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Computation and the Genome Project

The genome
is more than
a blueprint

Elsewhere in this issue the nature
and function of the human genome
are described from a biochemical point
of view. We begin by describing

the genome in computational terms.
Since the DNA polymer is made up
of four monomer units, whose standard
abbreviations are A, C, G, and T, a
DNA molecule may be represented by
a character string using only these four
letters. The chemical monomers are
called nucleotides; the strings are known
as nucleotide sequences. The human
genome, from this point of view, is a
set of 24 character strings (representing
24 chromosomes), with a total length of
a few billion letters, that is, with a size
of a few gigabytes.

The genome is often called the blue-
print for the species. In brief, and very
roughly speaking, the genome is a con-
catenation of genes; each gene contains
the plans for a protein; and proteins are
the key building blocks of the body.
(Essentially all enzymes—biological
catalysts-are proteins, much of the
structure of the body is protein, and the
molecules that are not proteins are made
by those that are.) For a description
of how a gene is expressed to produce
a protein see “Protein Synthesis” in

“Understanding Inheritance.”
The blueprint metaphor is very useful,

but does break down in some respects.
A ~,lueprintfor a home normally depicts

only the home. But the genome, even as
a blueprint, does much more. There are
enzymes that read genes and make the
corresponding proteins, and the genome
spe+;ifies these (as if a blueprint con-
tained drawings for hammers, nails, and
workmen). There are even enzymes for

reamanging the genome (as if a blueprint
were to specify an independent-minded
contractor).

Furthermore, the genome contains
many regions that, rather than listing
specifications for protein, interact with
enzymes in process-control mechanisms.
For example, certain enzymes known
as transcription factors must bind to
control regions near a gene each time
that gene is used to produce a protein.
Such regions are altogether outside the
blueprint metaphor. So it is profitable
instead to think of the genome as a
program, written in a largely unknown
programming language. Within the
program are data arrays-the codon
triplets that account for the “blueprint”
parts of genes. The main program

encodes a number of other related
programs that act on the main one:
a copier, interpreters, and rearrangers.
A good part of the main program is
concerned with proper communication
between the main and related programs.

The goal of
the Human

Genome Project
is an atlas

The final goal is the annotated
sequence. The eventual goal of the
Human Genome Project is to obtain
the full nucleotide sequence of the
genome, with each region annotated
as to function. From the point of view
of the program metaphor, this means
obtaining a full, documented listing of
the program.

In one sense this goal is only the
culmination of a trend. It has become
clear over the last two decades that
almost any problem in biology can be

more easily solved if the underlying ge-
netic specification (that is, the annotated
nucleotide sequence) of the relevant
biochemistry is known. And because of
the revolution in biotechnology, we are
now able to see the genetic specification
of any organism in as much detail as
we wish (and can afford: the current
cost of sequencing an average gene is
on the order of $10,000, and isolating
the relevant genetic material may well
cost more). Annotated nucleotide se-
quences have thus accumulated at an
exponentially increasing rate.

However, the Human Genome Project
goes far beyond the trend of ever
increasing sequence determination, for
its aim is not just more sequence. In
fact the hallmark of the genome project
is an interest in the design and working
of the genome as an organic whole.

Obtaining the full sequence and
gaining an understanding of its overall
organization will require many years
and a significant amount of money.
What will we gain that could not be
had by a piecemeal approach? One
example comes from the determination
by a European collaboration of the full
sequence of yeast chromosome III. (The
human genome project includes the
study of several model organisms.) One
of the surprises in this sequence is that
there seem to be many more genes than
expected. Since the functions of most
of those genes are not yet known, their
discovery by other methods would have
been long in coming.

On a more fundamental level, through
the genome project we will learn a great
deal about the programming language
in which organisms are specified. The
human genome is quite possibly the
most complex object yet studied by
science, encoding thousands of protein
products which, working together in
intricate combinations, manage the
genetic program, build the human body
from scratch, and maintain it for a
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Figure 1. More Complex Genes: The Immunoglobulins
The immune system produces somewhere between a million and a hundred million different immunoglobulins. If each of these protein

antibodies were encoded by a separate gene, the genome would have no room to encode anything else. In fact the immunoglobulins

are specified in a tiny fraction of the genome. How this is accomplished is an excellent example of “genome programming. ” A typical

immunoglobulin molecule is made up of four protein subunits: two identical “heavy chains” and two identical “light chains.” Each of these

has a “constant region” to interact with immune-system cells, and a “variable region” that is specific to a particular foreign molecule. The

figure shows a schematic diagram of the genetic information corresponding to the variable region of a heavy chain. In germ-line DNA, that

is, the DNA inherited from one’s parents, there are several hundred V (“variable”) domains, followed by twelve D (“diversity”) domains,

followed by four J (“joining”) domains. [n lymphocytes (white blood cells) this DNA is rearranged so that a particular V, D, and J region

are joined to make an exon for the variable region of the heavy chain. Many thousands of different combinations are produced in different

cells. In addition, the rearrangement is somewhat inaccurate, producing more variants. Also, in this region mutations are unusually

common, even during the life of one cell, producing still more variation. The light chains are produced by similar mechanisms. Finally,

each of the many light chains can pair with each of the many possible heavy chains, so that there are billions of possible immunoglobulins.

From these the immune system duplicates and maintains those that turn out to be useful in recognizing foreign molecules.

lifetime. We now know little bits of
how this complexity is orchestrated;
concentrating on the big picture will
teach us much more.

Second, the fully described sequence,
like a geographic atlas or a star atlas,
is a resource of enduring interest. In a
deep sense biology, especially molecular
biology, is data-driven. While physics
and chemistry deal with general laws,
biology, like geography and history,
deals in large part with many specific
cases. There are generalizations in
biology but, while the generalizations
of physics and chemistry are close to
being etact models from which one
can predict the behavior of matter, the
generalizations of biology are more
in the nature of analogy. They guide
the intuition rather than enabling one
to predict the behavior of the system.

Number 20 1992 Los Akzrnos Science

General principles in biology are fre-
quently implemented by each organism
in idiosyncratic ways. There is, for
example, a so-called “universal” genetic
code by which the nucleotides of genes
are translated three at a time into the
amino acids of proteins. But many
organisms have slightly different codes.
Thus, whereas in many areas of science
one gathers data to establish a point
and, once the point is established, one
is done with the data, in biology the
data are central and are referred to again
and again.

The intermediate goal includes
coarser-resolution maps. We are still
very far from having the complete se-
quence. At present only about 6 million
nucleotides of human sequence (about
0.2 percent of the total) are known.
Furthermore, the cost of determining the

sequence is currently too high (on the
order of $1 per nucleotide) to contem-
plate an immediate drive to obtain the
full sequence. Fortunately, much useful
information can be obtained without
sequencing. Maps of lower resolution
than the sequence can be based on
various sorts of landmarks—features
of a chromosome detectable in some
experiment. The distances between
such landmarks are typically measured
in ways that give one a very rough
approximation of the number of base
pairs between them. All such maps may
be considered to be conceptually built
on the (yet unknown) sequence as a
coordinate system.

One technique with immediate med-
ical application is linkage mapping.
Chromosomes break and recombine
fairly frequently as the genetic material
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Decades of Nonlinearity
DNA
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: the growth of
sequence data

Christian Bu~ks, Michael J. Cinkosky, and Paul Gilna

T he first nucleotide sequence was published in 1965; it was the sequence of an

RNA molecule less than 100 nucleotides long. The methods used were so arduous
that until the mid- 1970s a person could determine the sequence of only about a
hundred bases in a year. Then Maxam and Gilbert in the U.S. and Sanger in England
developed new sequencing techniques that were a hundred times faster (see “DNA
Sequencing” in “Mapping the Genome”). Figure 1 shows that today biologists are
determining the complete sequences of pieces of DNA over 100,000 nucleotides in
length. Almost 100,000,000 nucleotides of sequence data have been published-–a
wealth of information that has formed the basis for many scientific discoveries. How
has the enormous and rapidly growing quantity of data been maintained and managed?

As shown in Figure 2a, the rate of sequence-data accumulation was increasing rapidly
in the late 1970s. (Data for Figure 2a were compiled from the GenBank database,
which includes the publication date and length of each sequence entered. ) In response
to the growing interest in gathering and analyzing the data, the biology community
held several discussions in 1978 on establishing a database facility to collect,
organize, and distribute sequence data and annotation about each sequence. For
design purposes, the operation of a database can be compared to industrial processes
in which a set of input objects is transformed into a set of output objects. In a
sequence database, the input is DNA sequences generated by individual laboratories
and stored in individual formats with varying amounts of annotation; the output is
a collection of DNA sequences stored at a central facility in a uniform format with
a precisely defined degree of annotation. For any such process to be workable and
efficient, the mechanism for the process must match the volume of the input stream.

During the planning stages for the public sequence databases, how fast did biologists
expect the amount of data to grow? Up to 1981 the few recorded projections
generally assumed linear growth. Figure 2b shows a linear projection—based on the
average annual rate from 1975 to 1977, 25,000 nucleotides per year—for the period
up to 1986. (Note that the scale of Figure 2b compresses the previously impressive
growth up to 1978.) The linear model predicts that under 300,000 nucleotides of
sequence data would have been accumulated by 1986, and that a database project
would have had to handle no more than 30,000 in any year. Funding-agency planning
and subsequent project proposals to the agencies were based on that linear model.
In 1982 the GenBank project, the American sequence database, was established at
Los Alamos through a five-year contract with the NIH. (Also in that year a database
storing essentially the same information was established at the European Molecular
Biology Laboratory; Japan developed a similar institution a few years later.) Because
a steady rate of data accumulation was expected, GenBank was staffed with only a
few people who were expected to search the literature and enter into a database all
the DNA and RNA sequence data that would appear.

1990 2000
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Suppose the community had instead projected exponential growth for the sequence
data. Figure 2C shows that if we use the annual rate increase for the years 1975-77 (64
percent per year) to project the accumulation over the period 1978-86, an exponential
model predicts an accumulation 15 times that of the model in Figure 2b, and a rate
of accumulation orders of magnitude higher. Clearly, in that scenario a database
project could not rely on a constant number of staff members each processing data
at a constant speed.

What really happened? As can be seen in Figure 2d, the increase of sequence data
far outstripped even the exponential model, and completely dwarfed the linear model
that WM actually used to design GenBank. This created a crisis for the scientific
community wanting access to all these data and in particular for the GenBank project,
which was responsible for providing access.

In 1986-87, as we planned and developed proposals for the second five-year GenBank
contract, we revisited the issue of modeling the growth of sequence data. Figure 2e
presents the envelope in which we expected the growth to lie. The lower limit is an
extrapolation from the previous three years assuming a constant rate of acceleration.
The upper limit is based on the assumption that seven billion bases of sequence,
twice the total of the human genome, will be determined by 2005 (consistent with
the goak of the Human Genome Project). The rate of acceleration is assumed to
increase linearly to bring the curve to that endpoint. With the genome project in
mind, we developed a new strategy—and corresponding mechanisms-for the flow
of data in and out of the database (see “Electronic Data Publishing in GenBank”
below) that we believed would accommodate growth within the projected envelope
shown in Figure 2e.

Five years later, Figure 2f shows that actual growth of sequence data has indeed
remained within this envelope, and that the accumulation of nucleotide sequence
data continues to accelerate. It is worth noting that if the Human Genome Project
goals fc)r sequencing are to be met, the rate of sequencing will have to accelerate
considerably over the next decade. ❑

Further Reading

Walter B. Goad. 1983. GenBank—and its promise for molecular genetics. Los Alamos Science 9
(Fall): 5:?-61.
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1:225–233.

Christian Burks. 1989. How much sequence data will the data banks be processing in the near future?
In Blomo[ecular Data: A Resource in Transition, edited by R. R. Colwell, pp. 17–26. Oxford University
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Christian Burks. 1989. The flow of nucleotide sequence data into data banks: role and impact of
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is passed from parent to offspring, and
measuring the frequency with which
two traits are inherited together allows
one to calculate the probability that
the responsible genes are on the same
chromosome, and if so, about how
far apart they are. Linkage mapping
has been used successfully to find the
approximate location of several disease
genes, as a first step in the process of
locating and studying the defect. The
cystic-fibrosis gene was recently isolated
in this way, leading to a much clearer
understanding of the disease.

Thus the intermediate goal of the
Human Genome Project is an atlas
of maps containing one map for each
chromosome. Each map is conceptually
an annotated sequence, although the
sequences are, at the moment, very
sparsely filled in.

A complication in this picture is
that most groups currently maintain
separate maps for linkage-mapping
data, sequencing data, and data re-
sulting from other techniques. This
is because of disparities in units of
measurement, Distances measured in
linkage experiments, for example, are
expressed in morgans. (The distance
in morgans between two sites is the
average number of recombination events
between them in one meiosis—one set
of cell divisions producing an egg or
sperm.) But because frequency of
recombination at a particular site on the
chromosome depends strongly on the
(usually unknown) nucleotide sequence
at the given site, distances in morgans
do not translate by any fixed formula to
distances in nucleotides. Nevertheless,
we will show below that it is both
possible and profitable to integrate these
different views of the chromosome into
a single map. As well, differences
between individuals (there are several
billion human genomes, not one) may
be best represented as variants within a
single comprehensive map.

256

Both the creation
and communication of

maps depend on
computational tools

Computation plays a central role
in almost every facet of the Genome
Project. This may come as a sur-
prise, since biology has not traditionally
been as heavily computational as, for
example, physics or chemistry. But
molecular biology is different from
traditional biology, and the Genome
Project accentuates the differences.
There follow two examples.

Disperse workgroups depend on
complex communication. Since maps
are of perennial interest, and also grow
and change daily, there is a great
need for instantaneous communication
between the producers and consumers
of map information. The need for
continuous communication is currently
most often seen in working groups
spread across several laboratories and
engaged in the search for a single disease
gene. A good example is found in the
consortium of laboratories searching
for the genetic defect which leads to
Huntington’s disease.

In such groups continuous com-
munication is often now maintained
by faxing text or drawings of maps.
However, maps are rapidly growing too
complex to manage in this way. In

order to track positional information
on thousands of map elements at many
levels of resolution, undergoing frequent
revisions and additions, one needs highly
structured databases linked by computer
network to graphical interfaces at many
sites. This key computational need will
require significant development beyond
what is currently available.

In the next section we will discuss
the major challenges in information
management for the Human Genome
Project.

Recognition of significant patterns
in sequence data depends on sophisti-
cated analysis. Computation also plays
a central role in discovering the language
of the genome. Many biologically
significant patterns in sequence data are
invisible to the eye, but can be detected
with the aid of computation.

Such insight comes frequently, but
an early example is still one of the
prettiest. In 1983 R. Doolittle and
his colleagues were comparing newly
determined sequences to sequences
archived in existing databases, and
discovered that the transforming (that
is, cancer-causing) protein p28Sis pro-
duced by simian sarcoma virus was
remarkably similar to platelet-derived
growth factors (PDGFs), proteins whose
function in stimulating cell growth was
well known. This discovery suggested

the natural hypothesis that the sarcoma
(connective-tissue cancer) caused by
p28sis results from a malfunction in
the normal biochemical pathways for
PDGFs. Though the cancers are still
imperfectly understood, the hypothesis
seems to be sound. It has been shown
that in the transformation process p28sis
interacts with the normal cellular recep-
tors for PDGFs.

In the final section of the article we
will discuss the current state of the art
in computer interpretation of sequence
data.

Los Alumos S’cience Number 20 1992
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MLL:rSSLHHPRHQMSPGSWKKLIILLSCVFGGGGTSLQNKNPHQPMTLTWQGDPIPEELYKMLSGHSIRSFDDLQRLLQGDSGKEDGAELD

MNRCWA;FLSLCCYLRLVSAEGDPIPEELYEMLSDHSIRSFDDLQRLLHGDP~EEDGAELD

LNMVRSHSGGELESLARGKRSLGS LSVAEPAMIAECKTRTEVFE ISRRLIDRTNANFLVWPPCVEVQRC SGCCNNRNVQCRPTQVQLRPVQ

LNM2P.SHSGGELESLARGRRSLGSLTIAEPAMIAECKTRTEVFE ISRRLIDRTNANFLVWPPCVEVQRCSGCCNNRNVQCRPTQVQLRPVQ

VRKIEIVRKKP IFKKATVTLEDHLACKCEIVAAARAVTRSPGTSQEQRAKTTQSRVT IRTVRVRRPPKGKHRKCKHTHDKTALKETLGA

VRKIEIVRKKP IFKKATVTLEDHLACKCETVAAARPVTRSPGGSQEQRAKTP6TRVT IRTVRVRRPPKGKHRKFKHTHDKTALKETLGA

Figure2. Sequence Alignment between a Sarcoma Oncogeneanda PDGF
The upper sequence is the amino-acid sequence of the precursor of the cancer-causing protein p2&is produced by simian sarcoma

virus, as translated from nucleofides 3657 t047720fthevirus’s genome. The lower sequence isthat of the precursorto ahuman

protein, c-sis/platelet-derived growth factor 2, as translated from cDNA. Lines between the sequences indicate identical amino acids.

The conspicuous similarity between the two proteins suggests that the viral gene originated through incorporation into the virus’s

genomealf human sequenceor similar sequence from another primate. Moreover,SIS/PDGF2promotes normal cell growth and its

mRNA has been found in tumors, suggesting that p28sis causes cancer by a mechanism related to the functioning of SIS/PDGF2.

(The amino-acid abbreviations are A, alanim?; C, cysteine; D, asparfic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine;

1, isoleucine; K, Iysine; L, Ieucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine;

W, tryptophan; Y, tyrosine.)

The Human
Genome

Project requires
advances in
information

management

Many components of an information-
management system for the Genome
Project already exist&commercial data-
base management systems (DBMSS),
computer networks, and hardware for
graphical display—but many of the
components specific to biology have yet
to be developed. For example, though
for fiscal accounting systems the data
categories and transactions have been

standardized for many years, the lan-
guage in which an emerging description
of the genome is being written changes
and expands frequently. Without being
comprehensive, we present in this sec-
tion a few of the key problems and how
they are being solved.

Efficiency is a natural focus at the
stage of covering ground. In the early
stages of a mapping project, when a
large portion of the map-to-be is “terra
incognita,” the main business is simply
data acquisition, and a key focus of the
project engineers is efficiency in the
data-acquisition process.

LANL is placing great emphasis on
building a “physical map” of human
chromosome 16. A physical map is
one which gives access to the DNA of
any region, and is made by determining
pairwise overlaps among a large number
(about 4000 at Los Alamos) of cloned
segments of DNA, and then deducing
the arrangement of the clones relative

to each other and to the chromosome
(see “The Mapping of Chromosome
16”). It almost goes without saying
that an electronic database is required
for efficient information processing
in a mapping project the size of that
at LANL. To give some idea of the
complexity of the information we note
that the physical-mapping database at
Los Alamos currently tracks the sizes
and sources of approximately 100,000
fragments of DNA from chromosome
16, and records over 7,000,000 pairwise
positional relationships relevant to the
emerging map.

The Los Alamos database is currently
implemented in the Sybase Relational
Database Management System (DBMS)
on a network of Sun workstations.
Because the Sybase software handles
the network transparently, it appears to
each project participant as if all the data
were stored and immediately available
on his or her own desktop.
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SCORE: a program for computer-assisted
scoring of Southern blots

T. Michael Cannon, Rebecca J. Koskela, Christian Bw-ks, Raymond L. Stallings,

Amanda A. Ford, Philip E. Hempfner, Henry T. Brown, and James W. Fickett

The Human Genome Project aims to collect unprecedented (for molecular biology)

amounts of information, so the transfer of repetitive tasks to machines is essential.

As part of the LANL physical-mapping effort, we have partially automated the task

of entering clone-fingerprint data into computers. One aspect of the automation

was the development of a simple image-manipulation program called SCORE. This

program has improved the accuracy of the data entry and sped up the process by

an order of magnitude.

Restriction-fragment
Length Data

Decreasing
fragment lengths

I

Band of identical —
restriction fragments

from digestion
of a clone

Lanes marked C
contain standard

fragments used for
length calibration
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As explained in “The Mapping of Chromosome 16,” the Los Alamos physical-

mapping project uses clone fingerprints that consist of two kinds of data. The first

is a list of the lengths of DNA fragments obtained by digesting a larger cloned

fragment with a restriction enzyme and then separating the restriction fragments by

length using gel electrophoresis, On the previous page appears a sample photograph

of a gel. The gel is divided into vertical lanes, each lane containing all the fragments

of one digest of one clone. Every clone is subjected to three digests, so there are

three lanes of fragments from each clone. Each fuzzy horizontal band within a lane

consists of identical restriction fragments from the digest contained in the lane. The

band’s vertical position gives the length of the fragments in it.

The second kind of data is a Southern blot of the gel that indicates whether or not (or

to what degree) certain repetitive sequences are present in each restriction fragment.

The figure below is a blot image produced by hybridization of repetitive sequences

to the gel shown on the left (see “Hybridization Techniques” in “Understanding

Inheritance”). Bands of fragments produce a signal on the blot image only if they

contain the particular repetitive element being tested for.

Cotl Hybridization
Data

-- Strong hybridization
signal indicates that
the restriction
fragments at this
position contain
relatively long stretches
of Cotl repetitive
sequences

Blot Image
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.

The blot image is used to

assign a score to each band

indicating the strength of its

hybridization signal, a process

known as scoring the blot.

Therefore the bands on the

blot image must be matched

with the corresponding bands

on the gel image. Formerly

the two images were matched

by hand, one region at a time.

Each fragment was identified

manually by numbering the

lanes and bands on the pho-

tographs. After the scores

were assigned, they were typed

into our mapping database in

a separate operation. Scoring

the blot was the most labor-

intensive part of fingerprinting.

Now we score blots on a

scientific workstation using the

SCORE program.

Before SCORE is run, the frag-

ment lengths are determined by

a commercial image-processing

workstation. Another program

takes the report from the image

processor and stores the lengths

in the database. Also, the

blot image is digitized using

a desktop scanner. SCORE

retrieves the fragment lengths

from the database and con-

structs a schematic of the gel

image in which the bands are

denoted by colored horizontal

lines positioned according to

their length. The program then superimposes the digitized blot image on the

schematic gel image. The figure, above shows the two images on the previous pages

as stored in the computer and superimposed; they match only approximately.
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When the two images are on

the screen, the user chooses

two points on each image that

should be aligned. The pro-

gram then resizes and moves

the digitized blot image to align

it with the schematic gel image.

The figure at right shows how

the user sees the two images

overlaid and matched on the

computer screen.

At this point the actual scoring

~~akes place. The user points to

a band with a mouse, is given

a menu of possible scores,

and chooses one. Thus the

program retains the use of ex-

pert human judgement where

necessary. SCORE displays

the score chosen, next to the

band, for the rest of the session

{colored Ietters in the figure).

Any score may be revised at

any time. If a band shows on

the blot image but not on the

gel image, the user may add a

new fragment to the database.

When all fragments have been

scored, the program places

their scores directly into the

database, each score being

associated with the proper

fragment.

This program has not only cut

the time needed for scoring the

images by a factor of ten, but

it has eliminated typographical

Computation and the Genome ProjectlSCORE

errors in data entry. Using SCORE also has the advantage that the complete

fingerprint data are in a database, easily accessible by network to the whole group

working on the project and readable by the map-construction software, from the

moment they are first determined.
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For most genome projects, includ-
ing that at LANL, interface software
that translates between internal storage
format and the users’ intuitive view
of the data is developed locally. The
accompanying sidebar, “SCORE: a
program for computer-assisted scoring of

Southern blots,” shows one specialized
graphical editor which has facilitated
rapid and error-free data entry.

Building and maintaining such inter-
face software is itself a formidable task.
Efficiency in the software development
process is therefore as important as
efficiency in the primary task of data
acquisition. So although it would be
pleasant to have specialized interface
software for each data-processing task,
there is a need for some more general
and less expensive interface. This need
is especially acute because experimental
techniques and strategies for mapping
are constantly changing as biotechnology
advances, so that specialized software
often has a rather short lifetime.

This need for a general and inex-
pensive interface has been met by a
“database browser” developed by Robert

Sutherland at Los Alamos. Someone
using the browser sees any of a set
of similar screens, one for each type
of object in the database. (Types of
objects include clone, clone overlap, and
DNA sequence.) An example of a data
screen is shown in Figure 3. All the
screens follow the same style, making
the browser easy to learn. Each one lists
both the attributes of the current object,
and also the other kinds of objects related
to the given one. One can retrieve data
either by filling in known attributes and
asking the software to complete the form,
or by following links from one object to
related ones. Thus the browser provides
access to all data in the database without
requiring the user to know a specialized
query language.

The current version of the browser
is quite easy to maintain, because
all the screens are derived from a
template set of forms and procedures,
in a relatively straightforward way.
Nevertheless, every time the database
structure changes (a not infrequent
occurrence, as experimental methods
and strategies change) some custom

Ckne name: 31OA12
Project Name- > Chromosome 16 physical mapping
Libra.T Name-> 16-cosnids
Person Nine-> Sutherland, Robert
Date Entered: May 7, 1991 10:55 :57AM
Clone Length: 41.36
Lenczth Conf:

11A Find Insert ! Update Delete Follow Link! Clear! Ill
#t::,%

CLONE DATA ENT3Y FORM: P1ease enter all clone data. ciOne_l_fOnn ~

Other Links:

Clone Contig
Clone Signal
Gr:d clone
Hybridizat :on
Lane
Library Clone
Map Clone

Figure 3. The Clone Screen in the Database Browser
Attributes of the clone include, for example, the name of the project using it and the clone

insert length. Related objects include sequences, for example; if the user highlights “se-

quence” at the right of the form, and then clicks on the button “follow link,” any sequen-

ces derived from this clone will be retrieved.

programming is needed. A new version
of the browser is planned, in which the
browser software itself will be capable
of reading the database structure and
configuring itself to match. We think the
new version will be invaluable to other
laboratories newly setting up mapping
efforts, enabling them to put in place
a rudimentary data-management system
very quickly.

Map definition is a natural focus
at the stage of mature results. In the
fourteenth century, when maps were
mostly local, it was possible to make
reasonable maps assuming the earth was
flat. In the age of exploration, however,
the science of map making came to
depend on a clearer understanding
of the shape of the earth, and on an
analysis of the distortion resulting from
projecting a spherical surface onto flat
paper. Similarly, now tha~ the Genome
Project has accumulated mapping data
that cover several large regions of the
genome fairly densely, it is time to
consider carefully just what genome
maps are and how we should go about
constructing them.

It might seem as if a one-dimensional
map of a DNA molecule should be
trivial, or at least that it should be
simpler than a geographic map. But in
fact genome maps are more complex
than geographic maps in at least three
important ways. Two of these-the use
of incommensurable units of distance
and the variation among six billion
human—have already been mentioned.

The third is a high level of ambiguity
in the data. Given two known points on
the earth’s surface, it is straightforward
to estimate the distance between them.
But given two genes or two fragments
of cloned DNA, it is typical to go to
considerable trouble only to estimate
the probability that they are adjacent.
Distance relationships are probabilistic
not only because the mapping exper-
iments give only partial information,
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but because copies of many genes
and other sequences occur more than
once in the genome with only small
differences. Since all physical-mapping
methods depend on sequence similarity
to determine whether two pieces of
DNA are identical, mapping experiments
sometimes indicate overlap where there
is none. Derivation of a consensus map
from fuzzy, probabilistic data is one
of the more interesting and important
challenges in the Genome Project.

Map construction is an optimization
process based on fuzzy objectives.
Probably because of the analogy to more
familiar geographic maps, investigators
often see the map-building process as
fundamentally incremental. That is, at
any given stage of map construction,
one takes as given the map as it stands
so far, and looks for the best way to
add new data to the existing structure.
Even in the apparent exceptions to this
practice, as when a committee attempts
to reconcile two contradictory maps, one
can observe a fundamentally incremental
approach—to save as much as possible
of an existing structure and add new, or
contradictory, data in as conservative a
way as possible.

But recognition is growing that map
construction requires a global, non-
incremental procedure. The reason
is simple—as long as the data are
probabilistic, it is likely that parts

of the map as constructed so far are
wrong, so that the entire map needs to
be reconsidered when new data come
to light. (For example, among those
pairs of DNA clones which have a
0.9 probability of overlap, we expect,
by definition, one pair out of ten not to
overlap.) Therefore one should treat map
construction as an optimization problem.
Adopting this point of view, one takes
all the probabilistic statements about
positions as a large set of objectives
which a “good” map should fulfill,
and attempts to reconcile them all

simultaneously, as well as possible, in a
consensus map. Calculating an explicit
fitness for maps, rather than relying
on intuition is, though mathematically
routine, a novel idea for many physical-

mapping groups. The definition of a
good criterion for fitness is a difficult
problem; it will probably not be solved
in a standardized way for some time.

As input to the optimization problem,
it is important to correctly state the
objectives. That is, whereas current
procedure is often to interpret raw
experimental data by placing a new
point on the map directly, there should
be an intermediate step of recording
the results of the experiment alone-an
overlap between two clones, say, or
a localization of some clone to the
region between two known genetic
markers-with realistic ambiguity in
position and probability.

For the optimization itself, a num-
ber of techniques might be applied,
including linear programming, simu-
lated annealing, and genetic algorithms.
We (the author, M. Cinkosky, and
D. Sorensen) have adapted genetic-
algorithm techniques to develop an
optimization algorithm for assembling
physical maps. We chose the genetic-
algorithm techniques because the overlap
data often contain apparent con&adic-
tions and genetic algorithms are known
to be robust in the face of such data,
and also because the map objectives
are not naturally stated as linear equa-
tions or inequalities. The input to our
algorithm can be clone-overlap data
from any kind of experiment, as long
as the data fit into the categories of
overlap likelihoods, estimated overlap
extents, and estimated clone lengths.
For computational efficiency, the input
clones must be divided into a priori

contigs in which each clone is connected
to the others by a chain of overlaps all
having probabilities greater than 0.5.
The genetic algorithm then searches

for an arrangement of the clones in a
contig which fits the experimental data
well, but does not try to determine the
overall arrangement of the contigs on the
chromosome. The algorithm is called
GCAA, for Genetic Contig Assembly
Algorithm. Figure 4 illustrates GCAA
as it is used in LANL’s chromosome-16
mapping project.

A genetic algorithm operates by a
simulation of evolution. GCAA begins
by constructing a population of a few
hundred different arrangements of the
clones assigned to an a priori contig.
In each arrangement, called a GCAA-
chromosome, every clone is randomly
assigned a length close to its measured
length. Every clone is also assigned
a position to the right of an arbitrary
starting point. The analogy to evolution
is that GCAA-chromosomes “mate” and
produce “children” whose characteristics
are determined by a process resembling
genetic recombination. Then only the

“fittest” GCAA-chromosomes survive to
mate in future generations.

GCAA calculates the fitness of each
GCAA-chromosome by checking how
well it corresponds to the data, with
discrepancies from the most certain
data points given the most weight.
Three separate measures of’ fitness
are computed: one for the overlap
probabilities, one for the overlap lengths,
and one for the clone lengths. For the
overlap-likelihood and clone-length data,
discrepancies from the most certain data
points are given the most weight.

In the core of the algorithm, the
following procedure is carried out re-
peatedly: GCAA selects a “tournament”
of four GCAA-chromosomes at random.
The two chromosomes whose clones
have the most disparate positions then
“mate” and produce two “children.”
In each child of the mating, some of
the clones are positioned as in one
parent, and the other clones have their
arrangement taken from the other parent.
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