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ABSTRACT

Considerable progress has been made in the last year in deriving the spectrum from QCD in
the quenched approximation. I review these results and show that we are close to getting results
with 10% errors for the proton to rho mass ratio. I give a status report on QCD calculations with
dynamical fermions being done by various groups. While these calculations are still exploratory,
we have reached the stage where realistic simulations can be contemplated.

INTRODUCTION

A realistic calculation of the hadron spectrum will be the first demonstration of our ability
to get reliable results from Lattice QCD. This calculation is necessary in order to show that
QCD is the correct theory of strong interactions. Only then will the more important and
predictive calculations of matrix elements be justified. To achieve this goal, ‘ve have tc, proceed
incrementally. We need to first get definitive results in the quenched approximation for realistic
values of the quark masses and lattice momenta. Only then can we systematically investigate
the effect of quark loops. With the present state of algorithms, I believe that with a tera-flop,
large memory machine we will be in a position to do definitive quenched calculations and at
the same time quantify the effects of dynamical quarks. So. in this review [ will summarize the
progress made to date and highlight the directions one needs to explore to reach the goal.

Quenched simulations provide an important reference point. Most of the software and
techniques for numerical measurement carry over unchanged to the real theory. Since full QCD
calculations are still a factor of = 1000 slower, it is expedient to clean up the techniques and
understand systematic errois in quenched simulations. Pure gauge theory is confining and
asymptotically free, so it contains the qualitative essence of the real world. Further, chiral
symmetry can be studied in the quenched apncoximation: the chiral behavior of observables can
be derived and checked. It is therefore very important to get statistically significant numbers
for the ny = 0 world so that one can there after systematically examine the effect of quark
loops in ny = 2,3, 4 simulations. It may very well turn out that the quenched approximation
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is good for certain observables; unfortunately this justification can only come a-posteriori. On
the other hand for certain features like the glueball spectrum we definitely need to understand
mixing with meson states before we can approach an experimentalist with a hard number.

The notation used below is as follows: the gauge coupling is defined by 8 = 6/¢%; the
quark mass m, is given by « for Wilson fermions, and the physical mass of the strange quark is
denoted by m,. I use a superscript v (d) for valence (dynamical) quarks when ever necessary.
The number of dynamical quark flavors is given by n;. The spatial volume is denoted by N}
and the temporal size by N; such that the lattice size is N3 x N,;. The effective mass of a particle

is defined to be M(t) = log (T(Lz(-%'))' where I'(t) is the 2-point correlation function. The desired
answer is the asymptotic value as t — oo.

In keeping with the long term approach of lattice calculations to (a) get very accurate
quenched results, (b) systematically investigate the effect of quark loops as a function of the
quark mass and the number of flavors, and (c) do realistic calculations at weak coupling and
at small quark mass on large lattices, I first summarize the status of quenched calculations for
mesons and baryons. Then I present the status of calculations with dynamical fermions. Note
that these calculations are still preliminary because the masses of dynamical quarks used in the
update are still fairly heavy. This review covers new results, most of which has been presented
for the first time in preliminary versions at this conference. For calculations done prior to 1988,
I refer you to the comprehensive reviews by M. Fukugita (1] A. Ukawa [2] and E. Marinari (3] .

1. Quenched Spectrum.

Calculations of the spectrum in the quenched approximation began about 8 years ago. The
touchstone for measuring progress has been the ratio R of the proton mass to the rho mass. This
has in the past (until 1988) came out consistently high, usually > 1.6. The measurements were,
however, carried out at heavy quark mass (my 2 m,), on smallish lattices and the statistics
were often inadequate. The situation has changed considerably in the last year due to improved
measurement techniques and significantly more computer time.

In the real world we know two data points; (a) R = 1.5 for infiniteiy heavy quarks and (b)
R = 1.22 for physical quarks. In between, where all lattice results lie, we can partly bridge the
gap using phenomenological models. For heavy quarks, we can use potential models while for
light quarks one should use the chiral Lagrangian. Fitting these models to experimental data
we can deduce the expected behavior as a function of quark mass. This is shown in fig. la and
1b as dark lines. The two lines heve very different curvature and neither model is expected to
do well in the region m,/m, ~ 0.5. [ analyze the collective data from large lattice simulations
in the quenched approximation against this background. These results are taken from three
groups —— APE [4] , [wasaki etal. [5] , and the staggered Collaboration (6] . The data is shown
in fig. la for Wilson fermions and fig. 1b for staggered fermions using the APE invariant mass
plot.



The mass plots show a very significant trend; the ratio R decreases with increasing J3.
Already, at 3 = 6.0 the data fall on or even slightly below the phenomenological carves. If
this trend continues as 3 is increased, then the quenched theory number will fall below the
experimental value. This possibility should raise the eyebrows of the advocates of a large strange
quark contribution to the mass of the proton. It has been conjectured that up to 400MeV of
the proton mass comes from the strange sea. This is based on the mismatch between the
experimental value of the pion-nucleoi. o term (50 — 60MeV) and first order SU(3) breaking
analysis (= 26.MeV) [7] [8] . Clearly, what we measure in the quenched approximation are the
masses with no sea quark contribution to any state. So the quenched ratio can lie on either side
of the real world, depending on how large the sea quark contribution is to the proton versus the
rho!

A second important feature of the data is the lattice size dependence. This can be seen
in fig. la for Iwasaki et.al.’s data at 3 = 5.7 and for APE data at 3 = 6.0. Ironically, R
decreases as the lattice size is increased for APE data but increases in Iwasaki's! This lack of
understanding and control over finite size effects is perhaps the biggest reason why the quenched
spectrum data has been so murky until recently. Let me provide a rule of thumb approach to
how large the lattice should be to extract a meaningful behavior of M versus 3. For 3 = 6.0 and
m, = m, we require at least 20° x 40 lattices. For different 3 and m,, this size should be scaled
as follows: increase each dimension as 1/a when increasing 8 and as 1/m, when decreasing m,.

A measure of how well the lattice can reproduce hyperfine interactions is the splitting
between the A and proton as a function of the quark mass. The experimental number for the
ratio of the mass of the A to the proton is 1.31. The Wilson fermion data show that this ratio
is = 1 for heavy quarks and increases as the quark mass is decreased The ratio increases to
= 1.2 at the smallest quark mass in the APE data at both 3 = 5.7 and 6.0. While this trend
is encouraging, our enthusiasm has to he tempered by the fact that we do not know what the
quenched result should be. As data for still smaller values of the quark mass becomes available,
we should make fits to a 1/(m;m;) mass dependence, with some appropriate ansatz for the
constituent quark mass m;. The signal for the A with staggered fermions is still too poor to
extract any numbers, so the comparitive consistency check cannot be made.

The detailed comparison between Wilson and staggered results is made in the section 3.
Here let me just state the conclusion: the large lattices data show that results using Wilson
fermions and staggered fermions start to come together only for 3 > 6.2. At 3 = 5.7 the
deviations are substantial.

2. Desideratum.

quark sources:

It is not surprising that much can be gained by improving the interpolating field operators
used for probing physics. E. Marinari provided compelling evidence for multi-origin quark
propagators and smeared operators in last year's review [3]. Let me at the outset stress that
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Fig. la: The APE mass plot for Wilson fermion data. Data at 8 = 5.7 is from the APE
collaboration on 123 x 24 lattices (x ) and 24% x 32 lattices (fancy x ) [4]. The data at 3 = 5.85
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there is no one source that will give close to optimum results for all physics. We should do
calculations with different physically motivated sources on a wide variety of observables so that
a clear picture of improvemer: is obtained by making careful comparisons. The key here is
details and precise tests. Let me focus on the physics motivation for “multi-origin” sources and
“smeared” operators.

Iwasaki et.al.'s work using point quark sources shows very clearly that, especially for
baryons, the asymptotic mass can only be extracted at very large separation t. Unfortunately,
in the chiral limit the signal becomes increasingly poor at large t. Thus we need to build in
the wave-function into the interpolating field operators. Since, the physical size of a hadron. is
fixed by the confinement scale (determined by the value of 3), we expect the wavefunction to
be fairly insensitive to the quark mass when my, < Aqcp. Thus it may not be necessary to do
2 lot of tuning to improve the wavefunction. The gain in the signal with even the simplest wall
source, however, has been remarkable.

Two kinds of quark sources have been explored for Wilson fermions. The APE group has
used cube sources i.e. a unit source at each point in a spatial cube of certain size. They find
that the signel improves even further on using multiple cube sources on a time slice. In this
case each cube acts as a source with a smeared wavefunction, and the separation between the
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(+) [6].

cubes reduces noise between the multiple sources. A source in which the cube is the whole time
slice, is called a wall source. In such constructions of cube sources, the gauge links connecting
the multiple source points are ignored, so it is essential to gauge fix the source time slice to
Coulomb gauge. If one further uses extended operators at the sink without including links in a
covariant fashion, then the whole lattice should be fixed to Coulomb or Landau gauge depending
on whether or not the operators are extended in the time direction.

The Wuppertal group uses the solution of a three dimensions scalar field equation with a
delta function origin on a time-slice as the source for the quark propagator. The scalar mass
is tuned to give a reasonable size for the wavefunction. This solution provides an exponentially
damped wave-function and is my favorite for the following reason: it is gauge covariant and
corresponds to a wavefunction of the lowest radial state. In the non-relativistic limit, the states
we measure have zero ocbital angular momentum and are not radially excited. If we assume
that each of the quarks inside the hadron moves freely, then, ignoring hyperfine interr.ctiou, the
sclution to the scalar field equation is the wave function we want. In the Wuppertal construction
the local quark propagator S is replaced by

Sr(z.2') — SSp(z,2') = O(zx.y)SF(y.2)0(z.2')
where the wave-function of a quark inside a periodic box, Q, is included both at the source and
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at the sink. Note that SSr has the same gauge covariance property as the local propagator.
Thus, the hadron correlators are constructed in exactly the same way.

For staggered fermions, the two basic sources that Greg Kilcup has developed are 1) a wall
source and 2) a source with all even points on the time slice set equal to +1 and all odd points
set to -1 [6]. The meson correlators ace then constructed by first making the 3 distinct bilin-
ear combinations from these two quark propagators calculated with different sources. Further,
consider the four linear combinations of these bilinears. The basic point here is that these four
meson coitelators obtained as a result of the above combinations have different projections on
to various spin-parity channels. One has to make a library of all possible spin-parity channels,
and empirically determine which correlator gives the best signal for a given state. The plethora
of channels is further enlarged by considering local and non-local operators at the sink point.
Thus one can estimate the mass for all states (16 pions etc.), and test whether flavor symmetry
is restored. For baryons, all three quark propagators that are contracted together are generated
with the same source. The two sets of correlators corresponding to different sources are then
added together (having taken care of overall signs) to improve statistics. The LANL collabora-
tion finds that the best signal for baryons cr.mes from such correlators and by using non-local
operators at the sink point. Obtaining the same mass from many different channels improves
the confidence level of the estimate.

Improved non-local operators:

Multi-origin sources are intended to improve the overlap with the wave-function at the
source. Further improvement can be made by using an interpolating operator that matches the
wavefunction at the sink time-slice also. Both improvements independently help saturate the
exponential fall-off of the 2-point correlation function by a single particle state. The Wuppertal
construction is symmetrical between the source and the sink, though in principle one could use
a different mass in the scalar field equation at the two ends. The staggered signal for hadron
correlators is usually much poorer than Wilson fermions. In addition, there is contamination
from the opposite parity particle whose correlator has a (1~*) prefactor. The work of LANL
collaboration shows that by using non-local operators, the projection on the oscillating channel
can be vastly reduced. :

Finite Size Effects:

Systematic studies show that finite size effects are large. Unfortunately, the data do not
map on to asymptotic scaling formulas yet. The good ricws is that the signal with larger .V,
compensates to a large extent the incrense in the CPU time necessary to simulate the larger
volume i.e. the errors are roughly constant for runs of constant CPU time. The use of extended
sources and operators allows us to extract masses at smaller time separation. This is especially
relevant since as my — O the signal becomes poor at large separations. Thus, we need lattices
with large .V, in which case N, = 2N, suffices. In addition, I refer you to the review by S.
Sharpe for a discussion of chiral logarithms and finite volume effects on them.

Error reduction via boundary conditions:

f



Different boundary conditions are used in an attempt to reduce finite NV, or finite .V, effects.
For example, the use of either Neumann or Dirichlet b.c. in time allow us to extract the effective
mass from larger separations. Second, by combining quark propagators or hadron correlators,
calculated using periodic and anti-periodic boundary conditions, we can reduce finite .V, errors.
The drawback of these tricks is that while they work in practice, they do not provide a way of
extrapolating to infinite volume results. Combining propagators with periodic and anti-periodic
boundary conditions in time directions is identical to solving the Dirac equation on a periodically
doubled lattice. On the doubled lattice, the correlators have useful signal up to separation .V;.
If one further enlarges the lattice, then the quality of the signal is further improved. Consider
solving the Dirac equation on a quadrupled lattice with p.b.c.. The correlators have a cosh
form centered about 2N, and the two arms are not statistically independent. For the region
Ny <t < 2Ny, the time slice N, acis as the source of the state with the wavefunction generated
dynamically. Thus, as long as N; is long enough to damp out all higher states, the signal in the
second quadrant will be dominated by a single exponential. This trick should certainly be used
with dynamical fermion lattices, where update time is much larger than that for measurements.

Making Fits:

One of the big problems with lattice calculations is evaluating the reliability of a result.
In the case of hadron spectrum calculations we are looking for small differences, for example R
changes from 1.5 (my, = o) to 1.22 (mg = 0). Thus, it is vital to remove as much subjective
analysis (or extrapolations) as possible; for example, in extracting masses from fits to hadron
correlators. The procedure I recommend is to first determine the location of the plateau in the
effective mass plot and to then make a single exponential fit to the data in this region. As a
merit of goodness, one should specify the number of time slices that constitute the plateau for
each state. The second case is the extrapolation in m,. In the new data that I have presented
here linear fits do not work very well. Therefore, less emphasis should be put on the extrapolated
value, and more on the actual numbers displayed on either the APE or Edinburgh mass plot
along with a systematic error analysis that takes into account correlations.

Finite lattice spacing a:

Present calculations at 3 = 6.0 have a =~ 0.1 fermi. To show that we have control over
systematic errors due to lattice discretization, mass ratios should remain constant as a function
of J for a scale change of at least 2. Tests of scaling show that this translates into showing
constant mass-ratios over the interval 6.0 < § < 6.5 for the pui: gauge theory (9] . The
equivalent interval for the ny = 2 theory is likely to be 5.7 < 3 < 6.1 for light quark masses i.e.
m: < m,.

Improved actions:

The lattice actions can be modified by adding any number of irrelevant operators i.e. op-
erators of dimension > 5 which vanish as a — 0. The goal is to improve scaling and/or get nd
of bad scaling behavior of operators which can arise due to a lattice artifact. Unfortunately, so
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far we have not achieved much success in getting improved scaling by adding terms to either
the gauge or fermion action. There are some tantalizing hints of improvement from the Wup-
pertal group [10] , but no new results for the spectrum have been presented in the last year.
A new direction, motivated by matrix elements calculations, is discussed by G. C. Rossi [11]
. Lot more work needs to be done, however, to systematically follow through an improvement
program. This possibility should be explored in the coming years.

3. Comparison of Wilson and staggered data.

We expect that the effects of chiral symmetry breaking (Wilson) or flavor symmetry viola-
tion (staggered) to decrease as a — 0. Unfortunately, a quantitative evaluation of the dynamic
restoration of these symmetry's requires detailed calculations. Our present guess is that these
symmetries are restored to ~ 10% for a < 0.1 fermi. Because of the large differences between
Wilson and Staggered fermion formulations, a check on lattice calculations is to demand consis-
tency between the two resuits. Let me make this explicit by showing a bad, an intermediate and
a good situation i.e. by comparing the large lattice data at 3 = 5.7, 6.0 and 6.2. The Wilson
data at 6.2 is from the old LANL calculation [12] , while the staggered data is from the new
analysis in which our estimate of the baryon mass is significantly reduced [6]. The values of the
constant and the coefficient of the term linear in m, for the fits M = C + Sm, (M? for the
pion) are given in table 1. The Wilson quark mass is defined as m,, = log (1 +0.5( — ;‘:))

At 3 = 5.7, both the constant and the linear term is ~ 2 times larger for staggered fermions
than for Wilson. Thus mass ratios are consistent between the two formulations, but individual
masses are not. At 3 = 6.0, the linear term is ~ 3 times larger but the factor in the constant
term is only ~ 1.2. What is amazing is that by 8 = 6.2, the constants are equal, so in the chiral
limit the two formulations give the same lattice results.

The factor of ~ 2 in the coefficient of my may very well be a problem with the definition
of mass in the Wilson formulation. Since the theory has no chiral symmetry, there is no unique
definition of mass. We could, by fiat, demand consistency in the slope of m2 between the two
formulations to define the Wilson mass. It is only in the continuum limit that this definition
has to agree with m,, as defined above. The present data show no measureable change in going
from 8 = 5.7 to B = 6.2. We may therefore not be able to do better than a factor of two in
estimating the physical quark masses.

4. Simulations with Dynamical fermions

It would be fair to summarize that so far all calculations with dynamical fermions should be
regarded as exploratory. The three reasons why present results cannot be considered quantitative
are: (a) the gauge coupling used is not in the scaling region, (b) the lattice volumes used are
small, and (¢) the quark mass is m‘: > m,. The degree to which these factors are present
in a particular calculations, [ leave to you to judge. This review is a classification of the



B =57
Cw | Cs |Sw | Ss
M: 28 [ 6.8
M, 1053 109 [1.8 | 3.4
My (079114 |33 |52

Cw | Cs |Sw | Ss
Vg 1.9 [ 58
M, [0.33 [0.40 [2.0 | 5.6
My 1043 050 |44 |11.3
3=6.2
Cw | Cs |Sw | Ss
]W?L 1.4 | 4.3
M, [0.27 030 | 2.4 | 4.2
My |10.44 10.40 | 3.9 | 8.6

Table 1: The mass parameters M = C + Sm, for Wilson (W) and staggered (S) fermions at
3 = 5.7, ,6.0, and 6.2. For the pion, the fit is to M2. The uncertainty in these estimates is
~ 20%, coming from the type of fit made.

calculations the various groups are doing rather than a presentation of hard numbers, with
particular emphasis or. the physics issues.

The only progress made in the update algorithms in the last year has been some under-
standing of critical slowing down in HMCA, and in matrix inversion algorithms [13] . These
.ssues have been reviewed by P. Mackenzie at this conference. The HMCA {14] is the only al-
gorithm which has a built in internal check on the accuracy required of all matrix inversions in
the update. The simple yet sensitive test is to make sure that the change in the action along the
trajectory does not depend on the inversion accuracy. HMCA has two drawbacks: 1) it can only
be used to simulate mutiples of two Wilson flavars or four staggered flavors and neither of these
represcut the real world. 2) The update is slow and the configurations show auto-correlations
times of many hundred trajectories. A typical example is shown in fig. 2 for 1 x 1 loops from a
run on 124 lattices at 3 = 5.4 and « = 0.161 done at Pittsburgh Supercomputing Center by the
LANL collaboration. It remains to be seen whether long distance observables have similar cor-
relations. In my opinion, the limitation on the number of flavors one can simulate using HMCA
is sufficient reason why the present class of approximate algorithms should be explored further.
For, in the end we may be forced into a two step approach: first we match say n, = 2 hybrid
results with those from HMCA in order to make sure that the step-size errors are smaller than
some prescribed error criterion, and then simulate the real world of two light and one strange
quark with the hybrid algorithm.

Results for 2 flavors of Wilson fermions:

The LANL collaboration has undertaken a systematic study to quantify the effects of quark
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Fig. 2. Time history of 1 x 1 Wilson loop at 3 = 5.4 on 12* lattices for the ny = 2 Wilson
fermion action.

loops for 3 = 5.3,5.4,5.5,5.6 using a variety of quark masses. A goal of this study is to calculate
hadron masses at as low a quark mass as possible with a given lattice size so that we can look for
trends as J is increased. This program is similar to the quenched case except for an additional
complication. We do not know a-priori the value of the dynamical quark mass at which effects
of quark loops will show up above statistical and systematic errors. From the Wilson loop data
(screening in the ¢g potential) and preliminary spectrum analysis, a first estimate of the value
of x at which we observe the effects of quark loops is given in Table 2. It is not surprising
that the numbers correspond to m: < m,. With present computer power we are barely able to
simulate at m, & m, on 16* lattices, so we will most likely not be able to quantify the effects of
dynamical fermions until the advent of tera-flop machines.

B | ket K¢

53 |2 0.167 [0.1685
54 |> 0.162 {0.1635
5.5 |2 0.160 | 0.161
5.6 |2 0.157 | 0.158

Table 2: The critical parameters for ny = 2 Wilson fermions. .y s a rough estimate of
at which the effects of dynamical fermions start to show up. Errors are suppressed since these
estitmates are preliminary.

In fig. 3 I show the world data for 3 = 5.5. The older calculation (%) is by Fukugita
et.al. who used a 9* x 36 lattice and a second order Langevin update algorithm [15] . The
rest of the data are from the LANL group on 16* lattices generated using the Hybrid Monte
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(Carlo Algorithm. This calculation is being done on the Connection Machine 2. If we linearly
extrapolate the HMCA data taken at x = 0.158 and 0.159 to « = 0.160, we see a disagreement
with the Langevin data. We will soor have data at x = 0.16 with HMCA, corresponding to
mg &= m,, which will allow us to make the deviation quantitative. It will, however, not be
pussible to resolve whether the deviation is due to the approximate nature of the Langevin
algorithm or due to finite volume effects.

-0 T N

6.2 6 3 6.4
1/k

Fig. 3: Masses in lattice units versus 1/x for ny = 2 Wilson fermion simulations at 3 = 5.5.

Tl ratio R extracted from the data in fig. 3 is very similar to the quenched case for heavy
quarks. In this regard we have not made much progress. The mere fact that we can generate
configurations that incorporate the effect of dynamical fermions using an exact algorithm on
lattices as large as 16% and m: & m, represents a significant step forward. Let me conclude
with an estimate of computer time needed to simulate a world with n; = 2 Wilson fermions and
m‘: = m, on a 16 x 32 lattice. To generate 20 decorrelated lattices wiil require 1 Gigaflop
year. This is clearly within our reach already.

In an earlier calculation done at stronger coupling (8 =5.3) [16] we did find evidence for
a large effect of sea quarks on masses. This feature is not seen when Wilson propagators are
calculated on background configuratiors generated with ny = 2 dynamical stagger« 1 flavors as
discussed below.

Due to the fact that fermion update is slow, most present calculations use lattices that
are doubled or tripled or quadrupled in the time direction for calculating quark propagators.
For example, the LANL collaboration doubles the 16* lattices to 16% x 32, while HEMCGC
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collaboration doubles or quadruples their 12* configurations. As discussed previously, such
periodic replication allows one to extract a much more reliable value for the mass.

High Energy Monte Carlo Grand Challenge:

The HEMCGC collaboration has generated 12¢ lattices at 3 = 5.6 with ny = 2 flavors of
staggered fermions. They use the hybrid algorithm for update and have data for the two values
m: = 0.025 and 0.01. Preliminary results of their high statistics study for the spectrum have
been presented at this conference by K. Bitar (Wilson valence quarks) and W. Liu (staggered)
[17] . Their study presents a comparison of the convergence of the effective mass between point
sources and cube sources (unit source on half a time slice). The result is an overwhelming
reaffirmation in favor of the cube source.

The staggered results are very encouraging. The ratio R is 1.45(3) for mj = m: = 0.025
and 1.31(4) for mj = m: = 0.01. These numbers need to be confirmed on larger volumes.

Their effective mass data for Wilson valence quarks show a very worrisome trend: there is
essentially no dependence on the dynamical querk mass. The same is not true of the staggered
results. Also, they find that given the staggered values for the nucleon, p and =, there is no
single value of x for which the Wilson results are the same. The deviation is enormous as
shown in fig. 4. They conclude, hased on this difference, that 3 = 5.6 is not in the scaling
region. [ would like to suggest, in addition, a more dangerous possibility that the dynamical
staggered quarks do not couple with proper strength to the external Wilson quark propagators.
The symmetries of the intermediate states are of staggered fermions. Staggered symmetries are
very different from those of Wilson fermions at 3 ~ 6.0. These same symmetry considerations
make interpretation of staggered species as n flavors with some masses inconsistent as discussed
in section 3. Therefore, it is highly unlikely that the coupling between external Wilson states
and intermediate staggered states can be viewed as Wilson with Wilson along with a simple
redefinition of m:. This would explain why there is essentially no m: dependence and also why
different Wilson states, because of their different spin contractions, do not correspond ¢2 some
equivalent staggered quark mass.

Mass-T,. Collaboration:

Present results from this inter-continental group are taken from Born et.al. [18] . They
update 16 x 24 lattices using HMCA with n; = 4 staggered flavors. Their preliminary conclu-
sion is that all physical behavior is qualitatively correct and similar to results obtained in the
quenched approximation. The only place their present calculation shows a measurable effect due
to quark loops is in the screening of the q§ potential. They propose to extend their calculations
to smaller quark masses to check for loop effects on the spectrum.

Pseudo-fermion Update:

The calculations by Potvin et.al. [19] show that PF always under-estimate the effect of
fermions. The relevant parameter controlling the systematic =rror due to the approximate naturc
of the algorithm is p/(mya)?, where pis the size of the hit matrix i.e. Uy, = exp(1pA-8). Because
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Fig. 4@ Comparison of data for Wilson versus staggered valence quarks by the HEMCGC
collaboration[17]. The dashed lines are the staggered results for x, ¥, p and nucleon mass.

of this, the step size has to be very small and consequently the the auto-correlations are many
thousands of sweeps through the lattice. There have been many variations of the PF algerithm
proposed and some still being developed [20] . My feeling is that if you fix all the problems
then the speed of the algorithm is at best similar to the hybrid update[18]. This point was
also emphasized by Weingarten in LATTICESS where he showed that all these algorithms are
essentially equivalent.

5. Technical issues that still haunt us.

Staggered flavors:

In all quenched simulations we find evidence of staggered flavor symmetry breaking. The
weakest coupling at which we have reliable data for the “other” #'s and p's is § = 6.0, and there
the effect is =~ 10%. Away from the continuum limit, it is not clear how to interpret this flavor
doubling. We cannot in any simple manner regard them as four favors with possibly distinct
effective masses. One way to see a problem with such an interpretation is as follows: the 16 lattice
pion states Lireak up into 8 representations (4 one dimensional and 4 three dimensional) under
the hypercubic group, which implies up to 8 distinct masses, and not the 10 distinct combinations
that can be constructed from 4 flavors. The number of distinct bilinear combinations reduce to
6 if two of tnue quarks have degenerate mass. In principle this is a possibility if there are two
degenerate reoresentations, however, no combination can be formed that matches the degeneracy
of the states. ‘The counting can be made to work if 3 staggered flavors have degenerate masses,
in which case there are only three distinct masses. Note that whatever the scenario, it has to be
true at all a. This requirement kills the possibility that 3 of the flavors are degenerate because
in the present data, at say 3 = 6.0, we see at least four distinct pions. So it is not clear how to



interpret staggered flavors at current values of 3. This has an important consequence for update
with dynamical fermions; one cannot rigorously specify the number of flavors or their mass by
which to label a given simulation. It is only if we assume that the theory has n; degenerate
flavors can we specify m: in physical units by using the lattice scale ¢valuated from the spectrum
data extrapolated to my; — 0 (same procedure as in the quenched approximation).

The mass of the quarks cannot be specified in physical units for Wilson fermions either. So,
this lack of definition of mass is a problem for both types of fermions. For the spectrum we are
only interested in the chiral limit defined by m, = 0 (double extrapolation with m: =my — 0)
where only mass ratios matter, and the definition of quark mass is a non-issue. A potential
problem with staggered fermions arises if we cannot specify the number of quark flavors and
their mass ratios simultaneously. Then unlike the quenched approximation, where one can
effectively project on to the Goldstone pion, this lack of clear statement on the number of
flavors and their masses becomes an important unresolved problem for full QCD simulations.

p—= T

The threshold for p decay is my = m,/4. Such a calculation has to be done on a huge
lattice which has the correct small but non-zero momentum. Lattice calculations. by present
estimates, are at least 10 years away from such simulations. So it will be hard to show whether
there is a major change in the ratio R at threshold. By then we will have much more experience
from matrix element calculations with the functional form necessary to include p — x decay
in the mass fits.

fx

Our ability to calculate pseudoscalar decay constants, f, ... fg accurately is important for
two reasons. (1) We can use f, to set the lattice scale if and when it becomes hard to use the p due
to the decay p — 7x. (2) Knowing f5 gives us a handle on BB mixing. Another impoitant issue
concerning these decay constants is the presence of chiral logarithms (mesou loop contributions)
as explained by Steve Sharpe. These logs give large, ~ 20 — 50%, corrections in f, and fx
which are not present in the quenched approximation. So up to ~ 50% of the experimental
value fx/fs —1 = 0.22 cannot be determined in the quenched approximation. Since, this is
one place where we roughly know the size of the change expected on using dynamical lattices,
it should be used to caliberate realistic simulations.

Finite step size errors:

Hybrid and Langevin update algorithms have finite step size errors. A control over the en-
suing systematic errors from configurations generated with approximate algorithms is in practice
only a matter of computer time. By making detailed comparison between say hybrid and HMCA
algorithms for n; = 2 Wilson update as a function of the step size, one can develop an empirical
understanding of the errors. [ hope to see considerable more data in the coming years and
possibly a theory to fit it.
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6. Conclusions.

[ hope I have convinced you that we are at the tresiihold of real progress in quenched
simulations. Ove: the next few years, we will systematically be able to reduce statistical and
systematic errors. Update with quark loops is slow and present calculations are basically ex-
ploring algorithms. Real progress will come only when we can simulate light Guarks.

The spectrum calculations do not have any theoretical loose ends. Over the next years
progress will come from better algorithms, improved measurement techniques and a lot more
computer power. So let 1ne conclude with a peek at the future. We need a dedicated tera-flop
machine with large memory to simulate 128* quenched lattices for the range of coupling 3 =
6.2 — 6.5. We will then be able to measure the hadron spectrum and matrix elements for m, =
m,/12, and check scaling over this range for mj =~ m, /5. Also, the smallest lattice momentum
forl1/a = 3GeV is ﬁ ~ 150 MeV. With these parameters we should have unequivocal quenched
results to within 5% accuracy. With this same machine we will be able to simulate 324 lattices
using HMCA for both Wilson and staggered fermions. This lattice size is large enough to
quantify the effect of quark loops at m: &~ m,/3. From there on all improvements will be real
progress towards getting hard numbers. I, therefore, anticipate that 1993-95 will be very exciting
vears,
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