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1. Introduction:

The goal in the study of statistical models is to calculate the behavior of thermo-
dynamic quantities like magnetization, susceptibility, excitation spectrun, etc.. in each
of the regicns of phase space. For that the first thing that we want to do is to map out
the phase diagram. Next, we like to know the symmetries of the model (and whether
thiey are spontaneously broken) in a given phase. These play a fundamental role in
our understanding of the physics. Finally, we would like to derive expressions for how
thermodynamic quantities depend on the couplings (like temperature, magnetic field,
ere.).

The modern approach to the study of systems close to critical points starts with
asking the following questions: (1) What are the relevant degrees of freedom? This
allows one to represeat complicated systems by simple models which exhibit the same
long distance behavior. (2) What features of the system are important? We will find
that these include the dimensionality, symmetries of the Hamiltonian/Action. and the
nimber of components in the “spin” variables. These questions. as we will sce, lead
to an understanding of scaling (thermodynamic quantities are not the most general
functions of all independent couplings) and universality (different physical systers
sliow the same behavior when expressed in some scaled units).

A unified understanding of critical phenomena arose with the development of the
renormalization group by K.G. Wilson. The power of the renormalization group lizs in
its ability to explain why (a) near a second order transition all correlations functions
are dominated by a single length scale, (b)the behavior of thermodynamic quantities
can be written as scaling functions, (c)singularities that occur at T = T, are power-
law. Moreover, it allows us to calculate these exponents (called critical exponents)
which govern the scaling behavior. MCRG is a numerical technique for implementing
these ideas —— locating T, and calculating the critical exponents.

The numerical solution of any given model begins by simulating the partition
function Z = 3,,40e, € °! and then calculating expectation values (correlation fune-
tions) as averages over the generated configurations. Since the possible states of a
<vstem are the same for all possible values of the couplings like temperature. phase
transitions occur as an interplay between energy (Boltzmann factor ¢~##) and en-
tropy S (degeneracy of a given energy state) in the free energy F = U —= TS. This
i~ the essence of Peierls's energy-entropy argument (1] . The calculation tool one uses
Lseries expansions, finite size scaling, MCRG, ¢ expansion, ...) depends on the region
of phase diagram one is interested in. The power of MCRG is best realized only near
~econd order transitions. In general, the study of thermodynamic systems (systems
with .V = 3 degrees of freedom) can be divided into three broad eategories:

(11 The high temperature limit: Thermal Anctuations randomize the system as it does
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not cost much energy (compared to kT') to create excitations in the system. These
excitations have a short correlation length. In terms of Peierls’s energy-entropy
arguments, the free energy F = U — TS is dominated by the entropy term. For
example the spins in a ferromagnet at high temperature are randomly aligned,
there is no net magnetization, and correlation functions decay exponentially with
a short correlation length. Thus, the physics in this limit can be understood by
developing high temperature (weak coupling) expansions for the thermodynamic
quantities. These expansions are analytic in the coupling constants and their
domain of validity increases with the order to which one can calculate. Combining
these high order series with Padé approximants one can estimate the critical
properties of the system. Such an approach is called series ezpansion.

(2) The low temperature limit: The syste.n exists close to its ground state as it costs
a lot in energy tc create excitations in the system, i.e., thermal fluctuations are
suppressed. Thus for T > 0, the behavior above the ground state can be developed
as an expansion in terms of the number of excitations. These excitations have a
short correlation length but often exist in a background of long range order. In
the example of a ferromagnet, the ground state is one with all spins aligned, and
excitations are 1,2,... spin-flips. In this region of phase space, the free energy,
F=U -TS, is dominated by the encrgy term. The enalytic tools developed to
study this region are called strong coupling expansions. Again these are series
exparsions with a finite radius of reliability.

(3) The vicinity of phase transitions: Phase transitions, as the name implies, are the
boundaries between different phases of a substance i.e. solid-liquid, liquid-gas,
etc. phase boundary. The free energy in the two phases is equal along the phase
boundary. If one can solve for I’ and S. then the critical temperature is given by
U'-T.5 =0. At T., thermodynamic quantities develop singularities and standard
nralytic tools are not very useful for a detailed quantitative analy:' . The phase
transition is said to be n** order if the n'* derivative of the free enc :y is singular.

Thermodynamic quantities are discontinuous across first order transitions. The
veneric shape of the potential for the model near a first order transitions has the
profile of a Mexican hat. For example, in the simple case of an Ising ferromagnet for
T < T- and h = 0, there are two degencrate states which are related by an overall
«pin flip. For h > 0 the degenvracy is broken and there is a unique ground state,
1., turning on h favors the ground state with the net magnetization aligned along
h. So, if the system iy in the ground state with A > 0, then as h is decreased st
h = 0 the system will eventually tunnel to its flipped state which is now the true
v.ound state. The mngnetization M changes discontinuously at h = ), and the system
xhibits spontaneous magnetization (M = M, - M_). As T — T, from below and
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aleng the transition line, the height of the potential barrier between the two states
changes and goes to zero at T.. At T. the two degenerate states have coalesced and
the potential has a unique minimum with zerc curvature.

The simplest field theoretic model of such first order behavior is the Landau
Ginsburg model with m? < 0 as shown in fig. 1. The vanishing of the second derivative
of the potential implies a nassless excitation (m? = 0 in the model). Massless states
have infinite correlation length (£ = 1/m) and points with £ = oo are called critical
points. Therefore, if a line of first order transitions ends at a point inside the phase
Jiagram, then at that end-point the theory has a second order transition. In general,
multi-critical points can exist if at T. some higher derivatives of the effective potential
also vanish. Such points are not isolated critical points i.e. they are intersection ponts
of lines of critical points.

Vo)
'y “v@) 4 V(¢) 4 V(Q) ’
o L ® ®
T<«< T, T<T, TaT, T>T,

Fig. 1: The behavior of the Landau-Ginsburg effective potential for m* < 0,= 0, and
>0 or equivalently T {<,=.>} T

A large part of these lectures is devoted to developing the ideas underlying the
renormalization group (RG). A brief list of references which provide excellent back-
ground and teach far more than will be covered in these lectures is (2] (3] (4] (5] (6]

I will mainly use spin models as examples. This is not a digression since there
i an intimate connection between Statistical Mechaunics and Quantum Mechanics or
(mantum Field Theory. This connection has been reviewed in (7] and I recommend
vou follow up on that. The plan of these lectures is as follows: In the first two lec-
tures [ will introduce the renornialization group and the relevant concepts of statistical
mechanies. The discussion will assume that the model has a simple isolated critical
point. Also I will assume that the model has no hyperscaling violations. Iu lecture
three T will discuss Monte Carlo Renormalization Group (MCRG) methods for both
<pin systemns and 4-dimensional gauge theories. Finally in lecture 4 [ will show why
asviuptotic freedom implies that QCD is trivinl from the point of view of the renormal-

ieation group: review the status of the ealculations of the non-perturbative J-function
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for SU(3) gauge theory, and talk about scaling of physical observables. [ will end with
an outline of possible avenues of research.

2. Scaling of Thermodynamic Quantities and Critical Exponents:

Diverse physical systems show very similar behavior near a second order transition.
For example, the manner in which spontaneous magnetization M in a ferromagnet
vanishes as T — T, from below is similar to how the difference in density between the
liquid and vapor phase vanishes as T — T along the co-existence curve. In both cases,
the order parameter goes to zero as a non-analytic power of the reduced temperature
t = %‘:C—T*- Other quantities like the correlation length ¢ diverge. The scaling behavior
of various thermodynamic quantities near T, for a ferromagnet (the simplest and best
understood example), is defined to be (8]

£ ~ t7* (2.1)
C, ~ t7 @ (2.2)
Y ~ t77 (2.3)
M ~ h*|t=0 (2.4)
M~ for h=0, T = (To)- (2.5)
G.(R) ~ 'R—d-l'-iTvT for R — o0 (2.6)

where C, is the specific heat at constant volume, y is the susceptibility and G, is
the 2-point connected correlation function (the propagator familiar from field theory).
Away from the critical point, G. decays exponentially [9)

e-R/e

G R) ~ w7 gamnr ST

R/§ =

[S)
-1
~—

with a correlation length £ = 1/m, where m is the mass-gap. Ounly for T = T.
does G, develop the power-law singularity.. These equations define the six exponents
ooy, 6,3, m. It will be shown that not all 6 are independent. In the simplest models
(1.c. those that do not violate hyperscaling) there exist four scaling relations which
relate these exponents. These relations can be derived from the definitions of exponents
and from the scaling behavior of the free energy f,,ny. as shown in section 3.

For h = 0, the [sing model has a discrete global symmetry s — —s. Interactions
can therefore be classified as even or odd depending on their behavior under this
syimetry. For example the energy < s, -3, > is even while the magnetization < s, >
is odd. Similarly the exponents are called even or odd depending on the quantity whose

scaling behn vior they deseribe. As you can guess, the two independent exponents arise
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as one even and one odd. The even one is v, the correlation length exponent. Having
only one independent exponent accounts for the statement that the theory has only
one length scale. From the odd sector we will determine 7.

It is an empirical fact that the exponents do not take on values that are specific to
each and every substance. Substances with the same value for the exponents are said
to belong to the same universality class. On the other hand variables like T., which are
specific to each and every substance, are non-universal. To classify substances by their
universality class we have to first identify the appropriate thermodynamic variables,
and then measure the critical exponents at T = T.. The goal of these lectures is to
present MCRG methods and to make a case that it is a reliable numerical technique
for doing these calculations.

3. Scaling Relations:

Let us start by considering a theory whose free energy is a function of 3 scaling
ficlds t, h, and u. Scaling fields are linear combination of the coupling constants of
thie theory such that nnder a renormalization group transformation (RGT) by a scale
tactor b they get multiplicatively renormalized, i.e.

t =t = bMt (3.1a)
h—h' = bt (3.14)
u—u = bt (3.1c)
There ‘mplicit assumption in this definition of the scaling fields that a linear

expansion about the fixed point is sufficient. In general scaling fields are non-linear
functions of the couplings. It will be shown in section 7 how such a behavior. k — b* k,
arises, in a linear approximation, as a consequence of flows under a RGT. The scaling
behavior of the free energy under a scale change b' is

. 1 1 ..., .
f(t h,u) E-‘,-\-;logZ(N)= e f'(t', h' u') (3.2)

for RGT that preserve the partition functioni.e. Z'(N') = Z(N). Here \V is the volume
of the system and d the dimension. In these lectures | have ommitted all discussion of
logarithmic corrections that can and do arise in certain models. Rewriting f' in terms

of toh. u, we get
1

b_d‘.f(b,\,lt‘ b'\"‘h, b'\"lu)

flt, hou) =

Now lets choose b*! = £ where 7 i3 some reference temperature. Note that this is a

standard rrick that is nsed in all renormalization group analysis. Then

fitdhon = (9% i (5 (D))
= (5 A (5 (5)%) 3.3)



where the last equality is written to make the definition consistent with C, ~ ¢~ for
h = u = 0. This requires that (2—a) = )% = dv, which can be shown from the scaling
of the correlation length:

£(t,0,0) = b£(t',0,0)
= (D)¥ &rn00)

i.e. 1/A¢ = v. From the definitions of M and x we can rite down further relations

a
M = a—{l’.=o = 2—-—a-A =73 (34)
o f -
X = -a—p-lh=o = 2-0-2A = —Y (3"))

Note that along a critical isotherm M ~ t? f(k). In the same limit it was postulated
that M ~ h?. To cancel the t dependence we require that f(z) ~ r%. Then M ~ h%
and by consistency

A = 36 (3.6)
The desired scaling relations can now be derived from eqns (3.4), (3.5), and (3.6)
a+8(6+1) = 2

a+23+y = 2
A =8 = 03+7 (3.7)

In fact Rushbrook and Griffiths have derived rigorous inequelities

a+28+y 2 2 (Rushbrook)
a+pB(6+1) 2 2 (Grif fiths) (3.8)

which reduce to eqn. (3.7) when one assumes scaling.

Further, the zero field susceptibility is the volume integral of the correlation func-
tion

1
X = /d‘r < 3(r)s(0) > ~ /d‘r m (3.9)
from which we derive that
\ = const. £27" = v = v(2-n) (3.10)

With these three scaling relations, if we regard v, a, and n as independent exponents,
then .4, and J are determined in terms of them. In deriving these relations we
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considered only two scaling fields by setting u = 0 always. This assumption is called
hyperscaling, i.e. the theory has only one relevant length scale. Under this assumption,
we expect one more relation. This can be deduced by looking at the singular part of
rhe free energy

f.nng ~ t2-—o

and also

fams ~ [T~ 7@ -
Thus
2—a = vd (3.11)
This is called the hyperscaling scaling relation and is the first one to involve the
dimensionality d of the system. Equivalently, the relation (3.11) using (3.10) and

{3.7). is often cast as
6-1
2—q=d(§6+1;) ) (3.12)

A possible source of violation of these scaling relations is called hyperscaling vio-

lation [4]. An understanding of hyperscaling violations in specific models is still very
much a research topic. Even in the 3-d Ising model this issue has not been settled [10)
. The reason is that if such violations are present, they are smaller than the errors
in current simulations. Therefore, for the purpose of these introductory lectures I will
proceed by assuming hyperscaling holds.

Before movir.g on to a discussion of critical phenomena in terms of the reno:mal-
izadon group it is instructive to review the known values of the exponents for an Ising
ferromagnet. These are listed in table 1 for the Ising model in d = 1, 2, 3. and 4
limensions. The results for the d = 3 Ising model are from [11] . Based on these and
other such results, the accumulated wisdom about exponents is that they depend on

1) Number of spatial dimensions: this is evident even from the Ising model.

2) The number of components of the “spin” variables: For example if, instead of
the Ising model, we consider O(N) models (spins lying on a unit sphere in .V
dimensions) then the hehavior depends on V.

3) Symmetries of the model.

Now we turn to the renormalization group to see how it incorporates all these
features.

4. Block Spin Ideas of Kadanoff:

The first intuitive and profound steps to study critical phenomena were taken by
Kodanoff. He promoted the idea that singularities in thermodyna:nic quantities arise
Jdue to a diverging correlation lengtli,. The basic points of his analysis are:

9



exponent |d=1 d=2 d=3 d=4 & classical
v 1 0.629(4) 1/2
[T a log d-4
3 1/8 1/2
n 1 1/4 0.31(5) 0
Y T/4 1
) 15 3
K, x |0.5log(1 + v2) [0.221654(6)

Tuble 1: The values of the critical ezponents for the Ising model for d=1. 2, 3, and 4.

1)

6)

Near the critical point the correlation length is large and spins (field variables)
show co-operative behavior over macroscopic distances.

Spins in a local region can be replaced by an effective spin. This averaging (called
blocking) defines the renormalization group transformation (RGT).

The interaction between these effective spins is of the same kind as between the
original spins, only the strength is different. If the temperature t is the only
coupling in the starting Hamiltonian, then the effective Hamiltonian is also given
by one coupling, t'. In particular, t' = P{¢) is an analytic function of ¢.

Under blocking, the correlation length changes by the scale factor of the trans-
formation, i.e. &' = £/b where b is the lineer size of the region over which an
average spin is defined.

Singularities arise due to the repetition of the blocking step an infinite number
of times. If we start with a finite £ at some finite t, then following the blocking
transformations backwards gives £ = 0o. The exceptions to this growth in £ are:
(a) if ¢ = at + ¢ with ¢ # 0, then the critical point occurs for T = 0; (h) the
presence of a first crder transition stops the growth of the correlation length.
Given the analytic function R(t) one can derive the critical exponent v.

These ideas, in their fully developed form. gave rise to the modern theory of critical
phenomena. The shortcoming of Kadanoff's analysis were that he assumed that R(t)
was expressible as the renormalization of a single coupling i.e. t — #'; second, he did
not specify how to calculate R(t). These hurdles were surmounted by Wilson in his
seminal work uniting the techniques of ficld theory and statistical mechanics.

I think that the most instructive way to introduce the terminology and concepts of

the renormalization group is to work through an exactly solvable model. The simplest

example is the 1-d Ising chain with only nearest-neighbor couplings.
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5. Exact RG Solution of 1-d NN Ising Model:
The NN 1-d Ising model is defined by the Hamiltonian

H=-3) §5-hY Si-C (5.1)

<> [}

where J = TJT is the exchange interaction (3 > 0 ferromagnetic, J < 0 antiferromag-
netic), h is the magnetic field {for 3 = 0 the h term makes the system paramagnetic)
and C is a constant. The physics of the model is governed by the couplings [3. h|.
and the exact solution of the model is known [12] . The closed form expression for the
free enexgy f(J3.h)is

fIT.h) = —Infcoshh + Vainh? h + 1] (3.2)

where
-4

r = ¢ (9.3)
is the Boltzmann factor for a spin flip with a max’ -um change in energy and tums
out to be a more natural temperature variable. From the free energy we calculate the
magnetization

af sinh h .
. . =E —_— = - — 2.4)
MIT. k) Oh sinh®h + = +

and find that M — 0 as h — 0 for all T i.e. the riodel has no spontaneous magneti-
zation for any value of T. The susceptibility

9 f rcoshh
k) = = = - . =
VTR = G (sinh? h + £)3/3 (>:9)

Lins an exponential singularity in the zero field limit as T — 0

2.4

1
\*'\7}-'—0

Ou the other hand, for A = 0 the free energy reducss to

fIT) = In(l + V1)
aned
42

cosh?

C.uT) =

(9.06)

coes to zero ns T« 0. This anomnlons behavior warns us that the standard definitions

for the exponents do not apply for this mode) at ity eritienl poet T, = 0.
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Let us now see how the renormalization group exposes this critical behavior with-
out using the exact solution for the free energy. The renormalization group approach is
to integrate over cnly a fraction of the infinite number of degrees of freedom at a time
and to examine t"e effect of this small step on the surviving degrees of freedom. For
the 1-d Ising model defined by H(3, h,C), we can integrate out every second spin and
the resulting theory is described by a new H'(3',h’',c'). Under this transformation,
the physics of the model can be extracted from the relations 3' = 3'(3,h,C) ete.. Lets
start with the partition function for the model

Z = —TreH

aN-T €
} T,
_ _1\7 Z Yo,y MaHh T 8i4C
a1 ntl
AT T [[emeenere o
< :
- %l nkl '

The last form makes it easy to see how to integrate out, every other spin (perform the
sum over it). To do this consider the term involving the three spins s,, s, 33

Zeﬂllu + 4 (n1+0)+C P10 + i(!1+u)-+C

22

then the two terms that contribute to the sum over 3; are

= edmta) +A( R L1420 | H(=a—aa) HA( B -1 420 (

(1]
)

which seetus to bear no relation to the original Hamiltonian. However, with hindsight,
we can write the effective interaction between s, and s; to be

el nsal — ' (nea)+h' (84340 (5.9)

We Low solve for 3, A', and €' in terms of [4,h.C] to get a closed form solution of
the RG transformation. Since s; and 33 can icke on values £1, using eqns (5.3) and
15.9) we have 3 independent conditions to determine [, h', C']

ot PRAATREAC L —2342C AT (5.10a)
+—- R O R L r—ii'+f" (5.10h)
A R L L e LY L L R 1A (D.10e)

12



Solving these give

o cosh(23 + h)cosh(2.3 - h)
£

= 3 (5.11(1)
cosh® h
2 MM 15.11b
€ T f osh(23 - h) to-118)
*C" = e*Ccosh(23 + h)cosh(23 — h)cosh*h . (3.11¢)
The relations (3.11) constitute the RG transformation
HY(J3'. k'. C') = R[H(3.h.C)] . (3.12)

The process of integrating every other spin can now be repeated an infinite number of
times. Each time we get the set of equations. (5.11}, that relate the coupling constants
of the two theories. This RGT transformation can be interpreted graphically in termse
of renormalization of the bond interaction between NN spins. Let us rewrite eqn (35.7)

as

Z = Z P(sga1)P(3152)... P(3n-134a)

where

P(sl‘ql-‘-’) = :1)-8‘,.""""+’(.I+'|+|)+C

is the Boltzmann factor for the bond between s, and s,4+;. Then, on integrating out
every other site, say 52, we get a new Boltzmann factor between sites s, and s,

P(sys3) = ZP(N:S:)P(S:-“:!)
"
where
P(sysy) = le
1 8) -_— 2 L

dletines an effective interaction for the new theory with strengths given by eqns. (5.11).

p"'l';"'ﬁ"(llﬁ'la)vc'

Flow equations in the 1-d Ising model

Equations (5.11a-c) are the RG equations for the couplings (also called the How
cquations or recursion relations). From these we see that C depends on .3 and &, but
does not affect their Qow. So we can look for fixed points in the [J, A} plane. By
wspection we note that (4 = », h = 0) and (.4 = 0, h) are two fixed points of the
How equations. To examine the properties of these fixed points 1 consider the How

equntion for 4 with h = 0 (this hmit still has all the important physies)
1 1 ] - ’
Jd = RiJ) = 3 Incosh® 2,9 . (0.13)

13



or equivalently

;o= ir
| (1+1z)
where r = exp(—44J). Then
or' 4(1 -1) .
5z = (lvop (o:14)
From the flow equation for h we get
?9_’;; = 1 + 0.5 (tanh(28 + h) + tanh(28 - h)) . (3.15)

The structure of the fixed points can now be deduced from these two equations. For
the moment let me just state some facts without much notivation ‘n order to make
the discussion of the 1-d model self-contained. These points are elaborated on later.
Ferromagnetic fixed point at [3 = 00,k = 0]: From eqn. (5.13), we see that the
fows in J take us away from this fixed point, i.e. J' < 3 and a small deviation grows
under a RGT. The general flow in the J, h plene is shown in fig. 2 (13] . It shows that
3" < 3 for all 3 > 0. i.e. the system gets disordered under RGT. Such couplings are
called relevant. Similarly, at the fixed point

[
%—hh = = 2, (5.16)
which shows that h is also a relevant coupling.

Thus the ferromagnetic fixed point is unstable under perturbations in both T and
h. Tt is also the critical point of the model since § = o0 at it. From eqn. (5.16) and
(18.2) we get the exponeat n =1,

There is another fixed point at [ = 20, h = o0], to which all points [ = 20, h > 0)
converge. This point is not very interesting.

As 7 is decreased along the line h = (), the rate of flow slows 'own according

to eqn. (5.14) such that at 4 = 0 (or r = 1) it is zero. The How couverge to the
paramagnetic fixed point J = h = 0 with zero veloeity.
Paramagnetic fixed points at ;7 = 0. h]: On examining eqn. (5.15) at ./ = 0 we
find that Ay = 1. This means that h has become a mnarginal operator. Ench value of h
is n fixed point, i.e. the model has a hue of trivial fixed points at ;3 = 0 becanae 5 = ().
Also, along this line n = 0.

Summary of results for the 1-d Ising model:

The ideas that should be extracted from this simple example nre:

1) When all lengths are measured in Inttice units, the theory is resealed by the factor

h =2

R - R = R/Z

14
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Under a RGT the correlation length shrinks and a systemn is driven away from
criticality for any finite ;3. In most models T, # 0 and the flows are very different
depending on whether the starting H is on the critical surface or not.

The closure property (3,h,C) —= (J'.h',C") is special to 1-i& Ising model. Sinee s,
couples only to s; and s;, integrating it out can only lead to a coupling between
s and g3, i.e., still NN on the blocked system.

The coupling constanta 3, h, C] define a point in a 3-dimensional space. Under
siecessive RGT, consisting of integrating over ever second spin, the evolution
R{H(4. h, C)] defines a flow in this space. The line connecting points relnted
by # RGT ix ealled a trajectory, The generalization to arbitrary models requires
the new idea that for closure under an appropriately defined RGT, the space of
coupling constants hay to be infinite dimensional. This is the reason why it has
heen extremely hard to solve for the RG behavior of models in d > 1.

The RG eqns. (5.11) have fixed points at FyY = (3 = x, h=0)nnd Fy = (9 =
0. ). The line of trivial fixed points, F7 with € = 0, are the attractor of all lows
exeept those starting at .3 = x. On the other hand the eriticnd fixed point F? iy
unstable in both 4 nud A and has £ = ~x at it

10



3) Under a RGT, the partition function is preserved:
Zv[H') = Zy[H] .

Using the definition f[H] = - log Zn[H], we get the purported scaling relation
for the free energy

fIH] = b~f[H']

6) This simple model is an example of an exponential sineularity at 3 = 50 (or z =0
since r is a more natural variable than T). Latcr we will see that exponential
singularities are a signature of asymptotic freedom in non-abelian gauge theories
in 4 dimensions. Such theories do not conform to the standard definition of
exponents.

7) In the analysis of the flows we saw that the constant C does not effect the physics.
ho vever, it takes on & defin..e value at the fixed points. This value is determined
self-consistently using the condition that the free energy is zero at critical points.

§) From eqn. (5.11a) we see that if we start with an anti-ferromagnetic model (g <
0). then after one renormalization the theory becomes ferromagnetic. This is
a simple example of how a given physical behavior can be totally lost by an
inappropriate choice of the RGT.

In this RG analysis we find that the critical behavior is inferred from eqns. (5.11).
Infact we only needed eqns. (5.14) and (5.15). In sections 7 ard 11, I show how MCRG
illows us to determine these without solving the model or knowing the flow equations.

6. Wilson’s Formulation of the Renormalization Grenp

For the 1 — d Ising model we derived an analytic closed form expression for the
Hows. This is a very special case. In gencral, one also generates next NN, third
neighbour, 4-spin, ete. couplings in addition to renormalizing the NN coupling. Thus,
we have to consider the infinite set, {4}, of all possible couplings. Only then does a
RGT map one point into another, '

The critical points, with § = 00, are special. Stacting from H¢, a RGT produces
another H since §' = €/b = ~0. Thus the set of critical points define a hypersurface
it this infinite dimensional apace {K',}. The RG flows on this surface can (a) meander
randomly, (b) go to some limit cyele, or (¢) converge to a fixed point H*. A RGT will
in general have more than one fixed points as we saw in the 1 — d Ising model. We are
interested in RGT which possess n eritical fixed point i.e. H* = R(H*) with £ = .
Fach seeh fixed point has a basin of ateenction i.e. the set of H7 that converge to it

ntider the RGT. This basin of attraction defines the university class since the long
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distance behavior of all substances corresponding to these H€ is governed by the same
fixed point.

Let me make the statement of universality more explicit with an example. The
Ising model is an idealization of a ferromagnet. yet it describes the critical behavior
of nickel, iron etc., each of which has a different Curie point, T°. The reason for this
universality is that all these H¢ lie in the basin of attraction of the Ising fixed point.
For now you do have to accept on faith that the Ising model has a fixed point that
d~scribes ferromagnetic critical behavior. Unfortunately, even for the soluble d = 2
[sing model it has not been possible to determine H*; the proof of it's existence is
Lased on consistency and circumstantial evidence.

Why do H€ which lie in the basin of attraction of H* have the same long distance
physics? If we look at the behavior of these different models at the scale of cach spin.
then we shall see differences in the correlation functions at small separations. On the
other hand, if we construct effective spins which describe the average behavior of all
spins in a cell of size b4, then the distinction in their correlation functions blurrs as
the cell size b is increased. This way of looking at a substance on a coarse scale is
what a RGT implements. Thus. the statement “same long distance behavior™ means
two things: (a) scaled correlation functions at large separation are the same and (b)
correlation functions of spins averaged over a large block are the same at all scales.

I show two possible types of flows near a fixed point T* in an idealized case of a
single coupling T. In fig. 3a, the fixed point is attractive under the RGT for all starting
T whichliein0 < T <T*orino > T > T*. On the other hand the fixed point
in fig. 3b is repulsive, i.e. the flows go away from T*. A coupling is called relevant
if deviations in its value from the fixed point get magnified under RGT. Similarly, a
coupling is called irrelevant if the deviations — 0. Thus T is an irrelevant coupling
in the example of fig. 3a. and relevant for the case in fig. 3b. Clearly, the space of
couplings spanning the critical surface are irrelevant, while flows out of the critical
surface define the relevant directions. In case of the f~rromagnet, H® is unstable with
respect to vanation in T and in A. For ordinary second order transitions T and h are
the only two independent couplitigs, in accord with the sealing relations we derived
entlier. In general the number of independent couplings are equal to the numnber of
nnstable directions of H°,

For a given RGT. each of the H° on the critical surface is the limit point of a How
followed backwnrds. The trajectory Howing out of H* is special for it is the attractor
for all these other trajectories. It is called the renormalized trajectory (RT). There is
a one to one associntion between the M which lie in the basin of attraction of H*
] their corresponding trajectories which are attracted by the RT. The fixed point is

nustable in the direction of the renormalized trajectory e, any devintion along it from
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Fig. 3a: Ezample of an attractive fized point w.r.t. coupling T.

—

T® T
Fig. 3b: Erample of an repulsive fized point w.r.t. coupling T.

I* gets magnified under successive RGT. Yet along the RT, all irrelevant couplings
are zero so there are no scaling violations, Thuas the long distance physics is the same
ns at the fixed point and all correlation lengths in the model transform as € — £/b
nnder a sende change b,

The How along the RT can be parameterized by a single variable — - the distanee
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along it from the fixed point. This is the genesis of scaling. When thermodynamic
functions are measured a* different values of H corresponding to different £, they can
2ll be expressed as & functior. of some reference H and the distance to it along the
How trajectorr. For example, along the RT in the even sector, all couplings can be
cxpressed in terms of a reference valuc of ¢ and the scale change b i.e. t' = bt

I have repeatediy ctressed that the H” and the flows are a function of the RGT.
Does this mean that for each valid RGT, the e is a different H¢ for sey iron when
we know that fhiore is some unique H¢ describing iron at the Curie point? In the
matheinatical formulation I have presented above, the answer is yes. The resolution of
this patadox is that different RGT differ by redundant operators [14] . These redundant
Jizections span a sub-space on the critical surface and correspond to a change in field
variables which does not affect any physical observable. For example. in the scalar
field theory a change ¢ — ¢ + changes H — H + éH. Such a shift by a constant
does not affe~t physics and the - .ange § H defines a redundant operator. In numerical
calculations, there is no a-priori way to work in a space orthogonal to these redundant
operators and their presence can be a nuisance [15] . So the goal of MCRG calculations
15 to identify the redundant operators and then work in the sub-space orthogonal to
them.

In a certain neighborhood of H* (both on and cff the critical surface), the scaling
properties of the model can be analyzed in the linear approximation as discussed in
section 8. It is only our ability to calculate within the linear approximation that limits
us to the region near H*. Otherwise, in principle we could work at any finite £ along
the RT and extract the critical behavior. Of course, for £ = 1 there is no distinction
hetween short and long distance behavior. Also, for € small, the RT tnay only ke very
wenkly attractive and it may no longer be local. If this is the case. then a simple H
(as 1s cormmonly used in simulations) will not give the critical behavior since it may
not lie in the domain of attraction of the fixed point.

Heving shown how universality and scaling are explained by Wilsen's formulation
of the renormalization group, the next question is what differentiates say nickel from
iron”? As mentioned earlier, even though their respective H¢ are attracted by the Ising
fixed point, they are not identical. This explains the differenc.: in the Curie point for
the two metals. The difference in H¢ is characterized by irrelevant operators. These
operators control correcticns to scaling and account for the differences in the short
distanee properties of the substances even though they belong to the same nniversality
clnss.

Let us examine these ideas in terms of the sealing of the free energy. Rewriting
eqn. (3.3) with 7 = 1 and h = 0 gives

fithoy = ()" F(1, 0, t~%) (6.1)
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Let me first assume that f has a valid Taylor series expansion about u = C t.e.
FLO, t™%u) = f[1,0,0) (1 +cit™%u+...] (6.2)

then in the limit ¢ — 0 the correction terms are wel!l defined only if ¢ < 0. This
happens if Ay < 0 i.e. u is a irrelevant field. If & > C, then u is a second reievant
field. the correction term becomes arbitrarily large and the expansion makes no sense
as t — 0. Fixed points with more than one relevant field are multicritical points. In
that case the exponent ¢ controls the crossover behavior between the twe relevant
fields. The amplitude f(1,0,0) in eqn. (6.2) is not universal. This is an example of
a general statement: amplitudes in the scaling laws for thermodynamics functions are
non-universal.

The second possibility is that f does not have a well definad Taylor expansion in u
but behaves as f(1,z) ~ f(1)/c*. In this case even though u is an irrelevant field, the
singular behavior (ut!®!)~# will raodify the hyperscaling relation to 2 ~ a + ulo| = vd.
Such fields have been given the name dangerous srrelevant operators by M. Fisher and
their presernce is one possible source of hyperscaling violations |4].

7. Linearized Transformation Matrix and Classification of Exponants

Consider a point { K3} close to the fixed point {Aj}. Under the assumption
that there arc no singularities in the space of coupling constants, the transformation
K! (K4) can be expressed as a Taylor expansion about the fixed point

ok, . ARg + ...

KN (K3) = Ko RKj3) + bh_g X

For small deviations from the fixed point one can define a “linear region” in which

Ok,
oK 5

AK?

AR (7.1)
K
and ARy = Kg - K} is the deviation from the fixed point. The linearized transfor-
mation matrix .
oK,
0Ky

determines the fows and is the starting point of MCRG analysis. The matrix T,

TQJ =

Ke

satisfies the eigenvalue equation T¢ = Ay, and is the genralization of equs. (5.14)
and (5.15). From it we can derive the critical exponents as shown in the next section.
Note that T,y is defined only to first order, so henceforus all statements wili have

the implicit assumption that they are only valid in the lin ar cegion close to H°*.
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The properties of the matrix 7T, and its associated eigenvalues .\, and eigen-

vectors ¢, are:

1.

(V]

The eigenvalues depend on the scale factor 5. Since two successive transformations
by b should give the same flow as one by b?, the general form is A, = b where
the \, are independent of the RGT.

Consider a deviations u from H* along a given eigenvector . Then under a RGT,
the flow satisfies the equaticn

u'eo=Tuo = b up . (7.3)

This is the defination of a scaling field u and justifies why we used eqns. (3.1).
Note that the eigenvector ¢ embodies the linear dependence on the coupling con-
stants {A,).

Eigenvalues .\ > 1 lead to flows away from the fixed point. These eigenvalues and
the corresponding eigenoperators are called relevant.

. Eigenoperators corresponding to eigenvalues A < 1 die out geometrically with the

number of blocking steps. These operators do not contribute to the long distance
properties of the system and are consequently called irrelevant. The associated
exponents A control corrections to scaling.

An eigenvalue of exactly one is called marginal. To ascertain that an eigenvalue
is truly marginal, one has to go beyond the linear approximation. Marginal oper-
ators do not flow under RGT. Qperators that are marginal only at leading order
give rise to logarithmic corrections. We will see later that asymptotically free field
theories are of this kind.

. There is an additional class of eigenoperators, called redundant operators, that

are not physical. Their eigenvalues can be < 1, = 1, or > 1. These eigenvalucs
depend on the choice of the RGT. i.e. different RGT with the same scale factor
will give different A,. A reason for this is that the amount of a redundant opera-
tor generated depends on the redefinition of fields, so different RGT give rize to
different eigenvalues. In fact one way to isolate them is to repeat the calculation
of T, with a different RGT. Then the eigenvaiues that change with RGT cor
respond to redundant operators. Even though these eigenvalues are not physical,
a RGT for which they are relevant does not converge.

. Under certain conditions T, is block diagonal, 1.e. the couplings break up into

sub-sets that are closed under the RGT. For example, in the Ising model at h = 0,
the symmetry s — —s causes interactions to break up into odd and even sectors,

each with an independent eigenvalie spectrum.

For a more detailed discussion of the above points see ref [2]. I now derive the rela-

tionship between the eigenvalues of 7,4 and the critical exponents v and ».
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8. Derivation of Exponents from the Eigenvalues of 7,3

The relation between the correlation length exponent v and the largest even eigen-
value of 7,3 can be derived as follow: consider the correlation length £ at two tem-
peratures with t; < t

£(ty) ~ t*
£(t2) ~ t7°
Then using £(¢,) = b&(ty) with t; = Ry(t)) we get
_ b
b = (t2)
L _ br
4
ot L A
- = bV = b
=> 5
Therefore, if .\, is the largest eigenvalue of 7,4 in the even sector, then
1 log b
= — = 8.1
v e log A, (8.1)

Second. the exponent 7 is related to the largest odd (magnetic) eigenvalue A, of
T.3. This connection involves using scaling and hyperscaling relations! Lets start
with the scaling behavior for h, eqns (2.4) and (2.5), then

—J h ~ E_%o

> K ~ % = b#g-%’ - p%h

Thus
ah' 2
— = by = A
h ’
ﬁ _ 1n A'. = i
v Inb _ h
Now using the scaling relations -
3
i = J4+a
v
_ 2~a-~-y
T 2v
_ 1 t+2-a)
- 2v
2-n d
S 2 2
oA, = ri+3—r} (8.2)



Thus, for models with no hype ~-.aling violations, MCRG allows us to calculate
Tas and from its relevant eigenvalues we extract the two independent exponents v

and n. Next. I want to introduce a simple field theoretic model before discussing
MCRG methods.

9. Simple Field Theory: The Gaussian Model

The ideas | have discussed so far for spin models carry over unchanged to ficld
theories. The differences are mainly of langzuage and interpretation. For example:

a) In Euclidean field theories, the degrees of freedom are field vanables which are
continuous valued functions at every point in space-time. To make the problem
tractable, we introduce a discrete space time grid with the lattice spacing a acting
as an ultraviolet cutoff.

h) The lattice serves only as a regulator. There is no scale, like the inter-molecular
distance in condensed matter problems, which provides a natural cutoff. To make
contact with the continuum theory, the lattice spacing has to be taken to zero.
So an important question is: Does this limit exist and if so do we recover an
interacting field theory that describes the rewl world? In a large number f field
theories the limit does exist, but the theory is trivial, i.e., the renormalized cou-
pling goes to zero as a — 0. Such theories cannot be considered fundamentzl i.c.
they have structure at sorie length scale. This length scale provides a natural
crt-off for the theory. Such effective theories are mathematically well defined,
interacting and can be used to describe the real world. In an effective theory
the renornalized coupling depends on the cutoff. Since this coupling is known
from expeniments, therefore, the cutoff fixes the scale at which some new physics
comes in. Below that scale the tueory provides a consistent description of nature.
An example of Low this works is pi vided in the lectures by A. Hasenfratz. She
showed how, in the Higgs sector of the standard model, the scalar interactions
have to be considered as such an effective fieid thLeory.

) The principle of least action governs the relative importance of a configuration 1.c.

the Boltzmann weight is € I L. The interaction between the degrees of freedom
is provided by the Lagrangian density L. All this means in practice is that we
replace the word Hamiltonian by Action in all the previous discussion.
The formulation of Euclidean field theorics has been reviewed in the lectures by Call-
away nnd Lepage. So [ will assume that you are famiiiar with the details. Here my
aitn is to show how Wilson's momentum space renormalization works in the simple
case of the gaussian ficld theory before moving on to the application of real space
tenormalization to non-abelinn gauge theories 1.e. QCD.
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The orototype field theory is the scalar field theory described by the action

4 = /ddr [%(a,,w,,é) +m?0% +u(0,0,¢)* T u2(0,8,008,0,0) + Ao* + .. ]
i (9.1)

Its gaussian version is the limit where only interactions that are bilinear in ¢ are
retained. In terms of the fourier transformed field ¢4,

o(r) = /d"k e'tior (9.2)

the action for the gaussian field theory is
A k2
L = / d?k dxd-i [-,,— +m? +u(kuky)? +us(kuk kb)) + . (9.3)
0 -

The action is bilinear in &, and the integrations over each decoupled ¢ in the partition
function can be carried out. In eqn. (9.3), I have introduced a cutoff .\ to regularize
the theory. This is necessary in order to follow the philosophy of the renormalization
group i.e. integrate over the degrees of freedom in small steps. This is not possible if
\ = oo from the start since A/b = oo . So we start with a finite cutoff and consider
the cutoff free theory only as the limiting case. Integrating all ¢, for 2 < k < A we
get

/ D(¢y)e~ L = constant/ D(é,) efoq d‘90e0-¢ 5+ ]
0<k<A 0<e<d

We would like to make this effective theory look like the original, just like in the 1-d
[sing model. For the gaussian model this can again be done exactly. The canonical
steps are: first perform a rescaling of the length scale

G = 2qu (9.4)
and then rescale the field variables by
o'(q') = c é(q) (9.9)

so that the renormalized action L' becomes

ddql ¢r'¢:. , q,: ’ u;
L' - { 1 . 2 d R I o
/u<q‘<.\ 24 c? [2-4 +m"+ 16(2’1,.‘1,.) + ...

d—:

Now choosing 2 = 2712 and relabelling ¢' — ¢ and ¢’ — ¢ gives

A 2

' H .

L' = / d"«,-o,,:p_,‘[% +4m? + ’j(‘lu‘lu)z +..
0 -
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which is exactly the same as the theory we started with except for a renormalization
of the coupling constants

m? — 4m? - b*m?

ty )
Ny —— — o —
" PR
U, . Uy
ur — — (9.6)

where 1 have also written the generalization to scale factor b since the rescaling by
factor 2 was arbitrary. The fixed point condition

L'm™ u\ uy) = L(m?. uy.u3)
s satisfied provided m?* = u, = u, = 0. The condition m? = 0 implies that the
continuum theory is massless, while u; = u; = ... = 0 means that it is free. This is

the gaussian fixed point. It is unstable only with respect to the coupling m?.
To summarize, let me stress the important points:
1) A rescaling of fields o'(¢') — co(q) was necessary to obtain a fixed point.
2) At the fixed point the theory is massless (m? = 0) and free.
3) There is no mixing between the couplings i.e. m?,u;, us, ... are the scaling fields.
4) The scaling relations are simple. [u fact we see that if an operator A has cnnonical

Jdimension a then the conjugate couplings scale as

Ay = pi-°
where A 4 is the eigenvalue of the transformation. For example, in d dimensions,
the ©° term has a = d = 2, therefore m? scales as 497" = b?,

51 m? is a relevant operator, while all the u, are irrelevant.

) All eigenvalues .\, are independent of dimension d.

7} The exponent v = 1/2 is gotten from the sealing relation for m?.

The next step is to generalize the model by including interactions vin n term like
\»in the action. Thix generalized Landan Ginzburg model was first analyzed by
Wilson using the e-expansion and momentum space renormalization group 2], The
present status of results is that in d > 4 dimensions all such couplings renormnlize
to sero in the continuum limit. There do not exist any non-trivial non perturbative
ixed point in the infinite dimeasional coupling constant space  The only fixed point is
the ganssinn one. For o = 4, the triviality of sealar field theoties hins not heen proven
neorously, vet all ealeulations point to it. In o < 4. the conpling \ becomes relevant.
For details, I refer you to the lectures of A, Hasenfratz and to Wilson's original work

where he examined *hese properties using the ¢ - expansion,
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10. Linear Renormalization Group Transformations

In both examples (1-d Ising and the Gaussian field theory), the spin-spin cor-
relaticn function under a renormalization group transformations obeys the following
relation

G(r) = c*G(z') (10.1)

In the case of the 1-d Ising model we got the identity < s/ s) >=< 33,30 > on
integrating every second spin. So ¢ = 1. This is consistent with the required behavior
of the correlation function i.e. G(n) ~ =zdys because n = 1. However, recall that we
hiad to tune the constant C in the Hamiltc 2ian to get the fixed point.

In the momentum space renormalization of the Gaussian model we had to rescale
the field @ by ¢ = b~(4+21/2 jp 5rder to obtain a non-trivial fixed point. Instead of
integrating out all the frequencies between A/b and .\. let us implement a real space
blocking transformation in which the block spin is defined as the average over a block
of size b1, 1e. &'(2') = X

two theories is,

rer ©(1). Then the correlation function for large r in the

<o'(r')¢'(0) > = b* < ¢(r)8(0) >

1 2334 1
(_,-')d-'Hn = c'b (b_ro)d—'Hn

= ¢ = pEHE (10.2)

Sinee, for the Gaussinn model n = 0, so the rescaling of the field is consistent between
the two RGT and with the desired behavior of the correlation function.

This non-trivial resealing of fields by a factor ¢ to obtain a non-trivial fixed point is
exsentinl for linear renormalization group transformations. These are transformations
in which the block field is a linear function of the original fields as in the examples
we have considered so far. Note that in the Gaussian model ¢ = Ry2(0] = Ry|Ry|0))
while in the 1.d Ising model o' = 5. Non-linear transformations arise naturally in
SUCN) gnuge theories and O(.V) non-linear sigima models. As we will see later, in
those enses no such resealing of fields is necensary to get a fixed point.

11. Numerical Methods: MCRG

Consider a magnetic system consisting of spins {«} placed on the sites of o d
dimensionn] Mttice L and deseribed by a Hamiltoninn H. This H ix to be regarded
ns nopoint in the infinite dimensional space of conplings constants {K,,}. Then the
physies of the model (oo all thermodynamie quantities) ean be determined from the
hehnvior of the partition fanetion

Z - \.‘ L x TR (1

g
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as a function of {R',}. Here S, is the interaction between spins conjugate to the
coupling K. The expectation value of any operator O is given by

1 -H
<0>= EZ Oe (11.2)

from which one an calculate the thermodynamic behavior.

In numerical simulations using Monte Carlo methods, one generates configura-
tions of spins using one of the following methods: Metropolis {16] , heat bath [17] .
molecular dynamies [18] . microcanonical [19] or the Langevin [20] [21] . Each of
these algorithms gives configurations with a Boltzmann distribution e™H = ¢haSa,
The obvious advantage of such “importance sampled” configurations over using a flat
distribution is that in a thermodynamic system the probability is very highly peaked
around configurations that minimize the energy and only these have any significant
contribution to the partition function. The choice of which of the above methods to
use depends on the efficiency of the method for a particular physics goal. These meth-
ods have been discussed in the lectures by Peter Lepage and I refer you to them for
details.

Thermodynamic quantities are measured as simple statistical averages of corre-
lation functions over these "importance sampled” configurations. By calculating the
behavior of thermodynamics quantities as a function of T and h near T, we can de-
termine the eritical properties of the model. The biggest limitation of such numerical
caleulations comes from the use of finite lattices. On a finite lattice the growth in £ ns
T — T. is eut off since £ can only be < L. So all observables acquire a dependence on
the lattice size L. This L dependence can be analyzed within the framework of finite
~size sealing. In that way we are able to extract fairly accurate values for T. and the
critical exponents,

MCRG is a numerical technique for implementing renormalization group ideas
using Monte Carlo. I now show how in MCRG one does the partinl integration over
the degrees of freedom in small steps to generate the lows and also how to ealeulate
T .,1 along them.

Blocking: Numerical implementation of RGT

The implementation starts with Kadauoff's key idea to replace the spins in a small
cell of size M by an “effective spin®™. The gonl of this construction was to average over
loenl flnctuntions in the cell and yet preserve the physies obtained from correlation
fanctions at large separations, We considered the exmnple ¢'(r') = ¢ 3, . @(r) in
the gaussing odel. One can intuitively see that it removes all frequencies > A /b, but

we nlso need to show that it preserves the eritieal physies, To examine this lets write
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down the constrained partition function for the renormalized theory

e~ H'G = Z P(s',s) e”H® (11.3)
where
P(s'.s) = 6(o'(.r')—c2¢(.r)) . (11.4)
z€z’

for the gaussian model under the replacement s, — ¢(r). Thus, for each configuration
generated with the original H, after blocking we have another configuration on a lattice
of size L/b described by the Hamiltonian H'. All expectation values, with respect to
H! can again be calculated as simple averages on the set of blocked configurations.
Repeating this blocking n times produces a sequence of configurations distributed
according to the Hamiltonians H".

The question then reduces to: what constraint does P have to satisfy such that
the sequence of theories labelled by A" describe the same long distance physics but
on increasingly coarse lattices? Part ot the answer turns out to be rather simple: the
RGT should satisfy the i{adanoff constraint (unitarity relation)

Z P(s',a)=1 (11.4)

independent of the state {s}. Using this in eqn (11.3)

Z e~ ') Z P(s',s) e~ o = Z p=l1(0) (11.9)
ol

~hows that the two theories H and H! have the same partition function. This property
leads to the correct resealing of the free energy.

It is. however, not guaranteed that sl RGT satisfying Kadanoff's constraint have
i tixed point; or even if they have a fixed point that it is the physically interesting one,
The fixed point H*, the RT and the sequence of theories, H", generated from a given
starting H depend on the RGT. Since these properties are not physical, a bad RGT
can miss the desired physics. For example, decimation transformations (choosing one
of the h* spins to be the Llock spin in the d > 1 Ising model) do not lead to the Ising
tixed point. Such RGT should therefore not be used.

The RGT should incorporate the symmetry properties of the model. We saw for
the nnti-ferromagnetie 1-d Ising model that integeating every other spin leads to the
forromagnetic tixed point. The same is true for anti-ferromagnetic Ising models in
higher dimensions when n mnjority rule bloeking is used with block cells of size 27,

These constraints leave considerable freedom in the choice of the RGT. In fnet
many different RGT ean be used to annlyze a given model, however, they have dif-

ferent convergence properties. A comparative study of convergence of different RGT
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can be made as follows: starting from some giver T., one counts the number of it-
erations required to converge to the respective H*. Since H*® is usually not known,
this procedure is implemented indirectly by studying the convergence of - xponents as
a function of the number of blockiag steps. The rate of convergence is controlled by
how non-local is the fixed point (magnitude of the irrelevant operators), and on the
presence of redundant operators with eigenvalues > 1. Clearly the optimum transfer-
mation is one that converges the fastest i.e. whose associated fixed point is the most
local. Unfortunately, in most cases the only way to test this is by detailed numerical
caleulations.
A short cook-book list of some general features that lead to good blocking trans-
formations are:
a) A small scale factor b: since we are calculating the rate of flow, 7, in the linear
approximation, the RGT with the smallest scale factor b is desired.
i) Preserve the space-time and internal symmetries: Examples are local gauge free-
dom, ferromagnetic versus anti-ferromagnetic nature, ctc..
¢) Loeality: In the renormalization group method there are mauy places an implicit
assumption of locality has been made: (a) that the fixed point Hamiltonian is
loeal; (b) blocking corresponds to averaging fluctuations over a local region so
that the 2-point correlation functions measure correlaiions between loeal block

operators separated by some distance F.
Methods to Calculate the Critical Exponents:

There are three MCRG methods to ealculate the eritical exponents, In all three
miethods the Hows are determined from the expectation values caleulated on the origi-
nal nnd blocked configurations, and the accuracy of the ealeulated exponents improves
when the simulations are done close to H*, These methods, along with their relative
terits and wenknesses, are discussed below.

The wost popular and successful method for the ealeulation of the critical expo-
nents iy due to Swendser (22} (23] . I this method, the linearized transformation
matrix T s ealenlated direetly using the standard trick of the chain rule

-n oK} AR} 3(S7) N
od T Aronatl - Ao nreon-1 { 1\.()'
INY NS3) IR

Foach of the two terms on the right s nconnected 2 point correlntion matrix

)5
o Bl gy syt (117)
()I\.' ‘ ‘
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and

Jd(S?)
ING

0. = (5753) — (S7)(53) . (11.8)
Here (S™) are the expectation values on the n'* renormalized lattice and A’} are the
corresponding couplings. From the correlation functions, it is easy to see that if the
Hamiltonian is symmetric under s — —s3, ther 74 will factor into two block diagonal
matrices —— those involving even-even interactions and those with odd-odd.

The correlation length exponent v is obtained from the leading thermal eigenvalue
A¢ of the even part of T 4 (as discussed in section 8)

Inb
ln .\(

v = (11.9)

where b is the scale factor of the RGT. Similarly, the correlation function exponent n
is given by
Ind
In Ay
where A, is the largest eigenvalue in the odd sector of T ;.
I have restricted the discussion to the special case of one relevant even and one

=d+ 2 -2

(11.10)

odd eigenvalue. In spin models, thesc correspond to ¢t and h being the two relevant
couplings. In general, however, systems can have multi-critical points t.e. there can
be more than one relevant interaction. This shows up in numerical simulations when
tizere exists more than one cigenvalue that is greater than one in a given sector of
T oa

The second method to calculate the leading relevant exponent is due to Wilson
24 . Consider once again the 2-point connected correlation function (S}, 5%). with
) =+« and expand (S',) in terms of the eigenoperators O}, of the RGT

(SAS3)e = D b (OLSH) = DAL € L(0LS)) (11.11)
M M
where A, is the cigenvalue corresponding to the eigenoperator O, If close to H® we
ke the following approximations: (a) the blocking level dependence in O nnd in
the expansion coefficients ¢!,y ¢aa be neglected, and (b) for j - large, the sum ean
e approximated by the leading term (dominance of the leading eigenvalue \y) then

(S, ~ AT eadlOS)) (11.12)
Consequently, an estimmate for the lending cigenvalue Ay is then obtained for ench o
atnd L nw
SLS
AV (.'.'| ) (11.13)
(541 90)
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Note that the many different operators (S, S)) are highly correlated, and these cor-
relations have to be taken into account in the error analysis. Also, the corrections to
eqn. (11.12) are suppressed only as ('_—\\f-)"'. So for accurate results one should take
J — t large, while making sure that flows stay in the linear region.

The third method uses the 2-lattice method due to Wilson tc estimate the thermal
exponent v. Let the RT be parameterized by the relevant scaling field /', then under
a RGT

(K*-=R*) = b* (K' = K*) (11.14)

where the flow is from A to A?. From this flow one can calculate v and A™*. In
practice we do not know the RT, but we can proceed as follows: block expectation
values are calculated on n and n—1 levels on 2 lattices of size L and L /b with simulation
temperature T and T? respectively. These block expectation values are compared at
and ¢ — 1 blocking steps respectively for the two simulations. The starting temperature
T? is adjusted until the compared block expectation values match for : greater than
some number of blocking steps. Then, under the assumption that flows after + < n
steps have converged to the RT, eqn (11.14) can be recast as

(TP =T") = b+ (T' -T") . (11.15)

This general flow dingram for the 2-lattice method is shown in fig. 4. From a sequence
of such caleulations that give matching couplings one can determine v and T using
eqn. (11.13). The advantage of this method is that only expectation values (S5),) enter
into the caleulation, and these can be calculated with small statistical errors. The
disndvantage is that it is hard to judge whether the flows have converged to the RT.
One usunlly needs a large starting lattice and mawy blocking steps to make a enreful
cheek.

The chief deawbnck of Swendsen's method is that the matrix 7,4 is calculated in
a trunented space of internctions S,. Sinee, for a given model it is not known a-priori
how mnny couplings are needed to get stable results, one has to test for truneation
errors, In practice, the method works much better than one would naively expect due
to a fortuitons eancellation of truneation errors as discussed in (23] .

When simulations are done at H7, as in Swendsen's method, one would nnively
expeet lnrge errota due to eritieal slowing down and finite size effects. Empirieally
it 1% seen that even though individual correlation functions sutfer severly from critienl
Aowing down and finite volume effects, there is a renuarkable eancelladion in the meerix
T'.s Also, the varintion in the elements of T, with Iattice size is remarkably small.
Thus results converge to the correct values of the exponents on moderately large
fattices nud with present day «statisties,
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Fig. 4: Flows for the two simulations in Wilson's 2-lattice nethod for the case when
hleck actions match.

For simulations starting at H # H¢, the eigenvalues initially converge to their
fixed point value as Hows kill the irrelevant operators, but eventually become worse
once the lows go past the linear region of H*. So the convergence in the eigenvalues
as a function of the blocking steps has to evaluated carefully. Also, in this case one
expeets the three methods to be competitive, though no careful tests have been done
so far,

In all three methods described above there is an implicit assumption that the
Hows converge to H* or the RT. This can be achieved by either blocking the lattice
a suthicient (usually lnrge) number of times or by using a more elaborate Hamiltonian
{KN"} which lies closer to the RT. The main problem with the second approach is
that such a Hamiltonian may contain a large number of non-loeal terms, which makes
it slow to simnlate, On the other hand if we believe in the central assumption of
the renormalization group approach that the couplings fall off exponentially with the
ranee so that the RT and H® ean be approximated by a small munber of short range
conphings, then do we expeet the use of “improved actions™ to bare fruit, This avenue
i~ discnssed further in section 10,



Why do we expect MCRG results obtained on small lattices with restricted num-
ber of blocking steps to be reliable? Since the basis of renormalization group methods
is the calculation of the rate of change of couplings along the flows, one believes that
the relevant variable that dictates finite size effects is the range of couplings and not
the correlation length. If we couple this with thce assumption that the strength of
couplings fall off expouentially with a small range, then all we need is that the lattice
should be large enough to accommodate all important couplings. Present calculations
on the 3-d Ising model suggest that one can block down to 8% lattices and still get
reliable results vis-a-vis finite size effects. So the central assumption of the renormal-
ization group seems to be borne out, even though we don’t have a solid understanding
of Wh_\'.

The first step in getting accurate results from MCRG calculations is to know T..
This toc has to be done numerically since it is not known for most models. So I now
describe Vilson's 2-lattice method with which one can obtain a successively improved
estimate for HC.

Method to Calculate the Cri‘ical Temperature:

The critical temperature is not known for most models. So one starts with a
rough determination of the phese boundary. This is done by scanning the coupling
constant space using numerical simulations and looking for either discontinuities or
divergences in thermodynamic quantities. The order of the transition has to be deter-
mined carefully since on finite lattices there are no singularities, and discontinuities
at first order transition get rounded. At a second order transition, C,. \. cte., have
a penk which becomes sharper and diverges only as V' — 200, Thus, only by taking
Jdatn on lattices of diffecent sizes and using finite size scaling can one systematically
improve the estimate of T.. Wilson's 2-luttice MCRG method provides an accurate
way to improve the infinite volume estimate of T..

Consider two MCRG simulations L and S with the same starting couplings (K] }
but on Inttices of size L = 5" and § = b"~'. Measure expectation values on the original
and all block Iattices. The key observation about Hows is that if the starting (K7} is
critienl then after some anmber of blockings the renormalized theories will converge to
H*. This means that all block eorrelation functions will attain their fixed point values
v (L™ = (5™ for m sutficiently Inrge. If, on the other hand, the starting H is
non eriticnl, then we ean expand block correlation functions about their value at H*
in the linear approximation as

(L) (577 = g ULD) = (ST} AKY
= LML), - (ST YS).) ARG (11.16)



from which one can determine AR [11]. The critical coupling is then given by
Kt = K? - ARD . (11.17)

This estimate can and should be improved iteratively. Note that in this 2-lattice
method the individual expectation values have finite size errors, however, by coinparing
cxpectation values that have been measured on the same size lattices, these errors are
vastly reduced.

This completes my intended introduction to RG and MCRG methods. I now turn,
posthaste, to their application to QCD.

12. Block Transformations for 4-d SU(N) LGT

The blocking transformations for gauge theories in 4-d are to some ext nt non-
intuitive. The degrees of freedom are SU(N) matrices which are associated with links
on the lattice rather than on the sites. Nevertheless the sieps one takes are similar
to spin models. First we define the block lattice; the simplest example is b = 2 for
which the basic cell is a 24 hypercube. Second the block link should join two adjacent
block sites and represent the average value of the gauge field 4, in the cell. The goal
is to construct the block link as an average over the maximum number of the original
degrees of freedom in a cell in a gauge covariant way.

The simplest way to construct the block link in a gauge-covariant way is to average
the SU(N) matrices that represent the path ordered product of links between the block
sites. This leaves intact the local gauge freedom at the block sites, which is the desired
gauge freedom on the block lattice. It is somewhat arbitrary what paths to choose
except that we like to keep the transformation local and at the same time use the
maximun number of degrees of freedom. These features itnprove the convergence to
the RT. It is worth noting that the requirement of gauge covariance is not cssential
provided the effects of the non-covariant operators generated under blocking are small
1.e. they are irrelevant operators with a small eigenvalue.

A complication with SU(N) gauge theories is that the sumn of SU(N) matrices is
not proportional to a SU(N) matrix (SU(2) is an exception). So in order to average
the tields, the common practice is to project the sum of paths ¥ (which is in general a
3 x 3 complex matrix) back on to SU(3). This is dore by finding the SU(3) matrix U
that maximizes the Tr (T'’) or by generating a matrix with probability ¢ =7 reete
with p a free parnmeter chosen to optimize convergence. In cither case we are losing
sotie dynamie information in the projection, so it needy to be ascertained whether
this construction throws ont some essentinl physies! Again note that it is not essential
that the blocked links be group elements, though this projection makes ealeulntions
on block Inttices simple md one does not have to worry about normualizations.

J4



The two methods described below construct the block link in a gauge covariant
manner and differ primarily in the definition of the unit cell.

1) b =2 by Swendsen [26] : The transformation, in its generalized form. ‘s shown
in Fig. 5 where the a, are tunable parameters. One can in principle include all
possible paths that start and end at the block site as that ensures that no gauge
fixing is necessary. On the other hand to keep the construction local. all present
calculations have used only up to 4 link paths. These calculations show that the
convergence of the RGT is improved considerably by optimizing the parameters
a,. I refer you to the original literature for a discussion on this tuning.

SRS e WO

A B A B ‘A B

4 sens

Fig. 5: Swendsen's blocking transformation for gauge theories in -d with scale factor
h=2.

2) b = /3 by Cordery, Gupta and Novotny [27] : This transformation is specific
to gauge theories in 4-dimensions. It uses the fact that there are 4 positive 3-cubes
associated with each site. The hody diagonals of these cubes are orthogonal and
of length /3 as shown in Fig. 6. The block cell consists of the block site and
its 8 nearest neighbors. By performing a local gauge transformation on the 8 NN
sites, all 8 liuks coming out of the block site can be set to the identity. In fig.
G. the unshaded links. say U'; and U iu the path U, for example, can be gauge
fixed to the identity, leaving the gauge freedom only at the block sites. The un-
fixed links connect different block cells; note that their value is identical to the
original gauge-covariant path. The total number of free links per bi 'k cell is 28
(the figure shows the seven associated with one of the 3-cubes). The block link
is constructed as the average of the 6 paths [’ --- 'y which are of equal length.
Thus, the transformation uses %{ degrees of freedom at each step, since only the
path {7 is ignored.

It is easy and natural to include scalar matter fields at sites and couple them to
the gauge degrees of freedom as one would like to do for the SU(2)x U(1)y theory.
Another advantage of this b = V3 transformation over the b = 2 version is made
clear in the block diagonalization process of Miitter and Schilling [28] for defining
the renormalized Dirac operator. There one finds that on the block lattice the 9
original modes split into . single light mode and 8 heavy ones.

The only nuisance working with this transformation is that under the first RGT.
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the new hypercubic lattice is rotated with respect to the old basis leading to a
jagged boundary for the box. This can be undone by a second application of the
RGT with different basis vectors. So the original box geometry is recovered after
a scale change by a factor of 3.

Having defined a RGT, all the MCRG methods discussed earlier can be used
on non-abelian gauge theories. So far, the main application of MCRG to Lattice
QCD has been to calculate the non-perturbative 3-function for both SU(2) and 5U(3)
pure-gauge theories. Present results show that the b = /3 RGT transformation has
hetter convergence behavior both at strong and at weak coupling than the b = 2
transformation as discussed in [29] . I present the status of these results in section 14.

B
Ue (0.1.1,1)

s D
0.003)

(0,0.0.0)

(1,-1.0,1)

4-Dimensional Hypercubic Lattice

Fig. 6: b = /3 blocking transformation for gauge theories in § dimensions

13. Asymptotic I'reedom makes QCD Simple

To analyze QCD, the first thing that we want to determine is the relevant fixed
point. Since pure gauge SU(3) has only one coupling g, we should be able to locate
the critical point by just tuning ¢g. Poli‘zer and Gross and Wilczek showed that the
4-function of QCD is uegative [30] . They used perturbation theory to ealenlate the
A function (differential How equation for g) with respect to a change in momentum
weale 1.e. .TIT:':_,. This corresponds to following the flow along the RT backwards i.¢.
making the lattice spacing smullec. A negative d-function implies that the coupling,
¢ = 0 ns the cut-off A — s0. Thuy the prediction from perturbation theory is that the

36



fixed point is at zero bare coupling. Further, it means that all scaling behavior can be
calculated in a perturbation expansion about g = 0 i.e. the 2-loop 3-function (which
is gauge and regularization scheme invariant) gives all the scaling laws. For example
all physical quantities with the dimensions of mass scale as

a
1 33T
3092 ) e er

1
pl— 5:’-0—9—2- (13.1)
for g close to zero. Here f(g) is a universal scaling function.

Asymptotic freedom has inade QCD trivial from the point of all the RG machinery
we have developed. On the other hand non-abelian gauge theories are not trivial, for
even though the fixed point is at zero bare coupling, the renormalized charge is not
zero and one gets a well defined interacting theory in the continuum limit. This can
be seen in the following way: eqn. (13.1) states that the lattice mass ma of all states
goes to zero in the continuum limit because a — 0 as the prescribed function f(g).
The limit is taken VYeeping the physical mass m constant, consequently all ratios of
masses have a finite limit. So, if the theory has a mass gap, which we can use as the
Lasic scale, then the spectrum of QCD is predicted in terms of it. From eqn. (13.1)
one sees that ¢ — 0 as a — 0, and the two are related through the invariant scale
of the theory, ¢/m. Yet, how does this scale get generated since QCD has only one
patatneter, the dimensionless coupling ¢? I remind you that you have been introduced
to this phenomenon in field theories which posses no explicit scale under the name
Jdimensional transmatation.

Let me now give an intuitive picture of the statement that the renormalized charge
does not go to zero ns a — 0. At strong coupling (g large), Wilson (and Wegner
tor Z;) showed that all gauge theories in 4 dimensions have an area law i.c. the
expectation value of large Wilson loops is dominated by the area term, (loop) ~
expl = area). The coefficient  is the string tension, so an area law implies that the
potential has a linear confining piece. Further, if the SU(3) theory does not have a
phiase transition separating the weak coupling j-hase from the strong coupling phase,
then. in the continmun limit also, ¢ is a non-zero constant of the theory ard oa?
«eales like (ma)?. The occurrence of a non-zero @ at the fixed point g = 0 implies
that linear confinement aud asymptotic freedom occur simultaneo.sly in non-abelian
gauge theories,

QCD. through Eqn. (13.1), requires that there exist a mass gap for a consistent
deseription. Let me state precisely the set of assumptions under which this is valid. If
QCD has only one relevant coupling (1.¢. a single universal sealing function defined in
equ. (13.10)), and no zero mass state at even one given velue of the lattice spacing a.
then in the continuum Lmit all states are vither mauss-iess or there has to be n mass-gap.
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The only caveat to this deduction is that there should be no phase boundary separating
the the phase with the choosen point with spacing @ and the continuum limit (:.e.
they are analytically connected). A continuum theory with all states having zero mass
would be a trivial theory and present lattice calculations do not show evidence for a
mass-less state in the pure gauge sector. So barring the presence of a phase transition
line at coupling weaker than that used in Monte Carlo calculations, pure gauge QCD
Lias a mass-gap. Next. I address the question of mass-less pions in the limit of zero
mass quarks. Note that for each flavor. we have to tune the quark mass to get the
correct physical spectrum. The tuning can alternately be done by using the associated
pion”. Therefore the “pion" mass is an independent parameter and not a prediction
of the theory. For example, with SU(3) of flavor, we have to tune either the mass of
the u.d.s quarks or that of the =,n and n' mesons to reach the physical point. The
fact that the Goldstone theorem, associated with the spontaneous breaking of chira!
svinmetry, states that pions are massless in the limit of zero mass quarks does not
invalidate our previous conclusion. All it says is that to define the physical world at
any give lattice scale we have to tune the “pion” mass. If this value is zero, then it
is tuned to :ero for all a. To conciude, since the two assumptions listed above are
rather mild and borne out by present data, therefore, if QCD is the theory of strong
interactions, then it predicts that the light=st gluebell state is massive.

Given the scaling law, eqn. (13.1), the only urknowns in the theory are the
constants ¢, one for ezeh state. Their deterniin.tion turns out to be very hard since
the ¢, are intrinsically non-perturbative. The only first principle way we know at
present of determining them is numeiical calculations. You have already heard a lot
about these simulaticns from other lecturers, so in the next section I will enly talk
about the status of their reliability in light of MCRG calculations.

14. Non-Perturbative J-function and Scaling:

Most non-perturbative lattice calculations have been done at i = 6/9° = 6.0
where £ < 10. So the big question that a-ises in evaluating numerical results is how
do we know that these calculations represent continuum physics. As discussed in the
last section, asymptotic sealing tells us that all physical quantities with dimensions of
mass should scale aceording to eqn. (13.1) near ¢ = 0 i.e. the change in an individual
mass should agree with the function f(g) calculated from the 2 loop perturbative ,J
function. At .4 = 6.0, there is no reason for porturbation theory to hold aad the check
on whether iattice ealeulations reproduce coutinuum physics is to show that mass-
ratios are constant as a function of 4. A suflicient condition that mass ratios remain
constant is the existence of a universal non-perturbative function which tends to f(g)

as g« 0. This non-perturbative function ean be ealeulated using Wilson's 2-Iattice
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MCRG method [6)].

In pure gauge theory there are three physical quantities that have been measured
in many lattice simulations —— the string tension o, the glueball spectrum and the
deconfinement transition temperature T.. So we can check whether scaling exists for
these three observables. The second approach is to make detailed compansons with
the non-perturbative J—function to estimate the minimum value of .J beyond which
we expect scaling to within some accuracy.

Wilson's 2-lattice method calculates the change in .J for a scale change b 1.¢. the
integre] of the J-function for a scale change b. This AJ can be calculated provided we
can follow flows along the RT. If A% is the renormalized theory obtained from R under
a scale change b, then by definition N.j( bl}ﬂ-,-) = R!' = R'? evaluated at the midpoint
of the interval. In general, we do not know the RT and numerical simulations are done
using simple local actions. for example. .3 is the ouly coupling. Wilson provided the
link between the goal. to measure flows along the RT, and simulations done by varying
just J.

The outline of the method is as follows: first simulate a system of size L = (b")?
v 'h couplings K} and calculnie the expectation values of Wilson loops on the original
lattice and the n block lattices. Next simulate a second system of size § = (h" =)
with couplings A2 chosen judiciously, and again calculate the expectation values on
the n levels, Adjust the couplings K'# (which requires a new simulation each time)
until the expectation values from the two simulations match on the same size latrices,
1.e. compare the m'™ blocked level on the larger starting lattice L with the (m - 1)
on the smaller lattice S. The test of convergenee of the two theories L™ and S™~ 1 is
that the expectations values should mateh simultaneously &t the last few levels, This
ideal situation was shown in a two coupling constant space in Fig. 4. At matching,
the correlation length on L (starting couplings K3) is larger than on S (K P) by the
seale factor b since L has been blocked one more time. Thus A for a seale change
his (KA = KP). If the starting tenjectory is taken to be the Wilson axis (or any 1
parameter line specified by ) then A = (14 - 3H),

Comparing expectation values is equivideat to matehing the action. There iswone
to one cotrespondence between the value of the couplings and the expectation values
of Wilson woops. Under the assumption that the fixed point nction is loenl (1e. at any
wnle a few short range couplings are suthicient to charactenize the action), matehing
the expectation values of a few small Wilson loops is sutficient to gnartee that the
rwo actions ate equal For this assamption to Lold, the mat shing lattices should be
Laee enough to accommodate all the unportant couplings and all the corresponding
loops should be measwred and matehed. The key pomnt s that while loop expectation

calines will have finte size effects, these effecrs are the same for the two simulations
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when matching occurs since the comparison is on approximately the same physical size
lattices.

In practice it is sufficient to do two simulations §; and S; which bracket L and
then use interpolation. Once matching takes place on lattices which are large enough
to accommodate the important couplings, thereafter, the check that the two flows move
together can be made on 1% lattices too! Finite size effects in AfCRG are controlled
by the range of the couplings and not the correlation length. Let me reiterate: the
reason that M CRG has good control over finite size effects and is a powerful method
1s because the range of interactions falls off exponentially even on the critical surface

for “good™ RGT.
Finally some numbers:

Asymptotic scaling for the simple plaquette action in pure gauge SU(3). (.3 = fy ).
ts defined by the 2-loop perturbative .J-function,

aJ) 33 459
b(lna) T T 4wt 1674 3 o (14.1)

. o, . . .
Since —,(-,%7 is essentially constant over some small scale change b, one can integrate
it trivially to get the quantity which can be compared against the non-perturbative
J-funetion ecalculated using MCRG,

AJ = ——— logh . (4.2)

Here also A7 s defined at the midpoint of the interval spanning a scale change b,

ln fig. 7a. [ show the A caleulated using the b = 2 and b = v3 transformations.
The main features are (a) there is a very large dip in the non-perturbative J-function
helow 4 = 6. and (b) betweer 6 < 3 < 7. A lies below the 2:doop perturbative
vahie. The deviation s = (0%, The conclusions from this data are that there is no
perturbative sealing below 4 = 6.0 and furthermore we should not expect asymptotic
~ealing to better than 109 below 4 = 7.0.

[ wonld like to bring up a technical point since it serves as a word of cantion. These
MORG caleulations have been done on rather small lnttices. For example the b= /3
caleulation uses L= 9V lattices. Therefore, nt say .3 = 7.3, the box is effectively at very
Lagh temperature. The question that arises then s that: even though at matehing the
two compared systems are at the same physical temperature, does the measured NS
approach the 2 Joop value faster heenuse of the high temperature” The only way to
cheek thisas to work on larger lattices. There 1s some evidence of such finte size effeets

from the results of o recent ealenlatnion m SU23 2311 Decker and deForerand find
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Fig. Ta: MCRG results for the non-perturbative OjJ. The b = 2 results have been
rescaled to b = /3.

that deviations in O.J from the 2-loop result are larger for 324 lattices with b = 2 RGT
than those gotten using a 184 lattice and b = V3 RGT. Since the MCRG calculation
v a small overhead on lattice generation, this brute force test will certainly be done
when one simulates larger quenched lattices to measure zero temperature observables.

Next we test scaling using the world data for o, T, and My+4+(7]. To calculate
A4 we use the dimensionless lattice value, say ma, calculated at two values of the
conpling, .y and .3, Then A = .3; = 4 for a seale change %ﬁt holding m constant.
To compare with the MCRG result [ mun forced to rescaie A4 since the measurements
of observables have not been made for a constant scale change, so in ig. 7b all the
A4 data from observables is resealed to b = /3. This resealing does not introduce n
agnifieant error, however, as long as one only chooses data with 1.5 < b < 2.0,

We tind that the data for 2 and T, agree with MCRG results, however, Moo
data show large deviations for J < 6.0. The A from all observables seems to come

rogether at 4% 6.0 Unfortunately, it has not been possible to really test sealing for
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Fig. Th: Comparison of A3 obtained from observables o, T. and My++ with the MCRG

results.

1 > 6.1, 1.e. whether the &/ continue together, since we have run out of data. So for
present we assume scaling to within 10% on faith.

To understand the cause of the dip in the J-function and the lack of scaling
for 4 < 6.0 we have to examine the phase diagram in the two coupling plane - -
fundamental and adjoint representation of the plaquette action. There one finds a line
of first order transitions ending in a spurious critical point above the Wilson axis [32) .
[f one were to extend the transition line it would intersect the Wilson axis at 3 = 5.7,
which coincides with the location of the minimum of the dip. At this spurious critical
point the 0** glueball mans vanishes while lines of constant @ and T, get bunched up.
This is why A ealeulated from o and T, show a dip while that from 0** glueball
~hiows a rise. Therefore, even though this spurious singularity lies off the Wilson axis
it has changed the sealing behavior in its vicinity.

To conelnde, given that there is no sealing for .4 < 6.0 and possibly lnrge devintions

np to 4 2= 7.0, the only way we can one improve the Inttice results (improve sealing)

2



is to find an action closer to the RT. This hope and desire is discussed next.

15. The Holy Grail: The Renormalized Trajectory

The hope of lattice practitioners is that we can extract continuum physics from
simulations with € = 10, and that at these values of couplings one can reliably relate
continuum perturbation theory with that on the lattice. The iatter is necessary in all
calculations where it is essential to fix the normalization of operators, for example in
matrix elements calculations as discussed by C. Bernard.

If we knew the location of the renormalized trajectory, then any simulation along
it that satisfied the conditions L >> £ >> 1 would give the correct mass ratios and
the desired continuum physics. This ideal situation will be hard to achieve in practice.
The best we can hope for is to find an action that lies closer to the renormalized
trajectory. MCRG methods are essential to determine and evaluate such improved
actions. The status of this approach is contained in [33] and [34] . and it is obvious
that far more work needs to be done to find and demonstrate that one has derived an
setion that significantly improves scaling.

Another avenue for research is to develop MCRG methods to -nap the flows for the
Dirac operator. This would be very useful for developing multigrid ideas for inverting
the fermion matrix. A small step in this direction for the b = V3 transformation is
described in [34].

In the calculation of matrix elements it is necessary to fix the normalization of
lattice operators with respect to their value in some continuum regularization scheme at
the same physical seale. The lattice coefficients when analyzed in perturbation theory
have a dependence and in some cases even diverge us 1/a. These lattice artifacts need
to be removed. One way to handle this is to add operators to the lattice action that
kill this unwanted behavior. The Rome group (ELC) 1s at present trying to implement
this program using perturbation theory. Since this is a very new developmeat let me
eud with citing a reference (35 .
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