obtain a given accuracy in a Monte Carlo type of integration, and
to accelerate its convergence as N increases, a goal that is typically achieved[10]. One
useful feature of QMC is that any number of samples can be generated. Furthermore, an
arbitrary number of additional samples can be added to an existing set of samples. The
subject of space-filling or uniform point distributions has been extensively studied in the
field of statistics [11, 12].

Figure 2 shows four different sets of points that cover the unit square in 2D. Panel (a)
shows a set of random numbers that represents the type of point distribution that would
be used in classical MC. The points in panel (c) are taken from the low-density portion
of the sky near the top of Fig. 1. This dot pattern is observed to be somewhat similar to
the patterns seen in 2D point sets that used in quasi-Monte Carlo. It is known[13] that
by using quadrature methods, which typically rely on uniformly spaced sampling on a
Cartesian square grid, shown in panel (d), the rms error drops as N−1. For classical MC,
the rms error drops more slowly, as N−1/2.

It is interesting to compare the four patterns in Fig. 2, and consider the fact that the
accuracy for integrating func2, defined in Eq. (8), using these point sets is (a) 2.5%, (b)
0.5%, (c) 0.14%∗, and (d) 0.09%. It seems that the more uniformly distributed the points,
the better they are for MC-style integration.

With most standard QMC sequences, the point sequences are the same from one time
to the next. The algorithms for generating the points are deterministic, and typically

∗This rms error is actually for the point set produced by the MVD algorithm, and shown in
Fig. 4a, which is virtually indistinguishable in its general character from Fig. 2c.
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Figure 2. Four examples of different kinds of sample sets, each consisting of 400 points, which
can be used to estimate an integral over the unit square using Eq. (4). (a) A random point
set, each point in which is obtained by randomly drawing values for x and y from a uniform
distribution from 0 to 1. (b) The first 400 points from the Halton sequence [2,3]. (c) Subsample
taken from the sky region in the halftoning example shown in Fig. 1. (d) A regular array of
points arranged on a square grid.

depend on the prime numbers, which are typically small primes. This situation is quite
different than that for the generation of pseudo-random numbers, where the sequence is
usually different (and independent) each time it is requested. Of course, by setting the
‘seed’ to the same value, the same sequence can be obtained again, but this is under the
user’s control.

A metric that is often used in the QMC field is the local discrepancy, the L2 norm of
which is, in 2D

D2 =

{∫
U

[
n(x, y)

N
− A0(x, y)

]2

dx dy

}1
2

, (5)

where A0(x, y) is the area of the rectangle with one corner anchored at the origin and its
opposite corner at (x, y), and n(x, y) is the number of samples that lie inside the same
rectangle out of a total of N samples. The integration is over the unit square, designated
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by U . This quantity is clearly a measure of the uniformity of the distribution of the
sample points. D2, and other similarly defined discrepancy measures, are useful because
they form the basis for several upper bounds on the integration error for specified classes
of functions[2]. The definition of D2 may be made more robust by employing an average
over rectangles anchored at all four corners of the unit square[14]. One thing that seems
odd about this metric is that it is based on rectangles with horizontal and vertical edges,
which seems to emphasize the separable characteristics of point sets and may be not well
suited for nonseparable functions. A metric with more isotropic properties might be more
appropriate.

QMC sequences are typically obtained by combining low-discrepancy one-dimensional
sequences[2]. Numerous QMC sequences have been proposed. One of the simplest is the
Halton sequence, which is based on the prime numbers 2 and 3. For example, the Halton
sequence based on the prime number 3 is 1/3, 2/3, 1/9, 4/9 7/9, 2/9, 5/9, 8/9, 1/27, 10/27,
19/27 etc. Other primes would yield different patterns. However, when the same primes
are used, the sequences are perfectly repeatable and the same 2D pattern are obtained.
The Sobel sequence is based on primitive polynomials.[13]

One argument for using MC instead of sampling on a regular grid (quadrature method)
is to avoid a coherent interaction between the sample set and the unknown function being
integrated.[13] Consider for example, the case when the integrand is a periodic function
with the same period as the spacing between sample points. Then the estimated value of
the integral depends critically on the position of the sample points relative to the structure
in the integrand. A regular point pattern will yield the same result every time, if the same
pattern is used. A random sample pattern used in Monte Carlo will yield different results
every time, so one is less likely to be fooled. Another well-known reason for using MC in
high dimensions is that the number of points required by quadrature methods becomes
too large.[13]

Although there are similarities between QMC and halftoning patterns, there seems to
have been little intersection of the two fields of research. One possible exception is the
work by Ohbuchi and Aono[15] in which they used QMC sequences to improve rendering
of surfaces and shadows in a 3D scene. It should be mentioned that many techniques
other than QMC and MC exist for conducting efficient sensitivity studies on computer
models, the intended application of the present work. Some of these are Latin hypercube
sampling[11], stratified sampling,[1] and orthogonal arrays[6].

4. MINIMUM VISUAL DISCREPANCY FOR POINT SETS

Taking a cue from the DBS algorithm, I now describe an algorithm for minimizing the
visual discrepancy (MVD) between a set of points and an image with uniform density.
Starting with some arbitrary point pattern, the MVD algorithm considers each point in
the set in a randomly permuted order. Instead of comparing the blurred dot image to the
blurred gray-scale image, as in Eq. (3), it is better to reference the blurred dot image to
its own mean value by computing its variance:

ψ =

∫
R

|e(x, y)|2 dx dy −
(∫

R

e(x, y) dx dy

)2

, (6)
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where e is the convolution of d with h, as in Eq. (2), but with g = 0. This self referencing
is possible because the number of points is fixed. To minimize ψ, the following iterative
algorithm is employed. Each point is considered, one at a time, in a randomly ordered
way. The value of ψ is calculated for fixed-length steps in eight different directions, along
the axes and along the 45◦ diagonals. If any of these steps results in a decrease in ψ,
that step yielding the smallest ψ is accepted. After all points in the point set have been
considered, which is called one iteration, the step length is decreased by a factor and the
process is repeated until a predetermined number of iterations K have been performed.
The total number of iterations required to achieve satisfactory point distributions ranges
from five to about 15.

The step length for the first iteration is chosen on the basis of how evenly distributed
the points are in the initial pattern. It is specified in terms a characteristic distance
between points for the final, uniformly distributed point set, taken in two dimensions as
a =

√
N , for N points. In the present study, the initial step length is chosen between 0.2 a

to 0.4 a, dependent on the uniformity of the initial point pattern. The larger value is used
when the initial pattern is a random point set, the smaller when starting with the Halton
sequence, for example. In practice, the step length is adjusted so that approximately half
the points considered get moved to lower ψ values. In the last iteration of the prescribed
number of iterations K, the final step length is normally about 0.1 a.

An important aspect of the MVD algorithm is the specification and calculation of ψ,
the function to be minimized. Through experimentation, I have found that the radial
FWHM of the blur function Eq. (1) is best chosen to be on the order of the expected
distance between points a. A value of w ≈ a/2 seems to work well. Larger values do not
keep points away from each other strongly enough. Another detail in the calculation of ψ
concerns the convolution. The convolution operation redistributes intensities from inside
the unit square to the outside, and visa versa. It therefore becomes necessary to specify
the values of the image, not only inside the unit square, but also outside. In this study,
the image is extended with a value equal to the average point density inside the unit
square. Auxiliary runs show that this choice minimizes the error in the integration tests
described in the next section. The convolution operations are performed using standard
Fast Fourier Transform methods. The image sizes used in this study are typically 200 ×
200 pixels to cover the unit square, and are extended to 256 × 256 pixels for the FFT.

The result of the blurring operation of the point (dot) image, stated in Eq. (6), is shown
in Fig. 3. This point distribution is obtained by using the above optimization algorithm
starting with the 100-point Halton sequence [2,3]. In this example, a = 0.1, and w = 0.05,
which results in a radial profile with a FWHM of 0.0767. I have found that it is helpful to
start with a point pattern that has relatively good coarse-scale uniformity. For example,
starting with a Halton sequence of points or a stratified sample set[13] makes it easier to
minimize ψ compared to starting with a random distribution. Similar observations have
been made about the operation of centroidal Voronoi tessellation algorithms[16]. Other
examples of point sets obtained with MVD are presented in Fig. 4. Figure 4a looks very
similar to Fig. 2c, the DBS example.

Minimizing ψ amounts to minimizing the variance in Fig. 3b. It is fairly clear that
to obtain the lowest variance in the blurred image, the points must be distributed so no
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Figure 3. (a) This distribution of 100 points is obtained by minimizing the visual discrepancy
from a uniform density level, and (b) the visualized point image, that is, the point image on
the left blurred by the human visual system. The MVD algorithm is based on minimizing the
variance in this blurred image. The rms deviation for the blurred image, relative to its mean
value, is 1.1%.

gaps exist in the pattern. Consequently, for the optimal pattern the points will be spread
out as far apart and as uniformly as possible. One might expect regular patterns to
minimize ψ. In fact, it is possible to identify regular patterns in the point sets produced
by the MVD algorithm, as for example, in Figs. 3a and 4. The local patterns tend to be
principally hexagonal, but do not possess a long-range order. The situation is similar to
that in solid-state physics in which carefully fabricated materials produce single crystals
with well-defined lattice structures. While the MVD and the DBS halftoning algorithm
do not produce such regular arrays, there is definitely a tendency to do so. The MVD
structures have defects similar to those seen in crystals, e.g., dislocations and interstitial
defects. Actually, the patterns produced by the MVD and BDS algorithms more closely
resemble glassy structures, obtained by quickly freezing a molten material, than crystalline
structures.

It should be kept in mind that the MVD algorithm tends to find a local minimum in
ψ, not the global minimum. Single crystals represent the global minimum in energy. It
may be possible to show that similar regular structures occur at the global minimum in ψ.
Auxiliary tests indicate that regular square and hexagonal arrays of points tend to have the
lowest observed values of ψ. However, initializing MVD with slightly perturbed versions
these patterns does not generally result in the same regular pattern being regained. It
seems that irregularities in the point distribution create barriers that the simple downhill
optimization algorithm presently used does not overcome. Other choices for the blur
kernel or smaller values for w may make it easier to come closer to the global minimum.
On the other hand, it is not clear that reaching the global minimum is desirable, as
commented on in the Discussion section.

The optimization approach in MVD moves each point a limited distance. As with many
iterative approaches to optimization, the high-frequencies in the image (corresponding to
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Figure 4. Point sets obtained with the MVD algorithm containing (a) 400 points and (b) 1000
points.

small scales) tend to be optimized at the beginning of the optimization procedure. The
low frequencies (coarse scales) often take many iterations to be optimized. Thus, one
might think that a multiscale approach to this optimization procedure could help speed
up long-range adjustment of the point patterns to reach a suitable local minimum. For
example, in the early iterations, one might use a relatively large value of w in the blur
function (1) and move groups of neighboring points instead single points. An alternative
would be to start with point patterns that possess coarse-scale uniformity, for example,
a QMC sequence or stratified sampling. Even a regular pattern, such as the square-grid
pattern shown in Fig. 2d or a hexagonal pattern might be used to initialize MVD, provided
that the positions of each point is randomly budged a suitable, but small, distance.

5. INTEGRATION TESTS

The performance of the various kinds of points sets for MC-like integration may be tested
for selected functions. The following two separable functions are used in this study

func1(x) =
∏

i

|4(xi − x0
i )| , (7)

func2(x) =
∏

i

exp{−2|xi − x0
i |} , (8)

where x represents a position vector, x0 is the center of the distribution, and i = 1,
2 for two dimensions. The mean-square error is determined for the integral estimated
using Eq. (4) by averaging the squared error over x0 values that uniformly cover the unit
square. This average is accomplished using the standard MC technique and is based on
1000 randomly chosen x0 positions. The first function (7) is an inverted pyramid that
rises linearly from zero at x0. The second function (8) peaks at x0, and gradually drops
toward zero with a FWHM of 0.693 in both the x1 and x2 directions.

Figure 5 summarizes the results of the integration test of the function func2 (8). The
first and most important observation is that the random point set yields substantially
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Figure 5. Plot of the per-cent rms error in Monte Carlo evaluations of integrals of the two-
dimensional function func2, given in Eq. (8), for various kinds point sets versus the number
of samples, N . The largest errors occur for the random sample set, shown as dots. The rms
errors are smaller for the Halton sequence (diamonds), the minimum visual discrepancy (MVD)
algorithm (stars), and the square grid (squares). The top line shows the convergence behavior
of the rms error expected for standard MC, namely N−1/2; the bottom line shows the behavior
often achieved by quasi-MC sample sets, N−1.

poorer integration accuracy than the other point sets. Its rms error drops like N−1/2,
indicated by the upper line, as is expected for Monte Carlo integration. The Halton
sequence, a mainstay in the QMC field, performs much better. The MVD algorithm
yields rms errors that are generally better than those for the Halton sequence by at least
a factor of two. For 100 points, MVD provides approximately ten times lower error
than random sampling, and at 1000 samples it is at least 20 times better. The general
dependence of the error for these three kinds of points sets is N−1. For expensive function
evaluations, these improvements represent substantial savings.

The discrepancy D2, given in Eq. (5), does not correlate very well with the integration
accuracy. In particular, the values for D2 for the square pattern are always somewhat
greater than those of the Halton and MVD sample sets, and yet the square pattern almost
always produced the smallest rms error. Furthermore, D2 is often smaller for the Halton
sequence than for the MVD pattern, even though MVD always has smaller rms error.
One can conclude that the D2 discrepancy for a point set is not a very good indicator of
its integration accuracy, at least for the functions considered here.

One way to look at Eq. (4) for MC integration is that each function value in the sum
is representative of a volume element surrounding it. A useful way to partition the do-
main of integration into neighborhoods surrounding each sample point is through Voronoi
analysis.[16–18] A simple, if somewhat unorthodox way to perform Voronoi analysis, is
based on a Monte Carlo technique. One randomly draws a set of K points {Xk} from
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a uniform distribution defined over the domain of interest. The distance is computed
between each point Xk and each point in the sample set {Zj} being analyzed. It is
assigned to the closest Zj. The set of points that are closest to Zj belong to its Voronoi
region, the number of which, divided by K, is an estimate of the fractional volume of that
Voronoi region.

From the equal weighting of the function value at each sample point in Eq. (4), one
would suppose that for a good sample set, the Voronoi areas should all be about equal.
However, in further tests involving other types of point sets and other integration test
functions, the correlation between these two quantities is not upheld. Thus, the uniformity
of the Voronoi areas does not not seem to be uniquely related to the integration error.
In addition, one might expect that the average second moment of the radius should be
minimum for a point set with good sampling properties. This condition is attained with
a centroidal Voronoi tessellation.[16, 17] Unfortunately, this quantity does not seem to be
correlated with integration error either.

6. DISCUSSION

The ultimate aim of the present work is to improve on present techniques for analyzing the
sensitivity of computer models outputs to numerous input parameters. The goal therefore
is to develop point sets in high dimensions, which possess desirable convergence properties
for integration estimates, comparable to, or better than QMC sequences. As argued
earlier, it seems desirable for the sample points to be spatially distributed somewhat
randomly. The sample sets should also be independent from one sequence to the next.
Another desirable trait is for the sample sets to be easily augmentable, so that additional
points may be easily generated, if deemed necessary.

The MVD algorithm, based on the ideas behind halftoning has been shown to achieve
very good performance for integrating two simple functions. On the other hand, the MVD
algorithm, per se, may be impossible to implement in high dimensions because it is based
on determining the mean-square error, Eq. (6), of an M -dimensional image. This implies
the necessity for storing a discretized image in M dimensions, which may be infeasible
when M gets larger than four or five, even when coarsely discretized in each dimension.
The convolution is not a problem, because with fast Fourier transforms, the cost grows
only linearly with M .

Another approach to generating a suitable point set, which is closely related to MVD,
is to draw an analogy between the point set and a collection of particles, which interact
by means of a potential field. The potential field can be chosen so that the particles repel
each other at close distances, but are less repulsive when they are sufficiently far apart.
This type of action occurs in the MVD approach, although it is not explicit. Appropriate
conditions need to be specified at the boundary of the region. The advantage of this
potential-field approach is that an integral over the M -dimensional domain is not required
to evaluate the cost function. To calculate the total energy of a specific configuration of the
particles, the distances between each point and every other point needs to be calculated, an
order-MN2 calculation for N points in M dimensions, which is quite managable. On the
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Figure 6. Examples obtained with the potential-field algorithm for (a) 100 points and (b) 1000
points.

other hand, to determine the change in energy for optimizing each point, the calculation
is only of order MN .

Initial results indicate that this potential-field approach is promising. Figure 6 shows
the results obtained with a potential with the same form used in the DBS algorithm,
given in Eq. (1)

ζ =
N∑

j=1

N∑
i=j+1

(w2 + |xi − xj|2)−3/2 , (9)

with suitable boundary conditions. The indices i and j label the points in the sequence.
These patterns are visually very similar to those produced by MVD, shown in Fig. 3a and
Fig. 4b. The rms errors for integrating func2 with these two point sets are 0.96% for 100
points and 0.17% for 1000 points, which is competitive with MVD. This potential-field
approach is somewhat akin to the ‘springs’ idea of Atkins et al.[19]. Also, Idé et al. [20]
have proposed a very similar approach for minimizing the L2 discrepancy using an analogy
to molecular dynamics.
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Abstract: A heuristic optimization methodology based on a Genetic Algorithm is presented 
with the goal to help researchers decide on the optimal set of thermodynamic data and models 
to use to accurately model phase diagrams and their associated uncertainty. This approach 
accounts for the errors associated with reported data and how reliable the researcher believes 
the model to be. Additionally, the results of the Genetic Algorithm provides guidance as to 
which experiments are needed to enhance the reliability of the dataset and is ideally suited for 
parameter optimization and sensitivity analysis. Applications include the UO2-PuO2 and UO2-
BeO systems. 

Keywords: Genetic Algorithms, model calibration, uncertainty 

1.0 INTRODUCTION 
Finding an optimal model by fitting thermodynamic data is a difficult problem in 

materials science due to the large uncertainty associated with the experimental or calculated 
data sets that are used as input.  This situation is most prevalent in the case of the calculation 
of phase diagrams [1] where the solidus and liquidus boundaries are highly uncertain [2] due 
to limitations in the accuracy of temperature measurements, limitations in determining the 
phase transition boundaries, and the potential for off-stoichiometric compositions at high 
temperature. In spite of all of these uncertainties or perhaps because of them, one rarely finds 
the uncertainty bounds reported with the phase diagram. 

One could address this problem in several ways, each having a number of limitations.  The 
first would be to simply accept a particular set of thermodynamic data as fact and use these 
values to calculate phase equilibrium curves.  This approach ignores all the data available in 
other thermodynamic assessments as well as any phase diagram data.  It also assumes that the 
selected data set is the best available.  The second approach would be to take an average of all 
the known thermodynamic data sets. It assumes that all the thermodynamic data is equal in 
quality and thus only an average is necessary. This approach also ignores the available phase 
diagram data. Another option is to fit the solidus and liquidus equations to the known phase 
diagram data.  The starting point of the optimization heavily influences this approach. 
Furthermore, it essentially ignores the experimental thermodynamic data once the 
optimization has initiated. The method proposed in this work uses a Genetic Algorithm to 
incorporate all the data and its associated uncertainties into an optimal fit of what is known. 

The scientific literature is notably bereft of papers dedicated to the analysis of the 
uncertainties associated with equilibrium phase diagrams. A classical approach, based on the 
"spread of mistakes" formalism, is presented in [3] while in [4] a way of extracting the 
maximum information from a minimal set of experimental data is investigated.  Bayesian 
based methods have been used to produce self-consistent thermodynamic data sets for binary 
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[5] or multi-component [6-8] systems. All papers emphasize the importance of starting with a 
reliable, self-consistent thermodynamic data set and draw the reader's attention to the 
propagation of the errors in the input parameters during the calculation process.  

This work demonstrates that modern heuristic optimization techniques such as Genetic 
Algorithms offer a viable way of relating models to the data in the face of large uncertainties 
both on the model parameters and the training data.  To illustrate the utility of this approach 
the solidus and liquidus boundaries of the UO2-PuO2 and UO2-BeO systems have been 
selected. The parameter optimization was performed for each binary system given some 
information about the solidus and liquidus boundaries, the heats of melting, ∆HM, and the 
melting temperatures, TM.  

1.1 Genetic Algorithms 
Genetic Algorithms are heuristic optimization techniques that borrow heavily from the 

ideas of Darwinian evolution.  Using evolution as an optimization tool was first proposed by 
Holland [9] and ever since has spurred a large amount of interest [10].  A genetic algorithm 
borrows the three main constructs of Darwinian evolution (selection, crossover, and mutation) 
to evolve a set of parameter vectors towards an optimal solution. 

In the parlance of the GA community, the set of parameter vectors is a population. Each 
member of the population is evaluated to determine how well it solves the problem at hand, 
i.e. to determine their fitness.  The most fit members are selected with a probability 
proportional to their fitness and allowed to exchange genetic information with other members 
and thus create the next population which usually has a higher average fitness than the parent 
population.   

As a population based optimization method, the GA is ideally suited to handle the various 
forms of uncertainty found in this problem with a minimum of assumption about what the 
uncertainty should look like.  The first form of uncertainty lays in the phase diagram data 
itself.  Figure 1 shows the experimental solidus and liquidus data from three different sources.   
In this work the GA must fit a model through this data.  The error bars on both the 
composition and temperature can be interpreted as nothing more than random intervals and 
thus there is no way to discern any type of uncertainty distribution on the intervals.   
Uncertainty in the experimental data relaxes the constraints on the optimal parameter values 
and forces us to identify a range of parameter values that provide a range of calculated values 
that lay within the experimental uncertainty.  Thus, this problem is under specified.  Previous 
work [11] has shown that a selection operator that uses a fuzzy logic-weighting scheme 
effectively handles optimization scenarios such as this where there are potentially a very large 
number of solutions all of equal fitness and plausibility. 

A fuzzy logic-weighting scheme [12] looks at all the objective values of a particular 
member and rescales them to a value between 0 and 1.  0 if the value is the worst of the 
population.  1 if it falls within the experimental uncertainty.  Once the objectives have been 
scaled, the average is taken over all objectives and that single number is the fitness for the 
member in the population.   

Using the fuzzy logic weighting scheme, the GA is run until all the members of the 
population reach a fitness of 1 or at least reach a state of equilibrium where there is no more 
improvement.  When this state is reached, the members of the final population are used to 
determine the uncertainty bounds on the model parameters.  The population of final 
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parameters can then be used to bound output of the model and show where the model is most 
uncertain and in need of more data.    
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Figure 1. The experimental solidus and liquidus data for the UO2-PuO2 system from Chikalla, Lyon 
and Baily, and Aitken and Evans. 

 

Another form of uncertainty lays in the search ranges for many of the input model 
parameters being optimized.  For some models, the input parameters are in fact 
experimentally accessible values which themselves contain a large amount of uncertainty.  
Such parameters would be the melting points of the starting compositions (UO2, PuO2, BeO) 
as well as their heats of melting.  Other models are purely empirical and were developed by 
various authors to fit their particular data sets.  The empirical parameters have no physical 
meaning. If such a model is to be fit to a different set of data, the published parameters could 
be used as a starting point.  Unfortunately, the parameters in question are rarely published 
with any sort of assessment of uncertainty and one must then make an educated guess as to 
what a reasonable search range would be.  

There are a number of advantages to using a GA in this problem over other calibration 
approaches.  First, a multi-objective GA tends to be robust enough to identify distributions of 
solutions.  These distributions are often multi-modal and thus have shapes not easily captured 
by traditional calibration routines. Second, the GA requires no preconceived assumptions 
about the uncertainty distributions on the objective data or the parameter values.  However, if 
desired, assumed distributions are easily incorporated.  Third, and probably most importantly, 
the GA incorporates all the known data into its search.  For example, the known phase 
diagram data defines the objectives and the spread of the known thermodynamic data defines 
the search space.  

2. PROCEDURE 
This work will address how well 5 different models fit and explain 3 different data sets 

and combinations thereof all of which are supposed to describe the solidus and liquidus 
curves of the UO2-PuO2 phase diagram as shown in Figure 1.  

The first data set is that of Chikalla [13] which only shows a liquidus curve.  The liquidus 
curve behaves as one would expect for an ideal solid solution  except for the PuO2 values of 
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of 5 and 10 wt%.  The data also shows significant scatter in liquidus temperature at all 
compositions but especially at 75 wt% PuO2.  Note that there is no scatter displayed or 
reported in the composition (x axis).  It was presumed by the authors that the composition was 
known exactly even though it is common knowledge that composition can drift due to 
changes in oxygen partial pressure and vaporization of the components.  It is also worth 
nothing that Chikalla, admits later in his paper that the liquidus must be much lower in 
temperature throughout the entire PuO2 composition range due to thermodynamic 
considerations and known melting points and heats of melting. However, other authors 
believe the liquidus to be much higher. 

The second data set is from Lyon and Baily [14] and is generally considered to be a much 
more well-behaved and thus reliable experimental determination of both the solidus and 
liquidus of the UO2-PuO2 phase diagram.  Lyon and Baily also compute the solidus and 
liquidus curves using the Ideal Solutions laws and generally show a much better fit than 
Chikalla did in his study.  Like Chikalla, however, uncertainties were never properly 
accounted for in this study. For example, the composition is still assumed to be known exactly 
and in many cases, especially at very small and very large PuO2 compositions, the 
temperature error bars of the solidus and curves overlap significantly.  Both Chikalla and 
Lyon also use the generally accepted Ideal Solution model to calculate the solidus and 
liquidus curves.   While this model is known to be quite accurate and extendable to other 
systems because it is based on first principles, it has a down fall when it comes to fitting phase 
diagram data.  Namely, phase diagram data is usually collected by changing the composition 
(x) and measuring the temperature of the phase transitions (y) whereas the Ideal Solution 
model is the inverse.  It assumes a temperature and calculates the composition of the solidus 
and liquidus.  This inversion presents somewhat of a problem in the context of fitting a model 
to the data since the effect of experimental uncertainties cannot be directly propagated 
through the optimizer.  

The third data set is that of Aitken and Evans [15, 16].  Aitken and Evans, like Lyon and 
Bailly, experimentally determine the solidus and liquidus of the UO2-PuO2 system by varying 
the composition and measuring the temperature at which the solidus and liquidus are 
observed.  Aitken and Evans differ from Lyon and Baily and also Chikalla by attempting to fit 
the observed solidus and liquidus data with different polynomial forms.   The advantage of 
this approach is that the polynomial forms, like the data, provide a measure of temperature as 
a function of composition and thus are more amenable to proper uncertainty propagation.  The 
downside of this approach is obvious. Namely, the polynomials are only applicable to the 
phase diagrams at hand and their parameters cannot be used in a predictive fashion for other 
thermodynamic studies.  

2.1 Model Descriptions 
2.1.1 Model 1. Ideal Solid Solution Law 

The UO2-PuO2 system shows complete solubility of the two components in the solid 
phase [17]. The liquidus (xLiq) and solidus (xSol) mole fractions for each fixed temperature (T) 
can be approximated [18, 19] by: 
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Where R is the gas constant (8.314 J/mol K). 

The values of the input parameters for the UO2-PuO2 system are scattered [13, 15, 20-22], 
leading to large uncertainty bounds, as shown in Table I.  The goal of our work is to further 
refine the values of the input parameters using the GA given known experimental data on the 
solidus and liquidus positions (Figure 1).  Thus, the optimization proceeds as follows:  First, 
the search range for each parameter is defined for the GA based on the accepted uncertainty 
or variation in the published parameter values.  Second, the GA evolves the parameter values 
based on how well the values generate solidus and liquidus curves, which match the available 
experimental data – taking into account the uncertainties of the experimental solidus and 
liquidus curves.  For this study the initial uncertainty in concentration was assumed to be 
0.005 and the uncertainty in the liquidus and solidus temperatures was 55K and 35K 
respectively.  Once the range of parameter values is optimized, values from this range are 
placed in the forward model.  This results in fuzzy bands that define the position of the curves 
which are most self consistent given all data and the underlying model.  Of particular 
importance to note is that the total uncertainty in model parameter values as well as the 
solidus and liquidus curves decreases by using this method approach. 
Table I.  The Upper and Lower Limits of the Variable Search Space [13, 15, 20-22].  
Variable Units Lower value Upper value 
∆HM

UO2 kJ/mol 25 125 
∆HM

BeO  kJ/mol 42 125 
∆HM

PuO2  kJ/mol 25 100 
TM

UO2
 K 3000 3200 

TM
BeO  K 2700 2900 

TM
PuO2  K 2600 2800 

 

2.1.2 Model 2: polynomial in (x) 
Adamson et al. (in Aitken) recommend the following model for the solidus and liquidus 

curves of UO2-PuO2 

Ts K( )= as +bsx + csx
2 + dsx

3

Tl K( )= al +blx + clx
2

       (3) 
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where as = 3120, bs=-655.3, cs=336.4, ds=-99.9 and al=3120, bl=-388.1, cl=-30.4.  Note that 
the polynomial is in x as opposed to T as in Model 1. 

2.1.3 Model 3; polynomial in (x) 
Lyon and Baily recommend the following model for the solidus and liquidus curves of 

UO2-PuO2 

Ts K( )= as +bsx + csx
2

Tl K( )= al +blx + clx
2

        (4) 

where as = 3113.15, bs=-5.41395, cs=7.4639e-3 and al=3113.15, bl=-3.2166, cl=-
1.448518e-3. 

2.1.4 Model 4: polynomial in (x) 
Komatsu et al. (in Aitken) recommend the following model for the solidus and liquidus 

curves of UO2-PuO2 

Ts K( )= TMUO2
/ 1+bsx + csx

2( )
Tl K( )= TMUO2

/ 1+blx + clx
2( )

       (5) 

where bs=0.1811, cs=-0.011 and bl=0.1068, cl=0.06316. 

2.1.5 Model 5: standard thermodynamic in T but extended to other phase diagram data 
Another advantage of using a GA with a fuzzy logic selection method is that different 

types of objective functions can be easily combined.  In this exercise the objective goals of 
Model 1 are combined with the objective goals and data of a thermodynamic model of the 
eutectic UO2-BeO system.  To optimize the UO2-BeO system, a similar procedure as for the 
UO2-PuO2 system was employed. For this type of diagram the equilibrium lines are defined 
by:   
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The values of the melting enthalpy and temperature were obtained from the literature and are 
displayed in Table I.  Note that the both Model 1 and the eutectic model require 
thermodynamic values for UO2. Thus, by incorporating this model into the optimization 
scheme, the potential thermodynamic values for UO2 are constrained.  Unfortunately, the 
thermodynamic values for BeO are also required.  The reader should take heart, however, that 
this process of combining objectives, models and data allows one to obtain 
thermodynamically self consistent values for the basic properties of the constituent 
compositions – something that is typically very hard to do using other uncertainty propagation 
methods. The UO2-BeO phase diagram [23] shows a eutectic point at T = 2450 K and BeO 
mole fraction x =  0.68. Namely xBeO = 0.68±0.05 (Figure 2). For this study the uncertainty in 
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the liquidus concentration was again 0.05 and the temperature uncertainty was 40K.  In the 
model, the eutectic composition is defined as that point in which the curves calculated from 
Eq. (6) and Eq. (7) intersect. This point also defines the calculated eutectic temperature.  
While the eutectic temperature is known experimentally, there is no information gain in 
comparing it to the calculated value since the calculated value is determined by the calculated 
value of the eutectic composition. 
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Figure 2. The experimental eutectic point for the UO2-BeO system at 0.68 mol% BeO. 
 

3. RESULTS 
Table II shows the results of the optimization with each model described previously and 

when using different data sets.  The table shows the model used, data set used, number of 
solutions found and the fitness of said solutions. The maximum possible fitness is 1.0 and 
would indicate that all the calculated values fall within the experimental uncertainty of the 
data.  

3.1 Model 1 
Tests 1-10 used model 1 with the listed data sets.  The difference between tests 1-5 and 6-

10 is the stated uncertainty of the composition values.  In tests 1-5 the uncertainty is 0.005 
whereas in tests 6-10 it is 0.05.  Note that experimentally the uncertainty in composition is 
very small (0.005 is a reasonable number) whereas the uncertainty in temperature is much 
higher.  Unfortunately, Model 1 is written as a function of temperature, not composition.  
Thus when the model optimized against the raw data, it rarely falls within the experimental 
uncertainty of x.  The net result of this fact for tests 1-5 is that the apparent fitness of the 
optimal solutions is very low.   To get around this problem and find a large set of solutions 
that actually pass through the known uncertainty bounds of the experimental data, the 
uncertainty in composition was expanded based on the degree to which the uncertainty in x 
would intersect uncertainties in temperature of neighboring compositions.  The final 
assessment of this ‘graphically driven’  as opposed to data driven uncertainty was an interval 
of size ±0.05.   Tests 6-10 show the results of using this ‘graphically driven’ uncertainty in x.  
Note that all of the fitnesses increase as would be expected but most notably, a total of 394 
solutions were found that perfectly match the experimental data of Lyon and Baily.  

These results indicate that Lyon and Baily’s experimental data is most consistent with the 
Ideal Solution assumptions of Model 1.   Further it correctly identifies Chikalla’s data as being 
the most suspect.   

449



 
Table II.  The results of optimizing each model against the available data sets. C: Chikalla, L: Lyon 
and Baily, and A: Aitken and Evans. 
Test Model Data Sets # Solutions Fitness 
1 1a L 1 0.949274 
2 1a A 1 0.976892 
3 1a C 1 0.84066 
4 1a L+A 1 0.928932 
5 1a L+A+C 1 0.790519 
6 1b L 394 1 
7 1b A 1 0.989953 
8 1b C 1 0.887064 
9 1b L+A 1 0.99024 
10 1b L+A+C 1 0.874315 
11 2 L 5 0.998358 
12 2 A 377 1 
13 2 C 1 0.9591 
14 2 L+A 14 0.995911 
15 2 L+A+C 1 0.941159 
16 3 L 145 0.998775 
17 3 A 291 1 
18 3 C 502 1 
19 3 L+A 82 0.993154 
20 3 L+A+C 2 0.930555 
21 4 L 3 0.983283 
22 4 A 1 0.993808 
23 4 C 449 0.960122 
24 4 L+A 1 0.982623 
25 4 L+A+C 1 0.920988 
26 5a L 11 0.974211 
27 5a A 322 0.981022 
28 5a C 105 0.899736 
29 5a L+A 1 0.963978 
30 5a L+A+C 7 0.894648 
31 5b L 308 0.999815 
32 5b A 255 1 
33 5b C 395 0.933822 
34 5b L+A 43 0.995135 
35 5b L+A+C 127 0.930271 
 

3.2 Models 2-4 
Models 2, 3, and 4 are polynomial functions originally designed to fit specific data sets.  

From the results of Table 1I this fact is clear since some models find a large number of highly 
fit solutions for one set of data and not the others.  It should also be pointed out that since the 
polynomials are functions of composition, they are able to more accurately account for the 
uncertainty in the temperature data.  Thus, they give the illusion of being better fit models 
than the thermodynamically based Model 1.  Unfortunately, though these models appear to fit 
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much of the data very well they are in no way extensible to other phase systems.  In other 
words where the melting points and heats of melting optimized in Model 1 can then be used to 
estimate the behavior other phase systems, the parameters of Models 2-4 cannot.   

3.3 Model 5 
Like Model 1, two values were used for the uncertainties in composition.  Namely, ±0.005 

for Tests 26-30 and ±0.05 for Tests 31-35.  Also, as was the case for Model 1, the larger 
uncertainties in composition faired better in the optimization.  This is evidenced by the higher 
fitness values and number of solutions for all of the data sets optimized against.  The most 
notable difference between the output of Models 1 and 5 is shown in Figure 3, however.   
Model 1 had to optimize the values for the melting point and heats of melting of UO2 and 
PuO2 whereas Model 5 also had to optimized the same values for BeO.  Since the values for 
UO2 were needed in both the Ideal solution model of UO2-PuO2 and the simple eutectic model 
of UO2-BeO, the ultimate optimal values were much more constrained in Model 5.  Figure 3 
shows the optimal melting point and heat of formation for UO2 from Models 1 (circle) and 
Model 5 (square).  Note that since UO2 was much more constrained in Model 5, only one 
viable solution was found.   

60

65

70

75

80

85

90

95

100

105

110

3118 3120 3122 3124 3126 3128 3130 3132 3134

Heat of Melting (KJ/mol)

Model 1
Model 5

 
Figure 3.  The final solution sets for the heats of melting and the melting points of UO2 determined 
through the optimization of Model 1 (circle) and Model 5 (square). 

4. CONCLUSIONS 
The use of a Genetic Algorithm allows for incorporating uncertain data sets, both large 

and small, in an efficient and meaningful way. This process then leads to the optimization of 
the parameters of proposed models and the assessment of the overall predictive credibility of 
said models.   Specifically, this work determines the degree of uncertainty on the phase 
boundaries of the UO2-PuO2 and UO2-BeO systems by taking into account the available phase 
boundary data, the accepted models of the phase boundaries, and the thermodynamic data 
used in those models.  The net result was an overall reduction in uncertainty of the values of 
the thermodynamic data as well as the phase boundary positions in a way that is internally 
self-consistent.  The use of modern heuristic optimizers such as genetic algorithms was 
crucial to this work since they are both robust and require no assumptions about the forms of 
the uncertainty distributions.   
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Abstract:

We review our approach to the representation and propagation of hybrid uncertain-
ties through high-complexity models, based on quantities known as random intervals
[15, 20, 21]. These structures have a variety of mathematical descriptions, for example as
interval-valued random variables [4], statistical collections of intervals [17], or Dempster-
Shafer bodies of evidence on the Borel field [19]. But methods which provide simpler,
albeit approximate, representations of random intervals are highly desirable, including
p-boxes and traces. Each random interval, through its cumulative belief and plausibility
measures functions [36], generates a unique p-box whose constituent CDFs are all of those
consistent with the random interval. In turn, each p-box generates an equivalence class
of random intervals consistent with it. Then, each p-box necessarily generates a unique
trace which stands as the fuzzy set representation of the p-box or random interval. In
turn each trace generates an equivalence class of p-boxes. The heart of our approach is to
try to understand the tradeoffs between error and simplicity introduced when p-boxes or
traces are used to stand in for various random interval operations. For example, Joslyn
[18] has argued that for elicitation and representation tasks, traces can be the most ap-
propriate structure, and has proposed a method for the generation of canonical random
intervals from elicited traces. But alternatively, models built as algebraic equations of
uncertainty-valued variables (in our case, random-interval-valued) propagate uncertainty
through convolution operations on basic algebraic expressions, and while convolution op-
erations are defined on all three structures, we have observed that the results of only some
of these operations are preserved as one moves through these three levels of specificity.
We report on the status and progress of this modeling approach concerning the relations
between these mathematical structures within this overall framework.

Keywords: Dempster-Shafer theory, random sets, random intervals, p-boxes, probability
bounds, fuzzy arithmetic.

1. INTRODUCTION

Engineering modeling problems are frequently characterized by a large number of inputs
with different forms and levels of uncertainty present on them. For example, it might
be desirable in a given context to combine uncertainties characterized by coarse-grained
probability distributions, strong or weak statistical data, interval data, possibility dis-
tributions, or linguistic information represented as fuzzy sets. Propagating such hybrid
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uncertainties through high-complexity models (whether analytical or computational) is
thereby especially challenging, as are elicitations and interpretations of both input and
output uncertainties by domain experts and customers.

We have been developing an approach to the representation and propagation of hybrid
uncertainties in engineering modeling applications based on quantities known as random
intervals [15, 20, 21]. These structures have a variety of mathematical descriptions, for
example as interval-valued random variables [4], statistical collections of intervals [17], or
Dempster-Shafer bodies of evidence on the Borel field [19].

One of the advantages of random interval structures is their ability to generalize more
specific kinds of uncertainty quantities with a relative minimum of computational and
mathematical complexity. Nonetheless, random intervals are not especially simple struc-
tures to represent or manipulate, and therefore methods which provide simpler, albeit
approximate, representations of them are highly desirable. In this paper we report on
a framework we are developing to accomplish this. In our approach, random interval
quantities can be represented in increasingly simplified and approximate forms through
first p-box, and then trace, structures.

A p-box [8] is an ordered pair of monotonically increasing functions which together
bound a collection of cumulative probability distribution functions. Each random in-
terval, through its cumulative belief and plausibility measures functions [36], generates a
unique p-box whose constituent CDFs are all of those consistent with the random interval.
In turn, each p-box generates an equivalence class of random intervals consistent with it.

A trace [17] is defined in this context as a fuzzy quantity on the real line. Each p-box
necessarily generates a unique trace which stands as the fuzzy set representation of the
p-box or random interval. Under different conditions it can take on the properties of
a probability distribution, possibility distribution, or so-called “fuzzy interval” quantity
(used in fuzzy arithmetic). In turn each trace generates an equivalence class of p-boxes.

The heart of our approach is to try to understand the tradeoffs between error and sim-
plicity introduced when p-boxes or traces are used to stand in for various random interval
operations. For example, Joslyn [18] has argued that for elicitation and representation
tasks, traces can be the most appropriate structure, and has proposed a method for the
generation of canonical random intervals from elicited traces.

But alternatively, models built as algebraic equations of uncertainty-valued variables (in
our case, random-interval-valued) propagate uncertainty through convolution operations
on basic algebraic expressions. But while convolution operations are defined on all three
structures (random intervals, p-boxes, and traces), we have observed that the results of
only some of these operations are preserved as one moves through these three levels of
specificity.

In this paper, we report on the status and progress of this modeling approach concerning
the relations between these mathematical structures within this overall framework.
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2. GENERALIZED UNCERTAINTY QUANTIFICATION FOR
ENGINEERING MODELING

Consider the situation where we have a model, perhaps a large computer code, which acts
as a function f mapping inputs X to outputs Y . This model f might be quite complex,
with high run times, and more significantly multiple input parameters (expressed as the
dimensionality of the space X), with different kinds of uncertainty represented on them.
Given the necessity for many “gaps” between the information present in our simulations
from those of reality (model incompleteness and error, and inherent system variability
and imprecision), we wish to represent amounts, degrees, and kinds of these uncertainties
in formal systems.

But information available on inputs may be rich or sparse, so-called “aleatory” (related
to well-known, but chance, outcomes) or “epistemic” (related to a less-than-well-known
outcome), and may be made known through objective measurements or through the sub-
jective elicitation of experts. Mathematically, inputs might be represented as probability
distributions, paramaterized classes of probability distributions (e.g. N(µ, σ)), by a strong
statistical collection of data points, by a sparse such collection, by simple intervals, sta-
tistical collections of such intervals, or even by non-quantified linguistic expressions.

Model
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.

.
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Distribution

Distribution
Parameters
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. .
.
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Figure 1. Hybrid uncertainty quantification for an engineering modeling problem.

So given a risk or reliability problem related to our model f as charicatured in Fig. 1,
how can we quantify this uncertainty on the input space X, and furthermore propagate
it through f to the output space Y ? More to the point, how can we do so in a way which
respects all the original uncertainty quantifications as provided, making no unnecessary
assumptions? Paraphrasing Klir [25], how can we do such in a way which uses no less
than, but also no more than, all available information; that is, uses only, but all of, what
we are given?

So wherever possible, we should fit formalism to available information, and not vice versa.
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Through the 20th century, uncertainty modeling has been dominated by the mathematics
of probability, and since Shannon and Weaver [32], information has been defined as a
statistical measure of a probability distribution. But also starting in the 1960s, alternative
formalisms have arisen. Some of these were intended to stand in contrast to probability
theory; others are deeply linked to probability theory, but depart from or elaborate on it
in various ways. In the intervening time, there has been a proliferation of methodologies
(including interval analysis [28], fuzzy systems [26], fuzzy and monotone measures [24],
Dempster-Shafer evidence theory [13], random sets and intervals [22], possibility theory
[7], probability bounds [8], rough sets [30], imprecise probabilities [34], and info-gap theory
[2]) along with concomitant movements to synthesize and generalize them. Together,
following Klir [19, 23], we call these Generalized Information Theory (GIT). These
methods are increasingly accepted in engineering modeling [15, 33], and our approach is
squarely centered here.

As a very simple example motivating our approach, consider that for one of the variables
x in our space X, we’re given only an interval, that x might be between two quantities
a and b, so that x ∈ [a, b]. How do we represent the uncertainty U(I) in I? A standard
answer might be to use a uniform probability ditribution U(I) := p(x) with

p(x) =

{
1

b−a
, x ∈ [a, b]

0, x �∈ [a, b]
,

as shown by the horizontal line in Fig. 2. No doubt this answer is justified (by maximum
entropy, insufficient reason, and related principles) when it is necessary to use a single
probability distribution. But this was not specified in the problem. Indeed, one could
argue that any probability distribution with support on [a, b] can be justified, perhaps
denoted U(I) ∈ P([a, b]) (perhaps the truncated normal shown in Fig. 2); but better yet,
why isn’t our uncertainty all such distributions: U(I) = P([a, b]) (the box bounded by
the dashed lines in Fig. 2).

a b

1.00

.50

x

1
b-a

Figure 2. Representations of x ∈ [a, b].

In its purest form, our answer should in fact be none of these, but rather that U(I) is best
represented by the information as provided us, that is, by the interval itself: U(I) = [a, b].
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However, when it is necessary to combine information for some variable x ∈ X with
another y ∈ Y , then these other forms may be vailable. We argue below that all of these
answers are approached consistently within the proper GIT context.

3. NOTATION

Throughout the paper, assume a universe of discourse Ω, with ω ∈ Ω. Denote A ⊥ B :=
A ∩ B = ∅. Given a class C = {A} ⊆ 2Ω, define the core and support respectively as

C(C) :=
⋂

A∈C
A, U(C) :=

⋃
A∈C

A.

We begin considering Ω = {ωi}, 1 ≤ i ≤ n to be finite, but move to recognize Ω = IR, and
consider Borel sets (half-open interval subsets), elements of a interval Borel field.

Definition 3.1 (Interval Borel Field). Let

I := {[a, b) ⊆ IR : a, b ∈ IR ∪ {−∞,∞}, a ≤ b},

where ∀a ≤ b ∈ IR,−∞ < a ≤ b < ∞, [−∞, b) := lima−→−∞[a, b) ∈ I, [a,∞) :=
limb−→∞[a, b) ∈ I, [−∞,∞) = IR ∈ I, and [−∞,−∞) = [∞,∞) := ∅ ∈ I by con-
vention.

In general, let I := [a, b) ∈ I.

A vector denoted �a = 〈ai〉 = 〈a1, a2, . . . , am〉 is a structure of length |�a| := m where each
element ai of the vector is an element of some set ai ∈ X. The ai are ordered and may
include duplicates. Let an element b ∈ X be said to be included in a vector b ∈ �a if
∃ai, b = ai. Define subtraction of an element ai from a vector �a as a new vector

�a − ai := 〈a1, a2, . . . , ai−1, ai+1, . . . , am〉

so that |�a − ai| = m − 1.

Since a vector may contain duplicate elements ai1 , ai2 ∈ �a with ai1 = ai2 , therefore each
vector �a determines a unique non-empty set A constructed by including one instance of
each element ai ∈ �a, so that b ∈ �a ↔ b ∈ A, 1 ≤ |A| ≤ m, and the quantity |�a| − |A| is
the number of elements of �a which are duplicates.

Generalized convolution operators will be introduced, and denoted ⊕ ∈ {+,−,×,÷, ∧}
for addition, subtraction, multiplication, division, and exponentiation respectively. Let ∨
be the maximum and ∧ the minimum operator.

4. RANDOM SETS, RANDOM INTERVALS, AND EVIDENCE THEORY

We now introduce the fundamental ideas of random sets and intervals.

Definition 4.1 (General Random Set). Given a probability space 〈X, Σ, Pr〉, then
a function S: X → 2Ω − {∅}, where − is set subtraction, is a random subset of Ω if S is
Pr-measurable, so that ∀A ⊆ Ω, A �= ∅, S−1(A) ∈ Σ.
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Random sets were originally developed as a branch of stochastic geometry, and their
mathematics in general can be quite complex [1, 22]. But for our purposes, and espe-
cially in the finite case, they can be seen more simply as random variables taking values
on subsets of Ω. Further, they are mathematically isomorphic to bodies of evidence in
Dempster-Shafer evidence theory [3, 31]. We now reintroduce random sets in this context.

Definition 4.2 (Evidence Function, Basic Assignment). A function m: 2Ω →
[0, 1] is an evidence function (basic assignment) when m(∅) = 0 and

∑
A⊆Ω m(A) = 1.

Definition 4.3 (Finite Random Set). Given an evidence function m, then

S := {〈Aj, mj〉 : mj > 0}, (1)

is a finite random set where Aj ⊆ Ω, mj := m(Aj), and 1 ≤ j ≤ N := |S| ≤ 2n − 1.
Denote the focal set of S as the class F(S) := {Aj : mj > 0} ⊆ 2Ω.

Note 4.4. Each finite random set S determines a unique general random set S:F(S) →
2Ω − ∅ defined on the probability space

〈
F(S), 2F(S), Pr

〉
, where Pr is the measure deter-

mined by m acting as its density function [16]. Moreover, S simply is a Dempster-Shafer
body of evidence [13].

We recognize random sets with the following special structures:

Consistent: The global intersection is non-empty: ∀Aj1 , Aj2 ∈ F(S), Aj1 �⊥ Aj2 ↔
C(F(S)) �= ∅.

Consonant: Focal elements are all nested: ∀Aj1, Aj2 ∈ F(S), Aj1 ⊆ Aj2 or Aj1 ⊆ Aj2.

Disjoint: No focal elements intersect: ∀Aj1 , Aj2 ∈ F(S), Aj1 ⊥ Aj2.

Specific: All focal elements are singletons: ∀Aj ∈ F(S), ∃!ω ∈ Ω, Aj = {ω}.

Note that consonance implies consistency, and specificity implies disjointness. Finally,
disjointness implies a lack of consistency, and vice versa.

Definition 4.5 (Monotone Measure, Monotone Measure Trace). [35] Assume
a general universe of discourse Ω, a class of subsets C ⊆ 2Ω, and a sequence of such sets
{A1, A2, . . .} ⊆ C. Then ν: C → [0, 1] is a monotone measure if

1. ν(∅) = 0

2. Monotonicity:
∀A, B ⊆ Ω, A ⊆ B → ν(A) ≤ ν(B) (2)

3. Continuity from Below:

A1 ⊆ A2 ⊆ . . . and U(C) ∈ C → lim
i−→∞ ν(Ai) = ν

( ∞⋃
i=1

Ai

)
.
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4. Continuity from Above:

A1 ⊇ A2 ⊇ . . . and C(C) ∈ C → lim
i−→∞ ν(Ai) = ν

( ∞⋂
i=1

Ai

)
.

ν is normal when ν(Ω) = 1. Define the trace of a monotone measure ν as its “one-point
covering function” qν : Ω → [0, 1], with qν(ω) := ν({ω}).
Definition 4.6 (Evidence Measures). The plausibility and belief measures on ∀A ⊆
Ω are

Pl(A) :=
∑

Aj �⊥A

m(Aj), Bel(A) :=
∑

Aj⊆A

m(Aj),

Pl and Bel are generally normal, non-additive monotone measures [35], and are dual, in
that ∀A ⊆ Ω, Bel(A) = 1 − Pl( A ).

Random intervals were introduced by Dempster [4].

Definition 4.7 (Finite Random Interval). A finite random interval, denoted A, is
a finite random set on Ω = IR for which F(A) = {Ij} ⊆ I, 1 ≤ j ≤ N .

Thus a finite random interval is a finite random left-closed interval subset of IR.

Previously Ω had been postulated as a finite set, which leads to a great deal of mathe-
matical simplicity. However, even though Ω is now uncountable, complications can still
be avoided as long as A is finite, that is as long as only finitely many (N) focal elements
are present. This is because each I = [l, r) ⊆ IR is characterized completely by the
two endpoints l and r. With each new focal element Aj , N grows by 1, and the total
number of endpoints present in F(A) grows by at most 2. Thus the focal set of a finite
random interval can be completely represented by the finite collection of these endpoints:
F(A) = {Ij} = {[lj, rj)}. It is only these endpoints that need to be considered, and none
of the properties of the continuum of points between them is significant.

On this basis we can describe the various components of a random interval. In general de-
note Ij = [lj, rj). Then, denote the vector of all endpoints �L := 〈l1, r1, l2, l2, . . . , lj, rj , . . . , lN , rN〉,
and let L := {xk} be the set derived from eliminating duplicates from �L, with ∀xk ∈
L, ∃xj ∈ �L, xk = xj and 1 ≤ k ≤ Q := |L|, N + 1 ≤ Q ≤ 2N =

∣∣∣�L∣∣∣.
The elements of L determine a class Γ = {Gk} ⊆ I, now with 1 ≤ k ≤ Q − 1, which is
the finest partition of the support U(A) induced by the total intersections of the Ij with
each other and with all their intersections recursively. In practice, the Gk are determined
simply by ordering the xk ∈ L and then traversing them from minxk rightward, forming
an interval for each point in turn.

An example is shown in Fig. 3, with N = 4, F(A) = {[3.5, 4), [1, 2), [3, 4), [2, 3.5)}, and m

is as shown. Here Q = 5, with �L = 〈3.5, 4, 1, 2, 3, 4, 2, 3.5〉 , L = {1, 2, 3, 3.5, 4}, and thus
Γ = {[1, 2), [2, 3), [3, 3.5), [3.5, 4)}.
Our definition differs somewhat from others in the literature [9] who use fully closed
intervals. But not only is the Borel field I more consistent with that of measure theory
[14, 35], it also makes the algebraic manipulations of the Ij much easier, since e.g. for
x ≤ y ≤ z, [x, y) ∩ [y, z) = ∅.
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Figure 3. Example of a finite random interval.

In real problems, random intervals are derived from collections of observed intervals. In
Joslyn’s formalism for random interval measurement [17], the values m(Ij) are derived
by their relative frequency in this observation record. But depending on the application,
it may or may not be likely that two identical intervals I, I ′ = [l, r) will be observed, as
distinct from another interval I ′ “very close” to I, for example I ′ = [l + ε, r − δ) for some
very small ε, δ. In this case, as N grows each Ij is observed once, but with increasing
refinement among the endpoints {lj, rj}. Thus it is common in real applications to deal
with random intervals where all the focal elements Ij ∈ F(A) are distinct with Q ∼ 2N ,
and therefore each with frequency m(Ij) = 1/N .

Yager [36] introduced convolution operators on random intervals.

Definition 4.8 (Random Interval Convolution). Assume two independent ran-
dom intervals A1 = {〈Ij, mj〉}, 1 ≤ j ≤ N1,A2 = {〈Ik, mk〉}, 1 ≤ k ≤ N2, and a convolu-
tion operator ⊕. Then A1 ⊕A2 := {〈Il, ml〉} where:

1 ≤ l ≤ N1N2, Il = {z = x ⊕ y, x ∈ Ij , y ∈ Ik}, ml = mjmk.

5. PROBABILITY BOXES

Random intervals can be difficult structures to elicit, represent, and manipulate. The first
of the approximations we introduce are so-called probability boxes, or just p-boxes.

Definition 5.1 (Probability Box (P-Box)). A p-box [8] is a structure B :=
〈
B, B

〉
,

where B, B: IR → [0, 1] with:

1. limx−→−∞ B(x) −→ 0, limx−→∞ B(x) −→ 1

2. limx−→−∞ B(x) −→ 0, limx−→∞ B(x) −→ 1

3. B(x), B(x) are non-decreasing in x, and

4. B ≤ B.
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B and B are interpreted as bounds on cumulative distribution functions (CDFs). In other

words, B =
〈
B, B

〉
can be identified with the set of all functions {F : B ≤ F ≤ B} such

that F is the CDF of some probability measures Pr on IR. For each such F , denote F ∈ B.
In this way, each p-box defines such a class of probability measures.

Definition 5.2 (P-Box Convolution). Assume two p-boxes B1,B2, and a convolution
operator ⊕. When B1 and B2 are independent, then define

(B1 ⊕ B2)(z) :=
{∫

x⊕y≤z
dΠ(F (x), G(y)) : F ∈ B1, G ∈ B2

}
,

where Π(u, v) = uv is the product copula [29].

Each random interval naturally generates a p-box.

Theorem 5.3. Given a random interval A, then B(A) := 〈BEL, PL〉 is a P-Box, where
BEL and PL are the “cumulative belief and plausibility distributions” PL, BEL: IR → [0, 1]
originally defined by Yager [36]

BEL(x) := Bel([−∞, x)), PL(x) := Pl([−∞, x)).

Proof. Assume a random interval A. We need to show:

1. First,

lim
x−→−∞BEL(x) = lim

x−→−∞ Bel([−∞, x)) = Bel
(

lim
x−→−∞[−∞, x)

)
= Bel([−∞,−∞)) = Bel(∅) = 0.

Similarly,

lim
x−→∞BEL(x) = lim

x−→∞ Bel([−∞, x)) = Bel
(

lim
x−→∞[−∞, x)

)
= Bel([−∞,∞)) = Bel(IR) = 1.

The results limx−→−∞ PL(x) = 0, limx−→∞ PL(x) = 1 follow identically.

2. Since x ≤ y → [−∞, x) ⊆ [−∞, y), and since Bel and Pl are monotone measures,
therefore from monotone measure monotonicity x ≤ y → BEL(x) ≤ BEL(y), there-
fore BEL(x) is monotone non-decreasing in x. And similarly for PL.

3. ∀I ∈ I, Bel(I) ≤ Pl(I), and thus in particular ∀x ∈ IR, Bel([−∞, x)) ≤ Pl([−∞, x)),
and so ∀x ∈ IR, BEL(x) ≤ PL(x).

Therefore 〈BEL, PL〉 is a p-box.

The p-box generated from the example random interval is shown in Fig. 4. Since B and
B partially overlap, the diagram is somewhat ambiguous on its far left and right portions,
but note that

B([−∞, 1)) = 0, B([−∞, 2, )) = 0, B([3,∞)) = 1, B([3.5,∞)) = 1.
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Figure 4. A finite random interval and its piecewise-constant p-box B(A).

{B,E} = {C,D} = {B,C,D,E}

a b

1

.50

xc d

E m(E) = .5

D m(D) = .5
C m(C) = .5

m(B) = .5B

E m(E) = .25
D m(D) = .25
C m(C) = .25

m(B) = .25B

F1

F2

F3

Figure 5. Three different random intervals and their common p-box and trace.
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But for the converse, each p-box determines only an equivalence class of random intervals.
Consider the example shown in Fig. 5 for a < c < d < b ∈ IR, C = {B = [a, d), C =
[a, b), D = [c, d), E = [c, b)}, and three different focal classes F1 = {B, E},F2 = {C, D},
and F3 = {B, C, D, E} with their respective m1, m2, and m3 are shown. We have B(A1) =
B(A2) = B(A3).

Thus for a given p-box B, we can denote A(B) as the equivalence class of random intervals
consistent with it: A(B) := {A : B(A) = B}.
B and B have inverses under reasonable conditions. Assume that B and B are piecewise
continuous from the left. Then define the quasi-inverses

B−1(α) := argmin
x∈IR

|α − B(x)|, B
−1

(α) := argmin
x∈IR

|α − B(x)|,

for α ∈ [0, 1], and

Definition 5.4 (P-Box Inverse). Given a p-box B, let B−1: [0, 1] → I where ∀α ∈
[0, 1]

B−1(α) :=
{[

B
−1

(α), B−1(α)
)}

.

Condition 4 of (5.1) guarantees that for each α = [0, 1],B−1(α) exists and is a member
of I. When B and B are piecewise-constant, B−1 naturally partitions [0, 1] into disjoint
intervals denoted ᾱj over which ∀α, α′ ∈ ᾱj ,B−1(α) = B−1(α′). In practice, denote

ᾱj :=
[
αl

j , α
r
j

]
, where

αl
j = argmin

x∈IR
B(x) ≥ α, αu

j = argmax
x∈IR

B(x) ≤ α.

This is shown in Fig. 4.

Given a piecewise-constant p-box, there is a canonical way to construct a random interval
consistent with it.

Definition 5.5 (Canonical Random Interval from P-Box). Assume a p-box B.
Then construct A∗(B) := {〈B−1(ᾱj), mj〉}, where B−1(ᾱj) := B−1(αl

j) = B−1(αr
j) and

mj = αl
j − αr

j .

Theorem 5.6. A∗(B) is a random interval, and A∗(B) ∈ A(B).

Proof. It is evident from the definitions (5.4) and (5.5) that each ᾱj ∈ I. Also, since the
α̂j partition [0, 1], therefore ∑

j

mj =
∑
j

(
αl

j − αr
j

)
= 1.

It is relatively easy to see in Fig. 4 that A∗(B(A)) = A, although we know that this is
not always so.
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6. RANDOM INTERVAL TRACES

A fuzzy (sub)set of Ω, denoted Ã ⊆̃ Ω, is determined by its membership function, which
is any function of the form µ

Ã
: Ω → [0, 1]. Denote the core of a fuzzy set as C(µ) := {ω ∈

Ω : µ(ω) = 1}.
The value of µ

F̃
(ωi) indicates the degree or extent to which ωi ∈ Ω. Fuzzy sets generalize

classical (crisp) sets in that a subset A ⊆ Ω has a memberhsip function defined as the
characteristic function µA := χA. In the sequel, let each fuzzy set be considered to be a
fuzzy subset of the reals Ã ⊆̃ IR.

The trace of any monotone measure defined on IR is a fuzzy set.

Corollary 6.1. Given a monotone measure ν, then qν is a membership function.

Proof. Follows trivially from the definition of trace (4.5).

Fuzzy sets also have convolutions.

Definition 6.2 (Fuzzy Set Convolution). Assume two fuzzy intervals Ã1, Ã2, a
convolution operator ⊕, and a T-norm �. Let Ã3 = Ã1 ⊕ Ã2. Then

µ
Ã3

(z) :=
∨

x⊕y=z

µ
Ã1

(x) � µ
Ã2

(y).

There are two special kinds of fuzzy subsets which are of particular interest to us.

Definition 6.3 (Fuzzy Interval). [5, 6] A fuzzy subset of the real line F̃ ⊆̃ IR is a
fuzzy interval if F̃ is maximally normalized and convex, so that

∀x, y ∈ IR, ∀z ∈ [x, y], µ
F̃
(z) ≥ µ

F̃
(x) ∧ µ

F̃
(y).

Note that convexity here implies unimodality in the weak sense that C(F̃ ) is a closed
interval. This goes to a limit for fuzzy numbers.

Definition 6.4 (Fuzzy Number). A fuzzy number is a fuzzy interval F̃ where
∃x ∈ IR,C(F̃ ) = {x}.
So each random interval naturally generates a trace.

Definition 6.5 (Random Interval Trace). Given a random interval A, define the
function ρA: IR → [0, 1] as the plausibilistic trace, or just trace, of A, where ρA = qPl.
Therefore

∀x ∈ IR, ρA(x) := Pl({x}) =
∑

Aj�x

mj . (3)

An example is shown in Fig. 6, with A as before, and ρ shown in the top of the figure.

But for the converse, each fuzzy subset of IR determines only an equivalence class of
random intervals. Consider again the example shown in Fig. 5. Each of the three random
intervals A1,A2, and A3 generates exactly the same trace, here shown in the bold, dashed,
“step-pyramid” shaped curve.

So for a given fuzzy set F̃ , denote A
(
F̃
)

as the equivalence class of random intervals

consistent with it: A(F̃ ) :=
{
A : ρ(A) = F̃

}
. The structure of this equivalence class
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Figure 6. Example random interval with its trace and its components.

is not simple, and has been dealt with in depth by Goodman and his colleagues [10–12].
Furthermore, they have shown that operations on fuzzy sets are preserved when projected
through the random set space.

Joslyn has shown the basis to derive fuzzy mathematics from (empirically derived) random
intervals [17]. First, ρ is constant over each Gk ⊆ IR. But moreoever:

Theorem 6.6. [17] The trace ρA of a random interval A is a fuzzy interval iff A is
consistent.

This is important because fuzzy intervals generalize crisp intervals as fuzzy sets generalize
crisp sets. They are also the basis for “fuzzy arithmetic”, since the set of fuzzy intervals
is closed under convolution. In addition:

Proposition 6.7. Given two fuzzy intervals F̃1, F̃2, a convolution operator ⊕, and a
T-norm �, then F̃1 ⊕ F̃2 is not necessarily a fuzzy interval. However,

C
(
F̃1 ⊕ F̃2

)
= C

(
F̃1

)
⊕ C

(
F̃2

)
, U

(
F̃1 ⊕ F̃2

)
= U

(
F̃1

)
⊕ U

(
F̃2

)
.

7. P-BOXES AND TRACES

We now begin to explore the relations among the categories of random intervals and their
trace and p-box representations. These are diagrammed in Fig. 7.

First, a given p-box determine a trace uniquely.

Definition 7.1 (Trace of a P-Box). Assume a p-box B. Then its trace, denoted
ρ(B), is determined by ρ(B) := B − B.

The trace determined in this way from the p-box of a random interval is the same as the
trace of the random interval itself, as we will now show.
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Figure 7. Relations among random intervals, p-boxes, and traces.

Theorem 7.2. For all random intervals A, ρ(B(A)) = ρ(A).

Proof. Assume a random interval A. Fix a point x ∈ IR. Then

PL(x) = Pl((∞, x)) =
∑

Ij �⊥(∞,x]

m(Ij) =
∑
lj≤x

m(Ij)

BEL(x) = Bel((∞, x]) =
∑

Ij⊆(∞,x]

m(Ij) =
∑
x≥rj

m(Ij). (4)

Then from (5.5) and (7.1),

ρ(B(A))(x) = PL(x) − BEL(x) =
∑

lj≤x<rj

m(Ij) =
∑
x∈Ij

m(Ij) = ρ(A)(x). (5)

Note how crucial the use of half-open intervals is. The weak inequality in (4) results
through subtraction in the appropriate half-open interval in (5), and this would have been
the case whether the Ij were closed or not. These results can be checked with some simple
diagrammatic reasoning between Fig. 4 and Fig. 6.

But conversely, it might be that the trace of a random interval has multiple p-boxes which
could generate it.

8. FUTURE WORK

Future development requires the following considerations:

• Given that B → ρ, then it should be that A(B) ⊆ A(B(ρ)). What about the
converse?
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• For a given A, compare A(B(A)) and A(ρ(A)).

Comparison of canonical reconstructions:

• For a given A, compare A∗(B(A)) and A∗(ρ(A)).

• Keep going: compare ρ(A∗(B)) and B(A∗(ρ)).

Convolutions. Similar questions for convolutions all around. In particular:

• Compare B(A1 ⊕A2) with B(A1) ⊕ B(A2).

• Compare A∗(B(A1 ⊕A2)) with A∗(B(A1) ⊕ B(A2)).

• Compare ρ(A1 ⊕A2) with ρ(A1) ⊕ ρ(A2).

• Compare A∗(ρ(A1 ⊕A2)) with A∗(ρ(A1) ⊕ ρ(A2)).
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Abstract

This manuscript is an extended abstract that outlines the problem solved in the paper of the
same name that appears inStatistica Sinicaand for which additional details are given in the
technical report by Lehman et al. (2002).

Keywords: Computer experiments, Robust control variables, Expected improvement, Noise vari-
ables, Robust optimization, Sequential design

This research is concerned with the design of computer experiments when there are two types
of inputs: control variables and environmental variables. Control variables, also called manufac-
turing variables, are determined by a product designer while environmental variables, called noise
variables in the quality control literature, are uncontrolled in the field but take values that are char-
acterized by a probability distribution. Theobjectiveis to design the computer experiment so as to
find a set ofcontrol variableswhich are “robust” in the sense described below.

There are several different notions of robustness that have been proposed in the literature. To
explain the current approach and its relationship to other approaches, suppose thaty(·) denotes the
output of the computer code andx = (xc, xe) denotes the input wherexc is the vector of control
variables andxe is the vector of environmental variables. Also letF (·) denote a tentative guess
of distribution of the environmental variables,Xe. If F (·) is known withcertainty, we typically
focus attention on determining either the distribution ofy(xc, Xe) (“uncertainty analysis”, see,
for examples, O’Hagan and Haylock, 1997 or O’Hagan et al., 1999)or some summary of this
distribution such as its meanµ(xc, F ) = EF{y(xc, Xe)} (see, for example, Williams et al., 2000).

If F (·) is unknown, either completely or up to a finite vector of parameters, thenµ(xc, F ) may
not be useful if its value is “sensitive” to the assumedF (·). Theminimax approachto robustness
assumes that a familyG of distributions can be specified that contains the unknownF (·) (Huber,
1981). This approach definesxGc to beG-robustif

max
G∈G

µ(xGc , G) = min
xc∈Xc

max
G∈G

µ(xc, G).

Minimax robustness adopts a pessimistic viewpoint because it attempts to guard against the worst-
case scenario among allXe distributions inG. TheBayesian approachto robustness focuses on
the mean

µΠ(xc) =

∫
G∈G

µ(xc, G) d Π(G), (1)

over the possibleXe distributions inG; hereΠ(·) is a prior distribution onG. A xΠ
c that minimizes

(1) is said to beΠ-robust.
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Lehman et al. (2004) adopts aTaguchi-like approachto robustness. Assuming that interest lies
in µ(xc, F ), the idea of this type of robustness is that ify(xc, xe) is relatively “flat” in xe for a
givenxc value, then the mean ofy(xc, Xe) will be relatively independent of the choice ofF (·)
(and thus be robust to misspecification ofF (·)). Formally, we quantify the flatness ofy(xc, Xe)
by σ2

G(xc) = VarG[y(xc, Xe)], whereG(·) is a user-selected distribution onXe. We definexM
c

to beM -robust if xM
c minimizesµ(xc, F ) subject to a constraint onσ2

G(xc). Alternatively, and
perhaps more in keeping with the quality control concept of having a “target” mean, we definexV

c

to beV -robustif it minimizesσ2
G(xc) subject to a constraint onµF (xc).

Lehman et al. (2004) present sequential strategies for determingxM
c andxV

c based on a notion
of “expected improvement” to select successive inputs to the computer code (Schonlau, 1997;
Schonlau et al., 1998; Williams et al., 2000). The approach is Bayesian viewpoint. The computer
code is treated as a realization of a Gaussian stochastic process; this random function model is the
basis for interpolating the response based on a small training sample of computer runs (Sacks et al.,
1989; Koehler and Owen, 1996). The predictive interpolator is used in place of the computer code
to investigate the input–output relationship. The paper concludes by illustrating the performance
of the algorithms proposed with examples that involve several different experimental goals. For
the reader’s convenience, the entire reference list for the published paper is given below.
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Abstract: ASSA is a public-domain open-source library of algorithms for stochastic 
sensitivity analysis in ANSI C. It should serve as a documented collection of basic and more 
sophisticated algorithms in that field. Its open character ought to advance the applicability, the 
quality and a restrained kind of completeness of the collection. 

Keywords: software, Monte Carlo, latin hypercube, analysis of variance, regression-based, 
regression-free  

1. INTRODUCTION 
Various software products exist for stochastic sensitivity analysis (SSA; the adjective 

'stochastic' is added to distinguish the subject from deterministic sensitivity analysis). Saltelli, 
Chan and Scott [1] contains an overview of software available in the year 2000. The software 
packages mentioned there are closed in the sense that you can hardly change or add 
components. The section in [1] on generic algorithms is still far from complete. Thus, there 
does not seem to exist a fairly complete, coherent, and documented collection of algorithms 
for SSA in a basic programming language like C or Fortran. The ASSA project has the 
purpose to begin filling this gap. The collection is available in the public domain, in such a 
form that everyone can use the software freely. It is hoped that users will suggest 
improvements or additions. The long-term goal is a collection of documented algorithms in 
the spirit of the famous series of Numerical Recipes [2], but with a slightly different legal 
status.  

 Model builders should be enabled to incorporate the algorithms into their own 
software, for instance in order to accompany model statements with an indication of 
inaccuracy due to input uncertainty. Another application is inclusion of SSA algorithms into 
generic frameworks for building, coupling and analysing models.  

 The language used is ANSI C, written in such a style that translation into another basic 
programming language should pose no serious problems.  

At present, ASSA consists mainly of conventional algorithms for sensitivity analysis. 
Apart from auxiliary routines, the algorithms can be divided into algorithms for constructing 
model input samples and algorithms for analysing the corresponding model output samples. 
All sensitivity analyses are variance-based. 

The long-term goals are: a gradually improving and extending collection of basic and 
advanced algorithms for SSA, leading to a moderate form of standardisation; uniform 
description of these algorithms via C-programs; a form of publication inviting comments and 
additions, while enabling flexible use of the algorithms. 
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2. OVERVIEW OF ALGORITHMS  

2.1. Input generators 
Random generators are used to construct a sample from the distribution of unknown 

parameters or other model inputs. In the present version, the statistical properties of the inputs 
can be described in terms of their grade correlation (often loosely called rank correlation). 
Each of the individual variables is defined through the type and parameters of its distribution.  

There are two basic random generators: uniform(0,1) and multinormal(µ, Σ). For the rest, 
the drawing of random samples is done in two steps.  

The first step draws a sample from the k-dimensional unit-hypercube. Each of the k 
variables thus sampled is more or less randomly and more or less uniformly distributed over 
the interval (0,1). Some examples: independent; dependent with given grade correlation; latin 
hypercube [3]; latin hypercube with forced rank correlation [4]; and by way of example a 
systematic sample constructed from a saturated main-effect design. 

The next step transforms these (0,1) variables into variables with the required distribution. 
The distributions currently available are: uniform, triangular, normal, log-normal, beta and 
gamma. Auxiliary routines are supplied to derive the standard parameters of distributions 
from information about means and variances, or the quantiles. 

2.2. Analysis 
In ASSA’s present version, all sensitivity analyses are variance-based, i.e. they perform 

some kind of analysis of variance on the model output. During the 1990’s there seems to have 
grown consensus that this form of sensitivity analysis is quite adequate for most purposes. 
The algorithms provide the possibility to estimate the variance contributions of  groups of 
inputs, which often facilitates the interpretation of the results, especially when variables 
belonging to different groups are stochastically independent. There is an algorithm for the 
most common form of sensitivity analysis: the one based on linear regression. A spline-
regression-based analysis is on the list of desiderata. All ingredients are present for a Sobol’ 
type sensitivity analysis [5]. An algorithm for winding stairs analysis [6] is under 
construction. For the time being, only two simple test functions are included, whose 
sensitivity properties can be calculated analytically.  

2.3. Auxiliary routines 
ASSA contains routines to summarise the statistical properties of a sample: variance 

matrix, correlation matrix, mean, variance, median and rank-correlation. There is an algorithm 
to check if a symmetric matrix is positive definite. Graphical routines are not included. 

3. SUPPORTING SOFTWARE REQUIRED 
The current version of ASSA frequently uses algorithms from Numerical Recipes in C 

(NRC; Press et al., 1992). Thus, one may only use this version of ASSA in applications where 
one is entitled to use the algorithms from Numerical Recipes. The NRC procedures used for 
ASSA serve mainly to allocate and free memory space for vectors and matrices, to generate 
uniform random numbers, and to calculate special functions relating to probability 
distributions. 
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4. AVAILABILITY AND LEGAL MATTERS 
ASSA's manual and source code can be downloaded free of charge from the website of 

NPB, the Dutch Nature Policy Assessment Office: www.natuurplanbureau.nl. Once there, 
click "publicaties" in the left column; next click "werkdocumenten" in the left column; then 
click "2004" in the central block; and finally download the ASSA manual and source code 
from the displayed list of documents. A link to that website indicated will be offered to the 
SAMO site http://sensitivity-analysis.jrc.cec.eu.int.  

Permission to use, copy and distribute this software and its documentation for any purpose 
is granted without fee, provided that the entire package is kept together and that this 
permission and disclaimer notice appears in all copies. NPB, Biometris, Plant Research 
International and Wageningen UR make no warranty of any kind, expressed or implied, 
including without limitation any warranties of merchantability and/or fitness for a particular 
purpose. NPB, Biometris, Plant Research International and Wageningen UR do not assume 
any liability for the use of this software. In no event will NPB, Biometris, Plant Research 
International or Wageningen UR be liable for any additional damages, including any lost 
profits, lost savings, or other incidental or consequential damages arising from the use of or 
inability to use, this software and its accompanying documentation, even if NPB, Biometris, 
Plant Research International or Wageningen UR has been advised of the possibility of such 
damages. 
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Case Studies in Gaussian Process Modelling of Computer Codes

Marc C. Kennedy, Clive W. Anderson, Stefano Conti and Anthony O’Hagan
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Abstract: In this paper we present a number of recent applications in which an emulator
of a computer code is created using a Gaussian process model. Tools are then applied to
the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis
is used both as an aid to model improvement and as a guide to how much the output
uncertainty might be reduced by learning about specific inputs. Uncertainty analysis al-
lows us to reflect output uncertainty due to unknown input parameters, when the finished
code is used for prediction.

The computer codes themselves are currently being developed within the UK Centre
for Terrestrial Carbon Dynamics.

Keywords: Bayesian emulator, Sensitivity analysis, Uncertainty analysis, Carbon bud-
get, Vegetation model

1. INTRODUCTION

Complicated physical processes are increasingly studied by means of sophisticated mathe-
matical models implemented within computer codes. Before relying upon the explanatory
and predictive abilities of any computer simulation, however, a variety of validatory checks
should be carried out.

The practical complications casting most serious doubts on how adequately and real-
istically a computer model reproduces reality usually arise from: vague or controversial
beliefs about the value of some of the code’s parameters; availability of limited and/or
inaccurate driving data; restrictions due to the CPU cost required for actually running
the program; and incomplete representation of reality by the model. In order to identify
and attenuate the main sources of uncertainty hampering a program’s performance sev-
eral statistical methods have already been proposed in the classical literature (see [1] for
an exhaustive reference).

The Bayesian Perspective

Over the past decade interesting results have been obtained from addressing problems
related to computer model uncertainty in a Bayesian fashion. In particular, a convenient
and flexible strategy consists in assigning a semi-parametric Gaussian process prior to
the program’s response; details of the technique can be found e.g. in [2]. Preliminary
emulation of a code by such means has already been fruitfully exercised on simulators of

Further author information: (Send correspondence to Marc Kennedy
E-mail: m.kennedy@sheffield.ac.uk)
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nuclear radiation releases [3] and on models for vehicle crash and spot welding [4]. Besides
relevant specific findings, results from these case-studies emphasise how widely applicable
and enlightening the principle of Gaussian process-based emulation can be. The case
studies described in this paper utilise a Bayesian emulator to deal with the problems of:
prediction: estimation of (possibly functionals of) model outputs at input configurations
other than the available ones; uncertainty analysis: exploration of the output distribu-
tion induced by assigning some probability distribution to uncertain inputs; screening:
identification of which of the code inputs are significantly active, i.e. most influential on
the outputs; sensitivity analysis: examination of how model outputs react to changes
in appropriate inputs; code verification: detection of bugs in the actual implementation
of the program. These issues relate to the code output. In this paper we will not consider
possible discrepancies between the code and real data.

The simplest sensitivity analysis product derived from the emulator is a set of main
effect plots [5]. For each of the emulator inputs, these show how the output responds, on
average, to changes in that input. Probability distributions must first be specified so that
the averaging correctly accounts for input uncertainty.

The Centre for Terrestrial Carbon Dynamics

The Centre for Terrestrial Carbon Dynamics (CTCD) is a consortium of British academic
and governmental institutions, established to advance scientific understanding of the role
played by terrestrial ecosystems in the carbon cycle, with stress on forest ecosystems.
CTCD is funded by the Natural Environment Research Council for 5 years as one of
its national centres of excellence in earth observation. The ultimate goals of the project
are: to gauge carbon fluxes and their uncertainties at different space/time resolutions;
to devise methodological, data and instrument advances for reducing these uncertainties;
and to deliver relevant findings in accessible formats to the scientific community and to
policy makers. These tasks are pursued with the support of a variety of environmental
models designed for simulating carbon patterns over different geographical and climatic
scenarios. Unfortunately, such models suffer from coarse reproduction of some underlying
physical processes and loose connections to driving data.

Within the Centre, Bayesian methods are being employed for the assessment of the
relevant model (and data) developments required for reducing the uncertainty around
predictions. We present three case studies of the Bayesian approach addressing these
challenges. The first in Section 2 illustrates the use of sensitivity analysis for model
testing. In Section 3 the emulator is used for a range of analyses including the creation of
a simplified upscaled model. The final case study is part of an assessment of uncertainty
in the UK carbon budget calculation.

2. CASE STUDY 1: SHEFFIELD DYNAMIC GLOBAL VEGETATION
MODEL

The Sheffield Dynamic Global Vegetation Model, daily version (SDGVMd) is described
in [6]. It is designed to be able to model generic plant functional types over large areas.
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Figure 1. Estimated main effects for SDGVMd inputs. Solid lines represent estimates of
the expected output with respect to the unknown input distribution. Dotted lines show 95%
pointwise probability bounds for these estimates with respect to the emulator distribution

A variety of extensions and improvements to SDGVMd were undertaken in the first
year of CTCD’s operation. Simple sensitivity analysis exercises were designed to identify
problems with the evolving code.

The five relevant soil and plant inputs that were considered at this stage were: Leaf life
span, bud burst temperature, senescence temperature, soil sand content (%) and soil clay
content (%). These were selected after talking with plant scientists following a preliminary
sensitivity study. The plant scientists also provided a range of values for these inputs,
that were plausible for a deciduous broadleaf plant type. An 80-point maximin latin
hypercube was generated in the resulting input space and for each point the average was
computed over 100 years for the principal model output (net ecosystem productivity, or
NEP). A number of coding errors were uncovered during this process, because the code
had not been exercised for such varied combinations of input.

Plots of main effects (Figure 1) proved a cheap and effective confirmatory tool for
the model developers. They clearly show which of the considered inputs NEP output is
significantly sensitive to, and the nature of the various input/output relationships. In
calculating the main effects, uniform probability distributions were assumed for these
inputs based on the given ranges, while the remainder were fixed at suggested default
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values. The plots show that NEP is generally a decreasing function of leaf life span. This
goes against the intuition that if leaves live longer they should be able to absorb more
carbon, and led the model developers to investigate the phenology routine more closely.
They found that a short life span was leading to multiple short growing seasons during
the year, and hence higher NEP. A more realistic phenology algorithm has since been
developed, and the main effect for leaf life span seen in subsequent sensitivity studies is
more realistic (see Section 4). The modellers were satisfied with the relationships revealed
by the other plots. Increasing the temperatures of budburst or senescence effectively eats
into the growing season at either end of the year, thus reducing total photosynthesis.
As expected, these temperatures are critical parameters and effort has been made within
CTCD to obtain good phenology information. Output is sensitive to the value of the
sand content, but not to clay content over this range. It is clearly important, therefore,
to obtain accurate soil sand content data.

3. CASE STUDY 2: SOIL PLANT ATMOSPHERE MODEL

The soil-plant-atmosphere (SPA) model [7] is a detailed model of plant processes operating
at a 30 minute time step. It therefore requires 30 minute driver variables in order to run.

3.1. The Aggregated Canopy Model (ACM)

In practice, predictions are required at a coarser temporal scale using a much more re-
stricted set of input data. One solution to this problem is to build a simplified model
at the coarse scale by aggregating model output from the fine scale model, and then fit-
ting simpler functional forms to the resulting input/output data set. This approach is
described in [8] and can be summarised as follows: (1) Generate 6561 points in the space
of 9 daily inputs; (2) Disaggregate each of these daily points into 30-minute time series
data; (3) Run SPA with the 30-minute data to produce 6561 daily GPP outputs; (4) Fit
a simpler response surface to the daily input and output points.

The resulting aggregated-canopy model (ACM) is a “big-leaf” model of daily gross
primary production (GPP) with 9 inputs. The model is much simpler and faster than
SPA, requiring daily driving data. are listed in Table 1 with their minimum and maximum
values. The target output is aggregate GPP for the given day. Motivated by an earlier
investigation [8], a variety of analyses have been performed on ACM and SPA.

3.2. Emulating SPA

The following analysis arises from the recognition that ACM is a kind of emulator of
SPA, designed to operate using daily meteorological driving data, when the 30 minute
data required by SPA are not available. We expect to meet similar extrapolation problems
when applying the more global scale SDGVMd outside the relatively data-rich region of
Northern Europe. It was therefore a useful exercise to employ Gaussian process emulation
to provide an alternative approximation for the upscaled SPA using far fewer runs.

In the current example we were not able to run the code directly. The following simple
algorithm was used to select a subset of 150 points from the 6561 SPA runs already
available from the ACM fitting procedure.
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Table 1. Input parameters with valid ranges

Input Symbol Min. Max.
Day of year D 173 230
Leaf Area Index (m2/m2) L 0.1 2.5
Mean foliar N concentration (g N/m2 leaf are) Nf 0.32 4.54
Mean daily temperature (°C) Tm 3 20
Half daily temperature range (°C) Thr 1 8
Irradiance (MJ· m−2· d−1) I 4.5 30.6
Leaf water-soil water potential difference (MPa) Ψd -2.5 -0.5
Ambient CO2 concentration (µmol/mol) Ca 173 230
Leaf hydraulic conductance (mmol·m−2·s−1·MPa−1) Kl 0.1 3.0

1. Generate a 150 point maximin Latin hypercube design (D1) in 9 dimensions, with
input ranges matching those seen in the SPA run data (Table 1).

2. For each point in D1, select the closest matching point in the big design (excluding
those already selected) and add it to the emulator training data.

The emulator can now be used instead of ACM to carry out prediction, uncertainty
analysis and sensitivity analysis.

3.2.1. Prediction

The 6411 SPA runs not used to build the emulator are available to test the prediction
accuracy of the emulator against that of ACM. The emulator root mean squared error
(RMSE) was 0.314, compared with RMSE=0.726 for the ACM. Predicted versus true
values of the aggregated SPA output are plotted in figures 2 for both ACM and emulator
predictions. Clearly the emulator has smaller errors overall, but not for all regions of the
input space. The emulator predicts some small GPP values as being negative. This is
physically impossible, and for these values ACM is more accurate because this knowledge
is built into the ACM equations. We could of course modify the emulator output so that
negative values are set to 0.

As a diagnostic check, we plot the t140(0, 1) Q-Q plot of standardised errors in Figure
3. Most of the points are on the line, indicating that overall the posterior variances are
consistent with actual errors. Deviations from the line cast some doubt about the dis-
tributional assumptions. In particular, the stationarity assumption may be questionable
here.

3.2.2. Sensitivity analysis

Main effects for the emulator inputs are plotted in Figure 4. We assume independent
uniform distributions for the inputs according to the ranges in Table 1. The method
used in [9] provides an estimate of the uncertainty of the output resulting from the input
uncertainty, and a breakdown of the contribution to this uncertainty from each input.
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Figure 3. Quantile-Quantile plot for standardised residuals

The total variance is 3.44, and the percentage contributions to this variance from each
input are Nf (41.08%), D (18.96%), L (8.63%), I (7.34%), Ca (4.87%), Tm (4.27%), Ψd

(0.67%), Kl (0.53%), Thr (0.38%). The remaining 13.27% is due to joint effects and higher
order interaction effects. These results are consistent with the findings given in [8], yet
were obtained in a much simpler way using far fewer runs of SPA.

3.2.3. Uncertainty analysis

Uncertainty analysis is concerned with quantifying the uncertainties in predictions that
arise because one or more of the code inputs are unknown. As an example, consider the
prediction of GPP at a single site on a given day (site 7000, day 200). Values are available
from a data file for each of the required inputs and driving data. The ACM prediction
assuming these inputs are exactly known is 3.59. Now suppose that just 1 of these inputs,
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Figure 4. Main effects for each of the input parameters. The solid line is the median. The
dashed lines correspond to the 95% point-wise probability band

the irradiance, is uncertain with a N(15.08, 9) distribution. The value 15.08 is the value
given in the data files, and a variance of 9 was chosen to match the distribution of errors in
irradiance prediction (Figure 2 of [8]). A simple method of propagating this uncertainty
is to use a Monte Carlo uncertainty analysis. Running ACM for each of 500 irradiance
inputs sampled from this distribution (with all other inputs fixed) produces a sample
from the ‘true’ uncertainty distribution of the GPP output of ACM, which we can obtain
in this case only because runs of ACM are essentially instantaneous. The uncertainty
distribution has mean 3.56 and variance 0.052.

By comparison, the emulator prediction assuming the inputs are all known is 3.33
(with variance 0.02 due to emulator uncertainty). The emulator prediction assuming
a N(15.08, 9) distribution for irradiance is 3.24 (with variance 0.018 due to emulator
uncertainty). The variance of the prediction is estimated as 0.15. The conclusion we
draw from this is that the ACM is overpredicting the output mean and underpredicting
the output variance.

4. CASE STUDY 3: UNCERTAINTY IN THE UK CARBON BUDGET

A major deliverable of CTCD will be an estimate of the UK carbon budget, in April 2004,
using SDGVMd. We will quantify uncertainty on the UK carbon budget using Bayesian
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Figure 5. Main effects for each of the input parameters. The solid line is the median. The
dashed lines correspond to the 95% point-wise probability bands. The test was carried out using
a central UK site and a set of input ranges appropriate for a deciduous broadleaf tree

methods, recognising uncertainty in major model parameters defining vegetation and soil
properties. Since SDGVMd is a point model, the first step is to consider uncertainties
at individual sites. Nine sites were selected to be representative of the varied climatic
conditions in the UK.

The code used here is a more developed version of the one described in Section 2. We
performed a more extensive sensitivity study, this time to identify the inputs that would
potentially contribute most to the output uncertainty. Figure 4 shows the results from
an assessment of 14 plant functional type inputs. Using the same variance decomposition
technique as in Section 3.2.2, the most important inputs were found to be leaf life span
(days), initial minimum stem rate (millimetres), maximum age (years) and water potential
(M Pa). Plant modelling experts were then questioned on their beliefs about these inputs
to elicit probability distributions. Different plant functional types were believed to have
different probability distributions for some inputs. Each site represents an area covering
10km2, so the distributions also account for the fact that multiple species are likely to be
represented.
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Table 2. Uncertainty analysis results for NEP at the 9 test sites for a deciduous broadleaf
plant functional type. The values in parentheses are variances of the mean estimate due to the
emulator. Plug-in estimates are obtained by running SDGVMd with input values fixed at their
means

Site Output mean Output variance plug-in estimate

S. Ballater (Scotland) 78.10 (1.59) 210.20 89.31

Kielder 65.85 (3.77) 239.73 43.5

New Forest (Hampshire) 207.23 (4.97) 1133.78 269.23

Dartmoor 64.88 (7.63) 472.93 99.93

Lowland (Scotland) 66.35 (7.26) 418.42 73.34

E. Keswick (Lake District) 45.38 (2.56) 183.39 55.19

Barnstaple 137.52 (3.31) 785.95 162.02

Milton Keynes 217.48 (11.54) 494.11 228.43

Stockten on the Forest (Nr York) 218.86 (2.35) 241.39 234.84

Maximum age was agreed as having a N(180, 100) distribution for all types. Leaf life
span was agreed as having a N(200, 625) distribution for deciduous types, N(1500, 10000)
for evergreen needleleaf and N(1200, 10000) for evergreen broadleaf types. The loga-
rithm of the minimum stem rate was assigned a N(ln 0.006, (0.5 ln 1.5)2) distribution for
a broadleaf type and a N(ln 0.0015, (0.5 ln 1.5)2) distribution for a needleleaf type. Wa-
ter potential was agreed to be distributed as N(3, 0.25) for deciduous broadleaf types,
N(4, 0.25) for evergreen broadleaf types, and N(3.5, 0.25) for both needleleaf types. A
realistic distribution for the leaf mortality index input has yet to be determined. The
sensitivity study was repeated with the refined distributions and ranges to see if anything
new would show up. At this point seeding density emerged as a significant input.

An uncertainty analysis was carried out at each of the 9 sites, yielding estimates for
the mean and variance of NEP output averaged over the decade 1991–2000. Results are
given in Table 2. Even after accounting for uncertainty in the emulator, the output means
differ noticeably from the plug-in estimates, suggesting non-linearity. In all but Kielder,
the plug-in values are overestimating the mean output. We recognise these variances will
be underestimates if any of the key inputs, such as seeding density and leaf mortality
index are artificially assumed to be fixed or given the wrong distribution. Plant scientists
have so far been unable to specify distributions for these inputs, but the process described
above has clearly identified these as issues to be resolved by further research. Our results
also suggest that the different sites can yield different sets of key inputs, and the process
of eliciting prior distributions from the plant scientists will need to be repeated until all
uncertainties are accurately represented.
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5. CONCLUSIONS

The proposed Bayesian approach to computer experimentation has already supplied useful
insights to CTCD modellers and is expected to yield profitable responses when applied
to more demanding test beds. Uncertainty and sensitivity analyses will be integral parts
of all major CTCD deliverables. The efficiency of the emulator was clearly demonstrated
in the case of the aggregated SPA model, where greater accuracy was achieved using
only a fraction of the code run data used to derive ACM. Identifying the most significant
uncertainty sources will help determine how best to focus future resources in order to
reduce overall uncertainty.
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1. INTRODUCTION

Global sensitivity analysis is recognized as an essential tool for investigating the effects

of input parameter uncertainty in a complex model. To obtain meaningful results from

a sensitivity analysis, it is important that the probability distributions for all the uncer-

tain input parameters in the model accurately represent the beliefs of the model user or

decision-maker. When little or no data related to these parameters are available, parame-

ter distributions must be specified largely on the basis of expert knowledge. This is rarely

a simple task.

A particular difficulty in this scenario is that to perform the global sensitivity analysis

the full joint probability distribution is required for all the uncertain input parameters in

the model. However, a full probability distribution implies an infinite number of probabil-

ity judgments by the expert about the parameters, clearly something the expert is unable

to provide. In practice it is only going to be possible to elicit a finite and typically small

number of probability statements from the expert. These statements will typically take

the form quantiles of the distribution, perhaps the mode and sometimes the mean or other

moments. Such statements are not enough to identify the expert’s probability distribution

uniquely, and the usual approach is to fit some member of a convenient parametric family.

There are two clear deficiencies in this solution. First, the expert’s beliefs are forced to

fit the parametric family. The parametric family may imply additional beliefs about the

Further author information:
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parameters that the expert does not agree with. Second, no account is then taken of the

many other possible distributions that might have fitted the elicited statements equally

well. This clearly has consequences for a global sensitivity analysis; other distributions

might produce very different results when the uncertainty they are describe is propagated

through the computer model under investigation.

We present an approach which tackles both of these deficiencies. Our model is non-

parametric, allowing the expert’s distribution to take any continuous form. It also quan-

tifies the uncertainty in the resulting elicited distribution. Formally, the expert’s density

function is treated as an unknown function, about which we make inference. The result is

a posterior distribution for the expert’s density function. The posterior mean serves as a

‘best fit’ elicited distribution, while the variance around this fit expresses the uncertainty

in the elicitation.

Specifically, this is achieved by using a Gaussian process to describe our own be-

liefs about the expert’s distribution. Our prior specification contains proper prior beliefs

about the smoothness of the expert’s distribution, but is ultimately vague in that we do

not include any of our own beliefs about likely values of the uncertain input parameter.

Data then comes in the form of the expert’s summaries, such as their mean and various

quantiles. Properties of Gaussian processes can then be exploited to update our beliefs

about the expert’s distribution analytically, conditional on various hyperparameters in

our Gaussian process model. Finally, Markov Chain Monte Carlo methods are used to

remove the conditioning on these hyperparameters to give a full, probabilistic description

of our uncertainty about the expert’s distribution.

Illustrations of our method are given using some simple real elicitation exercises.

2. THE ELICITATION METHOD.

Here we give a brief overview of the elicitation method. Full details can be found in [1].

The idea is to think of eliciting a prior distribution as a standard problem in Bayesian

inference. We, the analyst, wish to make inferences about an unknown function f(θ),

the expert’s prior density function for θ. We first formulate our own prior beliefs about
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f(θ). We then ask the expert for probability judgments about θ which we think of as

data about f(θ). We then update our beliefs about f(θ) in light of this data.

2.1. A prior distribution for f(θ)

We assume that the analyst’s prior beliefs about f(θ) can be represented by a Gaussian

process. In particular, the analyst’s prior distribution for any finite set of points on this

function is multivariate normal. Gaussian process priors for functions have been proposed

in various different settings, including regression [2] and [3], classification [3] and numerical

analysis [4].

The Gaussian process is specified by giving its mean function and variance-covariance

function. We will model these hierarchically in terms of a vector α of hyperparameters.

First let the analyst’s prior expectation of f(θ) be some member g(θ |u) of a suitable

parametric family with parameters u. Thus

E{f(θ) |α} = g(θ |u). (1)

Now it would not be realistic to suppose that the variance of f(θ) would be the same

for all θ. In general, where the analyst expects f(θ) to be smaller his prior variance

should be smaller in absolute terms. We reflect this in our model by supposing that the

variance-covariance function has the scaled stationary form

Cov{f(θ), f(φ) |α} = g(θ |u) g(φ |u) σ2c(θ, φ), (2)

where c(θ, φ) is a correlation function that takes the value 1 at θ = φ and is a decreasing

function of |θ − φ|. In general, the function c(., .) must ensure that the prior variance-

covariance matrix of any set of observations of f(.) (or functionals of f(.)) is positive semi

definite. Here we choose the function

c(θ, φ) = exp{− 1

2b
(θ − φ)2}. (3)

This will be seen to be a mathematically convenient choice, and implies that f(.) is

infinitely differentiable with probability 1.
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This formulation was given in [5], who were interested in quadrature for computation-

ally expensive density functions.

Our model represents a belief that the expert’s density function f(θ) will, to some

extent, approximate to a member of the parametric family g(θ |u). However, the model

is nonparametric and allows the true f(θ) to have any form at all. The hyperparameter

σ2 specifies how close the true density function will be to its prior mean, and so governs

how well it approximates to the parametric family. The hyperparameter b controls the

smoothness of the true density. If b is large, then two points f(θ) and f(φ) will be highly

correlated even if θ and φ are far apart.

The hyperparameters of this model are α = (u, σ2, b). Non-informative priors are

given for u and σ2, and a (proper) lognormal prior is assumed for the ratio b/v (reflecting

a belief that the expert’s density will be smooth over the range implied by v)

2.2. Prior to posterior updating

Data will come in the form of quantiles of the distribution and simple moments. Condi-

tional on α, the posterior distribution of f(θ) can be derived analytically. Markov Chain

Monte Carlo sampling is then used to remove the dependence on α (details in [1]

3. EXAMPLE

We will illustrated the method with a simple synthetic example. Suppose that the expert

has the following density function for θ:

f(θ) =
0.4√
2π

exp{−1

2
(θ + 2)2}+

0.6√
4π

exp{−1

4
(θ − 1)2}. (4)

It is further assumed that the expert can state P (θ < x) for any x. The expert is asked

to give probabilities for the following x: {-3,-2,-1,0,1,2,3}. These probability judgments

constitute our data. We do not ask for the mean in this example, though we assume that

the expert has given us P (θ < ∞) = 1.

We now use MCMC to sample from the posterior distribution of α(u, σ2, b). For each

sampled α, we generate one random density function from the conditional distribution of
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Figure 1. The mean and pointwise 95% intervals for the expert’s density function (solid lines),

and the true density function (dotted line).

f(θ) given α and the data. Given that we must have f(θ) > 0, we discard any generated

density functions that are negative over the range of interest. We then plot the pointwise

mean, 2.5th and 97.5th percentiles from the distribution of the density function.

In figure 1 we can see that, without specifying a bimodal density function f(θ) in our

prior for f(θ), we have correctly recovered the bimodal shape. We are also able to report

our remaining uncertainty about f(θ) after eliciting the seven percentiles, which in this

case is small.
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Abstract: In a risk management of derivative securities, sensitivities are important measures 
of market risk to analyze the impact of a misspecification of some stochastic model on the 
expected payoff function. We investigate in this paper an application of Malliavin calculus, 
which enables the computation of sensitivity derivatives, known as Greeks in finance, without 
resort to a direct differentiation of the complex payoff functions. 

Keywords: Stochastic sensitivity analysis, Malliavin calculus, Greeks in finance 

1. INTRODUCTION 
We consider a stochastic model or, equivalently, a stochastic differential equation in a 

well-defined framework of Black-Scholes set-up, which is described by 

τττ στ WdSdrSSS tt
t ∫∫ ++= 000 ,                                                                                        (1) 

where S is the price of underlying asset with 0S  denoting the present (initial) value, r denotes 
the riskless interest rate, σ  the volatility, and TttW ≤≤0)(  is a standard Brownian motion (also 
known as Wiener process). Note that, in the case of European-type options, we have a closed 
solution to (1) as follows: 

)exp(0 TT WTSS σµ += ,                                                                                                (2) 

where 2/2σµ −= r  for a fixed expiration or maturity time, T. 

We are, in European options, interested in studying how to evaluate the sensitivity with 
respect to model parameters, e.g., present price 0S , volatility σ , etc., of the expected payoff 

)]([ T
rT SeE Φ− ,                                                                                                                 (3) 

for an exponentially discounted value of the payoff function )( TSΦ , where E[�] denotes the 
expectation operator. The sensitivity of more sophisticated payoff functions including path-
dependent Asian-type options like  

])1([ 0∫Φ− T
t

rT dtS
T

eE ,                                                                                                        (4) 

may be treated in a similar manner along the lines that will be investigated in the present 
study. In the Asian option whose payoff functional is defined by (4), we may note that the 
payoff depends on the average of the asset value in a given period of time. 

In finance, this is the so-called model risk problem. Commonly referred to as Greeks, 
sensitivities in financial market are typically defined as the partial derivatives of the expected 
payoff function with respect to underlying model parameters. In general, finite difference 
approximations are heavily used to simulate Greeks by means of Monte Carlo procedures. 
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However, it is known that the finite difference approximation soon becomes inefficient 
particularly when payoff functions are complex and discontinuous. This is often the case 
when we deal with exotic options such as American, lookback, and digital options, etc. 

To overcome this difficulty, Broadie and Glasserman [1] proposed a method to put the 
differential of the payoff function inside the expectation operator required to evaluate the 
sensitivity. But this idea (i.e., likelihood ratio method) is applicable only when the density of 
the random variable involved is explicitly known. Recently, Fournie et al. [2] suggested the 
use of Malliavin calculus, by means of integration by parts, to shift the differential operator 
from the expected payoff to the underlying diffusion (e.g., Gaussian) kernel, introducing a 
weighting function. 

The real advantage of using Malliavin calculus is that it is applicable when we deal with 
random variable whose density is not explicitly known as the case of Asian options. Another  
examples which are similar to the present study and explored by the first author (e.g., Refs. 
[3,7]) but that are not covered in this paper are models involving a step function and non-
smooth objective functions.  In these studies, the stochastic sensitivity analysis technique 
based on the Novikov's identity is used instead of Malliavin calculus. 

In this paper, we present a brief introduction of Malliavin calculus, and describe a 
constructive approach for a stochastic sensitivity analysis for computing Greeks in financial 
engineering. The present approach enables the simulation of Greeks without resort to direct 
differentiation of the complex or discontinuous payoff functions.  

The remainder of the paper is organized as follows. In Section 2, we briefly review the 
essence of Malliavin calculus and present integration by parts formula. In Section 3, we 
describe a constructive approach. Subsection 3.1 presents some explicit formulae for the case 
of European option. In Subsection 3.2, we investigate the case of Asian option. In Section 4, 
we present simulation results obtained for the Asian call option. We conclude in Section 5. 

2. MALLIAVIN CALCULUS 
Following the standard notations that can be found in [6], we present the most concise 

introduction of Malliavin calculus necessary to our computation. 

Let R be the space of random variables of the form ),,,(
21 nttt WWWfF L= , where f is 

smooth and tW  denotes the Brownian motion as before.  For a smooth random variable RF ∈ , 
we can define its derivative FDDF t= , where the differential operator D is closable. Since D 
operates on random variables by differentiating functions in the form of partial derivatives, it 
shares the familiar chain rule property, FDFfFDFfFfD ttt )(')())(( =⋅∇= , and other 
general properties like linearity, etc. 

We denote by D* the Skorohod integral, defined as the adjoint operator of D.  If u belongs 
to Dom(D*), then D*(u) is characterized by the following integration by parts formula: 

])([)](*[ 0 dtuFDEuFDE t
T

t∫= .                                                                                        (5) 

It is important to note that (5) gives a duality relationship to link operators D and D*.  The 
adjoint operator D* behaves like a stochastic integral. In fact, if tu  is an adapted process, then 
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the Skorohod integral coincides with the classical Ito integral: i.e., ∫= T
tt dWuuD 0)(* .  If tu  is 

non-adapted or generic, one has 

dtuFDuFDFuD t
T

t∫−= 0 )()(*)(* .                                                                    (6) 

The property (6) follows directly from the duality relation (5) and the product rule of the 
operator D. A heuristic derivation of (6) is demonstrated here. Let us assume that F and G are 
any two smooth random variables, and tu  a generic process, then by product rule of D one has 

)](*[])([

])([])([])([)](*[

0

000

FuGDEdtuFDGE

dtuFGDEdtuFDGEdtuGFDEuGFDE

t
T

t

t
T

tt
T

tt
T

t

+∫=

∫+∫=∫=
 

which implies that 

( )])()(*[)](*[ 0 dtuFDuFDGEFuGDE t
T

t∫−=  

for any random variables G. Therefore, (6) must hold almost everywhere. 

In the present study, we frequently use the following formal relationship to remove the 
derivative from a (smooth) random function f as follows: 

])([])('[])([ XYHXfEYXfEYXfE ==∇ ,                                                                    (7) 

where X, Y, and XYH  are random variables. It is noted that (7) can be deduced from the 
integration by parts formula (5), and we have an explicit expression for XYH  as 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∫
= T

t
XY XdtD

YDH
0

* .                                                                                                   (8) 

If higher order derivatives are involved then one has to repeat the procedure (7) iteratively. It 
may be noted that XYH  is not unique and other expressions than (8) can be also possible. For 
more details, the readers are referred to Koda et al. [4] and Montero and Kohatsu-Higa [5]. 

3. CONSTRUCTIVE APPROACH 
In this section, utilizing the technical framework of Malliavin calculus introduced in 

Section 2, a constructive approach is presented to compute Greeks of European and Asian 
options, respectively.  

3.1. European Option 
In the case of European option whose payoff function is defined by (3), the essence of the 

present method is that the gradient of the expected (discounted) payoff, )]([ T
rT SeE Φ∇ − , is 

evaluated by putting the gradient inside the expectation, i.e., )]([ T
rT SeE Φ∇− , which involves 

computations of )(')( TT SS Φ=Φ∇  and TS∇ . Further, applying Malliavin calculus techniques, 
the gradient is rewritten as ])([ HSeE T

rTΦ−  for some random variable H. It should be noted, 
however, that there is no uniqueness in this representation since we can add to H any random 
variables that are orthogonal to TS . In general, H involves Ito or Skorohod integrals. 
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3.1.1. Delta 
Now we compute Delta, ∆ , the first-order partial differential sensitivity coefficient of the 

expected outcome of the option, i.e., (3), with respect to the initial asset value 0S : 

])('[])('[)]([
000

TT

rT
T

T
rT

T
rT SSE

S
e

S
SSEeSeE

S
Φ=

∂
∂

Φ=Φ
∂
∂

=∆
−

−−  

Then, with TSYX ==  in (7), we perform the integration by parts applying (8) to give 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
Φ=Φ=∆

∫

−−

T

Tt

T
T

rT

XYT

rT

dtSD

SDSE
S

eHSE
S

e

0
00

*)()( ,                                             (9) 

which removes the derivative of Φ  from the expectation as desired. 

Since the integral term in the denominator that appears in (9) can be computed as 

T
T

Tt TSdtSD σ=∫0 , we can evaluate the stochastic integral involved in (9) as 

T
W

T
D

T
D

dtSD

SDH T
T

Tt

T
XY σσσ

==⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

∫
)1(*1**

0

 

with the help of  (6) applied to u=1 (a constant process which is adapted and Ito integral 
yields TWD =)1(* ). Then the final expression for ∆  reads 

])([
0

TT

rT

WSE
TS

e
Φ=∆

−

σ
.                                                                                               (10) 

We may note that when we deal with European options, the present result (10) coincides with 
the result that is obtained by the explicit computation of the closed formula for the probability 
density function of TS . 

3.1.2. Vega 
Next Greek Vega, V, is the index that measures sensitivity of the expected payoff (3) with 

respect to the volatility σ , which can be computed as 

}]{)('[])('[)]([ TWSSEeSSEeSeEV TTT
rTT

T
rT

T
rT σ

σσ
−Φ=

∂
∂

Φ=Φ
∂
∂

= −−− , 

where we have used the solution (2) to evaluate σ∂∂ /TS . Then, utilizing (7) and (8) again 
with TSX =  and )( TWSY TT σ−= , we apply the integration by parts to give 

          [ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −Φ=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

ΦΦ= −−−

∫
1*)()(*)()(

0
T

WDSEe
dtSD

TWSDSEeHSEeV T
T

rT
T

Tt

TT
T

rT
XYT

rT

σ
σ . 

So, we evaluate the stochastic integral as 
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          TTT
T

XY WWD
T

DWD
TT

WDH −=−=⎟
⎠
⎞

⎜
⎝
⎛ −= )(*1)1(*)(*11*

σσσ
 . 

With the help of  (6) applied to u=1 (adapted process) and TWF = , we have 

  TWdtWdtWDWWD T
T

TT
T

tTT −=∫−=∫−= 2
0

2
0

2 1)(* . 

If we bring together the partial results obtained above, we derive the final expression 

   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−Φ= −

σσ
1)(

2

T
T

T
rT W

T
WSEeV .                                                                           (11) 

3.1.3. Gamma 
The last Greek Gamma, Γ , involves a second-order derivative, 

   ])(''[)]([ 2
2
0

2
0

2

TT

rT

T
rT SSE

S
eSeE

S
Φ=Φ

∂
∂

=Γ
−

− . 

Utilizing (7) and (8) with TSX =  and 2
TSY = , we obtain after a first integration by parts 

    ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛Φ=

⎥
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⎡
⎟
⎟
⎠

⎞
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−−

T
SDSE

S
e

dtSD
SDSE

S
e T

T

rT

T
Tt

T
T

rT

σ
*)('*)(' 2

00

2

2
0

 . 

With the help of  (6) applied to Tu σ/1=  (constant adapted process) and TSF = , we have 

 ⎟
⎠
⎞

⎜
⎝
⎛ −=∫−= 11)1(*)(* 0 T
WSdtSD

T
D

T
S

T
SD T

TT
T

t
TT

σσσσ
. 

Then, repeated application of (7) and (8) with TSX =  and )1/( −= TWSY TT σ , the second 
integration by parts yields 

    
⎥
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⎣
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⎟
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0
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SDSE
S

e
T

WSSE
S
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T
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T
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T

TT
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σσ
. 

With the help of (6) as before, we can evaluate the stochastic integral as 
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⎬
⎫
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D

TT
W
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If we combine the results obtained above, the final expression becomes 

          
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−Φ=Γ
−

σσσ
1)(

2

2
0

T
T

T

rT
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T

WSE
TS

e .                                                                        (12) 

Comparing (12) with (11), we find the following relationship between V and Γ : 

 2
0TS

V
σ

=Γ .                                                                                                                   (13) 
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Since we have closed solutions for all the Greeks, we can easily check the correctness of the 
above results. 

3.2. Asian Option 
In the case of Asian option whose payoff functional is defined by (4), the essence of the 

present approach is again that the gradient of the expected (discounted) payoff is rewritten as 
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T

EedtS
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eE , for some random variable H. Different from 

the European options, however, we do not have a known closed formula in this case. 

3.2.1. Delta 
Delta in this case is given by 
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There are various ways of performing the integration by parts; e.g., the readers are referred to 
[2]. In the present approach, utilizing (7) and (8) with TdtSYX T

t /0∫== , we may apply the 
integration by parts to give 
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With the help of  (6) applied to σ/1=u  (constant adapted process) and ∫∫= T
t

T
t dttSdtSF 00 / , 

we may obtain 
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where  
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are the first two moments of the probability density defined by ∫= T
tt dtSStp 0/)( . 

3.2.2. Vega 
Vega in this case becomes 
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As before, with the help of  (7) and (8) applied to TdtSX
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we have 
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which, with the help of (6), yields the following expression: 
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Using the relation (13), it is straightforward to compute Gamma as (15) divided by 2
0TSσ . 

4. MONTE CARLO SIMULATION OF ASIAN OPTION 
In order to evaluate the results obtained in Section 3, we present in this section the results 

of Monte Carlo simulation for computing Delta and Vega in the case of Asian Call option 
whose payoff functional is defined by (4).  

4.1. Delta 
In Fig. 1, we present the simulation result of ∆  given by (14) with parameters r=0.1, 

25.0=σ , T=0.2 (in years), and 1000 == KS  (in arbitrary cash units) where K denotes the 
strike price. We have divided the entire interval of integration into 252 pieces, representing 
the approximate number of trading days in a year. 

Fig. 1 shows how the outcome of the simulation progressively attains its own value. We 
compare the convergence behavior of the present simulation with the results obtained by 
Broadie and Glasserman [1] where all the parameters take the same values we have used, and 
which may provide most extensive and detailed results currently available. The result 
indicates a fairy good convergence to the steady-state value that is attained at 10,000th 
iteration stage in [1]. The standard deviation of the simulation in this case was 0.005. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Estimated Delta of Asian Call Option; S0=K=100, T=0.2, r=0.1, σ=0.25 
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4.2. Vega 
We present in Fig. 2 the result of V given by (15), where all the parameters take the same 

values we used in the simulation of ∆  in Subsection 4.1. Again, we compare the result with 
the one that is obtained at 10,000th iteration stage in [1]. The result indicates that some 
noticeable bias may remain in the present Monte Carlo simulation, and further study may be 
necessary to analyze and reduce the bias involved. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Estimated Vega of Asian Call Option; S0=K=100, T=0.2, r=0.1, σ=0.25 

5. CONCLUSION 
We have presented a stochastic sensitivity analysis method, in particular, a constructive 

approach for computing Greeks in finance using Malliavin calculus. The present approach is 
useful when the random variables are smooth in the sense of stochastic derivatives. It may be 
necessary to further investigate and improve Monte Carlo procedures to reduce the bias 
involved in the simulation of Vega in Asian-type options and other sophisticated options. 
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