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ABSTRACT

A theorem is derived whiah is useful in the analysis of neutron pro-

blems in witiuhal1 neutrons have the same velocity. It is applied to teter-

mine extrapolated end-points, the asymptotic amplitude from a point source,

and the neutron density at the surfaoe of a medium. Fo~u~as for the effeat

of fin~te tampers are derived by ita aid, and their accuraoy is disaussed.
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A Theorem and its App3ioation to Finite Tampers UNC1A$51F1EI),.
The problems of the charaateristios of systems in which the neutrons

can be considered to have only one velooity have been ably solved by Frankel

and Nelson (LA 53) f’orthe ease that the oore in tamper have the same mean

free path, and by Serber and the members of his group (see, for example, LA 234)

for the general ease. It is not the purpose of this report to add appreciably

to what i8 known about these problems. While this work was being done an inter.

esting theorem was found to be extremely useful in obtaining approxi~te ex-

pressions for many of the properties of systems where the neutrons have only

one velocity. In spite of the fact that, at the present time this theorem and

its applications can add very little that is new to our knowledge of these

systems, it mS thought to be worthwhile to desaribe the theorem in a report.

it does permit, in many cases, a simpler derivation or understanding of some

of the properties. In particular it permits one to obtain a formula with the

effect of a tamper of finite size. l~henthe tamper is not absorbing this

formula, (Eq.39) can beexpected to bequiteacourate. The corresponding for-

mula for the absorbing tamper unfortunately cannot be expeotod to be as accurate

and there is still room for improvement. The first part of the report will

derive the theorem (Eq. 8) and apply it to various simple problems such as :

The determination of the extrapolated end point; the value of the neutron den-

8ity at the edge of a medium; and the determination of the asymptotic solution

far from its source in an absorbing medium. In the second part of the report

the theorem will be applied to calaulate the effect of a finite tamper.

Suppose that at point 1 neutrons are being emitted equally in all

directions. How many of these will there be per unit volume at another point

2 which have gotten to 2 without s~~?;~>?~.arix$a~ll~sionsqn the way? Call
.000: ::.
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Now suppose we have a critical.system and N(l) is the number of

neutrons at the point (l). These suffer collisions, in number ~ o(l) N(l),

where a(l) is the total collision oross section per unit volwne at (1) (equals

the number of nuclei per unit volume times the nuolear cross section of eaoh).

Letthe average number of neutrons liberated per collision &t the point (1) be

~ +f(~)e The qunntity f may be negative. h a tamper, for example, where

there is no fission it will be negative, and in that ease we sha?l often call

it - go If of is the fission cross section, Ue the elastic scattering cross

seotion and or the capture oross section, then if v neutrons result from

fission, the total aross section is

(1)(JMsr+ae+ur

and the number of neutrons released is

{l+f) a=c Wr+ae (2)

so that

[ 1fa(v.1) *-ar/a
f

(3)

From the (1 +f(l) ) v o(1) N(l) neutrons liberated per unit

volume at (1), (l\v) Q(),2) (1 +f(t) ) v u(l) N(l) will be found per

units volnrneat (2). ‘rhetotal neutron n~ber at (2) in ~de of contributions

from all the collisions occuring~nvolumeelements such as (1) so that,

N(2)= JQ(l,’2)(I+f(l) ) a(l) N(l) dvoll (4)

This integral equation has a solution if the systen is critic&l and it iS the
.0 ●0: b-a . ● 00 ●

properties of the sol~tion N that ~~s~l~ di&u~s”%~ moans of an intereatin
.0.. ..:.:0●.: ●:0 ●0

. 9 9 ●m● * ●D* ●*
● * ● ●

Printed on DIETZGEN #198M’’AGEPltOOV WOCIW POPCJ ● ● ** ● :
● ●

. :C: ● 0.
.9 ● 0 “w u“~c\.~ss\wD● *9 .

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



-.. .

s. b
● e ● **.* .*9*: ●*9’* ●
● m***m 9**---v-v Q w V*9 e. .
● .*.....* . . .

● * ● ** ● *9 ● m, ● O9 ● *
-%40 ::0 ::.::

theorem which is a consequence of the”f~c’;”t~el$%a&!s~e,s (~). Tho theorem

hinges on the fact that Q(I,2) is a symmetrical function of 1 and 2. We

shall interupt our argument a moment to prove this.

Take a small volume element at (2) with area dA facing the point 1

and of depth dx in the direotion of the line between 1 and 2. The number

of neutrons in the volume at 2 froma unit source at 1 LS then (1/v) Q(3,’2)

~dx. Sinoe we are ~or~oernedwith neutrons which have suffered no collision,

they must travel in straight lines frant1 to 2. ‘~hefraction of the neutrons

whioh are aimed to strike the area dA and henoe pass through our volume element

is dA/kn r122 where r12 is the distance between the points 1 and 2. These

spend a ti..edx/v within the volume since they traverse the v$lume at velooity

v. Henoe, only those neutrons, in number N ● dxlv which were liberated dur.

ing a time intervel dx\v can be found in the volwne element at all. Hence

(l/v) Q(I,2) tidx ‘(d&’r122) (dX/v) N P12 .

Where P12 is the pr~bability of transversizg the line betwe>n 1 and

2 without suffering a oolliRion. This is equal to P the probability of
21’

transversing the line in the opposite direction. This is because there are

just as many nuolei in the my to be avoided with eit}~erdireotion of trans-

versal. The prokbility of successful avoidance of a series of hurdles (the

produot of the probability of avoidance of each) !.sindependent of the order

in whiah the hurdles are placed (since a product does not depend on the order

of its faot~~s). Henoe* , P12= P21 and therefore,

Q (1,2) = Q(2,1)

which is what we wanted to prove.

Furthermore we have seen.th&Q.(l,a).~qe#ds only on the total
* of course, P12=P21= e“$aazl~~. #her% s is:th$ fe~gth alonfithe line from 1 to

●s W: ●:0 ●0: ●.. ●*

●

(6)
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●ross seation as a function of position and not on the dependence of f on

position. Suppose we have two systems, eaoh with the same total oross section

●s a funotion of position, but with different functions for f say f and ft.

The distribution of neutrons will also be different. For the one system N

satisfies (4).For the other the distribution N*, satisfies:

I
N’(2) s Q(l,~ (1 + f’(l) ) u(l) N’ (1) d VO1l (4’)

The Q function is the same in both equations. If’we multiply (~

by NC (2) (l+ f?(2) ) 0(2) and integrate over volume 2, ●nd likewise multiply

(~’) by N(2) (1 + f’(2) ) o(2) and integrate, and finally subtract the two

resulting equations we would find:

JN’(2) (lt f’(2) ) 0(2) N(2) dV2 - J N(2) (1 ~ f(2) ) o(2) N’(2) dV2=

J{= I?1(2) (l+ f’(2) ) o(2) Q(I,2) (1 + f(1) ) a(l) N(1) dV1 dV2 -

‘[N(2) (1+ f(2) ) c(2) Q(3,2) ( l+f’(1) ) c(l) N’(l) dVl dV2” (7)

The two double integrals on the right side of (7) are equal. If the variable

label 1 and 2 are interchanged in the second double integral it will be the

same as the first double integral except that Q(1,2) will be repl.needby Q

(2,1)● But by (6) this makes no difference, so the right side of (7) is

Zeroe The integral on the loft side can be combined and we find:

J(f- f’) aNN’ dvol=o (!3)

This is the theorem whioh we have found so useful. We shall re8tate

it* We assume neutrons have a sin~le velocity. Given two assemblies whioh

differ only in the value of f (the net &mber of neutrons released per colli.

sion) as a funotion of position, t#$ %~”~ha~e”~h~”%ame total scattering cross
● 0000 9* ● ●

● * ●

●0 ●0: ●:0●c: ●:* ●.
~

a ●** ●9
● 8 w w .
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section everywhere. If they are both arit.icalit would ;e”;~pe:ote~:%~t:{;
.

some sense the average f must be the same. The exaot sense is given in (9).

It says that there is no difference in the average of’f times the total cross

section, provided that this average is taken over the whole system with weight

equal to the produot of the neutron distributions.

If the ohanges in f are small, f - ft= I$f say, then N and N! are

nearly equal and we obtain the well known perturbation relstion

Although this is a very useful relation we stiouldlike to point out that the

original equation (8) for finite and large ohanges in f is even more useful”b

In applying the theorem (3) we shall always imagine that the system

i6 infinite in extent. If there is a finite tamper for example of radius RT

we oan imglne the tamper infinite but absorbing every neutron th$t suffers

a oollision beyond the radius R .
T That is f= .1 (or g = 1) beyond RT.

‘fleshall give two simple examples of how the theoren can be used to

derive well-known exact results. The remaining examples will involve various

approxim&tions.

First 8uppose we have a core with a constant f inside, surrounded by,

any kind of tamper or tampers with a given absorption function g, (= -f).

Suppose two different values of f say fl and f2 oan both make the system

critical, and let N and N be the neutron distributions for these two values
1 2

of f. Thenwe oan apply (8) with the unprimed system being system 1, and the

primed system being 2. lhe integrand in the tamper vanishes beoause even

though N and N’ nnybe quite different, the fvalues are equal so that f - f*=O.

In the oore the values are different, but are ~onstant so (~) becomes:

[

● O . . . . . .

(fl - f2) CTN3 N2 d vo~oore= O ::

‘:’;:!.@j&
. -.. ● m.
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This is the well known orthogonality theorem whioh says that if two values of

f can make a sore oritical, the neutron densities are orthogonal (ie: the

integral.of their product, times o over the core vanishes). It shows that

there oah only be one vulue of f for whioh N is positive everywhere, for if

there were two such NI ● N2 would be positive and the integral in (9) oould

not vanish.

Aa a second example oonsider any system with f given as a function

of position, and oall it the unprimed syst-. For the prime sy8temassume the
1

same total cross seotion everywhere, but just 8cattering, no absorption, no

f’i8sion. T~t is ft s O everywhere, The prime system is critical in the

sense that if’a uniform distribution of neutrons (N*= oonstant) is present at

time zero thenat later times distribution remains, neither rising nor falling

in average number (no absorption or fission) nor changing from a uniform dis.

tribution (there is no flow if there is no gradient). Putting f’=O and

N’ = 1 (or any other constant) into (8) we obta~n:

(faNdVol=O (10)

This just represents the faot that the total number of neutrons

remains oonstant in a critical system. The number of collisions neutrons

suffer is uN, and the net number generated per collision it f eo that (10)

expresses the faot that the net number being generated everywhere in the

system adds up to zero. If the system consists of a core with constant f

and u= and an infinite tamper with constant absorption g and u this,becomes
t

fo c f
N dVcore ’g at

J
M dVtmper = S (11)

where S is the flux of neutrons through the surface of the core.
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tho extrapolated bnd-point for
●

a plane nonabsorbin g’semi-infinite

Thus (see Fig. 3.)for x< Omedium.

there ia a medium with constant o

with no fission or absorption (f= 0). f=o
For x > 0 there is nothifiq. All f~o

neutrms going beyond x = O are never N
returned. ‘~hlaoan be Tepresepted

equally well as fkr as the solution
x

to the left is affeoted by a medium, to J@o

the right of x = O with constant a Fig. 1.

(equal to that on the left) but with g c 1 SQ that every oollision resu~ta in

absorption and again nothing is returned @ X<OC It is imagined that there is

8 source deep in the interior (very negative x) and the neutron density has

oonstant gradient, (which we shall take = 1) therefore, except near the surfaoe.

x = O. To what point X. wi33 the neutron density extrapolate ? In an infinite

medium with no absorption N can be a strai~ht line b-ax or a- (x - x), and

therefore, $in a finite medium except near the surface this nearly? he ease* If

the fsurfaceis at x = o what is x ? Let the ~urjrimedsystem be the actual
o

system described above, and the shape of’the so?ution for x > 0 is ~~(x)e Let

the primed system have f!= -g! = O everywhere, and tfierefore,N = x - x is
o

0 solution. Under these circumstances f = f’ for x< O and the equation (9)

has no integral tothe left (it: for x <O)* To the right g= -1, g’ ~ o or

g-g’= -1, and a is constant so we find

* One need not be concerned that (8) WtiS dez-ivedass~ing no sources, while we
arc now imgining a source far to the left of x= o. For in this problem the souroe
could be a slab of fissioning material with positive f. Since N and N? are almost
exactly equal deep irside, it will ,requirethe same f in the slab to make the prime
and unprirnedsystems critica~. ?ienoe,f - f?= O in the slab.&zxi.t&~ef$qqOt~e inte-
grkl in (8) coming from the source makes no contribution. ! ! .; : : : : “

“:’o:n
● ● ● ● . -“- ●@* ●*
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(-u) (:0- x)
8: ●

:,0 .

hf(X) dx = O
● ●:0 b ●:C ●*9 ●0

o

or

J

00

x= X b!(X) & / f ‘M(X) dx
o

(12)
o 0

That is, the extrapolated end point equaJs the average depth of penetration of

Qeutrons into the completely absorbing tamper with the same mean free path.

Since this expresses X as an average over M(X), evenan approximate

form for M(X) may give a sufficiently accurate value for X. M(X) ia simply

related to the solution N(X) for negative X. Because if we know N(X) we can

easily find out how many neutrons go into the tamper and where they are absorbed.

For simplici~ywe sha]l call y = .X for negative X, and shal] speak simp]y Of

N(Y). Every second vo N(Y) dy

collisions occur in the range

dy and of these 2n sin 0 d4i3/Lfior Y @ \
?

/L1/2 dp (w-6) come out at ang3e = /

~ in the range d9 . The probabi- dy--y :‘, x- ~ ~

Iity that they get to x without oollision is e-u~, where 1- (xty)/p is the

slant distance between x and y. The chance that they are found in the range

dx is equal to the time spent in slant range, or dx/v~ . All angles from O.

to 90° (p from o to 1) are possible, and all ranges dY contribute* Hen~e, the

total number in the range dx (whioh is W(x) dx) is given by

1-
M(x) z (~//@

[j

~ N(y) dy *4(X rY) / p (1/H) dp (13)
o
0

‘7ecan get a first approximation to M(x), say M. (x) by using for N(y) the

●sjmptctic expression x + y. If we do t}liswe find
o

Im
:!O(x)= (1/’2).,

H
5(Xo+y) dy e

.cJ(x*y)/’#
(l\p) d~OOco .-e

00 ● ●..
:::::0 ●O.

~ (1/2)/1 (Xo+JcJ) e-a”p @ (w ‘;”;:o
- , -----......-......--,-------
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From which one finds
● ●99 ● ●*. ●.* 00

r soo~
1

MO(X) dx= (l/2) ~ (xot p/o) e-m/P dp=
1

(1/2) [xotJcJ)(#cT) c?~=
o 00 0

(1/4) xo/a+l/6c72

and

J
w

(T1 -o’%/p
f

1
XMO(X) dx’(1/2) (xo*IA/u)xe d~ = (1/2) (X+y/’(Y)(p2/#) dy ‘.

o 0 0 0 .

lxo/6a2i- l/8aT

If we use M (x) instead of M(x) in (12) we ean obtain an ●pproximate expres-
0

sion for X08

x, =[(1/6,../.’+ 1/,.0/ [,1/’4)x /o*JJ
o

Aich has the solution;

Xo=m = .7071/. (15)

This differs by only a fraotion of a percent from the true value

%s •?lC~a whioh is derived in LA-53. (We]ton has oo~puted X. by mans ofo

(8) but has used for M(x) the next higher approximation obtainedby taking into

aooount a first perturbation on N(y) in (13). He finds Xoo ‘.709~ in this

manner).

Encouraged by this result we oan go on to fintithe extrapolated end

point in a multiplying (f > o) or absorbing (f < O) medium. To make things

definite, cuppose we have a multiplying system so that the asymptotic solution

t~kes the form N(x)= sin ko(xo . x), where k and f are related by the well.

known”relation (tan‘lk) /k = l/(l+f) (16)

Againwe use for the prime system in (9) one which has the region to the right
.0: .0. ● **

(x > O) identiual to that on the loft. We find in this oa8e:t$@ %ha~: “~”:“.
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r
sin kc (x - x) M(x) dx = O (37)

o 0

‘Weuse for M(X) the expression (l?) with N(y)= sin k (x.t y) for

the first approximation. Again the integrate on y oan be performed, the

result for M(x) put into (16) , the integrals on x oalaulated, and finally the

y integration can be done. This results in an equation for x which can be
o

I
put into the form:

2 k2
00S (2kaxo)= -1

(l+k2) In(l+#)

i

For absorbing media (f<o, OUII g = -f) the asymtotio solution in

(18)

sin h h (x. - x) where

-1
tanh h 1
~ ‘l-g

●nd x in determined by
o

oosh (2ho Xo)= - 2 h2

(1.- h2) ln(l - h2)
-1’

(15)

(20)

These formulas for X. give results which agree extremelywell with .

the aorrect results obtained by much more diffioult methoda~ ‘l!hey are oompareci

in the Table I below. The rezmrkable oonstancy of X. a(l+f) is reproduced by

our approximate formula.

*l?romLA - 53.
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TABLE I Extropo3ated End Points \

I
Multipl~4ng Systems \ Absorbing Systems

i’rom(16) true valu; I from(l~) true val
k f (l+f)xoo (l+f)xoa

I
h g (1-~)Xoo (1-g)Xoa

3.0 I.402 ~71tf9 .7174 0.0 .0000 ●7071 ●?104
2.0 .9064 .7121 .?lll 0.2 ●0135 ●7071 .7104
1 .2732 .709(3 .7109 0.4 .0558 .7072 ●7105
:: .I~56 .707’j .7106 0.6 .lzlll●7075
.6

●7108
.1102 ●7073 .71OL 0.8 .2?39 .7091 ●7120

●4 .0512 ●7071 ●7104 0.9 .3987 .712s
.2 .0132

.7147
●7071 - .71oh

0.0 .0000 ●7071 ●7104

Many more properties of the solutions can be gotten from (9), but

we shall obtain an even wider olass of’results from a generalization of (9):

~n~ (f - f,) o N N, dV+ ~~ (SE’ - SIN) dv =

. ,(u,’ [,*8 [(lff(]) ) N(l)’(lff’ (2) ) N’(2) -(l+f(2) )N(2)*(ltf’(1) )N’= a

a(l) u(2) Q(I,2) dVl\dV
2

(21)

Here we imagine first that there may be external sources of neutrons, S, in the

unprimed problem, and possibly a different source S! in the primed problem.

In addition we have generalized (8) by only integrating,over a finite volume (call

INS for “Inside”). As a aonsoquence we expeot some sort of terms involving the

neutron density near the surface. ~hese are given by the integral on the right-

hand side. It is a double integral, of one solution on the inside and the other

on the outside (minus vioe versa) with the kernel Q{l ,2) between them. AS 1 and

2 get far apant the kernel fmlls off rapidly, and since 1 and 2 are on opposite

sides of the surface, the integral only involves knowledge of the solutions near
●0 ●00

the surface. We have assumed in (21) that the souroes S or $t~a<~ $F~aRi~ &o&m

*FrolnLA - RJ “: :“W
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the surface and therefore, do not appear in the surface integrals. If this

iL not the case, the term (1+ f) a N should be replaoed by (1 + f) o N t S

azd (1tf~) uN* by (1+ f’) oN!-t-S’ in the integral on the right-hand side of

(21)● The source terms on the left-hand side are, in fact, obtained from the

same substitution. This is $ecause, with sternal sources S, the fundamental

equation (4) is just altered by a replacement of (1+ f) UN by (I+f) d?+ S

iuthe integral on the.right side. Otherwise, (that is if S =S!= 0) (21)

oan be derived directly from (7) imagining “theintegrals on dV to be only
2

over the inside. The inkegrals on dV
1
on the right of (7) are over inside and

also over the outside* The inside integrals aanael since Q is symmetrical and

what remains is just the right side of’(21).

As a first very simple example, we can calculate the extrapolated

end point i’ora plane problem again. ‘?mshall use (21) with the boundary

between inside (left) and outside(right) to be actually the tamper surface.

The prime case (see Fig. ~) has, as before, the same value of f on both sides,

and on asymtotic solution say, sin k (x. .x). The anprime< has (l+f)~O to

the right. There may be a souroe S deep to the left (for the ab~orbing case),

the same in both case$. Since N does not change appreciably here, the seoond

integml on the loft of (2) vanishes. The first integral does likewise sinoe

f = f!. The second term in the integral on the right of (21) vanishes also

beoause (1 t f) = O outside, so (21) is simply,

221’ ~ (’a ‘~xl~ Q(xl~x2) ‘in k(x’o-‘d ‘x, ‘X2
(I+f) a (22)

2
=0

If we use the ‘faotthat

1

1
Q (xl, x2) = 1/2

e-pa - W’P ~w/p
●* ●*
::0
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ana approximate N(xl) by ita asyntotic form, we obtain as a formula for X.

This is the same integral as was o~tainec?ina less direct wayby using (!3)

and gives, on integration, the relati~i]s~l~;)ati (20) for Xo.

.

ff =

ft=f

I?WIDE

f=-1

fs=f

OUTSIDE

N’(x)=Sin k(xo-x)

-9-+
x

Fig.4

OUTSIDE
s

~e-e-hL

- L *— x~

Fig. 5
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Fig. 6

.\
U% also use this Eq. 21 to obtain a different kind of information

about the solutions for one velociityproblems. Suppose we have a howgeneous

medium with a cotistantabsorption g and constant cross section o . If we have

a plane sourae emitting 6 neutrons per seoond then we know that at ~rekter

distances from this source the ne~~+.ronintensiLy falls off exponentially wit}l

&istanae x away’from the source, 6s Ae ‘hm (see Eq. 19). The problem is to

determine the ma~nitude A of’the asymptotic solution for a soura~ of utrength

SO We shall use Eq. 21 in the following manner: (See Fiq. ~) ‘Neshall imagine

that the plane which separate the “inside” from the “outside” region is at a

distanoe L away from the so~rce whigh is in the inside region ir.the unprkxi

case. For the primed solution wc shall assume that there is Bornesource at a

great distanoe !’romthe plane in the outsido region and that, therefore, the

solution in the inside regim from this souroe behaves exponentiallywith an
●* ●m

increasing exponential. In teth the primed and unprimed cas~~
...! .ii
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the value of f is the same and is the wane in both the inside and outside

regions. There is no source in tho inside region in the primed ease. A

glanoe at Fig. 5, whiah indioates the coordinates used will show that Eq. 23

gives the formula:
05

[r

●

SBe-ti= (3-g)2 [Ae
41(tix,)B:dlxgAe -uh(Mx2)

=0 x = -m
2 1

Be 1‘ak~Q(JC1,X2) dxl dx2 (2%)

We can substitute the expression (23) for Q(xI , X2 ) in the integrals on

the right side of (25) and then perform the integrals on xl , X2 and then on

H . Ifhenthis is done we obtain: (the value of B oancels out of both sides)

,.. .&#Lgi2t3 )
(26)

which gives the c?onneotionbetween the source and”the ooeffioient of the

exponential in the neutron densitya t greater distances. The formula is exaot.

This ca~ also be”applied to a spherical problem in whichwe have the souroe of

strength S located at a point. ht a very large distanoe r from this souroe

the neutron density is:

2h2(3 - h2) e-hull
N(R] = OS ●

(1 - g)(h2-g) An R (27)

It is interesting to find that it is oompratively simple to find

the neutron density exaotly at the boundary of an untamped region. For this

purpose we oan apply our theorem (8) in the form (9) which is valid when there

is a small difference between the prime and unprimed systems. %zppoue we have

a slab of multiplying medium of very large thickness, 2L (see Fig. 6) . The

<!’”~
9- ●.: ● ** ..: .:. ● .

. .: .
● ● ☛✎ ● ● ● ☛☛
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solution in this medium for the neutron density will be proportional to cos kxo

say A cos kx. ‘he relation between k and f is given by (16) . In accordance

with our extrapolated end point formula we know that M must go to O when x is

equal to L ● x therefore~
0’

k (L+xo) =(n /2)t 21tm (28)

where m is some integer. Now, what will happen if we inorease by an amount

AL the half width of the slab? If it is still to be critical the f value need

not be as great. We shall call it f - Af. The new value of the ~ve n~ber k

which we shall oall k . Ak must satisfyx

(k- Ak) (L+h~+xo)= Q/2)+2 ~m (29)

\

This implies that N/k is equal to bL/L. In the region between

x= L * At and X= L the value of 1 + f, whioh is O in the unprimed system,

ohanges to 1 + f t Af in the primed systemj or by 1 + f to the first order.

The neutrondensity’here is approximately N=, the value at the surfaoe for the

unprimed problem. In the region from x= -L to x = L, the ahange in f is just

Af and the square of the neutron density (or more accurately, NH”’),has an

average value of 1/~2 to the first order so that anapDlication of Eq. 8 gives

immediately:

(1.+f~ Ns2 AL=(l/2) A2 “ 2L “ Af or N~acA2k/(l+fjj df/dk (3@

‘decan compare Ns to Next, the value of the neutron density that

would be at the surface if the approximate solution A cos kx were extrapolated

all the way to the surface. That is Next is equal to A sin kxo. We find,

finally, as an (exact) expression for the value of the neutro~~~psity at the
.9... ● .*

‘J ~-
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edge of a bounded multiplying medium, the expression; (where we have gotten

df/dk from 16) “

N82 / Nex: =
[[ u(1* f) /(3+k2) -1 / sin2kxo (51)

If the medium is an absorbing medium a similar expression can be found+ however,

the method of derivation given here must; of course, be altered. What one can

do is keep a source in the material, at x = O, and use our expression (27) to

obtain the size of the neutron density at the edge of the medium* A method

exaotly analagous to the method we have just used for the multiplying medium

am then be applied to the multiplying medium with the sourae at the center.

This gives the result:
.

Nyl&t =[1 _ (1-g) / (1-h2)] /“ sinh2 h%ou (32)

In the limitwhen the absorption or the multiplication goes to O)Nx/Next

approaches 1 / ( $Xou).

Finite ‘lamper

We can now apply the theorem to a more complicated problem, namely,

to determine the effect of finiteness of a tamper. Ne shall apply it in the

ease of nonabsorbing (g= O) tamper of radius b. suppose thenwe have a spherioal

oore of radius a and a tamper of radius b. For the systen to be oritical a

oertain f value, say fb , is required in the core. Were the tamper infinite

f=f~
the requisite value would be fW . We

~=o ~. i

f’=fw 9’=0 9’=0
shall let the primed system in (8) be Tamper

this system with infinite tamper (see FI’.79
Fig. 7). The unprimed system will be core N

●

. ●

the system with finite tamper, or rather
●
●
●, 89 ●** ●0 ● * ●** ●@

o a
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““”~$~l~in~””(~~”w“;find,with tamper with oomplete absorption (g = 1) beyond b.

(with go an~ Ot total oross 8eotion in oore and tamper). .

J [
co

CT(fb.f’@) NbN@dVcQre=ut Nm Nb ● ~nr2dr

We shall now need approximate expressions for N@ and Nb. For

very large r, N@ varies a8ymtotically a8 1/’.,but there i8 a transition effect

near the core. This t~nsition effect does not penetrate more than a fraction

of a mean free path into the tamper. If b-a exceeds a mean free’path, then,

to an exoellent approximation N-varies as I/r,for r ) b and we have

N- (r)= (%#@)*[l/r) (34)

where

s
S=(Y fa Nm d~aore

o
(?Ji)

is the net number of neutron8 generated i’nthe core. The coefficient in (34)

oan be found from the integral theory, or more simply by nating that very far

out (large r) the neutron density varies very slowly in a mean free ~th I/ah.

F&me, diffusion theory hold8, whioh uaya the flux is (l\~ut) @r2 ~N/dr

and since this flux must just equal S, (34) follows.

The quantity 1$ aan be found approximately in the following way.

As is well known, for one velocity spherical problems with oonstant mean free

~th everywhere there is a close relation to a corresponding slab problem. The

solution for N for the sphere problem times r, is a solution for the slab. Now

if our problem is looked at as a slab problem, we would imagine a source on one

8ide”of a finite 81ab of width b.a, with absorption on the other side, outside 1A

If b-a exceed8 a mean free path or so, the solution outside b will be the same

as though the source were much deeper and b-a were nearly infinite. This pro-

blem we have already considered above, and have called the so~t!~ V(X), 8

‘: i-
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~b (r) ‘@/r~ M(r . b) forr>b (36)

where A is a oonstant. It may be objeoted to this procedure that the conver-

sion from sphere to slab is invalid when the sore and tamper mean free path are

unequal. But surely the shape of the solution outside the layer of tamper of

thickness of a mean free path or so is nearly independent of the exact properties

of the oore, The size, of course, depends on the net number of neutrons genera.

ted in the core. This must equal the total number absorbed outside the tamper,

so that we’have

ws / 1
M

at ~
Nb(r)*~W2dr= CYofb Nb dVoore = ~n OtA (y*b) M(Y) dy (37)

whore we used expression (76) and put y=r-b in obtaining the last integral.

If we substitute (x4) and (?6) into (T?) we find,

J 1
(x

~O(fb-f@) ~ ‘mdv~ore=ct (~SOt/b~) (]/r) (A/r) M(r-b)●@2dr

J
= Wot2 “A ‘M(y) dy..

0

Using (35) to eliminate s and the seaond equality in (37) to eliminate A, we

find pm

J
J()

Uo(fb-fm’) Nb NmdVcore=
- ‘:dy

[

•P.dvcoreOfi~voor.O
(y+ b)M(y)dy

o

This oan be still further simplified, by fiotingthat the mean of Y for the funo-

tion M(y) is X. (see (12) ), so that the ratio of integrals involving ~ is

Jjust I/(x. + b). Furthermore dvcore -~KA3/~ So a final r earrangement gives:

3
‘O”ta

(

I !Nb dVcore “ NmdVcore

&&-
1 J 1

(59)
b+xo Nb NmdVoore . dVcore

●* ● e
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The expression in the bracket is very nearly 1 for practioal oases.

It has been calculated (see table)assuming the neutron density is a parabola

l-o(r/a)2 ,inthe oore, for various values of o for Nb and N=(whioh we will

call c and o ). The ratio of N at the core surfaoe to the value at the cen-
b 0

ter is l-a. T~8 is rarely less t~n 1/2 so t~t c rarely exceeds (3.cj. For an

untamped core of material of f= 0.7 (like 49) C is about 3/.4,however. For a

core tamped with a non-absorbing tamper of equal mean free path C is .36. For

smaller i’, o is larger in the untamped case, and the better the tamper the lar-

ger is C. Numbers can be obtained from the table for any particular case, but

for

TABLE II

0 I.0000 1.0000 1 ●Cooo 1.Cooo 1 ●0000
1/4 1●0000 999U .99% . j17~2 .9520
1/2 1 ●0000 .9858 .9662 99371 .8909
y/b 1 ●0000 .97Z2 ●9371 .83@ .8105
1.0 1●0000 ●9G20 .8909 .8105 .7000

nearly all purposes the expression can be replaced by 1, which makes (%8) very

much simpler.

Therefore, our formula for the effect of a finite non-absorbing

tamper is: (noting (l@ )

l/fw - I/fbs ucata3 /[bt .71/)0
1t

(39)

Frcm the derivation it is seen that (2H) is not exact. It should

be very nearly correct if b-a exceeds l/cJt● We have tested it on the extreme

case where b-& = OJ our tamper is so “finite” it is no tamper at all. Then, of
● 9 ● *

course, our formula(~g) camnot be expected to be correot. fi&&e& ~he “e~”l~~”

:::”#l&”
● 8*
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(Table III) show that we are not off to an extreme degree. They apply to the

oa8e =a” and the necessary data comes from the results of Frankel
at ~ and

Nelson (LA 5M) for tamped and untamped 8pheres. (They have also done a few

oases with finite tampers and these agree with (?9) as accurately as their graphs

cian be read).

TABLE III

Core Critical f Critical f No Tamper
Radius Infinite Correct from Eq.(39)
a Tamper fw fb=a LA q?A f - “ “

b=o ‘

.8 L%7 1.299 1s208
1.1 .517 .874 .Elyh
1.4 ● 54G .642 .625
1.8 ●221 .460 .4~4
2.3 ‘ .142 .yio .333

A formula (I$q.40 below) has been proposed to give the amount of

absorption (g) in an infinite tamper which is equivalent to having a finite

tamper of radius b. The attempt is mde to mike the slope-to-value-ratio of

rN in the tamper at the surface of the oore equal in the two cases. P.asymptotic

solutions in the tamper are assumed to hold up to the core surface. Thus, ~~th

absorption g, the asymptotic solution for rN varies as e‘hm (see (19) for the

relation of g and h.) so that its slope to value ratio is hc . For the finite

tamper the ‘asymptotic” N is a straight line going to zero at the extrapolated

point rab+x so that rN is proportional to b i-X. -r.. Its slope
o

to value ratio at r =sa is I/(b+ X. - a). Setting these two quantities equal

we find

0)
uth =1/(b-t-x -a (40)

This then gives the amount of absorption (or rathe,m:h).oaneinf~niatee.

‘~ :~
b

. ● o
. ● ● ●
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tampqr should have to be equal1y effective in reflecting neutrons to a tamper

with no-absorption but with a finite outer radius b. The formula is oorr.eot

in the limit of diffusion theory$ Unfortunately, however, it is not very aocu-

rate for many praotical cases and its use is to be discouraged. Formula (39)

should be used instead. <

We can derive the relatiorl(LO) in a less intuitive way, which,

however, will help to show up its errors~ For this purpose, we skll find the

change in f consequent on changing g frcm o to g in an infinite tamper (we will

say f changes from f to fg). If the prime s&tem is for g s O, and the unprimed
o

for finite g (so that f. and No here is what f- and N-represents in (21) ) our

theorem (8) tells us,

(fg -
/

fo) NO Ng dVCOre =Ot g
r

No Ng bn r2 dr
‘t

a
(U)

We shall have to use estimates for No and N in the tamer in order to make (u)
g

useful. We shall make the approximation that No, Ng oan be replaced in (~) by

their asymptotic forms, equaticn (?L) for No and

Ng n (B\r) e-ho(r - a)
(u)

for I?g. This will turn out not to be a particularly good approximation. The

oonstint b in (~) is determined from the conservation of neutrons, (see 11)

[ (
@

s =(3 N dV N 4~r2dr=4R utgB(atl/hoJ
~ c ‘g g core=ot g a g (k?)

where S is the net number of neutrons generated in the oore. These fom~ (~~)
g

and (~) can now be substituted for No and Ng in (~), the integral performed

(~~) used to determine B, and the result rearranged (just analogously to the

derivation of 39) to read:
●m ●*

● m
● .
::~;4:;$a”● **

● O ●
.0

m
● O

. ** A... .-
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The expression in the bracket is always almost exaatly 1, and oan be forgotten.

If the tamper with absorption is to have the same effeot as the

finite tamper, then they must make equal changes in I/f. This will be the case if

a tl/hot ‘b + X. (45)

which is equivalent to (40).

The reason (4G) or (@) is,not acourate is not because (39) is not

accurate, but rather that (~) is not. Table IV gives the results of some cal.

oulations made with it, and these results are compared with the oorrect results

of LA-173. The result is very poor when the tamper mean free path is much

smaller than that of the core.

TABLE IV

ao/ot

.
u=a g f fg true

g=”
fg calo.(~

4*O 2.0 .1 .0780 .112 .115

1*5 2.0 .1 .410 .485 ●471

4.0 2.0 ●02 .07/3(3 .096 .098

1.5 2.0 ●02 .410 .449 ●442

2.0 1.2 .1 .2o48 .3025 .3006

2.0 1.2 ●02 .2048 .25?5 .2549

1.0 0.2 .02 .224 .Ij67) . 1.186

1.0 0.2 .10 .221J .392 .’y31

100 0.2 ●4O .224 ●766 2.70~
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The reason is that in deriving (w} we used for No and N~ simply

their asymptotic values in an integral which extends right up to the oore

surface, near which these asymptotic forms are known to be false. This error

was not nade in deriving (39) shoe only integrals beyond r = b were involved.

This is Sufficiently far from the surface r = a, to permit use of the asymp-

totic form.

We shal].now go on to derive a formula like (~~) for tampers which

do absorb neutrons. This formula will, however, not be anywhere nearly as

reliable as

over tamper

tely known.

formula (~$1)“for,as we shall see, it will require the integral

solutions near the surface af the core where they are not accura.

we shall assume a oore of radius a and the tamper of radius b.

The value of f needed to make the “corecritical will be called fb. The ab-

sorption of the tamcer will be g. We shall compare this problem to a problem

in which the radius of the tamper is infinite and for which the value of f,

whioh makes the oore

tamper is equivalent

density goes to O to

oritical, if fm . As we have already seen, the finite

to an infinite tamper if one arranges that the neutron

some point, a distanoe X. outside the outer radius of

the tamper. The quantity, Xo, is given by equation

the approximate expression, .~l/l-g. This neutron

to O at t-hepoint r ~ b t x in an infinite tamper
o

(20),or, more simply, by

density can be made to go

by having a negati;e source

very far out on the tamper and at distanoe c from the origin. The solution in

the tamper, except very near r = a or r = b is :

(A\r) e-hm (1 - e-2ho ‘b+xO - ‘) ) (M)

The second term in this expression arises from the source at c and the strenzth

Of the 8ourceD per square centimeter must be:

-:*P
●0 ●** ●.* ●.. ●.. ,

.
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-i= =
- -&# - “-’h”“’X”) (47)

in aooordance with Eq. (%) . Now, we shall apply our theorem (21) to compare

this problem, which we will call the unprimed problem, to the problem of an

infinite tamper with no sourae in the tamper for whioh the solution is Be
..lR,Ro

In applying Eq; -(21)we will assume that the inside region extends to infinity

and that, therefore, the integrals on the right hand side of Eq. (21) do not

make any contribution. Using a notation similar to that which we applied in

the ease that the tamper was not absorbing, an ap~licatioriof Eq. (21) ~ives

the resultz’ “

/

-oh”
(fb-f~) NbN@dVcor@= - ‘+ s ● 4n&2 (48)o

If we Substitute the expression for So, which we obtained above, (47) we will

find :

~. (f’- f-) / % !30 dvoor*”4’ * ‘-2”h(b’xO)AmB* (49)

In order, therefore, to find fb - f- , we shall have to have an expression

for A and B. We shall attempt to find B by using the faot that all of the

neutrons whioh are generated in the oore are absorbed somewhere in the tamper

(see Eq. (11) ). Howover, although we know the solution in the tamper at

large distances from the oore we do not know the solution near the oore. This

will make an error in our analysis which should certainly be studied further;

but until this is done we shall use the asymptotic solution right up to the

edge of the oore. fherefore, if’we substitute this asymptotic solution in Eq.

(11) we will obtainan expression for B. ~he equatiorigives:

s J
cm

Sw*fma= Iimdv 4.1r2
~e-hur dr=B”L%ut (Go)

core
=guk ~ ——

r

‘2”2 -‘a; “i”:

,
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lYeshall compute A by a similar procedure. However, in this case we have a

souroe in the tamper and so shall ;haveto subtract the flux from our negative

source from the total number of neutrons absorbed in the tamper. This results

in:

Sb=o f
J

~ b NbdV=ore=A=hRg=
* [(

-a~t - (l.shut)el+ahut) e . 1
-oth(2bt2xo -a)

t
(51)

Substituting the expressions for B and A, obtained from (50) and (%1) into (49)

and rearranging terms somewhat we will obtain finally an equation for the

finite tamper:

(h2(l-g)(h2-g)‘)
2 CSt2 IJ ha3’

+=- & “ &2 (l-h)

a ●

(l+ahcrt)~ Ce2hat(b+ X. a)- 1 - ahu
1+ shot‘1

s s“ Nb dVcore . NwdV
c

\

oor

f‘b ‘@dVoore J
. dVoore

‘1
(%9

As usual the integrals of the neutron density over the core in the bracket

oombine to form a ratio approximately 1 for practioal purposes. Furthermore,

the oomplioated expression, depenfing upon g and h, in the parenthesis of

expression (~2), is equal to 1 within 10%as long as g is less than .3. Sinoo

this is usually the case, we cum usually use a more simple expression:

In order to improve this formula it would be necessary to mke some

estimate of the effect of the deviations of the true neutron .densityfrom the

a~ymptotic expression near the oore surface. In the ease of a oore inwhich’
●9 ●O9 ●e.e ● 900

m

Pri:tt:d on DI ETZGEN # 198M “AGEPROOF” trbcing POP= ● ● 9** ●O*●9* ● b ● 9*. . .’
● ●99 ● ● ● ●

● ● ● 0 ●
9 :.: ● 0: ● *

● 0 ● ● ● 08 ,

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



-. ● ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ✎ ●i-o i-- ●-0 i ●-* ●--
● 0000

.-. .
, ● *:*.* ● ● 4 ●

. .

● ●0 ‘:0 :Ul!k
-29-

● ● ● * ● 9***

99 *.* 9*

●:00 ● *
● ● 00 ● ●:* :00 ● *

.
\

the mean free path is the same as ih the tamper, it is possible to obtain

considerable information about this deviation from a direct analysis of the

integral equation (see LA 55 ). Another method in this case, to obtain the

relation between A and ~, isamethodanalagous to the one by which we obtain

this relation, when the source was all located at a point (see the deriva.

tion of equation (26).

the deviations between

difficult to find, and

When the core and tamper mean free paths are not equal,

the asymptotic and true solutions near the core are more

depend very strongly on this difference in mean free

path. Some information can be

much uhange in the value of f

required to compensate a given

obtained if an attempt is made to find how

in the core of an infinity trompedgadget is

ohange in the absorption g of the tamper.

This requires, essentially~ the integration of n2 over the tamper. Qince the

ohanges in f for given changes in g are know for infinitely tamped gadgets,

2
this gives a method of oomparing the true value of the integral of n with

the value of this integral that would be obtained in using the asymptotic

expression for khe neutron density, In this way some idea aan be obtained as

to the importance of the deviations. In atidition,the value of the neutron

densityat the surfaae of the core hlso be found (by variation of f with core

radius, as in derivation of (~1) ) so that still further information can be

obtained as to the deviations. The combination of these facts to give an

improved fornula has not been carried out. “

One can try also to find the extra absorption h an infinite tamper

which would give the same absorption as a finite one. This method is clear

from the derivation of (40). The result is that the equivalent absorption
\

aonstant ht for infinite tamper is given by

h’=hltanh uth (b.1X. - a)

=diiiiN:!:
L
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This formula is much simpler than (53). At present, it

al which is more acourate. FOP tampers with very s~ll

beoome the more acourate, as the desorepenoy terms make

0 00●:0 ● *D ● *

is not known in gener-

absorption (53) does

little contribution.

The extrapolated end point method has been extended by Frankel and

Goldberg LA-21j6to apply to finite tampers having the same mean free path as the

core. The follo~ng ~ble (due to Welton) gives a

results and the results obtained by equation (53).

a=loh mean free paths, and the tamper radius b in

1

Ig.”. b

I

L
002 @

0.2 5

0.2 3

LA-21j8
fb

O“33Q

0.4053

o-km

0:4773

094795

0.4945

0.5191

0.5194

0.%?55

This Report
fb

oJI’Q54

o●@i2

094796

094969

0.5196

0.0235

comparison between their

The radius of the core is

mean free path is ~, 5 or 00.

LA-258

&;b

0J+887 ,

0.7485

0.0096

0.0729

0.0011

0.5274

This Report

+a- +b

0.5015

0.771L$

O*O1OO ‘

0.0826

0.0019

0.0305
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