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1. Introduction:

The goal in the study of statistical models is to calculate the behavior of thermo-

il~”namic quantities like magnetization, susceptibility, excitation spectrum. etc.. in each

of t lle re,xcns of phase space. For that the first thing that we want to do is to map out

t lie phase diagram. Next, we like to know the symmetries of the model ( and whether

Thry are spent aneously broken) in a given phase. These play a fundamental role in

t)~lr understanding of the physics. Finally, we would like to derive expressions for how

rIl(*rmodynamic quantities deprnd on the couplings (like temperature. magnetic field.

(v~..).

The modern approach to the study of systems close to critical points starts with

;l~]ii[lg the following questions: ( 1) l~hat are the relevant degrees of freedom? This

illlotvs one to represent complicated systems by simple models which exhibit the same

long distance behavior. (2) lVhat features of the system are important? lye will find

rlmt these include the dimensionality, symmetries of the Hamiltonian/Act ion. and the

ll:lluber of components in the “spin” variables. These questions. as we will see, lead

ro :m understanding of scaling ( thmmodynamic quantities are not the most general

fllnct ions of all independent couplings) and universality (different physical systwrs

s!lt)~v the same behavior when expressed in some scaled units).

.4 unified understanding of critical phenomena arose with the development of the

r(lmrmalizat ion group by K.G. lVilson, The power of the renormalization group li x in

i:s i~bil.ity to explain why (a) near a second order transition all correlations functions

,Iw (bxninated by a single Icngth scale, (b)t he behavior of thermodynamic quant itics

{“all lm written aa scaling functions, ( r)singularities that occur at T = Tc are pow~r-

liIiv. \loreovm, it allows us to calculate these exponents (called critical rxpormnts )

\vllit-h govrrn the scaling behavior, \lCRG is a numerical technique for i~npk’mmlt ing

t INW idras -- locating T, mm-!calculating the critical exponents.

TIAP nummical solution of any given model begins by simulat illg t hc pm: it ion

fllllrtion Z = ~,,a,,, C-JH and then calculating expectation wducs (correlation func-

ri{MIS) as averages over the generated ct-mfigurat ions, Since the powible statw of n

.\O,*tclll are the ~~e for all pmsihle v~l:es of the couplings like tmtlp(’rnt Iirt-, l)}Aw

rr;lllsit ions ocrur M nn interplay betwem energy ( Boltzmann fnctor c -’)11) id f’n-

!I’lll)y ,S ((irgwwrncy of a givrn cnrrgy stntr) in the fme energy F = (’ - TS. This

;. ! lw vswmw of Prirrlsqs mwrgy-rntropy qumcnt [1] , The cahwlnt ion t (Nd (mv IISVS

t >I”rics rxpnnsi(ms, tinitr size scaling, hlCllG, r rxpnmion, ,, , ) ~h’prmls (m tlw rrgitm

i)f l)luusr (Iingrnnl (mr i~ intrrrstvd ill. TIN powrr of \fCRG is }wst rtwliml ~Ndy Iwnr

●t,(oIJII(l (]r[lrr t rnllsit ifms. [11grm’nd, thr !+tllt]y of thmmotiy!mfnir systml~s ( systonls

\\”ifII .Y -4 x {Irgrrm of frtwwhml ) rnn I)r(Iivi(ir(l illto thrre I)r(m(i rntrgorirs:

I I ) TIw t)i~h t(vn]wrntllrr lilllit: Tlwrtnnl fltwtllnti(~ils rnll{l~mlizr tlw systr; n M it .hws
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not cost much energy (compared to k~) to create excitations in the system. These

excit at ions have a short correlation Iengt h. In terrns of Peierls’s energy-entropy

arguments, the free energy F = [r - TS is dominated by the entropy term. For

example the spins in a ferromagnet at high temperature are randomly aligned,

there is no net magnetization, and correlation functions decay exponentially with

a short correlation length. Thus, the physics in this limit can be understood by

developing high temperature (weak coupling) expansions for the t hermodynarnic

quantities. These expansions are analytic in the coupling constants and their

domain of validity increases with the order to wh~ch one can calculate. Combining

these high order series with Pad6 approximants one can estimate the critical

properties of the system. Such an approach is called sem”es ezpansion.

(2) The low temperature limit: The syste. n exists C1OWto its ground state as it costs

a lot in energy tc create excitations in the sy~tem, i.e., thermal fluctuations are

suppressed. Thus for 2’ >0, the behavior above the ground state can be developed

as an expansion in terms of the number of excitations. These excitations have a

short correlation length but often exist in a background of long range order. In

the example of a ferromagnet, the ground state is one with all spins aligned, and

excitations are 1 g,-, . . . spin-flips, In this region of phase space, the free energy,

F = [’ - TS, is dominated by the encrg term. The snalytic tools developed to

study this region are called strong coupling expansions. Again these are seri-
expansions with a finite radius of reliability.

(3) The vicinity of phase transitions: Phase transitions, as the name implies, are the

boundaries between different phases of a substance i.e. solid-liquid, liquid-ga~.

etc. phase boundary. The free energy in the two phsses is equal along the phase

boundary. If onc can solve for [~ and S, then the critical temperatllre is given hy

[’ - TCS = 0. At T., thermodynamic quantities develop singularities and standard

nr.alytic tools are not very useful for a detailed quantitative analy! ‘ . The phasr

transition is said to be n’h order if the nf~ clmintive of the free mw ;y is singular.

‘?%ermodynarnir quantities are diacontinuoun across first order trnusitious. The

q(’I!mic shape of the potential for the model near a firstrm.kr transitions has t he

pnd-ile of a Afexican hat, For example, in the simple cmw of an Ising frrr(mmgnet for

T< T.andh = 0, there are two degerwrate statea which are relatd by m ow=rdl

•l)il~ flip. For h > 0 the degenwtcy is hrokcn and there iq a unique ground stnt~~,

I,f,, t.lwning on h fnwm the ground state with the net miqpmtizntion dignml along

II. S(), if t,hm syitmn i~ in tb grmmd state with h > 0, then M h is dwrmml ;’n~t

II = 1)tilrsystrlll will wrtltlmlly t~lnncl to its fli~)pcd stnte which is :mW tllc trlw

r,.~jtl[l[i stntr, TIN lllllgll(*tizl\tiol~ ,\f cllniigw+ (iis(~[)[ltill{iotl~ly nt h = (), nll(l t lw sy~t(gll]

f,s]lil)its ~l)ollfnlln)lls l~,lngIN*tiznt i(m ( .\/ = .\f+ - .\f- ), As T -+ Tr fr~)ln 1)1’h)W mIfi

4
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almg the transition iine, the height of the potential barrier between the two states

changes and goes to zero at T,,. At Tc the two degenerate states have coalesced and

the potential has a unique minimum with zerc curvature.

The simplest field theoretic model of such fist order behavior is the Landau

Ginsburg model with mz <0 as shown in fig. 1. The vanishing of the second derivative

of the potential implies a mmsless excitation (m* = O in the model). Massless states

lmve infinite correlation length ({ s I/m) and points with f = w are called critical

points. Therefore, if a line of first order transitions enda at a point inside the phase

Iliagram, then at that end-point the theory has a second order transition. In general,

multi-critical points can exist if at TC some higher derivatives of the effective potential

also vanish. Such points are not isolated critical points i.e. they are intersection points

(If lines of critical points.

Lj!LL
h

TC<TC ‘

V* )

T’< Tc

v(Q)

I

-L
T.TC T>T

c

FI!I. I: The behavior of the Landau- Gin~burg eflectivc potential for mz < O,= O, and

;. () or e~utvafentty T {<,=, >j T,

.4 huge part of these lectures is devoted to developing the ideas underlying thc-

r(’ll(mnalization group ( RG ). A brief list of references which provide excellent back-

gr(jlmd and teach far more than will be covered in these lectures is [2] [3] [4] [5] [6]

I will mainly use spin models M examples. This is not a digression since there

is nn intimate connection between Statistical Mechanics and Quantum \lechanics or

Qlmnturn Field Theory. This connection has been reviewed in [7] and I rmomrnend

!“IIIIf(Jhjw up on that, The plan of these lectures is M follows: In th first two lec-

rIIIW I will introduct= the renormalization group nnd the relevant concepts of ~tatht icd

IIu’i”hnnirs. Thr disclu+sion will amllmc that the model haA a simpk i~~latcd miticnl

]jt~illt. Also I will -%.+lmle that the model has no hypmscaling violations. hJ Irrtllrp

r~l~{w1 will (li~rll~~ Jl(]lltc CMIO Rcnnrmalizati(m Grollp ( \lCRC ) Inc’t]lt)tis for I)dh

+Ili[]systt~rt].qfin({+(lilncnsiona,l gauge throries. Finally in lrcturr 4 I will show why

;I.i”;]ll)tot ic frr~{lf)lll illll)lim t hnt QCD is trivinl from the point of virw of tlw rvmmlml-

I.S:II11111grollp; rrvirw t Iw stntus of t]w crdrulnti(m~ of ttw n(m-lwrt IIrlmtivr ,i-film.t i(m

*5
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for SU(3)gauge theory, andtaik about scaling ofphysical observables. Iwill end with

cm outline of possible avenues of research.

2. Scaling of Thermodynamic Quantities and Critical Exponents:

Diverse physical systems show very similar behavior near a second order transition.

For example, the manner in which spontaneous magnetization .U in a ferromagnet

vanishes as T + Tc from below is similar to how the difference in density between the

liquid and vapor phase vanishes as T + Tc along the co-existence curve. In both cases,

the order parameter goes to zero as a non-analytic power of the reduced temperature

t = ~. Other quantities like the correlation length f diverge. The scaling beha}rior

of various thermodynamic quantities near Tc for a ferromagnet ( the simplest and best

understood example), is defined to be [8]

<
~ ~-~ (2.1)

c“ - t-a (~.~)

t - ~-v (’2,3)

M - h~l(ao (2.4)

M + t~ for h =0, T+(T,)- (2.5)

G.(R) - * for R+ca (2.6)

~~”hereC,, is the specific heat at constant volume, y is the susceptibility and GC is

the 2-point connected correlation function ( the propagator familiar from field theory).

.Away from the crit ica.1 point, G. decays exponentially [9]

~-R/(

GC(R) w ~(d-i )/2 f(d+z

\vith a correlation length ~ s l/m, where m

for R/~ + co (2,7)

is the mass-gap. Only for T = Tc

{I(xw GC develop the power-law singulfity,, The= equatio~ defie the six exponents

1/,n, 7,($, t3, q, It will be shown that not all 6 are independent, In the simplest models

( Ir, those that do not violate hyperscaling) there exist four .qcalillg relations whicli

r{’late these exponents. These relations can be derived from the dcfiniti[)tls of rxponrnts

:111(1 from the scaling behnvim of the free rnergy f,, ng, as shown in Sf’ctlm 3.

For h = (), th~$Ising model ha9 a discrete global symmetry s + -s, Interactions

t“nll tllercforc hc cln.s:+ified rk9 ewn or o(id (Iepen(ling cm their behnvior Ilrl(ior this

~y~umrtry, For Pxrm~lJl(*tl~c enrrgy < s, o,*J > is mm whik the II]aglll’tiznti(Jtl < sl >

is (N{(i. SirIlilnrly t,ll(*p~p(ltl~qlts We (’IJ1<wI(*v(*II or (x1(1 ({(*p~n(lltlg 011 tll(’ (lll~nti!y WI1OW

t 11(* two i.](l(lp~n(l(~[lt f*x]x)Il(*Ilts ~ris(’s(.:i]it]g t)(’1]~~ ,“i(mthvy (Iwwrilw, ,4s yell cnn glwss, .

.* 6



ii~ one even and one odd. The even one is v, the correlation length exponent. Having

only one in&pendent exponent accounts for the statement that the tbeor~ has only

one ler-lgth scale, From the odd sector we will determine q.

It is an empirical fact that the exponents do not take on values that are specific to

each and every substance. Substances with the same value for the exponents are said

to l)elong to the same universality class. On the other hand variables like Tc, which are

~pe~ific to each and every substance. are non-universal. TO classify substances bY their
universality class we have to first identify the appropriate thermodynamic variables,

and then measure the critical exponents at T = TC. The goal of these lectures is to

present \lCRG methods and to make a case that it is a reliable numerical techniqlle

for doing these calculations.

3. Scaling Relations:

Let us start by considering a theory whose free energy is a function of 3 scaling

fit’lds t, h, and u. Scaling jieids are linear combination of the coupling constants of

rlie theory ~uch that Ilnder a renormalization group transformation (RGT) by a scale

i[ictoi- b they get multiplicati~’ely renormalized, i.e.

f.+t’ = /)A’t (3.la)

h-+ h’= b~ht (3.lh)

U+ u’= b~ut (3.lC)

Tht’re .mplicit assumption iri this definition of the scaling fields that a linear

~~s~)anslon about the fixed point is sufficient, In general scaling fields are non-linear

flll]ctions of the couplings. It will be shown in section 7 how such a behavior, k + @’ k.

;Irises, in a linear approximation, as a consequence of flows under a RGT, The scalill,g

Ij(’llavior of the free energy under a scale change bl is

f(t, h,u) = +ogz(,v)= + J’(t’, /l’, U’)

for RGT that preserve the partition function i.e. Z’(.V’) = 2( ,V). Here .\’ is the volume

of the system and d the dimension. In these, lectures I have ommitted {ill discussion of

I(~u:withniic corrections that can and do arise in certain models. Rewriting ~’ 11~terms

of (, h. U. we get
.

f(f*~l.lJ)= (y f(T, (;)+%(:)*14)

= (;)2-{’f(r, (;)hl, (;)’?’) (3.3)

-i
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\vhere the last equality is written to make the definition consistent with CD * t ‘“ for

h = u = O. This requires that (2 -o) = ~ = dv, which can be shown from the scaling

of the correlation length:

((t, o,o) = b {(t’,0,0)

= (++ <(7,0,0)
r

i.e. l/At = v. From the defhitions of M and y we can write down further relations

.51 =
af
~lh=o +2–a-A=J (3.4)

(32f
r = @=o *2-cx-2A = ‘y (3.5)

Sote that along a critical isotherm ● a t~j( ~ ), In the same limit it was postulated

that .11 z h*. To cancel the t dependence we require that ~(r) ~ X*. Then M z h~

and by consistency

A = $6 (3.6)

The desired scaling relations can now be derived from eqns (3.4), (3.5), and (3.6)

a+o(c$+l)=2

a+?~+y =2

A =lM= ?+7 (3.7)

In fact Rushbrook and Griffiths have derived rigorous inequalities

a+2/3+y 2 2 (Rushbrook)

a+o(~+l) ~ 2 (Grijfiths) (3.8)

\vhich red[lce to eqn. (3.7) when one assumes scaling.

Further, the zero field susceptibility is the volume integral of the correlation func-

t ifm

\ = 1ddr c 9(r).9(0) > -I I ddr ~
rd-2+q

(3.9)

from which we derive that

I = mn.!Jt.p *y= v(2 -q) (3.10)

8



considered only two scaling fields by setting u = O always. This assumption is called

hyperscaling, i.e. the theo~ has only one relevant length scale. under this assumption,

~re expect one more relation. This can be deduced

rhe free energy

by looking at the singular part of

and also
. 11

.fslng-fi+~.

Thus
~-~ = vd (3.11)

This is called the hyperscaling scaling relation and is the first one to involve the

dimensionality d of the system. Equivalently. the relation (3.1 1) using (3.10) and

(3.7). is often cast as

()d( 6-1)
~-~ ‘ —(J+l)

(3.12)

.4 possible source of violation of these scaling relations is called hyperscaling vio-

lation [4]. .An understanding of hyperscaling violations in specific models is still very

much a research topic. Even in the 3-d Ising model this issue has not been settled [10]

The reason is that if such violations are present, they are smaller than the errors

in current simulations. Therefore, for the purpose of these introductory lert ures I will

proceed by assuming hyperscaling holds.

Before mo~~icg on to a discussion of critical phenomena in terms of the reno:mal-

izmion group it is instinctive to review the known values of the exponents for an Ising

ferromagnet. These are listed in table 1 for the [sing mode! ir. d = 1, 2, 3. and 4

flimensions. The results for the d = 3 Ising model are from [11] . B&*d m these and

<~ther such results, the accumulated wisdom about exponents is that they depend on

1)
~)

3)

Number of spatial dimensions: this is evident even from the Ising model.

The number of components of the “spin” variables: For example if, in~tead of

the Ising model, we consider 0( ,V) models (spins lying on a unit sphere in .V

dirncnsions) then the behavior depends on .V,

Symmetries of the model.

Now we turn to the renormalization group to see how it incorporates all these

f(mt llres.

4. Block Spin Ideas of Kadanoff:

Thr first intuitive and profound steps to study critical phemmwna wrre taken hy

[{i,(lall,)ffr ~c l)roxn(~ted the idea t]lat singlllarities in thernlo(lyna:tlic (Itlantitim mise

. lIIt~ to R (Iivmging rorrelntion hmgth, T]w Imsic points of Ilis analysis m-r:

9
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*
exponent d=l d=? d=3 d=4 s classical

1, 1 0.629(4) l/q

c1 log cl-4
J 1/8 l/~

7 1 1/4 0.31(5) o

Y 7/4 1
d- 15 3

h-. x’ om~lqf(l + <~) (J,2~1654(6)

Tabiel: The values of thecritical rzponenti forthe Isingmodelford=l. 2, 9, andd

1)

~)

3)

4)

3)

6)

Sear the critical point the correlation length is large and spins (field var

show co-operative behavior over macroscopic distances.

Spins in a local region can be replaced by an effective spin. This averaging

blocking) defines the renormalization group transforrnation ( RGT ).

ables )

called

The interaction between these effective spins is of the same kind as between the

original spins, only the strength is different. If the temperature t is the only

coupling in the starting Hamiltonian, then the effective Harniltonian is also given

= R(t) is an analytic function of t.by r-me coupling, t’. In particular, t’_

Under blocking, the correlation length changes by the scale factor of the t rans-

forrnation, i.e. f’ = {/6 where b is the linear size of the region over which an

average spin is defied.

Singularities arise due to the repetition of the blocking step an il~finite number

of times. If we start with a finite ( at some finite t, then following the blocking

transformations backwards gives < = cm. The exceptions to this growth in < are:

(a) if t’ = at + c with c # O, then the critical point occurs for 7’ = O; (b) the

presence of a first order transition stops the growth of the correlation length.

Given the analytic function R(t) one can derive the critical exponent v.

T!wse ideas, in their fully developed form. gave rise to the nmdcrn theory of rriticrd

I)ilenomena. The shortcoming of KadtuAoff’s analysis were that he awurtd that J?(t)

\va~ exprrssib]e as t hc rmmnnalization of a single coupling i,r, t e t’; scctm(i, 11( did

Ilot specify how to ca.lclllate R(i), These hlmilrs were surmountc~l l)y \Vilson in Ilis

srminal work Illiitillg tllc t~clllliqlws of ficl(l theory and stati::ticnl mcchnuics.

I think that t ht~most iust rlict iv~ way to introduce the trrminoh)gy nmi com-rpts of

tlw renormalization gro~ll, is to work through an exactly solvable mo~lcl. TIN* silll~df’st

(xnulplr is tlw 1-(1 lsing chnixl With (rely n(’nrrst,-nriglll)or c(nll)lillgs.

10
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S. Exact RG Solution of l-d NN Ising Model:

The NY l-d Ising model is defined by the Hamiltonian

H= ‘~~5,SJ-h~.51-C (5.1)
<1]> i

where 3 s ~ is the rx~.hange interaction ( 3>0 ferromagnetic, 3< 9 antifermmag-

netic), h is the magnetic field (for d = O the h term makes the system pamrnagnetic )

arid C is a constant. The physics of the model is governed by the couplings [3. h].

and the exact solution of the model is known [1?] . The closed form expression for the

free energy j( 3. h ) is

f[T, h) = - In[cmh h + tiahhz h + r] (5.?)

ivhere

.r ~-4J=

is the Bcdtzrnann factor for a spin f?ip with a mmcm “urn

(JIILto be a more nat urzd temperature variable. From the

(5!3)

change in energy ami turns

fme energy we calculnt c the

!nngnetizalicm
Of

.\l(T. h) s ~ =

w](I find that .\f a O M h 4 (1 for all T i.~,

xntion for My t-due of T. The sllscrptibihty

sinh h
,. 1.;.4)

sinht h + r

the r mdel ks no sponlnmwms mngrwt i-

Ilw an ~xp(mrnt ial singularity in thr mro fkhi limit as T + O

,

J(T) = 111(1+ &)

;l [1( I

.12

C,.(T) = —

(“ONlli ,f

(,-)(;)

II
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Let us now see how the renormalization group exposes this critical behavior wit 1~-

out using the exact solution for the free energy. The renormalization group approach is

[O integrate over cn17 a fraction of the infinite number of degrees of freedom at a time

nnd to examine t ‘1.eeffect of this small step on the sumiving degrees of freedom. For

the l-d Ising model defined by H( 3, h, C), we can integrate out every second spin and

the resulting theory is described by a new W(~’, h’, c’ ). Under this transformation,

the physics of the model can be extracted from the relationa s’ s d’(~, h, C) etc.. Lets

start with the partition function for the model

z= &Tr e-H
-“

5,7

The last form makes it easy to see how to integrate out every other spin (perform th~

<11111over it ), TO do this consider the term involving the three spins 91, S2, S3

E

e~JISa + +(SI+SI)+C #aSS + +( SI+SS)+C

Ja

rll~m the two terms that contribute to the sum over 92 are

#m+ad+’(”++l)+2C’ + #wm)+M+-:)+2(”= (5.s)

ivllicll SWIIIS to brar no relation to the original Hamiltonian. %wrvcr, with himlsigllt,

NV’(“wI write the effcctivr interaction Imtween SI and s~ to be

(5,!3)

n rlmml form s(duti(m of

*1, Ilsing rqns (5,S) iu](l
fill

(:.1OII)

(5.1(M)

(:)110(’]
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Solving these give

~4J’ cosh( 23 + h )cosh( 2.3- h )
=

cosh2 h

~2h’ = e
2h cosh( ~J + h )

Cosh( 2.7- h)

(=4(”’ = e~c cosh(2,3 + h ) cosh(25 - h) cosh2 h , (:.l IC)

Tlw relations (5.11) constitute the RG ?.ransformation

H’(.J’, h’, c’) = R[H(J, h, C)] . (3.12)

The process of integrating every other spin can now be repeated an irdinite nurnkr of

: ilncs. Each time we get the set of equations. (5. 11 ), that relate the coupling const.auts

of the two theories. This RGT transformation can be interpreted graphically in tmms

{If renormalization of the bond interaction between NY spins. Let us rewrite rqn (5.7)

;1.s

Z = ~ P(*~.*~)JJ(31S~) . .. P(S1~”)”)
s,

~vtwre
1

P(SIS, +I) = ;e ~4,J,+I+~(A+s,+I)+~

i.< tlm ~~dtzmann factor for the bond between s, and S,+l. Them, on integrating out

t“\-flry (Mhrr site, say ,*2, we get a new Bolt zmann factor between sites s 1 and Sl

Flow equations in the l-d Icing model

,? :S I?(,j) = : 111(’odl’2tj . (3.1:))



or equivalently
4X

r’=—
(1+X)2

where r s exp( -4 J). Then
~r’ 4(1-Z)

z= (l+z)~ ‘

From the flow equation for h we get

~h’
— = 1 + 0.5 (tan.h(2fl + h) + tanh(2~ - h)) ,
ah

(5.14)

(5.15)

The stmcture of the fixed points can now be deduced from these two equations. For

the moment let mc just state some fncts without much motivation ;n order to make

the discussion of the l-d model self. ccmtained. These points are elaborated on Iatm.

Ferromagnetic fixed point at [d = m, h = O]: From eqn. (5.13), we see that the

flows in 3 take us away from this fixed point, i.e. $’< J and a small deviation grows

umicr a RGT, The general flow in the 3, h plane is shown in fig. 2 [13i , It shows that

.J’ < 3 for all J > 0, i.e. the system gets disordered under RGT. Such couplings arc

rnllcd relemnt. Similarly, at the fixed point

(5.16)

~vhich shows that h is also a relevant coupling.

Thus the ferxomagnctic !ixed point is unstable under perturbations in both T WNI

h, It is Hlso the critical point of the model since { = m at it.. From rqn. (5.16) nml

!S.2 ) wr gm the exponrnt q = 1,

Tlwre is nnothrr fixed point at [A = m, h = m], to which fill poiuts [j = 32, h z 0]

(x);lvrrgr, Tlus point is not vmy interesting.

.4s .~ is (!::(.mtwml nlong the line h = (), the rnte of flow slows 1‘[nvil nmmling

I() rflrl. (L.14) slwh thnt nt j] = O (or r = 1) it is zero, The flow collvrrgo !() tlw

I)nrnmngnrtic fixwi point ~ = h = 0 with zero velocity.

Pnramagnetic fixed points at [$ = (), h]: on ●xnrnininA eqn, (s, 1s) nt ,) = (I wr

timl tllnt ,1A = 1. This metms thnt h h~ tmvmle n mnrgimd tqwrntor. Enrl~ vnliw of h

is n tixwl I)oint, i.r. thr modrl hM n IIW of trivial fixml Ix)i[lts nt :) = () Iwrnlw ~ = (),

.41s(~,nhmg this line q = 0,

Suninmry of results for the l=d Ising model:

.,

14



1

I ha of

points

Crltlcol

flmd

\

Imoar

roqlofl !!

Tno

Fig, 2: The j70w in [~, hl plane for cht I.d Isintj model



3 ) under a RGT, the partition function is pre=rved:

z,y~[H’] = Z,V[H] .

~ log Z,v[l!l], we get the purported scaling relationUsing the definition j[~] = ,

for the free enm~v

f[H] = b-d f[H’]

6) This simple model is an example of an exponential singdarity at $ = ao (or z = O

since r is a more natural variable than T), Later we will s that exponential

singularities are a signature of a~ymptotic freedom in non-abelian gauge theories

in 4 dimensions. Such theories do not conform to the standard definition of

exponents.

7) In the analysis of the flows we saw that the constant C does not effect the physics.

ho vever, it takes on a defin.,e due at the fured points. This value is determined

self-consistently using the condition that the free energy is zero at critical points.

S) From eqn, (5,11a) we see that if we start with an an~i-ferromagnetic model ($ <

O), then after one renormalization the theory becomes ferromagnetic, This is

a simple example of how a given physical behavior can be totally lost by an

inappropriate choice of the RGT.

In this RG analysis we find that the critical behavior is inferred from eqns. (5. 11).

1;1fact we only needed eqns. (5.14) and (5,15), In sections 7 w.d 11, I show how MCRG

:IIIIYWSus to determine these wit bout SOIwing the model or knowing the flow equations.

(3. \Vilson’s Formulation of the Renormalization Group

For the 1 – d Ising model we Auriwx.1 an analytic closed form cxprmsirm for the

titnvs, Tiiis is a very special case. In gmcrd, me also generates nrxt NY, third

ll(~ighl]()[lr, ~-spin, etc. couplings in addition to rcnorrnalizing the NN cmqding, Thtis,

t~v’nave to Comider the infinite set, {Km }, of al] possible couplings. only then (Ioes a

R(;T map onc point into another, ‘

Tlw mitiml points, with { = 00, nrc sl’t’ciaI, St~-tit~g from HC, m RGT producm

;lil~lttwr Hr since {’ = ~/6 = m, T1luu the set of critical points (Idinc m hyl)msurfncr

ill fliis iilfinit c dimensiomd IIpmw{h-m}, ‘h RGflows on thin rmrfnce cnn (n) mmmdm

riitl~l(mdy, (1)) go to w)lne limit cycle, or (r) convrrge to n fixml poiut H*, A RGT will

ill ufstwmJ hn~”olliorr thnn onr fixwl [I{)illts M wp mw in the 1 – d Ising motlrl. Wr nrr

illfrrostrfl in 17GT which p(wrw Mrrit it-n] tixml ])f)int i,r, H* = I?(H* ) with { = m,

l;~lt’11sI*(’11fixr(l l)f~illt hnfi n Imin of nttmrr.i(m i.~, thr SC*!(}f Hr Ilml. l.ollvmgt” to it

Illltl(.r Illr nCiT, T]lis !Jl~q~n of Ilttrnrtioll (lrfiIIrsI t]lrlll]ivrrqi!yrlnss silwr t]IP](MIA

lG



(Iistance behavior of all subst~ces corresponding to these Hc is governed by the same

fixed point.

Let me make the statement of universality more explicit with an example. The

Ising model is an ide~ization of a ferromagnet, yet it describes the critical behavior

of [Iickel. iron etc., each cif which has a different Curie point, Z’C, The ream-m for this

IIIliversality is that all these Jfc lie in the basin of attraction of the Ising fixed point.

For now you do have to accept on faith that the Ising model has a fixed point that

({“scribes fermmagnet ic critical behavior. Unfortunately, even for the sfduble d = 2

Isillg model it has not been possible to determine H“; the proof of it’s existence is

l~il~(] on consistency and circumstantial evidence.

\Vhy d:) Hc which lie in the basin of attraction of H= have the same long distance

l)hysics? If we look at the behavior of these different models at the scale of each spin,

t]WI1wc s]ldl w ~iffercnces in the cOrrrlation functions at small sepmat ions. on t ]lc

I)tll(~rhand, ifwe construct eflcctive spins which describe the average behavior of all

SI)ins in a cell of size b~, then the distinction in their correlation functions blurrs as

t IW crll size b is increased. This way of looking at a substance on a coarse scale is

~vhnt a RGT implements. Thus. the statement “same long dist ancc behavior” means

two things: (a) scaled correlation functions at large separation are the same s.nd (b)

{Sf)rrelation functions of spins averaged over a large block are the same at d scales,

I show two possible types of flows near a tixed point T= in an idwdizm] case of n

single cmlpling T. In fig, Oa, the !hed point is attractive um-!cr the RGT for all starting

T ~vllirh lie in O < T < T* or in m > T > T“. On the other hand the flxrd point

ill fig. 3b i~ r~pulsiw, i.r, the flows go Rwny from T“. A coupling is cdlml rrlmvmt

if (1,’vinti{ms in its vnlllc fr(ml the fixm] point get magnified undm RGT, Similarly, a

t’olll)li[lg is cdlcd irrrlwnnt if the dfwintion9 -0 0, Thus T is M irrrh’vnnt coupling

ill t hc rxmnplt’ of fig. 3R, and rrlwmnt for the caae in fig, 3b, Clearly, t hr space of

~tt}lll~lings ssm[lning the critic~ surface nre irrelevant, while flows ollt of thr criticnl

SIlrfnm (MIIC the rrlfwmlt dirmti(ms, In cs.M of the f~rromagnct. Ha is luuitnhlr with

rvspwt to wuiation in ?’ and in h, For ordinaxy second ordrr trnnaitions T nml h nrr

t IN’ INlly two indrprndrnt roupli:igs, irl ncc~)rcl with the srnling rvlnt ifms wr (Imiv(vl

t’nllirr, 111grnrrrd thr munher of imlrprndrnt rouplings arr rqlml to tlw ntllt~lwr t~f

IIllstnl)h” [Iirrctitmm of H*,

F(w n givrn RGT, rnch t)f tlw Hr (m thr critirnl ~~ufncr i~ tlw liillit IJfjillt of n How

fldl~AvcflImckwnmls, Tlw trnjort,~)ry !hwing [nit of Ho is ~prcinl for it is tho nt trnrtor

flw nll t lmw of Iwr t rnjrct(x-im, It in cnllwl the r~nomuahmf frajrc(oy ( RT ), Thmr is

;I (II14St{) f)[lr msot.inti(m !)rtw~l~ t)le }/r wl~i(”ll lie ill tlie l)Mill of nttrnctj.)11 t)f Ho

‘lti(l tll~’ir (’f)rrf’sl~~lll[lillgtrnjrrtf)rim wlllril I\re nttrartrfl I)y tlir I{’r, Tlw fixml Ix)i[it is

llll~tnl~lv ill tlw ~lirrrti(]ll c)[ tlw rrll(mlinlizr(i trnjrvtory I,r, tu]y llrvil~tit~ll nhnig it frfml
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Fig. 3a: Emample of an attractive jized point w.r, t. coupling T.
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along it from the 6xed point. This is the genesis of Scaling. When thermodynamic

functions are measwed at diticrent values of H corresponding to different ~, they ran

~11be expres.scd as 8 fmctior, af some reference H and the distance to it along the

flow t rajrct or!”. Far example, along the RT in the even sector, all couplings can Iw

twpressed in tcrrns of a reference \aluc of t and the scale change b i.e. t’ = b~’t.

I have repeatedly st :essed that the H‘- ad the flows are a function of the RGT.

lli~es t his mean that ior each valid RGT, tht ~ is a different H’ for say iron when

\vc knov.~ that ~lI;~r~ is some ~ique l-Jc describing iron at the Curie point? [n the

mat heln ~tic,d kmmdat ion I have presented above, the answer is yes. The resolution of

r liis pa: ~dox is that dif?rrent RGT differ by redundant operutors [14] . These rcdum-lant

i~u~’ctions span a sub-space cm the critical surface and correspond to a change in field

\.itriabl~s which does not affect any physical observable. For example. in the scalar

firhl thmx-y a change 040 + changes H + H + c41f, Such a shift by a constant

(Ioes not affe-t physics and the ~ngr AH defines a redundant operator. In numerical

cri!culations. there is no n-priori way to work in a space orthogonal to these red[mdant

t~i)(~rzitorsand their prex~nce can be a nuisance [15] . SO the god of NICRG calculations

is t () identify the redlumhmt operators and then work in the sub-space orthogonal to

rhl’m.

In a cmtain neighborhood of H“ (both on md off the critical surface), the scaling

IJrfqwt-ties of the model can be analyzed in the linear approximation as discussed in

srct ion 8, It is ordy our ability to ca,lculat ~ within the line~ approximate ion that limits

Ils to rIm region nrar H ●, Otlwrwiw, in principle wr could work at any finite ( along

rll(~ RT M1(l cxt,ract the critical behavior. Of course, for f s 1 there is no distinction

IN’twmn short and long (list~nm. behavior. Also, for f small, the RT m~y only be ?;rry

uwllily nt t ract ive riml it nlaY no longer be local. If this is the ca~. then a simple H

(w is cmnmmdy usml in simulations) will not give the critical behavior siuce it may

INJ! lir ill the domain of attraction of the fixed point.

Hvviug shown how univmmlity and scaling are explained by Wilscn’s formldation

()f t hc rrtlorrndization group, the next question is what clif%rentiatcs sny nickel fr(ml

ilf)ll’! .4s menticmcd wwlirr, even thmlgil th~ir respective H“ are nttrnctmi by thr Ising

fixml p(}iilt, t hry nrr not i(lcnt icnl, Thin explains the diffmmw.! in the Curir point for

t IN*two Inrtnls. The (liffrrrn~.e in Hc is characterized by irrclmmnt (qwrntor~, Thww

IIl)(”rntors r(]lltr(J cor:c(’ticns to scnlizlg MMI accolmt for the (Iilfmrncrs ill tlw short

{list ;IIICIIl~r(q)vrtirs of t IW slll)~t,nm-rs rvcfl tllotlgh tlwy Iwlollg to tlw snllw llllivrrwdity

‘1I Iws.

Lrt ~is rxmllinr tlww i(lcas in trrms of the wcnling of thr frrr rnvrgy, Rrwriting

c’1111.(3)3) W’ifll r = 1 nlk(l II = () ~ivw

f(l, h,fl) = (f)J-” f(l, (), t-%) (ii.1)
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Let me first assume that j has a valid Taylor series expansion

f(l, o, t-%) = ~[1, O, O) (1 +C, t-otf +

about u = C i.e.

. . . 1 ((j?)

then in the limit t ~ O the correction terms are well defined only if @ < 0. This

happens if Ah < 0 i.e. u is a irrelevant field. If b > 0, then u is a second reievant

field, the correction term, becomes arbitrarily large and the expansion makes no sense

as t ~ 0, Fixed points with more than one relewmt field are multicritical points. In

that case the exponent @ cent rols the crossover behavior between the twe relevant

fields, The amplitude f( 1,0, O) in eqn, (6.2) is not universal. Thi: is an example of

a general statement: amplitudes in the scaling laws for thermodynamics functions are

non-universal.

The second possibility is that ~ does not have a well defined Taylor expansion iri u

hut behaves as J( 1, Z) - /(1 )/.r~, In this case even though u is an irrelevant field, the

singular behavior ( utl’$1 )-M will modify the hypcrscaling relation to 2-0 + p/0( = ud.

Such fields have been given the name dangerous ~rrckwnt operators by hf. Fisher and

their presence is one possible source of hyperscaling violations [4].

7. Linearized Transformation Matrix and Classification of Exponents

Consider a point {K3 } close to the fixed point {K;}. Under the assumption

that there arc no singularity ies in the space of coupling constants, the transformation

/{{’(I(J) can be expressed as a ‘Taylor expansion about the fixed point

For small deviations from the fixed point one can define a “lirwar region” in which

\7.1)

:iIl(l A]i~ = Kfl - K; is the deviation from the fixed point, The Iinearizod trmlsf(Jr-

Ilmt i(m matrix

(7,2)

y)



The properties of the matrix 703 and its associated eigenvalues .\, and eigen-

vectors 0, are:

1.

~,

3.

3.

4.

3.

G

F{)r

The eigenvalues depend on the scale factor b. Since two successive transformations

by /J shollld give the same flow as one by b2, the general form is ii, = b~’ where

the ~, me independent of the RGT.

Consider a deviations u from H“ along a given eigenvector O. Then under a RGT,

the flow satisfies the equation

U’@ = ?Ud = b~wud , (7,3)

This is the definition of a scaling field u and justifies why we used eqns. ( 3.1).

Xote that the eigenvector o embodies the linear dependence on the coupling con-

stants {Ko}.

Eigenvalues .~ >1 lead to flows away from the fixed point. These eigenvalues and

the corresponding eigenoperators are called relevant.

Eigenoperators corresponding to eigenvalues A <1 die out geometrically with the

number of blocking steps. These operators do not contribute to the long distance

properties of the system and are consequently called irrelevant. The associated

exponents A control corrections to scaling,

An eigen~mlue of exactly one is called marginal. To ascertain that an eigenttalue

is tru!y marginal, one has to go beyond the linear approximation. \farginal opm-

ators do not flow under RGT. Operators that are marginal only at leading order

give rise to logarithmic corrections. \Ve will see later that asymptotically free field

t heorim are of this kind.

There is an additional class of eigenoperators, called redundant operators, that

::re not physical. Their eigenvalues can be < 1, = 1, or > 1. These eigmvalll(>s

fiepend on the choice of the l?GT, i.e. different RGT with the same scale fnctor

will gil.e different J,. A reason for this is that the amount of a redundant opma-

tor generated depends on the redefinition of fields, so different RGT give rise to

different eigenwdues, In fact one way to isolate them is to repeat the calculation

~jf Toj with a different RGT. ThPrl the eigen~ues that change with RGT ror

respond to rrdund,ant operators. Evrn t !mugh these eigenvalurs arr not physicrd,

a llGT for which they are relevant (ioes not converge.

L’ndrr cmtain conditions ‘Tm,j is block fiiagontd, t,e, the co~lplings Imak up into

sill)-srts t Ilat arr chmvl un(!cr the l?GT, For PXMXIIJP,in the Ising mo(h’1 ~t h = 0,

tl~r symnwt.rl’ .~~ -s cnuses illtcrnrtiotls to Immk IIp ir]to (d(i mid WWI wctor~.

VIW}Lwith ~n irldcpetl{leut rigefivalue spectnlm.

ii Illorc (~(*ta]lr[i (Iiscllssion of tlir nl)ovc point~ see r~f [2], I II(JW (irrivr tlw rrlw



8. Derivation of Exponents from the Eigenvalues of 7.3

The relation between the correlation length exponent v and the largest even eigen-

\-alue of ‘Taj cm be derived ss follow: consider the correlation length ( at two tem-

peratures with tl < t2

Then using f(tl ) = h~(tz ) with t2 = Rb(tl ) we get

b = ($-”

t2
= b$

E
&2 ~+ = ~~,

*Z=

Therefore, if .ft is the largest eigenvalue of 7a3 in the even sector, then

1 log b
v =—= —

\ log At
(8.1)

‘t

Second, the exponent q is related to the largest odd (magnetic) eigenvalue Ah of

‘Taj. This connection involves using scaling and hyperscaling relations! Lets start.

i~~ith the scaling behavior for h, eqns (2.4) and (2.5), then

ThIH

/35 lnifh
*—=—

in b
= Ah

v
Xfnv using the scaling relations

/?6— = II+a
v

CY 2 -a-7
= ;+-

2V
?+(2—0)

=—
2W

~_q d
-—

2 ‘z
(i+2–r)

=$’~h= ~

‘?9. .



Thus, for models with no hype -C..ding violations, MCRG allows us to calculate

‘T. J and from its relevant eigenvalues we extract the two independent exponents v

and q. Next, I want to introduce a simple field theoretic model before discussing

\ICRG methods.

Simple Field Theory: The Gaussian Model

The ideas I have discussed so far for spin models carry over unchanged to field

t Iwories. The differences are mainly of language and interpret at ion. For example:

In Euclidean field theories, the dqyes of freiom are field variables which are

continuous \alued functions at every point in space-time. To make the problrm

tractable, we introduce a discrete space time grid with the lattice spacing a acting

as an ultraviolet cutoff,

The iattice seines only as a regulator. There is no scale, like the inter-molecular

distance in condensed matter problems, which provides a natural cutoti. To make

contact with the continuum theory, the lattice spacing has to be taken to zero.

So an important question is: Does this limit exist and if so do we recover an

interacting field theory that describes the red world? In a large number cf field

theories the limit does exist, but the theory is trivial, i.e., the renormalized cou-

phng goes to zero as a 40. Such theories cannot be considered fundamental i .c.

they have structure at some length scale. This length scale provides a natural

I- I :t -off for the theory. Such effective theories are mathematically well defined,

intmacting and cm be used to describe the real world, In an effective theory

the renormalized coupling depends on the cutoff. Since this coupling is known

from rxpm-iments, therefore, the cutoff fixes the scale at which some new physics

conms in. Below that scale the tueory provides a consistent description of nattlre.

.4n example of how this works is pl vialed in the lectures by A. Hasenfratz. Shc

showrd how, in the Higgs sector of the standard model, the scalar interactions

have to he considered as such an effective fieid thory.

The principle of least action govrrns the rt~lative importance of n c(mtigtmtt ion 1.c.

t Ilc Bolt zmann wright is c - ~”, TIN* illteraction between the dcgrww of frtvvlo:ll

is ~)rovided by the Lagrangian density L. All this means in prnctice is thnt wr

rrl)lnm t hc word Hamiltouiml by .+ct ion in all the previous diwvwsion.

‘I”lw f(mllldnti(m of Euclidwm fichi theorim has been reviewed in the Iccturm l~y Cdl-

iI\v;Iy nn(l Lt*pngt=, So I will Awumr timt yuu am famiiiar with the dctnils. Hmr IIV

;IIIII is t[] SIMIW how \Vilw)ll”s moxnrntlml space rcnormaliz~ti~m works ill thr simple

I.:lsr of tlw gnllwitul firhl thr(my Iwfore moving on to tlm npplicnti(m of rwd Slm(”l’

rf’lv)rllmliznt ion to mm-nlwlinn gnllgr thmmirs i,r, QC.D,

-30



The prototype field theory is the scalar field theory described by the action

.-l = 1 [.ddr ;(a.@a.d) +m*02+ul(apaM@) *Tu2(apa.@a.a.o) +Ao4+. m.
1

(9.1)

Its gaussian version is the limit where only interactions that are bilinear in d are

retained. In t crms af the fourier transformed field @&,

the action for the gaussian field theory is

I
.1

L= ddk l$hdsh
[-

P 1~+mz +ul(kPkA)2 +u~(kPkPkPkP)+ . . . . (9.3)
o

The act ion is bilinear in dk, and the integrat ions over each decoupled dk in the partition

f~mction crm be carried out. In eqn. (9.3), I have introduced a cutoff ,i to regularize

the theory. This is necessary in order to follow the philosophy of t hc renormalization

group i.e. integrate over the degrees of freedom in small steps. This is not possible if

.i = m from the start since :\/b = m . So we start with a finite cutoff and consider

the cutokf free themy only as the limiting caae. Integrating d dh for ~ < k < .1 wc

\\”e would like to make this effectite theory look like the original, just like in the l-d

[sing model. For the gaussian model this can again be done exactly. Tile canonical

st(q~s are: first perform a resealing of the length sade

:111(1 then rmcale thr field t=iahles by

@’(q’)=
w)tht the rwmrrnalized action L’ hecorncs

2q@ (9.4)

c d(q) (C)J)



which is exactly the same

of the coupling ccmstants

~ the theory we started with except for a r{’Ilf}rrxlalizati(J1l

Ivll(lrr I have ,also writtrn thr generalization to scale factor b sinm rhr rw-nling I)y

f;l(.t(m 2 was arhitruy TIIts fixed point comiition

1)

‘J)

3)

4)

-1,)

(; J

‘1-)

\ ,:8I



10. Linear Renormalization Group Transformation

In both examples ( l-d Ising rmcl the Gaussian Held theory), the spin-spin cor-

wlnt ic.n function under a renormalization group transformations obeys the following

1“{’li\tion

G(r) = c%(d) (10.1)

111tl~e case of the l-d Ising model we got the identity < s&s& >=< Sznso > on

i~ltrgrating every second spin. So C* = 1. This is consistent with the required behavior

t)f t Im cm-rclat ion functicn i.e. G(n) x ~ because q = 1, However, recall that wc

liml to tune the constn,nt C in the Hamiltc .lian to get the fixed point.

In the momentum space renormalization of the Gaussian model w~ had to rwwdr

tll(’ FA(l g I)y c = b-(d+2)/2 in order to obtain a non-trivial fixed ~mint, Instead of

illr!’grat ing mlt all t hc frcqumcies between ~\/b and .\, let us implrnmnt a rwd spm.c

IlltJrkillg t ransfornlation ill which the block spin is defined as the avmage ovm n block

of size b~. i,r, ~’(.r’) = c~rf=, @(~), Then the correlation function for large r in t iw

( 10.2)



as a function of {Ka}, Here So is the interaction between spins conjugate to the

c[mpling l{.. Theexpectation valucof m]yopmato rOisgivenhy

(11.2)

from which one .an crdrulatc the thermodynamic behavior.

In nurncriciil sillmlat ions using Ifonte Carlo methods, one generates configura-

t ions of spins using one of the following methods: Metropolis [16] , heat bath [17] ,

!mdccular dynamics [1S] , microcnrmriical ~l!l] or the Langevin [20] [21] . Each of

r lNIse algm-it hms gives configurate ions with a Boltzmann distribution e-H ❑ c .h. s.

Tlw obvious advantage of such “importance sampled” configurations over using a flat

(list ribut ion is that in a t hmmmiynamic system the probability y is vrry highly pc~kcd

ii;()~lnd rcmfigurntions that minimize the cmcrgy and only these have any significant

~.tu]tribut ion to the pnrtit ion function. TIw choice of which of the above methods to

11~~,(i(~prnds on the efficiency of t hc method for a particular physics goal. These met h-

i)(Is l)avc hren disctlssed in tile lect llres by Peter Lepage ~d I refer you to t hcm for

(l~”tnils.

Thmmodynamic quontitics arc mwwured aa simple statistical avmages t)f comc-

Iilt ifm flmct ions over these “import ante sampled” crmfigurat ions. By calculating t IW

I)t’lmvior of t hcrmmlynnmics quant it ics as h function of ~ and h nctw T, WP ~tUl d(’-

rt’nl~inr thr criticnl proprrtirs of the nxxlcl. Thr biggest limitation of slwh nlmwrirnl

{.illrlilntion~ rornrs fr(~m t.}]c IISCof finitr Inttices, On n finite lattice the growth in ~ ns

T ~ T. is mlt OH sinw { rnn (rely Iw < L, So all (~hservnhlm ncquirr n (lrprmlrncr [N~

t11~1lnt t icc size L. This L tlrlwmhwcc cnn IN analyzed within the frnnww[wk of finitr

sizv w’nlillg. In tlmt wny wr nrv nldr to rxtrm:t f8irly accurate vrdlws for ~. nnd I]If’

I)locking: Numcricnl implementation of RG1’



down the constrained part it ion function for the renorrnalized theory

~-l.l’( s’)=
z P(S’,9) e-”(’) (il.3)

whine

P(S1, S) = A(Q’(r’) -c ~ o(r)) . (11A)
Zc;’

for the gaussian model under the replacement s, - 4(x), Thus, for each configurate ion

generated with the original H, after blocking we have another con.6gurFLtion on a lat t ice

of size L/b described by the Harniltonian JY1. All expectation wdut-w, with respect to

1-1’ can again be calculated as simple averages on the set of blocked configurations.

Rrpeating this blocking n times produces a sequence of configuratirms distriblltctl

iw~ording to the Hamiltonians H“.

The question then reduces to: what constraint does P have to sutisfy such that

t Iw sequence of theories Iabclled by if n dmcribe the s~mc long disttmce physics hut

(N1increasingly conrse lattices? Part ot rhe mswer turns out to be r~ther simplw t hc

lWT slmuld satisfy the i(achmotf constraint (unit arity rclaticm)

~ P(S1,.,)= 1 (11.4)
,1

illlhpmdmt of the state {s}. Using this in cqn ( 11.3)

x
~-n’ (s’)

= ~ P(s’!s) e-’’(’) = ~ r-’’(’) (11.3)
,1 ,1,, ●

●Iltnvs t hnt t iw two t heorim H am! H * havp thr snmr pnrt iti(m function. This lm~pmty

Iiwfls t() t hr rorrrct rwwnling of the frer mwrgy,

It is, howrvrr, [lot gtuu”nntcml thnt n.11RGT satisfying Kn(hu~[df’~ c(mst,rnillt. hnvr

:1 timl ]M)int; or evrn if they havr n fixml point that it is the Idyicnlly intrrmt ing (mr,

‘rho tix4sd point H*, t hr J?T nnd the srqurncc t)f theorim, H“, gwwrnt.ml from n giml

●tnrt ing H drprnd on the RGT, Sinm t hew propertim wr not pliysicnl, n hncl RGT

i“:IIIIliiw thr (Irsire[l physics. For rxnmldr, dwimnti[m trm~~fornmti~ll~~ (choo~ing OIN-

(]f rIW b~ spins to h ttw I;lock spillill thr J > 1 Ising UMXIPI)tl~) not lrn~l to t Iw Isill~

!iwvl I)oint. SUrh RGT Nhould thmrftmr not he lined,

Tk MT Amhl inmrpornte tlw Nymmptry propmtim ~jf tlw IINMlrl, \\”f*snw ftw

t Ii{’~lllti-frrrt)ll~ngnrtir 1-tl lRing model t lint intrgrntillg rvmy (~thm sl}iu It*n(In h) t hr

It rrt)llmgnotic tixwl l~oillt. Thr mnw is t rlw ftm nliti-f(’rr(~ll]ngl]rt ir IMillg llMMlrlIIIill

lli~llt~r (litlmisi(~lls wlwn n nmj(wity r~tlr l~lcwki]lg ix usml wit.]1 Ihwk CVIIN(if sizr ?d.



cm be made as follows: starting from some giverl TC, one counts t !~e number of it-

(*rations rcqllired to con-?erge to the respective H“. Since H” is usually not known,

t his procedure is implemented indirect Iy by studying the convergence t~f ‘ ~poncnts M

:i flmction of the number of blocki,l~ steps, The rate of convergence is c~lntmlled by

11(w non-local is the fixed point (magnitude of the irrelevant operators), and (m t h{D

lJNW*XICCof ro(l~ul(ia!lt opt>rators with eigenvalues ~ 1, clearly the optimum transfer-

[I~iiti(m is one that c(]rlverges the fastest i ,e, whose associated fixed pt~int is the most

1(WO1, L’nfort ~mrttely. in most cases the oniy way to test this is by detailed nulnmicnl

~.iilr[llriti(~ns,

.A sl]{wt cook-book list of some gawrrd features that lead to goml l~l(wkirlg t rnlls -

fornlntiorls arc:

ii )

}))

~’ )

:tssllrl~ptiou of Iocdit. y lms be(w ma(ie: ( a) that the fixed point Hamilt(minn is

I()cnl; (h ) I)loriiing corrcspon(ls to avorttging fluctuations over a local r(’gion so

t ]mt thv ?-~)oitlt corrvhition” ftmctions mtwstm corrt~la~ions I)(!twoml lord I)lock

()i)(TntorS Srplt,rmt(’(1t)~ S4)IIW distmm ,?,

Alrtlio{is to Cnlculnte the Critical Exponents:

(11,(;’/

[
. tl

(’)(. s:)
fill - (s’;s”:; 1) (J”;) (s’:; 1);),;,!; -1

(117)
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rind

(11.s)

Hme (S;) aretheexpectation }aluesonthen’h renormalized lattice and K; are the

corresponding couplings. From the correlation functions, it is easy to see that if the

Hnmiltonian is symmetric under s - -s, the~ 7~~ will factor into two block diagonal

nmtrices -- those involving even-even interactions and those with odd-odd.

The correlation length exponent v is obtained from the leading thermal eigtmvalue

.\, of the even part of r~fi (as discussed in section 8)

in b
v

‘m
(11.9)

\vllrrc II is the scale factor of the RGT. Similarly, the correlation function exponrnt q

h b
2-2—

hI .~h

odd sector of 7~#.

(ll$lG)

I have restricted the discussion to the specia,l case of one rehwmt mm Rnd one

I)(hl rigenvalue, In spin models, th~”c correspond to t and h being the two rrlrvant

r(~llplings. In general, however, systems cart have multi-critical points i.r. tlwrr cnn

11(*nmre thnn one relevnnt interaction, This shows up in numerird simldntions whrn

(1112)

:]f)



Xote that the m~y different operators (S~Sj) are highly correlated, and these cor-

relations have to be taken into account in the emor analysis. .41s0, the corrections to

win. ( 11.12) are suppressed O~Y u ( ~ )J-’, SO for accurate results one should take

j- i large. while making sure that flows stay in the lineaz region.

The third method uses the 2-lattice method due to Wilson to estimato the thcrnm]

csponent v. Let the RT be paramcterized by the relevant scaling field 1{, t hcn under

R RGT

(A-2-K”) = h~ (A-’-h-”) (11.14)

where the flow is from K1 to K2, From this flow one can calculate u and ft-”. In

practice we do not know the IIT, but we can proceed as follows: l-dock expectation

vnlum are calculated on n and n- 1 levels on 2 lattices of size L and L/b with simlllnt ion

t~~lnpmnrure T’ find T~ rcspectivrly. llese block expectation values arc compmvl at i

illl(l i – 1 Mocking steps respcctiwdy for the two simulations. The starting tcmprrature

T2 is adjusted until the comp~red block expectation values match for 1 grmitm than

S(mw number of Idocking steps. Then, Imder the rwmunption t hnt fl(jws after I < n

<~~~psILntw con~”rrgc(l to the RT, rqn ( 11, 14) cml bc recnst as

(Ta-Tr) = h+(T’ -Tr) ~ (11.15)
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lVhy do we expect ilCRG results obtained on small lattices with restricted num-

I>er of blocking steps to be reliable? Since the basis of renormalization group mcthmls

is the calculation of the rate of change of couplings along the flows, one believes that

[he rele~~nt t“tiable that dictates finite size effects is the range of couplings rind not

tile correlation length. If we couple this with t h~ resumption t hmt the strength of

collplings fall off t’xp(mrntially with a small range, then all we need is that the lattice

*INN1lcIbe large exlo[lgll to accommodate ~1 ixllportant couplings. present calculations

(m the 3-d Ising model suggest that one can block down to 83 lat t ices and still get

r(~lialde results vis-a-vis finite size ~ffects. So the central assumption of the renormtd-

ization group seems to be borne out, mml though we don’t have a solid understanding

of why.

The first step in gctt ing accurate rtwults from MCRG calculations is to know T..

This too haq to h done numerically sincr it is not known for most modrls. So I now

(l(*scribe ‘,Yilsm’s 2-lat t ice mm h(NI wit h which one can obtain a slwcmsivcly imprmwl

(Istimate for Hr.

Nlethod to Calculate the Cri~,ical Temperature:

-= {(Lo::’,. - (s:;’-’.s)r) AK:; (11.lti)



from which one can determine AK: [11]. The critical coupling is then given by

(11.17)

This estimate can and should be improved iteratively. Note that in this 2-lattice

method the individual expectation wdues have finite size errors, however, by comparing

rxpect at ion values that have been measured on the same size lat t ices, these errors we

v,nstly reduced.

This completes my intended introduction to RG and hfCRG methods. I now turn,

posthaste, to their application to QCD.

12. Block Transformations for 4-d SU(N) LGT

The blocking transformations for gauge theories in 4-d are to some exf’wt non-

intuit ive. The degrees of freedom are SU( N ) matrices which are associated with links

on the lattice rather than on the sites. Nevertheless the steps one takes are similar

to spin models. First we define the block lattice; the simplest example is 6 = 2 for

which the basic cell is a 24 hypercube, Second the block link should join two adjacent

Idock sites and represent the average value of the gauge field .4P in the cell. The goal

is to construct the block link M an average over the msximum number of the original

flrgrees of freedom in a cell in a gauge covzuiant way.

The simplest way to consttuct the block link in a gauge-covarianl way is to average

the SU( X ) matrices that represent the path ordered product of links betwwm the block

sitm, This leaves intact the local gauge freedom at the Mock sites, which is the chwircd

giIIlgr freedom on the Mock lattice, It is somewhat arbitrary what paths to C11OO.W

~’scrpt t hat wr likr to krep the transformaticm local RIMIat the snmc time U.W t IW

Ilmximtun nuxnbrr of degrees of freedom, These fcaturea improve thr convrrgrnce to

t INSRT. It is worth noting that the requirement of gatige covariance is i~ot msrnt ia]

l)rovi~lml thr dfbcts of t!~e non-covariant opmntors gcrwrated ~mdm Mm-king nrc mid]

1,r,they nrc irrrlcvnnt operators with a small eigenvaluc.

A complication with SU(N) gauge theories is that the ~um of SU(N) umtiirr~ i~

Il(d lm~I~~)rtional to a SU(N) matrix (S[,’(2) is mn ex<eption ). S0 in ordor t () Itvrmgr

t 1)(Ifi(’l(ls, t hc cfmmmn prn.ctice is to projrrt thr sum of pnti;~ X ( whithh is in gmwrnl n

o x 3 r[mqdrx matrix) Imrk on to SU(3), This is donr I)y finding the SU( 3) mntrix [’

t ]Int tllnxiltlims thr Tr (St L’) or hy grnmnting n mntrix with prolmhility r -p “l’rL’/r

\vif II p n frt’r lmrni]wtrr cll(mql to t~])t,inlizr c(mvmgrncrm Ill ritlmr cfuw wr nrr Iosillg

WIIIW {Iymullir il]ffmunti(m it] thr Im)jvcti(m, w) it IIrmlH!0 I)r m-wtnilml wlwt lwr

Illis c{~llstl-llctitlll tllrt)w~ f)llt WIIIM* fwsrlitilil IJlysics, t Agnin mjtr tllnt it is ll~)t ~’h.dvlfi;d

I]Intthr Ihkrd links IN’ grt)llp rlrmmlts, th(mgh thi~ pr[)jwti(xl [lmkr~ cnlcldnt i(ms

INI I)l(wk Int. tirm sil]ll)h” Iui{l ()[w (IIN*Sl~ot Imvv to worry n;~()~lt t~orlllldiz~il.i~~lls.

:14



The two met hods described below const tuct the block link in a gauge covariant

manner and differ primarily in the definition of the unit cell.

1) b = 2 by Swendsen [26] : The transformation, in its generalized form. “s shown

in Fig. 5 where the a, are tunable parameters. One can in principle include all

possible paths that start and end at the block site as that ensures that no gauge

fixing is necessary. On the other hand to keep the construction 10CR1.all present

calculations have used only up to 4 link paths. These calculations show that the

convergence of the RGT is improved considerably by optimizing the r)arametcrs

n,. I refer you to the original literature for a discussion on this tuning.

—-+. 1—] .Jl_, .0..

A A BA B

Fig. 5:

h=?,

Swendaen’~ blocking tran~forrnation for gauge theories in ~.d with scale factor

Q)b= W by Cordery, Gupta and Novotny [27] : This transformation is specific

to gauge theories in 4-dimensions. It uses the fact that there are 4 positive 3-cubes

associated with each site, The body diagonals of these cubes are orthogonal and

of length W as shown in Fig. 6, The block cell consists of the Ikk site nnd

its S nearest neighbors. By performing a local gauge transformation on the 8 3*Y

sites, all 8 links coming out of the block site can be set to thr identity. In fig,

6, :he unshaded links. my [’. nnd [~~ in the path [Tl for FIxiunidr, ran bc gmIgr

fixed to tlm id~~:~tity, leaving the gauge freedom only at the Id[nk ~itm, The un-

fixed links connrct different block cell~; note that their valIIr is idcnt icnl to t IIC

original gauge-crwa.riant pnth. The totnl number of free links prr I)i ‘ii crll is 28

( t.hr figure shows the seven associated with one of the 3-CIIIWS), TIAr ldork link

is constructed M the average of the 6 Imths [~1 o.’ [ra which nrc of rqlml hmgth.

Tln.’s. the trrumfwrnatim~ uses # drgrmw of fremiom at PA wtrp, since only the

Imth C*7 is ignormlm

It is m.Ry and mturnl to inclll(le srrhr tnnttrr fh+ls nt ~itm IUI(l c~NIldc thwu to

t lm gnllgr (Irgrmw t)f frowlom ~q on~ w~mld like to do for thr SL”(2) x C’(1)Y t hw)ry.

,411fJthrr mivnntngr of this b = W trrmsfmmntio:i ,wm thr h = 2 vrrsit)li is ,iin~h!

rlrnr in thr Idfwk (Iingomdizntion pr(mw of xliittrr and Schilli Ilg [2s] ffw (Ivfining

t Ile renornmlizml Dirtw oImrntor. Tllrre one fill(is t.lmt (NI t lir l~ltwk ]ntt icr t llr 9

original modes split into ~ single light mode and 8 heavy (mm,

‘IIN*o[llY [Illismw w[mking with tlli~ ‘rntlsf(]rlllntioll i~ tlmt Illl(lrr t)w first f?GT,

)s-, ,)



the new hypercubic lattice is rotated with respect to the old basis leading to a

jagged bound~ for the box. This can be undone by a second application of the

RGT with different basis vectors. So the original box gmmetry is recovered after

a scale change by a factor of 3.

Having defined a RGT, all the MCRG met!mds discussed earlier can be used

on non-abelian gauge theories. So far, the main application of MCRG to Lattice

QCD has been to calculate the non-perturbative S-function for both SU(2) and GC( 3)

pure-gauge theories. Present results show that the 6 = W RGT transformation has

bet ter convergence behavior both at strong and at weak coupling than the 6 = 2

transformation as discussed in [?9] . I present the status of these results in section 14.

.)e7A’’m”//
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4-Dimensional Hypercubic Lattice

Fig. G: b = d blocking trans/ownation /or gauge theories in ~ dimemiom

13. Asymptotic I%eedom make- QCIJ Sitnple
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fixed point is at zero bare coupling. Further, it means that all scaling behavior can be

calculated in a perturbation expansion about g = O i.e. the 2-loop J-function (which

is gauge and reguiarization scheme invariant) gives all the scaling laws. For example

:111physical quantities with the dimensions of mass scale as

-$
ma = Cf(g) s c ( J-9

3~g2
0 erp[- +2$og2

(13.1)

for g close to zero. Here f(g) is a universal scaling function.

.hymptotic freedom has made QCD trivial from the point of all the RG rnachincry

ive have developed. On the other hand non-abelian gauge theories are not trivial, for

~.w-crlthough the fixed point is at zero bare coupling, the rermrmalized charge is not

zero and one gets a well defined interacting theory in the continuum limit. This can

IW seen in the following wny: eqn. ( 13.1) states that the lattice mass ma of all states

K(W to zero in the continuum limit because a ~ O x the prescribed function ~(g).

The limit is taken ke(’ping the physical mass m constant, consequently all ratios of

lllmses have a finite limit, So. if the theory has a mass gap, which we can use as the

l)iisic scale. then the spectrum of QCD is predicted in terms of it. From eqn. ( 13.1)

(me sees that g z O as a - 0, and the two are related through the invariant scrdc

of the thm~, r/m. ~et, how does this scale get generated since QCD has only onc

[)ii~alnetcr. the dimensionless coupling g? I remind you that you have bern introduced

t () t his plmnnrnenon in !%ld t hcorics wilirh posses no rxplicit ~rale under the name

{Iilm’nsional transm.utnti on.

Let me now give an intuitive picttwc of the statement that the rrn.xrnnlizcd clmrgc

flIJtIS not go to zero M a + 0, At strong cmlpling (g largt=), V;ilson (nnd \Vegnm

t’tm Zl ) SINJWC(It Imt all gouge t hcories in 4 dimensions have an area Inw i.c. t lw

I‘xlwct~t ion wduc of large \Vilscm loops is dominated by the area term, (hp) -

1“.s])( -o arra ). The codficient, n is the strinq tension, w an area law impliw that tl~c

l)[)rrntial has a Iimmr cm-dining piece, Further, if the SU( 3) throry dom not have a

1IImse trtmsiti(m separnt ing the weak cmipling I..h=c from t llc strong collpling pha.w,

r tl~’11.in the continulun limil, rho, 17 is A non-mm constant of the tliWr~ Fud 0f12

+IGiI1(s.iIikc (IrIa )2, Tlw orrlmrncc of A wm-zero c at the fixed point g = () ilnplim

I Ililt Iinww ronfinmnrnt awl asyulptotir frcwlom occur simldtatm).’sly in n(m-alwlinn

g:illgr th(v)rirs.

QC’D. throllg!l Eqn. ( 13.1), rr{lllirm ttmt thrrc exist n mms gnl) for n ronsistmlt

(I{w.riptit)ll, Lrt IIICstntr l)rm-iwly t}w wt t~f nxsllmptions Im(kr wl~ich thi~ is vnli(l. If

(JC’D IMA[rely ~mr rrlrvnl]t r[)llpling (1.r. n sing[r Ilnivmwd scrdi:lg fluwtl(m [Irfimvl ill

(VIII. ( 13, 10)), nnd no zm) mttss state at mm flue givm wlue of the lattice spacing tic

t !IIVIin t ho colltintlllnl Iilnit nll ~t~trs nrc rithw llm..s-hs (Jr t Iwrr lim t t) Iw n lluws-gl{l~l
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The only caveat to this deduction is that there should be no phase boundary *parating

the the phase with the choosen point with spacing ~ and the cent inuurn limit ( i.e,

they are analytically connected). .A cent inuum theory with all states having zero mass

~vollld be a trivi~ theory and present lattice calculations do not show evidence for a

mass-less state in the pure gauge sector. So barring the presence of a phase transition

line at coupling weaker than that used in Xlonte Carlo calculations, pure gauge QCD

Ims a ma9s-gap. Xext, I address the question of mass-!ess pions in the limit of zero

mass quarks. Note that for each flavor. we have to tune the quark mass to get the

(.=orrcct ph~ sical spectrum. The t~ming can alternately be done by using the associated

‘-pion”. Therefore the “pion” mass is an independent parameter and not a r.rrdiction

of the theo~, For example, with SU(3) of flavor, we have to tune either the mass of

the u, d, s quarks or that of the ~, q and T)’mesons to reach the physical point. The

fact that the Goldstone theorem. associated with the spontsmeouq breaking of chira!

symnletry, states that pions are massless in the limit of zero mass quarks (Iocs not

ixlv;diclate our previous conclusion. .411 it says is that to define the physical world at

ill]~ givr lattice scale we have to tune the “picm” mass. If this wdue is zero, then it

is tuned to ~ero for all a. To conciude, since the two assumptions listed ~hot”e arc

rather mild and borne out by present data, therefore, if QCD is the theory of strong

illtcractions, thm it predicts that the lightest glueldl state is mawive.

Givrn the scaling law, eqn. ( 13.1), the only unknowns in the theory are t ho

Ixmst auts c, (me for car!l state. l’11~’ir dctmmimdion t wns out to Iw very hard sim”~’

tlw c, nrc iliti~nsicdl~ non-pert urbntivr. The only fist princilde wAy wc know iit

IJrmmlt (}f d~~tcmlining them is mlmci-ictd cnlculatinns. ~ou hfivr fdr~’ady hrnrd a iot

;Ilx)llt tl~cw simulutims from otilcr ltw-t~lrrrs. so in tii~ next svcti(m I will (mljp t:ilk

;Il)fjllt th~* st~tlls of their rcli,ahility !I~ light of lfCRC~ calculati(ms.

14. Non- Perturbative d-function and Scaling:

:{s



,.

\ICRG method [6].

In pure gauge theory there me t hrce physical quemt it im that have hen mrasurc[l

in many lattice simulati~ns -- the string tension u, the gluetmll spectrum and t hc

(Icconfincment transition temperature TC. So we cal check whether scaling exists for

rhcse three ohserval-des. The second approach is to make detailed comparisons with

the non- pert urhat ive .j-funct ion to mt imate the minimum value of J beyond which

wc expect scaling to within some ncruracy,



~vhI=nmatching occurs sirlce the comparison is on approximately the same physical size

lattices.

In practice it is sllficient to do two simulations S1 and Sz which bracket L and

thtm use interpolation. once matching takes place on lattices which are large enough

(o accommodate the important couplings, thereafter, the check that the two flows rnovc

togt’ther can be made on 1q lattices too! Finite size effects in .MC’l?G are col~trolkxi

I)y the range of the couplings and not the correla~ion length, Let me r~’itmate: t hc

reason that .\fC’RG has good cent rol over finite size effects and is a powerful m.~thod

is bccrtu.se the range of interactions falIs off exponentially even on the critical surface

for “’good” RGT.

Finally some numbers:

J(3) 33 459.— —..—
0( 1/1(1) = ‘- 41rJ 1(374,) + ‘“ ‘

(14.1)

Si;lcr - is essentid)y constant over some small scale change h, one cm intqqratr

]! trivinlly to get the qllantity which can be compared ng~inst the l~{)l~-I]~~rt(lrbativt*

,j-fllllction c,alclllatrd llsing .lf C’l?G,
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is to find ~ action clo5er to the RT. This hope and desire

15. The Holy Grail: The Renormalized Trajectory

is discussed next.

The hope of lattice practitioners is that we can extract continuum physics from

~ilnulations with < ~ 10, and that at these values of couplings one can reliably relate

t’ontixluum pcrt~lrbation theory with that on the lattice, The iatter is necessary in all

(.iilculations where it is essenti~ to fix the normalization of operators, for example in

l:latrix elements calculations as discussed by C. Bernard,

If we knew the location of the rtmormalized trajectory, then any simulation along

it that satisfied the conditions L >> { >> 1 would give the correct mass ratios nn(l

the desired continuum physics. This ideal situation will be hard to achieve in practice.

The best we can hope for is to find an rwtion that lies closer to the rcnormalized

trajectory, !,lCRG methods are essential to determine and evaluate such improt*ed

:Ict ions. The status of this approach is contained in [33] and [34] , ami it is obvious

t lmt far more work needs to he clone to fimi and demonstrate that one hns derived an

:I{”tit)n that signiflcantl-v improves scaling,

.4nother avenue for research is to develop hICRG methods to vlap the flows for the

Dirac operator, This wmdd he very usrful for (Developing multigrid i(lr~ for invrrting

r IN*fcrmion milt rix, A wnnll strp in tl~is direction for the 6 = W tr~nsff,rmatif,~~ is

(Irsrrihwi in [34],

In the calculati(m of matrix olmnmlts it is necwwm,ry to fix thr rmmalizhtion of

1:1[t icc f)pernt ors with nwprct to t lwir tmluc in some cent inuum rcgulnriznt im schcmc at

f liv snrt~r j)tlysicd wnlr, The l~tticc codficirnts when m-mlyzcd in p~rttwhntion throry

li;i~r (I (hlpcxdor~cr MI(! ill YOIIWcnms CVCII(Iivmge M l/a. Thr.w Intticr urtifacts nod

f~)Iw rrrn(nvd, onr wtt~ to hnndlc this is to add opemtors to t hc lAtticv action t hnt

kill t his ~lliwnrlt~d behavior. The R(me grmlp ( ELC) i~ d present tryi~lg to in]l)lernrnt

t ]Iis ~)rt)grtuxl Ilsing p(’rttlrl)ntion tllf’ory. Si]lcc this is A very new drvvlopttwllt Ict me

f,Iifl wit!l (Siting R rcfrroncp [351 .
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