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ABSTRACT

A theorem 1s derived which is useful in the analysis of neutron pro-
blems in whiech all neutrons have the same velocity. It is applied to ceter-
mine extrapolated end-points, the asymptotic amplitude from a point source,
and\the neutron d ensity at the surface of a medium. Formulas for the effect

of finite tampers are derived by its aid, and their accuracy is disoussede.
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A Theorem and its Application to Finite Tampers UNC L AS S ' F’fﬂ

The problems of the characteristics of systems in which the neutrons
can be considered to have only one velocity have been ably solved by Frankel
and Nelson (LA 53) for the case that the core in tamper have the same mean
free path, and by Serber and the members of his group (see, for example, LA 23/)
for the general cese. It is not the purpose of this report to add appreciably
to what is kmown about these problems. While this work was being done an inter-
esting theorem was found to be extremely useful in obtaining approximate ex-
pressions for many of the properties of systems where the neutrons have only
one velocity. In spite of the fact that, at the present time this theorem and
its applications can add very 1ittle that is new to our lmowledge of these
systems, it was thought to be worthwhile to d escribe the theorem in a report.
it does permit, in many cases, a simpler derivation or understanding of some
of the properties. In partiocular it permits one to obtain a formula with the
effect of a tamper of finite size. Nhen the tamper is not absorbing this
formula, (Eq.39) can be expected to be quite acourate. The corresponding for-
mula for the absorbing tamper unfortunately cannot be expected to be as accurate
and there is still room for improvement. The First part of the report will
derive the theorem (Eq. 8) and apply it to various simple problems such as:

The determination of the extrapolated end point; the value of the neutron den-
sity at the edge of a medium; and the determination of the asymptotic solution
far from its source in an absorbing medium. In the seconé part of the report

the theorem will be applied to calculate the effect of a finite tamper.

Suppose that at point 1 neutrons are being emitted equally in all
direotions. How msny of these will there be per unit volume at arother point

2 which have gotten to 2 without suffering any clllisions on the wmay? Call

.

° .
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this number (1/v) Q (1,2). . UNCLASS‘F‘ED

Now suppose we have a critical system and N(1) is the number of
neutrons at the point (1). These suffer collisions, in number v o(1) N(1},
where (1) is the total collision oross section per unit volume at (1) (equals
the number of nuclei per unit volume times the nuclear cross section of each) .
Lel the averags number of neutrons liberated por collision at the point (1) be
1 * £(1)+ The quantity f may be negative. In a tamper, for example, where
there is no fission it will be negative, and in that cass we shall often call
it - go If op is the fission cross section, o, the elastic scattering cross
soction and o, the capture cross section, then if v neutrons result from

r

fission, the total cross section is
o‘=<3£.~+<:9‘¢-or (1)
and the number of neutrons released is

1+ ) o= vo, +0, (2)

so that

f-Ev-l) of—or]/o (3)

From the (1 4 £(1) ) v o(1) N(1) neutrons liverated per unit
volume at (1}, (1/v) Q(3,2) (1 +€(1) ) v o(1} N(1) will bs found per
units volume at (2). The total neutron number at (2) is made of contributions

from all the collisions occuring:nvolume elements such as (1) so that,

N(2) = IQ(I,?_‘) 1+ (1) ) o) N(1) dvol (L)

1

This integral squation has a solution if the system is critical and it is the

proverties of the solution N that ye; shﬂ; di&cuts'by means of an interastin
.. ... .0. ooe 0060 OO
o .

]
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theorem which is  consequence of the f‘a '"tho R %< ﬂs?’ies (L) The theorem

hinges on the fact that Q(1,2) is a symmetrica) function of 1 and 2. We

shall interupt our argument & momeunt to prove thise.

Take a small volume element at (2) with area dA facing the point 1
and of depth dx in the direction of the line between 1 and 2. The number
of neutrons in the volume at 2 from a unit source at 1 is then (1/v) Q(1,2)
dAdx. Since we ;re cornocerned with neutrons which have suffered no collision,
they must travel in struight lines from 1 to 2. fhe fraction of the neutrons
which are aimed to strike the area dA and hence pass through our volume element
is da/Ln r122 where Ty is the distance between the points l:and 2. These
spend & time dx/v within the volume since they traverse the vdlume at velooity
Ve Henoe, only those neutrons, in number N * dx/v which were liberated dur-

ing & time intervel dx/v can be found in the volume element at all. Hence

(1/v) Q(1,2) ada ax = (dA/herez) (ax/v) N P]2 .

Where P12 is the probabﬂity of transversing the line between 1 and

2 without suffering a collision. This is equal to P the probability of

21’
transversing the line in the opposite direction. This is because there are

just as many nuolei in the way to be avoided with either direction of trans-
versal. The probability of successful avoidance of a series of hurdles (the
producst of the probability of avoidance of each) 1is independent of the order

in whish the hurdles are placed (since a product does not depend on the order

of its faotg;"s). Henoe s Py.= P

12 o1 and therefore,

Q (1,2) =Q(2,1) (6)

which is what we wanted to prove.

Furthermore we have seen dohaie @e{1,3)éepends only on the total

* Of course, Pyp = Ppy = e

whesk 2 issthe Tepgth along the line from 1 to

]

o * & & L - \a
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eross seotion as & funoction of position and not on the dependence of £ on

H
position. Suppose we have two systems, each with the same totel cross section
as & function of position, but with different functions for f say f and f'.

The distribution of neutrons will also be different. For the one system N

satisfies (4). For the other the distribution N', satisfies:
Nt (2) er(1,2) (vt (1) ) o)) B (1) @ Vol, (L")

The Q function is the same in both equations. If we multiply (L)
by N' (2) (1+ £1(2) ) o(2) and integrate over volume 2, and likewise multiply
(L") by N(2) (1 $ £(2) ) o(2) and integrate, and finally subtract the two

resulting equations we would find:

]

fN'(e) (1t £1(2) ) o(2) N(2) v, - fm(z) (1r £(2) ) o(2) N'(2) dV2

=ﬁn'(2) (1r (2 ) o2 (1,2 (1 + £(1) ) o(1) N avy av, -

RE@ Q@) @ Q0,2 (11001 o)) N(1) 4V w, (7

The two double integrals on the right side of (7) are egquale If the variable
l1abel 1 and 2 are interchanged in the second double integral it will be the
same as the first double integral except that Q(1,2) will be replaced by Q
(2,1)+ But by (6) this makes no difference, so the right side of (7) is

zeros. The integral on the left side can be combined and we find:

fie o) oNN dval = o (9)

This is the theorem which we have found so useful. e shall restate
it. We assume neutrons have a single velocity. Given two assemblies which
differ only in the value of f (the net number of neutrons released per colli.

sion) as a function of position, wié Lty haie"a'hg'same total scattering cross

o » e ® [ °
99 660 000 eeQ Co0 o0

i
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section everywhere. If they ars both oritical it would ;:.EibSBte
some sense the average f must be the same. The exaot sense is given in (8).
It says that there is no difference in the average of f times the total cross
section, provided that this average is taken over the whole system with weight
oegqual to the producst of the neutron distributions.

| If the ochanges in f are small, £ - £'= Jf say, then N and N' are

nearly equal and we obtain the well known perturbetion relation
j(éi‘) ¥odVol = 0 (9

Although t his is & very useful relation we should like to point out that the
original squation (8) for finite and 1large changes in f is even more usefuls

In applying the theorem (8) we shal) always imagine that‘the system
is infinite in extent. If there is & finite tamper for example of radius Ro
we can imegine the tamper infinite but absorbing every neutron that suffers
@ collision beyond the radius Ry. That is f= -1 (or g = 1) beyond Rye

We shall give two simple examples of how the theorem can be used to
derive well-known exact results. The remaining examples will involve various
approximations.

First suppose we have a core with a constant f inside, surrounded by
any kind of tamper or tampers with a given absorbtion function g, (= «f).
Suppose two different values of f say fl and f. can both make the system

2
critica], and let N and Né be the neutron distributions for these two values
of f« Then we oan apply (B) with the unprimed system being system i, and the
primed system being 2. Lhe integrand in the tamper vanishes because even

though N and N' may be quite different, the f values are equal so that f - f'= Q.

In the core the values are different, but are constant so (8) becomes:

(fl - fe) jro Nl N, d Voloore“ 0

°
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This is the well known orthogonality theorem which says that if two values of
f can make a core critical, the neutron densities are orthogonal (ie: the
integra) of their product, times o over the core vanishes). It shows that
there cah only be one value of £ for which N is positive everywhere, for if
there were two such N1 . N2 would be positive and the integral in (9) could
not vanish.

As a second example consider any system with £ given as & function
of position, and call it the unprimed system. For the prime systema ssume the
same total cross section everywhere, but just scattering, no absorbtion, ;o
fission. That is f' = O everywhere. The prime system is critical in the
sense that if a uniform distribution of neutrons (N'= constant) is present at
time zero then at later times distribution remsains, neither rising nor falling
in average number (no absorption or fission) nor changing from a uniform dise

tribution (there is no flow if there is no gradient). Putting £'=0 and

N' = 1 (or any other constant) into (8) we obtain:
ff o Ndvol = O (10)

This just repressnts the fact that the total number of neutrons
remains constant in a critical system. The number of collisions neutrons
suffer is o, and the net number generated per collision ig f so that (10)
expresses the fact that the net number being generated everywhere in the
system adds up to zero. If the system consists of a core with constant f

and Sy and an infinite tamper with constant absorption g and ot this becomes

£ o, fn AV, e “B %% fn ‘thper =8 (11)

where S is the flux of neutrons through the surfuce of the core.

We will now apply (3) to obtain a solution for fﬁb'%§ﬁ§!est prohiem,

.
e o .
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the extrapolated &nd-peint for

a plane nonabsorbing semi-infinite
mediume. Thus (see Fig. 1) for x< 0
there is a medium with constant o
with no fission or sbsorption (£ = 0).
For x > O there is nothing. A1l
neutrons going beyond x = 0 are never

returned. <Yhis can be represented

equally well as far as the solution

to the left is affacted by a medium, to
the right of x ¥ 0 with constant ¢ Fig. 1,

(equal to that on the left) but with g = 1 so that every collision results in
absorption and again nothing is returned to x{0s It is imagiﬁed that there is

s source deep in the interior (very negative x) and the neutron density has
constant gradient, (which we shall take = 1) therefore, except near the surface
x = 0. To what point X, wil) the neutron density extrapolate ? In an infinite
medium with no absorption N can be a straight }ine be-ax or a- (xo - x), and
‘therefore, in a finite medium except near the surface this nearly%ghe cases If
the surface is at x = o what is xo ? Let the wunprimed syétem be the actual
system described above; and the shape of the solution for x > 0 is M(x). Let
the primed system have f'= -g' = 0 everywhere, and therefure, N =~ x - xo‘ is

8 solution. Under these circumstances f = f' for x < O and the equation (8)
has no integral to the left (it: for x < 0} To the right g= -1, g' = o or

g - g'= <1, and o is constant soc we find

* One need not be concerned that (8) w-8 derived assuning no sources, while we
arc now imagining a source far to the left of x=o0. For in this problem the source
could be a slab of fissioning material with positive f« Since N and N' are almost
exactly equal deep inside, it will require the same f in the slab toc meke the primed
end unprimed systems critical. Hence, f - f'= 0 in the slabeiand, thﬁxeﬁprg the inte-

gral in (8) coming from the source makes no contribution. § & RIS
) ..: ..:
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(-0') f(xo - x) M(x) dx=0 *e® ete o ese seo ae’
or
» 20
x, = fx U(x) dx / f M(x) dx (12)
° °

That is, the extrapolated end point equals the average depth of penstration of

neutrons into the completely absorbing tamper with the same mean free path.
Since this expresses X as an average over M(X), even an approximate

form for M(X) may give & sufficiently accurate value for X. M(X) is simply

related to the solution N(X) for negative X. Because if we know N(X) we can

easily find out how wany neutrons go into the tamper and where they are absorbed.

-
-

For simplicity we shall call y «x for negative x, and shall speak simply of

N(Y). Every second vo N(Y) dy

collisions occur in the range

dy and of these 27 sin ® dé/La or
1/2 dp (pxs ©) come out at angle

® in the range d8 « The probabi-

¥

A

5

dy «— y—4— x—wtif+—

1ity that they get to x without collision is o‘ol, where 1= (x Ty)/p is the
slant distance between x and y. The chance that th;y are found in the range
dx is equal to the time spent in 'shnt range, or dx/vi . Al} angles from O
te 90°

(+ from o to 1) are possible, and all ranges dY contribute. Hence, the

total number in the range dx (which is M(x) dx) is given by

1 [ N/
M(x) < (1/2)f fo N(Y) ay o=0(x TV /1 (1/) ap (1%)
o]
o]

Yo can get a first approximation to M(x), say M, (x) by using for N(y) the

aaymptotic expression Xy + y. If we do this we find
| B /
T eO\X ¢
M, (x) 3(1/’2}] f o(x,ty) dy e (x*+ ) /b (1/u) dy,
o} (] .

] /
3 (Vé)fo (xo+ uw/o) & TF du (L) A

0
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-11. .

From which one finds

LS | 1
ﬂo(x) dx = (1/2) ff (xo1- /o) .e"‘”‘/*‘ dp = (1/2)\( (xorp./o) (w/o) au=
) () o
(/W x/o* 1/6c°

and
g 1 1
foo(x) dx‘(l/Z)[Y (xo*p/o) x«s"mc/FL du-‘(l/?)f (XO*H/O) (18/6®) dp =.
[+] [o] [e : .

2
1x°/6o+ 1/8(‘:3

If we use M (x) instead of M(x) in (12) we can obtain an approximate expres-
° .

sion for xos

2
x, 3[(1/6) xo/oai- 1/803] / [(1/14) xo/o *1/@]
which has the solution:
x, = \5—2-/0 = ,7071/0 . (15)

This differs by only & fraction of a percent from the irue value
X, s .710L/o which is derived in LA.G3. (Welton has computed X by means of
(8) but has used for M(x) the next higher approximation obtained by taking into
sccount a first pertufbation on N(y) in (13). He finds x 0= .70 in this
manner) .

Encouraged by this result we can go on to finéd the extrapolated end
point in a multiplying (f > o) or absorbing (f < 0) medium. To make things
definite, suppose we have a multiplying system so that the asymptotio solution
takes the form N(x) = sin ko(x, - x), where k and f are related by the well-
known relation (tan'lk) /k=1/ (1 +1f) (16)
Again we use for the prime system in (8) one which has the region to the right

(x > 0) identical to that on the Jeft. We find in this cagesthen !:ha;f $ st

D_FOR-
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-12- OB " o - |
ﬁin ko (xo - x) Nx) ax= 0 A (a7

o
We use for M(x) the expression (13) with N(y)= sin k (xoé y) for
the first o.pbproximation. Again the integrate on y can be performed, the
result for M(x) put into (16), the integrals on x caloulated, and finally the
¢ integration can be done. This results in an equation for xo which can be

put into the form:

2
cos (2kox )= 2k -1 (18)

(1+k2) 1n(1+ k2)

1

For absorbing media (£< o, o&ll g = -f) the asymtotic solution in

sin h h (xo - x) where

‘ca.nh.l h — h -
R T-¢ : (19)

and x ia determined by
o

2
— 2 h
cosh (2ho xo)—- - -1 (20)

(1 - 13} 1a(1 - 1)

These formulas for X give results which agree extremely well with .
%
the correct results obtained by much more diffiocult methods. They are compared
in the Table I below. The remrkable constancy of X o(l1+ ) is reproduced by

our approximate formula.

*F‘rom LA -~ S3%.
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TABLE I  Extropolated End Pnints \

Multiplying Systems , { Absorbing Systems
}
”* «
from (18) true vslue from(18) true valud
k £ (i f)x o (1+f)x°o | h g (1-g)x°o (l-g)xoo
3.0 1.402 <7169 «717h 0.0 [+0000}.7071 « 7104
0.0 <3064 »7121 71 0.2 {+013%5 {707} «710L
1.0 02732 .7030 «7109 0.4 10558 |« 7072 «7105
.8 #1356 <7075 <7106 0.6}e1341[.7075 +7108
b »1102 «7073% o710 0.8 .2718 |.7091 7120
ol «0512 «7071 ) 7104 0.9{.3887].7123 7147
o2 0132 «7071 <7104
0.0 -0000 ¢ 7071 «710L

Many more properties of the solutions can be gotten from (3), but

we shall obtain an even wider class of results from a generalization of (8):
j;ns (f -« £') o NN*aAv+ v{:; (SN & S'N) 4V =

1£(1) ) N (rfr (2) ) W'(2) ~(1£(2) IN(R)(FEr (1) )N (

s

= 2-outs l1~=ins [k 4
o(1) o(2) Q(2,2 dvl\dv2 (21)

Here we imagine first that there may be external sources of neutrons, S, in the
unprimed problem, and possibly a different source S' in the primed problem.

In addition we have generalized (8) by only integrating over a finite volume (called
INS for "Inside"). 4As a consequence we expect some sort of terms involving the
neutron density near the surface. Zlhese are given by the integral on the right-
hand side. It is a double integral, of one solutiom on the inside and the other
on the outside (minus vice verss) with the kernel Q€1,2) between theme As 1 and
2 get far apart the kernel falls off rapidly, and since 1 and 2 are on opposite
sides of the surface, the integral only involves knowledge of the solutions near

the surface. We have assumed in (21) that the sources S or §'§a§§ v?ry.?ai fyrom

*Prom LA - 53 e
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the surface and therefore, do not appear in the surface integrals. If this
is not the case, the term (1 + £) o N should be replaced by (1 + f) o Nt S
and (1 +f£') oN' by (14 f') oN'+ S' in the integral on the right-hand side of
(21) . The source terms on the left-hand side are, in fact, obtained from the
same substitution. This is because, with external sources S, the fundamental

equation (L) is just sltered by a replacement of (1+ f) oN by (1+£) oN+ S

in the integral on the right side. Otherwise, (that is if § =St'= 0) (21)

can be derived directly from (7) imagining the integrals on de to be only
over the inside. The integrals on dV1 on the right of (7) are over inside and
also over the outside. The inside integrals cancel since Q is symmetrical and
what remains is just the right side of (21).

As a first vefy simple example, we can calculate the extrapolated
end point for a plane problem again. =~m» sha'l use (21) with the boundary
between inside (Jeft) and outside(right) to be actually the tamper surface.
The prime case (see Fig. l;) has, as before, the same value of f on both sides,
and on asymtotic solution say, sin k (x, -x). The unprimed has (1t f) =0 to
the right. There may be a source S deep to the left (for the absorbing case),

the same in both cases. Since N does not change appreciably here, tha second

integral on the left of (2) vanishes. The first integral does likewise since

-
=

£ f'« The second term in the integral on the right of (21) vanishes also

because (1 T f) = 0O outside, so (21) is simply,

2 o += N
2 . \
(1+1) o ‘/A_ (/1 N(xl) Q(xl,xa) sin k(xo - Xp) dx1 dx2

(22)
xl- ~0Q x2= o
If we use the Taoct that
L NP T

Q (xl, Xe)z 1/2 £ e 2 1 dp./p :.E oo:- . . 2232 R
- -

-.- : : A. [] - e o :
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-lfe

and approximate N(xl) by its asymtotic form, we obtain as a formula for X

1 o -X ymX
(1/2)[ f / sin k(x -xl) e <
0 Xy=-o x2‘ Q ©

]

/u
sin k(x° - x2) dxydx, /. (2L)

This is the same 1lntegral as was o>tained in & less direct way by using (8)

and gives, on integration, the relatisus \Jv) suc (20) for X .

f =r
fr=1

INSIDE

£ =
fr=1r
OUTSIDE

: ;N' (x) = sin k(xo-x)

INSIDE
f=-g
- J

e—.'o"h (L+x)

N=A

Be—d‘h L

Fig. L

OUTSIDE

Figo 5 o®s *%, * o o o,
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f=-1 == f=f
fe-ty [lF=f+AS faf-Af
_/% }
\ i
. L — o
. LAL—
Figo 6

45@ aiao nse this Eq. 21 to obtain a different kind of information
about the solutions for one velooity problems. Suppose we have a homogeneous
mediuﬁ with a covistant absorption g and constant cross section ¢ « If we have
a plane source emitting 8 neutrons per second then we know that at greater
distances from this source the neutron intensity falls off exponentially with

distance x away from the source, as Ae ~hox

(see Eqe 19)« The problem is to
determine the magnitude A of the asymptotic solution for a sourcs of strength
Se e shall use Eq. 21 in the following manner: (See Fir. %) We shull imagine
that the plune which separate the "inside" from the "outside" region is at e
distance L away from the source whiocn is in the inside region ir the unprimed
case. For the primed solution we shall assume that there is some source at a
great distance from the plane in the outside region and that, therefore, the
solution in the inside region from this source behaves exponentially with an

increasing exponential. In both the primed and unprimed cas

o B,
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the value of £ 1is the sawme and is the same in both the lnside and outside
regions, There is no source in the inside region in the primed casa. 4
glance at Fige. §, which indicates the coordinates used will show that Eq. 21

gives the formula:

c
‘ - tohxo =ch(l#
sge-nl = [ ‘ (l-g:)e [Ae oh(L«-xl)BeU 2he oh(Lx2)
=0 Xl: -9

Be‘chxl] Q(xl,xa) dx, dx (25)

2

We can substitute the expression (23) for Q(xl » Xy ) in the integrals on
the right side of (25) and then perform the integrals on X, s %, and then on
Bk « When this is done we obtain: (the value of B cancels out of both sides)

el vy (24)

wnich g_ives the connection between the source and the coefficient of the

exponential in the neutron densitya t greater distances. The formula is exact.
This can also be.appl.ied to‘e'g spherical problem in which we have the sc;urce of
strength S located at a point. 4t a very large distance r from this source

the neutron density is:

2n2(31 - 1) g-haR
N(R) = oS » 5
’ (1 = g) (h®~g) LU R (27)

It is interesting to find that it is comparatively simple to find
the neutron densiﬁy exactly at the boundary of an untamped region. For this
purpose we can app'ly our theorem (8) in the form (9) which is valid when there
is a small difference between the prime and unprimed systems. =uppose we have

a slab of multiplying medium of very large thickness, 2L (see Fig. 6)« The

L 2 [ ] L4
[ ] [ ]
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solution in this medium for the neutron density will be proportionmal to cos kx,
say A cos kx. +‘he relation between k and f is given by {16). 1In accordance
with our extrapolated end point formula we know that M must go to O when x is

equal to L ¥ X therefore:
k (L+x) =(x/2)t enm (28)

where m s some integere Now, what will happen if we increase by an amount
AL the half width of the slab? If it is still to be critical the f value need
not be as gréat. We shall call it £ - Afe The new value of the wave number k

which we shall call k « Ak must satisfy:
(k - 6k) (L+altx, )= @242 m (29)

This implies that ak/k is equal to AL/L. In the region between
x=2 Lt AL and X* L the value of 1 + £, which i# O in the unprimed system,
changes to 1 + £ + Af in the primed system; or by 1 + £ to the first orders
The neutrondensity‘ here is approximately N,, the value at the surface for the
unprimed problem. In the region from x= <L to x ¥ L, the change in £ 1s just
Af and the square of the neutron density (or more accurately, NN.'), has an
average value of 1/2A2 to the first order so that anapolication of Bq. 8 gives

immedia tely:
(1+£) N2 aL=(1/2) A% - 2L - ar or N 2 =[_A2k/(1+r)] df/dk (30)

We can compare Ns to Next, the value of the neutron demnsity that
would be at the surface if the approximate solution A cos kx were extrapolated

all the way to the surface. That is Next is equal to A sin bco. we find,

finally, as an (exact) expression for the value of the neutrondepsity at the
. . * L] [
.
H

(] [ ] 8

L B Juat Baet ] L e 6 @
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]

edge of a bounded multiplying medium, the expression: (where we have gotten

df/dk from 16)

2 .
N 2 / Next ‘—‘[[(1 + 0/ (14 kzﬂ -1/ sink x ‘ (31)

If the medium is an absorbing medium a similar expression can be foundg however,
the method of derivation given here must, of)course, be altered. What one can
do is keep a source in the matgriaI, at x T 0, and use our expression (27) to
obtain the size of the neutron density at the edge of the medium. A method
exactly analagous to the me£hod we have just used for the multiplying medium
can then be applied to the multiplying medium with the source at the center.

This gives the result:
N CAE -—[1 (1-g) / (1 h2)] / sinh® nx (22)
g lext T " \\-E = o9

In the 1limit when the absorption or the multiplication goes to OJNx/Next

approaches 1 / ( \Exoc).

Finite Tamper

We can now apply the theorem to a more complicated problem, namely,
to determine the effect of finiteness of a tamper. We shall apply it in the
oase of nonabsorbing (g= o) tamper of radius b. Suppose then we have a spherioal
core of radlius a and a tamper of radius b. For the system to be oritical a

certain f value, say f}, , is required in the cores. Were the tamper infinite
f=fe 1 g=0 | g=0
shall let the primed system in (8) be \ Tamper

this system with infinite tamper (see F’j 4

the requisite value would ve f_, . We

Fige 7). The unprimed system will be . Care

the system with finite tamper, or rather

0
L] ® 3
. . A e oee o o oo
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with tamper with ocomplete absorption (g = 1) beyond be. Hpplying (3 we find,

{with Oy and ot total oross section in core and tamper).

20
= 2
O'o (fb-f” )beH” dvcore < Ot [ }{“ Nb . hnr dr (33)

We shall now need approximate expressions for Ny and Nb' For
very large r, N _ varies asymtotically as i/ﬁ, but there is a transition effect
near the core. This transition effect does not penetrate more than a fraction

of a mean free path into the tamper. If b-a exceeds a mean free path, then,

to an excellent approximation Ng,varies as 1/r for r > b and we have

Ng (1) = (350p/Lm) *(1/r) (3
where
S=0_ fg f Np 4V (35)

is the net number of neutrons generated in the core. The coefficient in (3L)
can be found from the integral theory, or more simply by noting that very far
out (large r) the neutron density varieé very slowly in a mean free path l/bt.
Hence, diffusion theory holds, which says the flux is (]/3ct) bﬂre oN/or
and since this flux must just equal S, (3L) follows.
The quantity NS can be found approximately in the following way.

As is well known, for one velocity spherical problems with constant mean free
path everywhere there is a close relation to a corresponding slab problem. The
solution for N for the sphere problem times r, is a solution for the slabe. Now
if our problem is looked at as a slab problem, we would imagine a source on one
side of a finite slab of width b-a, with absorption on the other side, outside be

If b-a exceeds a mean free path or so, the solution outside b will be the same

as though the source were much deeper and b-a were nearly infinite. This pro-

blem we have already considered above, and have called the solgtivp W(X), sp . .
L1 —

*
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that
N () =@/} u(r - b) for r > b (36)

where A is a constant. It may be objeoted to this procedure that the conver-
sion from sphere to slab is invalid when the core and tamper mean free path are
unequalf But Burely the shapé of the solution outside the layer of tamper of
thickness of a mean free path or so is nearly independent of the exact properties
of the cores The size, of course, depends on the net number of neutrons genera-
ted in the core. This must equal the total number absorbed outside the tamper,

so0 that we have

(- o) 00 .
olinprldy —
9 ! Nb(r) LarSdr = o, £y be dvcore T Ln otA !(yfb) M(y) dy (37)

whore we used expression (36) and put y Tr-b in obtaining the last integral.

If we substitute (3L) and (36) into (33) we Ffind,

oo
%Ffb-fw)f % Yoo chore”tJ( (330/Lm) (1/r) (A/r) M(rev) *LarPar
2 - >
='?Sc$t A J M(y) dy.

Using (35) to eliminate S and the second equality in (37) to eliminate A, we

find -

00 :
2 gM(y)dy
g o, f f
- 39 9¢fpfe o {N dvcom.fn av

of-!(fb"f‘”) I‘Ib Yo Weore Ln 00 b @ oore
f(y*-b) M(y) dy
A )

This can be still further simplified, by hoting that the mean of Y for the func-
tion M(y) 1is X (see (12) ), so that the ratio of integrals involving ¥ is

Just 1/(xo + b). Furthermore fdvcore =L¢M3/'5 50 & final r earrangement gives:

1 1 . "c“’*t;"‘3 SNb Veore 'fN“chore
o " T ' - (39)
b+x° be devoore ojdvcore E E .E . - B
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The expression in the bracket is very nearly 1 for practical cases.
It has been calculated (see table) assuming the neutron density is & parabola
l-¢c (r/a)2 in the core, for various values of ¢ for Nb and NM (which we will
call c:b and oo) o The ratio of N at the core surface to the value at the cenw
ter is l.c. This is rarely less than 1/2 so that e rarely exceeds 0.5. For an
untamped core of material of £ = 0.7 {1like L49) C is about 3/l;, however. For a
core tamped with a non-absorbing tamper of equal mean free path C is .36. TFor
smaller £, ¢ is larger in the untamped case, and the better the tamper the lar-

ger 18 C. Numbers can be obtained from the table for any particular case, but

for
TABLE II
¢, C*> o 1/ 1/2 3/ 1

0 1.0000 1.0000  1.0000 1.0000 1.0000
1/h 1.0000 .ol 9858 .9732 9520
1/2 1.0000 9858 9662 «9371 8909
3/l 1.0000 9732 9371 8369 .8105
1.0 1.0000 «9520 8509 8105 . 7000

nearly all purposes the expression can be replaced by 1, which makes (38) very
much simpler.
Therefore, our formula for the effect of a finite non-absorbing

tamper is: (noting (15) )
/g, - 1/t = ccota3 / [o+ .vl/b;] (39)

From the derivation it is seen that (28) is not exact. It should
be very nearly correct if b.a exceeds 1/°t' We have tested it on the extreme

case where b-s = O; our tamper is so "finite" it is no tamper at all. Then, of

course, our formula(39) cannot be expected to Le correot. Hoivévex‘i ﬁhei‘es{iléj.
e o0 *

L)
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(Table III) show that we are not off to an extreme degree. ‘They apply to the
case S, = cc' andlthe ﬁecessary data comes from the results of Frankel and
Nelson (1A 5%A) for tamped and untamped spheres. (They have also done a few
oases with finite tampers and these agree with (%9) as accurately as their graphs
can be ;ead).

TABLE III

Core Critical f Critical ¢ No Tamper

Radius Infinite Correct from Eq.(39)
a Tamper f,, fb.a LA 53A fb-o
.8 1857 1.299 15208

1.1 o517 874 330

1.4 o3he 62 625

1.8 221 150 Ll

2.3 . A2 +350 *333

A formula (Eq. LO below) has been proposed to give the amount of
absorption (g) in an infinite tamper which is equivalent to having a finite
tamper of radius b. The attempt is made to make the slope-to-value-ratio of
rN in the tamper at the surface of the core equal in the two casese. Assymptotic
solutions in the tamper are assumed to hold up to the core surface. Thus, with
absorption g, the asymptotic solution for rN varies as e=hor (see (19) for the
relation of g and h.) so that its slope to value ratio is ho . For the finite
tamper the "asymptotic" N is a straight line geing to zero at the extrapolated
point r= b + xo so that rN is proport{onal to b + X, = Te Its slope

to value ratio at r = a is 1/(b'* x, - a). Setting these two quantities equal

we find
ogh =1/ (b + x -a) ‘ (L0)

- This then gives the amount of absorption (or rathqr:h)ogn.inf}ngte..
L

e @

°0 o aWRS ke T ¥

[ ]
L 2 ) ¢ ¢ ® ® 0
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tamper shouid have to be equally effective in reflecting neutrons to a tamper
with no-absorption but with a finite outer radius be The formula is correct

in the limit of diffusion theory, Unfortunately, however, it is not very accu-
rate for many practical cases and its use is to be discouraged. Formula (39}
should be used instead. 4 ‘

We can derive the relation (LO) in a less intuitive way, which,
howsver, will help to show up its errors, For this purpose, we shall find the
change in f consequent on changing g frcm o to g in an infinite tamper (we will
say f changes from fo to fg). If the prime s&stem is for g = 0, and the unprimed
for finite g (so that f, and N here is what £, and N_represents in (21) ) our
theorem (8) tells us, .

00
op (£, = 2) [N N av, <o g £N° N, r2 dr (L1)
We shall have to use estimates for N and Ng in the tamoer in order to make (lL1)
useful. We shall make the approximeation that N, Ng oan be replaced in (L) by

their asymptotic forms, equaticn (3L) for N, and
N, =@/ ool - ) ()

for Ng. This will turn out not to be a particularly good approximation. The

constant B in (42) is determined from the conservation of neutrons, (see 11)
o0 > )
Sg =0, I‘g ngdvcoro' o, & LNg Lardr = 4n oth(a + 1/h°t) (L43)

where Sg is the net number of neutrons generated in the core. These forms (3L)

and (42) can now be substituted for No and N, in (41), the integral performed

g
(43) used to determine B, and the result rearranged (just analogously to the

derivation of 38) to read:

(YY1}
° [
ocoecoe
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s oy oy 1 .
1 1 o ot X be WVoore 'f No Voore
T <
o g a + .
ho, - '[ NoNo dvcox'e {dvcora (L)

The expression in the bracket is always almost exaotly 1, and can be forgotten.
If the tamper with absorption is to have the same effect as the

finite tamper, then they must make equal changes in 1/f. This will be the case

& ‘i’l/hct 2b + x (L5)

(o]

which is equivalent to (40).

The reason (LS) or (L40) is not acourate is not because (39) is not
accurate, but rather that (L&) is not. Table IV gives the results of some cal-
culations made with it, and these results are compared with the correct results
of LA-173. The result is very poor when the tamper mean free path is much

smaller than that of the core.

if

TABLE IV
o8 oc/ot g fg= o t‘g true t‘g calc. (Lly)
L0 2.0 ol «0780 «112 «115
105 2.0 el oblo obss .h?l
L. 0 2.0 «02 «0780 <096 .098
1.5 2.0 .02 Ji1o g 2
2.0 1.2 .1 .201;8 3025 <3006
200 102 002 .20&8 .25?5 o2qh9
1.0 002 .02 022)4 0563 10186
1.0 0.2 «10 224 392 «531
1.0 0.2 Lo .22l 766 2.703
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The reason is that in deriving (4L} we used for No and Ng simply
their asymptoﬁic values in en integral which extends right up to éhe ocore
surface, near which these asymptotic forms are known to be false. This error
was not made in deriving (39) since only integrals beyond r = b were involved.
This is sufficiently far from the Qurface r = a, to permit use of the asymp-
totic form.

We shall now go on to derive a formula like (39) for tampers which
do absorb neutrons. This formula will, however, not be anywhere nearly as
reliable as formula (39) for, as we shal) see, it will require the integral
over tamper solutions near the surface of the core where they are not accura-
tely known. We shall assume a core of radius a and the tamper of radius b.
The value of f needed to make the core critical will be called fb. The ab-
sorption of the tamcer will be g. We shall compare this problem to a problem
in which the radius of the tamper 1is infinite and for which the value of f,
which makes the core critical, if fo, . As we have already seen, the finite
tamp;r is equivalent to ;n infinite tamper if one arranges that the neutron

density goes to O to some point, a distance x_ outside the outer radius of

o
the tamper. The quantity, X0 is given by equation (20). or, more simply, by
the approximate expression, ."1/&-g. This neutron density can be made to go
to. 0 at the point r = b + xo in an infinite tamper by having a negatiée source
very far out on the tamper and at distance c from the origin. The solution in

the tamper, except verynear r=a or r =b is:
(a/e) &7 (1 . o7E0 BP¥xo -1 (1)

The second term in this expression arises from the source at ¢ and the strensth

of the source, per square centimeter, must be:

o o ooe

e

e o

e o

[ 3} [ [ ] [
00 0eo oee o0e 000

, ¢ 6 ¢ o0 o oeoo
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g oo (- A ong (btx) (7)
c h (1 - n9) o e

in accordance with Eq. (2). Now, we shall apply our theorem (21) to compare

this problem, which we will call the unprimed problem, to the problem of an

: ' -0hR
infinite tamper with no source in the tamper for which the solution is Be /Re

In applying Eqs (21) we will assume that the inside region extends to infinity

and tha:_b, therefore, the integrals on the right hand side of Eg. (21) do not
make any contridution. Using & notation similar to thut which we applied in
the case that the tamper was not absorbding, an apnl ication of Eg. (21) gives

)

the result:s .

(rb - fN)/Nb B dvcoro = - s - S «LmC (L8)

If we substitute the expression for S,, which we obtained above, (L7) we will

find:

In order, therefore, to find fb - f., » we shall have to have an expression
for A and B. We shall attempt to find B by using the fact that all of the
neutrons which are generated in the core are absorbed somewhere in the tamper
(see Eq. (11) ). However, although we know the solution in the tamper at
large distances from the core we do not know the solution near the core. This
will make an error in our analysis which should certainly be studied further;
but until this is done we shall use the asymptotic solution right up to the
edge of the core. Therefore, if we substitute this asymptotic solution in Eq.

(11) we will obtain an expression for B. The equation gives:

oo
- - w2 _Be hor .B*Lngoy -aho
S, i‘moc fN dvcore‘ g0, [hlr - dr .--—2—05—}—-- (]?ahct)e t

o0 h oe o000 00e °

STt ' :
°s
.

, .
% (rb = foo) /Nb h}” dvooroahn &}.&%i—_-(—hﬁz);g) e-eoh'(b*xo)f“B- (L9)

(50)
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We shall compute A by a similar procedure. However, in this case we have a
source in the tamper and so shall nave to subtract the flux from our negative
source from the total number of neutrons absorbed in the tamper. This results
in:

5,7 %fbf NV, o= AT B [(1 +aho)) o™t | (1.aho,) e=0xn(2072%0 "J

T (51)

Substituting the expressions for B and A, obtained from (50) and (51) into (49)
and rearranging terms somewhat we will obtain finally en equation for the

finite tamper :

2 3.
1 _ 1 h (l-g) (h2_g) 2 Ot 0’0 ha .
-T; £ 682 (1-h) (1+aho )d E°2hot(b+ X, =al)_ 1 - ahog ]
t 1+ aho
{f Ny GV g of oo 8V,
.
be ¥ WViore J Voore (52)

As usual the integrals of the neutron density over the core in the bracket

combine to form a ratio approximately 1 for practical purposes. Furthermore,

the complicated expression, depending upon g and h, in the parenthesis of

expression (52), is equal to 1 within 10% as long as g is Jess than .3. Since

this is usually the case, we can usually use a more simple expression: -
T 3 20,° o

f T + - -
- b (1¢ ahot)z [eehot(b x5 = ) (1 - aho )
(1 + a.hot )

(53%)

]
1]

In order to improve this formula it would be necessary to make some
estimate of the effect of the deviations of the true neutron density from the

agymptotic expression near the core surface. In the case of a core inwhich
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the mean free path is the same as in the tamper, it is possible to obtain
considerable information about this deviation from a direct analvsis of the
integral equation (see LA 53 ). Another method in this case, to obtain the
relation between A and Sb' is a method analagous to the one by which we obtain
this relation, when the source was al} located at a point (see the deriva-
tion of equation (26). When the core and tamper mean free paths are not equal,
the deviations between the asymptotic and true solutions near the core are more
difficult to find, and depend very strongly on this difference in mean free
pathe Some information cen be obtained if an attempt is made to find how
much change in the value of f in the core of an infinity tamped gadget is
required to compensate a given change in the absorption g of the tamper.
This requires, essentially, the integration of n2 over the tamper. ®ince the
changes in £ for given changes in g are know for infinitely tamped gadgets,
this gives a method of comparing the true value of the integral of n2 with
the value of this integral that would be obtained in using the asymptotic
expression for the neutron density, In this way some idea can be obtained as
to the'importance of the deviations. In addition, the value of the neu;ron
density at the surface of the core Also be found (by variation of f with core
radius, as in derivation of (31) ) so that still further information can be
obtained as to the deviations. The combination of these facts to give an
improved fornula has not been carried out.

One can try also to find the extra absorption in an infinite tamper
which would give the same absorption as a finite one. This method is clear
from the derivation of (L40). Theresult is that the equivalent absorption

constant h' for infinite tamper is given by

h*=h / tanh o h (bt x - a) RYILH .f;h):

L)
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This formula is much simpler than (53%). At present, it is not known in gener-
al which is more acc;xrate. For tampers with very small absorption (53) does
become the more accurate, as the descrepency terms make little contribution.

The extrapolated end point method has been extended by Frankel and
Goldberg [A.258 to apply to finite tampers having the same mean free p&til as the
core. The following table (due to Weltom) gives a comparison between their
results and the results obtained by equation (53). The radius of the core is

& =1l mean froe paths, and the tamper radius b in mean free path is 3, § or o9,

o ‘ LA-258 This Report 1A-258 This Report
: A T,
0.0 0 . ) 0'35@
0.0 5 0.403%3 0.405L 0.4887 . {0.5015
0.0 3 0.4505 0.4552 0.7485 0.771L
0.1 & 0.4773 |
0.1 5 04795 0.4796 ©0.0096 0.0100
0.1 3 0.L,945 0.L969 0.0729 0.0826
0.2 00 0.5191
0.2 5 0.5194 . 05196 0.0011 0.0019
0.2 3 0.5255 . 0.0235 0.5274 0.0303
:;E QOE;OE: E OE. ::.
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