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FORWARD

The Supercomputer Debugging Workshop *92 (SD '92) was held October 7-9 in Dallas,
Texas. The workshop was sponsored by the Los Alamos National Laboratory and hosted by
Convex Computer Corporation.

SD ’92 focused on topics related to debugger construction and use in a high-performance
computing envirenment. The workshop brought together debugger developers and users to

discuss topics and experiences of mutual interest, and establish a basis for future
collaborations.

The objective of the workshop was tc promote a free and open exchange of information
between an interdisciplinary group of debugger developers and users from the academic and
commercial communities, thereby facilitating technology transfer and advancing the state-
of-the-art of applied debugging technology.

Program Chair: Larry Streepy, Convex Computer Corporation

Program Committee: Jeff Brown, Los Alainos National Laboratory
Bart Miller, University of Wisconsin
Cherri Pancake, Oregon State University
Dennis Parker, Cray Research Incorporated
Rich Title, Thinking Machines Corporation
Ben Young, Cray Computer Corporation

Administrative Chair: Denise Dalmas, Los Alumos National Laboratory

Keynote Speaker: Mark Linton, Stlicon Graphics
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Dbx evolution

The ABCs of Debugging Using adb/sdb

in the 1990s 6,000-line MS project (pdx)

Port to VAX, 680x0, SPARC,

Mark Linton
Siiicon Graphics Computer Systems MIPS, RS/6000, ...
linton@sgi.com Support for C, F77, Modula-2, ...

25,000-line blob
Graphical front-ends (dbxtool)

Semi-retired



Dbx contributions
Organization — abstract data types
Portability — one week/machine
Multilingual support — depends on compiler

Ease of use — naive programmers

Surprise: Longevity of stabstrings

Simple design and implementation
(1 week on compiler, debugger)

Goal was to limit modifications
as, id, nm, ar, ...

Other designs offer better clarity and
performance for specific environment

BUT stabstrings were best choice
over Dbx’s active lifetime

Sadly, DWARF isn't a significant advance



Notable mistakes The Next Generation

Slow breakpoints Old problems
_ Compiler optimizations
Slow to adopt regression tests Integration with environment
Replicaiing fuli environment User intertace
Symbol table management (compiler) New(er) problems

Expression evaluation (compiler)
Execution (shell)

Source viewing (editor)

Made the implementation easier?

Higher-level languages
Wider variety machine architectures
Blending with performance analysis

As easy as ABC ...



A is for Abstraction Model of computation

Machine’s model of computation Derived from language, compiler,
operating system. machine
Program’s model of execution
_ Examples when debugging:
User's model of (miS)undefStandlng Dynamic 'oadw.g is part of mode!

Instruction pipelining is not
Reflected in object->source mapping
Understood by user!



Debuggers allow access to ALL
computational state

Non-local variables

Execution status (e.g., goal stack in Prolog)
Automatically-generated processes
Transparent access t0 network

Key difference from interpreters

Model of execution
Programs may contain more abstractions
Hidden control flow (e.g., method dispatct
Hidden data (e.g., access fusictions)

Application-defined presentation

10



Examples from C++ and InterViews Model of misunderstanding

stop in g->draw Debugging to see what is going on

stop in Button::draw Task-oriented user interface
Tracing/watchpoints

show dag(glyph)

Application-oriented presentatlion
For now, add DebugGlyph objects

Fast turnaround

11 12



B is for Big

Layer on top of lots of library code
Call up and down layers

Run for a fong time

Allocate lots of memory (free some)
Process lots of data

Checkpoint execution state

13

Selective presentation
Show important information
Navigate to explore
Domain-specific visualization
Sharing views means sharing data model

Analogous to database problem

14
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interaction: Examples of Manipulators

Scale 1D Transform
Box
Handle y Trackball
Box
/‘/'-v.,

INVENTOR
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C is for Concurrency
Performance-oriented

Simplicity-oriented
“The kernel never blocks.”

Users want it (e.g., printing)

Mainstream in ~3 years

Y

Debugger challenges
Consistency checking (fast)
Symbolic execution/interpretation
Presenting large-scale concurrency

Concurrent debugging/analysis tools

16



A few wild ideas Why objects?

Objects R Us Users like objects
A debugging framework Programmers like objects (sometimes)
Runtime compilation and optimization Applications -> objects

Computational modules -> objects

Distributed cbjects
anywhere, somewhere, everywhere

17 18



A few wild ideas Why objects?

Objects R Us Users like objects
A debugging framework Programmers like objects (sometimes)
Runtime compilation and optimization Applications -> objects
Computationzl modules -> objects
Distributed objects

anywhere, somawhere, everywhere

17 18



A debugging framework Runtime compilation and optimizatio

Simplify Make compiler invisible
Use existing compiler and editor Dynamically choose performance level
_ Simulate
Expose internal components Interpret
Compile

Make available over network Optimize

Allow concurrent “users Inline/optimize across linkage boundaries
Give optimizer direct access to profile
Source compatibility

Promising results from Self compiler

19 20



Los Alamos National Lad

Los Almmos, New Mexico,
87545

505 667-3738

User Perspective

1 Large Code
46,055,728 bytes
2 The Code changes
We add about 10000 lines of mods every 4 months
K 3 Portions of the Code are Multi Tasked

4 We somtimes use LDB/DDT on a “DROP¥ile -

- Page 1 of 3



Los Alamos National Lab

Los Alamos, New Mexico,
87545

505 667-3738

Page 2 of 3

Parallel Debugging

An error in Our Multi Tasked package may not be reproducible

' (there is no replay scheduler capability)

We use a DDT to debug Multi tasked code
The debugger will stop the code when any processor reaches a

set breakpoint and reports the processor

( a conditional breakpoint on a particular processor would be nice) .




Los Alamos National Lab

Los Alamas, New Mexico,
37545

505 667-3738

Page 3 of 3

Nice Things to have

Parallel debugging of 2 versions with comparison

List all opened files and their attributes |

Save and Restore .

A FORTRAN representation of what the optimizer has done
Source listing provided in debuggers should designate new coding
The ability to spell !
The option to deoptimize portions of the code at debug time

The ability to list the library a module comes from

Conditional breakpoints (that are fast)
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ldb prof.x

ldb version 1.)
bullc: 09/21/92 at 12:29:51

attached to absolute file: /usr/tmp/1d32231.copy (copy of prof.x)
entering debug made ...
ATXX> list source
. progras ausx
dimension x(11),a0(10),al1(10),a2(10),delta(10),chkrag(22)
dimension v1(22),ebths(22)
polnter (mmmne, xne(l))
pPointer (mmeg2i, cg2i(l))
polater (mmausd, auxO(l))
pointer (mmauxl, auxl(i))
AUXX () aaxne=loc (x(1))
mmcg2i=loc(x(l))
mmauxl= loc(a0(1})
mmauxli= loc(al(l))
mMmaux2= loc(ll(lu
lkman=10
S10A do 10 11,20 &
sund(i)= 1
auxl(y)= {
zne(l)=]
chkreg(i)=1,
=20
chkreg(j)=1.
vl(i)=1,
vi(j)=l.

AMXX> roll source 30
9108 10 cont { nue
chkreg(22)=1.
ane{ll)=il.
idl=2
j.z .
cdir$ nestscalar
S100A do 180 lk=2,lkman
J=3+ldl
aun0(lk)=chkreg(y) *aund (lk) *2ne (1k)
suxl (lk)=chkreg(j+idl)*auxl (l1k)*xne(lk+l)
delta(ln)=aun0(lk)-aual (1k)
ebthe () =xne (1k)*vl {])
€923 (lk)=0.

180

s1808 180 continue
vrite(®,*) (auxl (i), i=1,10)
stop
end

AUXX> run to 3100a
user process stopped at program counter: 371pa = $180A @ AUXX()
AUXKM> {d), 5, chkreg (4),aun (4), une (4)
00000243752b: idl = 2
00000243733b;: 3§ = 2
00000243701b: chhreg(4) = 1.00C6090a+00
00000243612b: aund(4) =~ 4,000000e+00
00000243415p: =na(d) = 4,000000e+00
AXX> print enireg (4)"aux0 (4)*xne(4) . »
1.600000e+01
AUXX> Dkp $1080b
AUXX> run .
user procesgs stopped at program counter: 417pd = #1808 @ AUXX()
AUNX> aun0 (4)
000002434320: aumr0(4) = 1.800000e+01
AUXX> end
Rilling user procass ...
(1]

'y



ldb version 1.3
built: 09/21/92 at 12:29:51

attachad to absolute file: /usr/tmp/1d32000.copy {(copy of prof.x)
sncering debug mode ... :
AUXX> run to $180a
uSeZ process stopped at program counter: 451pa = S180A & AUXX()
AUXX> list source
3108 10 continue
chkreg(22)=1,
xne (11) =11,
1dl=2 .
v ’-2 .
«> 3180A do 180 1k=2, lkmax
jejeidl
aux0(lk)=chkreg(j) *aux0(l1k) *xne (1k)
auxl(Xt)-chkrog(j#tdl)'auxl(1k)'xno(1h$u
delta (1¥)=aux0(lk)-auxl (lk)
ebths ()= (lk) *v1(3)
cg2i(lk)=0.
31008 180 continue
write(*,*) {(auxl{i{),1=1,10)
stop
snd 4

AUXX> §,1dl,chkreg(4),auxl(4),xne(4)
00000244014b: 3 = 2
00000244013b: {dl = 2
000002427¢2b: chkreg(4) = 1.0000008+00
00000243721b: auxQ(4) = ,000000e+00

unable to complete di command

address exceeds length of data area

AUXX> mmaux0 .
00000243702b: mmaux0 = 0G00000000000000243670

AUXX> 0000000000000000243670DN\4
00000243670p: 0400014000000000000000 0400N24000000000000000 0400026000000000000000
00000243673n: 0400034000000000000000

AUXX> dee

AUXX> 0000000000000000243670b\ 4
00000243670b: 1.000000@+00 2.000000e+00 3.0000000+00 §.0000000+00

AUXX> print chkreg (4)°4.,*4,
1.6000000+01
AUXX> mmxne
06000263666b: mmxne = 83088)
AUXX> 8308I\4 .
000002436%3b: 1.000000@+00 2.000000@+00 3.000000e+00 4.000000e+00

AUXX> bkp $180b
AUXX> run
user process stopped at program counter: 467pa = 31808 @ AUXX()
AUXX> mmaux0
00000243702b: mmaux0 =~ 83896
AUXX> B8)896\4
00000243670b: 1.000000e+00 0 0 0
AUXX> end -
killing user process ...
[ 1]

-
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A User Perspective of Debugging on Supercomputers
Jeffery A. Kuehn

National Center for Atmospheric Research
Scientific Computing Division

ABSTRACT

Typically, when a user brings a problem to be debugged to the NCAR/SCD consulting
office, the code is peppered with print statements. The print statements do not provide
output data from the simulation, but rather, they record intermediate values of solution
variables and information about entry and exit of subroutines. In other words, print state-
ments are chosen as the preferred debugging method instead cf debuggers which would
allow the user to stop and start the code, print variables and investigate the stack as
necessary. When asked, the users are quite clear about their reasons for not using the
debuggers available to them. Their reasons involve the complexity of the debugger’s inter-
face and a mismatch between the user’s runtime environment and the debugger’s support
environment. This paper summarizes these issues and suggests several possible avenues

for addressing them.

1. INTRODUCTION

The user community at NCAR has a great deal
ol experience in supercomputing, on machines
from many different vendors at university, cor-
porate and research sites all over the world.
Many of these users have participated in evalua-
tions of many machines often very early in their
production cycles. Several hundred problems
pass through the NCAR/SCD consulting office
every month, but only rarely does someone try
to use a debugger —estimates based on zccount-
ing statistics suggest that less than one percent
of our programmers use the debugger on our
Cray Y-MPs. The typical approach 1s to insert
print statements throughout the code to record
the entry and exit of subroutines and print
vilues of eritical variables at strategic locations.
Since both tracing subroutine entry/exit and
examination of critical variables can be accom-
plished with a debugger, the author began inter-
viewing users  and  other  consultants.  The

interviews revealed several reasons why users
prefer debugging with print statements over the
use of a debugger. In many cases, these "user
complaints” also suggest areas for improvement
of current debuggers.

2. DEBUGGER AVOIDANCE TACTICS
2.1 Print Statements

Users' preference for the print statement tech-
nique of debugging stems from five basic issues.
(1) The mechanics behind the approach are
basically intuitive; any effort expended 1s spent
towards interpreting the data and finding the
bug. (2) The approach has no learning curve
associated with it since it can be done in the
language of the original code with which the
user is (presumably) familiar. (3) The approach
works on all machine architectures and operat-
ing systems since user 1,0 depends only on pro-
gramming language standards.  (4) It worhs



interactively, in batch queues, in any job class,
and under any time and memory constraints
under which the original code ran. (5) It even
produces results in  cases where memory
overwrites of static data or stack space cause
the program to crash far from the point at
which the error occurred; in short, the method
is fairly robust.

2 2 Other Tools

Print statements are not the only debugging
method users apply to their codes to avoid the
debugger. FORTRAN-lint (flint) marketed by
IPT allows a user to analyze a code in great
detail, performing syntax checks, conformance
to standards, argument consistency, etc. This,
however, is not a substitute for a debugger,
since flint usually produces a huge volume of
informational messages and warnings, most (if
not all) of which have nothing to do with the
problem.

3. MAKING DEBUGGERS MORE USEFUL

User complaints about current debuggers fall
into two categories. First, there are complaints
about the user interface being difficult, incon-
sistent, primitive, or incomplete in one way or
ancther. The second category deals with how
debugger fits {or rather doesn't fit) into the
user's computing environment or paradigm.
Most of these complaints are relatively straight-
forward to address.

3.1 User Interface Issues

8.1.1 Intustive Interface: The strongest com-
ment made in the user interviews—and in fact
the only commert unanimously echoed by all of
the users—involved the long learning curve for
a user approaching the debugger for the first
time. The user interfaces muast be designed to
be intuitive even to the novice user of a
debugger. It is obvious that no user will ever
use a debugger unless they have encountered a
problem i their code for which the =lution 18
not apparent.  Often by the time someone
resorts Lo using a debugger, they are already
frustrated and probably cursing every piece of
silicon in sight. It 18 reasonable to assume that
this state of mind is not conducive to learning a
new  software  package, especially  one  as

[}

complex as current debuggers. Also, it should
be noted that since users apply the debugger so
infrequently, every time they go to use one,
they essentially must relearn it from scratch.
One user even went so far as to say that his
concept of a good debugger would be one for
which he didn’t neced to read a man page. It is
incorrect to assume that users will have access
to printed documentation—vendors supply a
limited number of copies of free documentation
which ends up in offices and libraries far from
the users’ desks. Suggestions on how to address
these issues include:

o Provide a user interface that the user will
find intuitive enough so a manual or help
function will not be needed.

e Take full advantage of the graphics capabili-
ties of a windowing system (X-Windows
with Motif or OpenLook at a minimum) to
improve the appearance and intuitiveness of
the interface.

o Provide a detailed online help facility for
additional user support even though the user
interface is so highly intuitive that use and
function are obvious to the user.

e Add a ‘“printpoint” capability to the
debugger that functions like a breakpoint
except that when a printpoint is reached, a
list of user-specified variables is printed.
Allow users to specify the format of this
output.

o Along these same lines, add a "watchpoint”
capability to the debugger which simply
notes when execution passes through a par-
ticular line of code. The watchpoint facility
should also allow the user to track entry and
exit for subroutines—a list of the routines in
the current sequence of calls displayed on
the screen would be useful.

e Add conditionai clauses to breakpoint and
printpoint statements that allow the user to
stop the code or print the data only when
specified conditions are true. ‘The syntax of
any common programming language (such
as C or FORTRAN) should be acceptable.

e Make breakpoints, printpoints, and watch-
points installable by pointing and clicking



a menu and a source code window.

o Make debugger and system error messages
printed by the debugger clear and simple.
"Operand Range Error” means nothing to
most users. Perhape allow a user to point-

and-click an error message, then click an
“explain” button.

3.1.2 Graphics as an Aid: Current debuggers
presume that the user is familiar with the code
they are trying to debug. This assumption is
often incorrect. More frequently, users either
inherit or borrow a program from someone eise,
then they try to modify it for their purpose. A

graphic display could be of great assistance
here:

o Represent the calling tree with a flowchart
graphic.

o Display the stack traceback path by
highlighting the appropriate nodes in the
flowchart graphic of the calling tree. Group
system library routines for convenience.

e Allow point-and-click access to subroutine
source code via the calling tree graphic.

e Represent the data structures and memory
map graphically.

o Allow the user to highlight routines in the
calling tree, and have the debugger highlight
the corresponding static data areas in the
memory map. This allows users to s.. what
is adjacent to overwritten structures.

¢ Allow direct point-and-click access to global
data structures, and allow point-and-click
access to local data via highl.ghting the cal-
ling tree and pressing a button to see local
data structures expanded.

o All of this should be implemented under X-
Windows.

919 Data Flow Aralysis: It is very difficult to
examine large arrays by prirting individual ele-
ments or looking at long lists of numbers.
Printing individual array elements worked fine
on computers of 10 and 20 years ago, but the
forte of supercomputers is to manipulate mas
give quantities of data. Could it be that the
emphasis of debugging needs to be shifted from
logic w data? The advent of parallel

processing—Wwhich introduces a non-
deterministic ordering into the program logic—
may further underscore this shift as we become
more experienced. Combine these with com-
puter graphics that allow the representation of
huge quantities of dats in a format which can
be examined very quickly:

o Provide the ability to graphically display
large arrays as line graphs, contour plots,
scatter plots, and histograms.

8.1.4 Languages and Symbols: Computer
simulations are becoming more sophisticated in
taking advantage of the differences and
strengths of various languages, including FOR-
TRAN, C, and Assembler. The user should be
allowed to debug their code in the language(s)
in which it was written. The references to sym-
bols in debuggers need to be more consistent:
one debugger prints symbols with oue syntax on
output but requires a different syntax for sym-
bol input. Finally, all of the language’s con-
structs should be available {or referencing vari-
ables. Therefore:

e Provide the ability to print entire data
structures as well as sections of a data struc-
ture in high-level language syntax.

o Provide support for all languages and inter-
language calls.

o Keep symbol format consistent throughout.
When a symbol is written to the screen, it
should be exactly the symbol a user would
type to view information on the symbol.

8.1.5 Complete Environment: A debugging
session frequently runs as cycles of editing, com-
piling, running code, then running debugger;
ofien thke last two are combined. Situations
arise where more information is needed about
what is happening within a particulas subrou-
tine, so users would like to “turn-off
optimization”"-—-on  ‘hat  subroutine--  this
requires recompiling and linking of t'e routine
in question. Within an iterative process such as
this, entering and exiting a series of utilities
fecly like extra work and seems awkward
T'herefore:

e Add compiler, londer, snd editor terfaces
within the debugger when changes are made



to the source code, then when an "update”
button is pressed, compile and re-link the
code. Preferably, recompile only those
pieces of the code that require updating.

e Allow users to recompile and reload pieces
of a code with optimization turned off. This
should be implemented as an “unoptimize”
button which, in reality, recompiles without
optimization and re-links the code. Prefer-
ably, recompile only those pieces of the code
that require updating.

o It may be useful to incorporate syntax-
checkers and code analyzers such as lint,
IPT's FORTRAN-lint product or similar
tools. However, it should be noted that
while these tools are useful, their application
is more limited than that of a compiler,
loader, or editor.

3.2 User Environment Issues

Software designers and computer support staff
usually do not have constraints placed on their
use of a computer; this is not the case for users.
User codes typically run in a batch environment
with CPU time limits and memory limits.
Because a batch queuing system allows more
control over the job mix, the time and memory
limits for batch processing are typically more
relaxed than those for interacvive work. Addi-
tionally, users are typically charged for their use
of the machine, based on algorithms containing
CPU time and memory residency factors among
others. Because some models and simulations
have large memory requirements, users must
often multitask a large code. Finally, because
the users write their jobs to run in batch, the
tools they use are not the same as those often
used for interactive work.

8.2.1 Time: Frequently, a code will run [or
several hours in a batch system before crashing;
in the cases of codes that do crash early in the
job, there can still be a significant block of time
tor startup. Because of situations like this,
interactive debugging is not always practical,
especially if the code must be run without
optimization. One user explained that be could
turn around live runs with FORTRAN WRITLE
statements inserted into strategic places in the
time 1t took an unoptimized version of his code

to crash once. Thus it is critical to:

o Provide source level debugging with fully
optimized code.

¢ Report as much information as poasible
from a core dump without the need for the
user to repeat the compile/run with debug-
ging turned on.

3.2.2 Memory: For machines thay swap
memory instead of paging it, large memory
proceases can typically be run only through a
batch system. Thus if the code is too big, the
user must debug with print statements unless
the code is to be debugged on a near-dedicated
machine. Perhaps:

o Offer a memory segmenting/paging mechan-
ism to keep large data arrays on secondary
storage. Admittedly, this is the most
difficult suggestion to implement.

3.2.9 Multitasking: Debugging multitasked
jobs has been a sore spot amnng users for some
time now. Debuggers seem to varely support
multitasked code, and when they do, it is often
not possible to run the debugger with liv mul-
titasked codes. This is not the case for all ven-
dors, and those who do support multitasking
should be applauded for their efforts. Those
who are not currently providing multitasking
support must:

o Provide support for debugging live multi-
tasked jobs.

e Attempt to provide a representation of a
multitasked job which sequential-thinking
users will find intuitive,

¢ Provide visualization tools within the
debugger to uasist the user in monitoring
multitasked jobs.

3 2.4 Tools: One vendor's debngger requires a
code to be split up, one subroutine or function
per file, before source-level debugging is possi-
ble. At this point, & tol such as the UNIX®
inake utility is needed to keep track of all the
pieces and put them back together in an
eflicient manner. Worse yet, for the slightly
more sophisticated user who had created mean-
ingful groupings of subroutines and functions
within files und placed these groupings under



control of make, the makefile had to be rewrit-
ten from scratch. In another case, a vendor’s
debugger failed to work with one of the
vendor’s compiler extensions that allowed file
inclusion, making debugging a total nightmare.

e Ensure that the debugger supports all com-
piler features.

o Keep the debugger’s functionality indepen-
dent of other software development tools:
i.e. the debugger should not requsre the user
to use anything except the compiler and the
loader, all other tools should be optional.
The debugger should be able to work with a
single source file or a code that has been
split up for use with utilities such as
make/nmake, SCCS or RCS, etc.

4. SUMMARY

The title of this paper could very well have
been “Interface! Interface! Interface!' since
that is the key to the complaints users are mak-
ing about debuggers. The current interfaces are
fine for someone who is familiar with the details
of coinputer architecture, compiler internals,
and maybe an assembler language, but they
miss the mark for users who know only the
high-level language in which they program.
When users need to use a debugger, they
already have one problem; this does not need to
be compounded by an intractable debugging
tool. Moreover, since the user is not likely to be
the author of the code (more likely the user is a
consultant or someone who borrowed or inher-
ited the code) the debugger should not r=quire
the user to be familiar with the code, but rather
the debugger should lead them through the
code. Debugger use can be greatly simplified by
offering:

« Cirnphics as an aid to visualizing code struc-
ture.

o Graphics as an aid to visualizing data strue-
Lures.

e Graphies ns an aid to visualizing flow of exe-
cution (stack tracebacks).

o Graphics as an aid to visualizing relations
hetween static data regions and subroutine
code,

o Point-and-click installation of tracing
features such as breakpoints, printpoints,
and watchpoints.

s Point-and-click access to the source code.

o Point-and-click access to the local and glo-
bal data structures.

o Consistent use of symbols.
o Native language syntax.

o Editor, compiler,
within the debugger.

loader

and interfaces

Lastly, the typical user environment of time
limits, memory limits, multitasking require-
ments, and software development utilities must
be kept in mind when designing the debvzger

In closing, there is one final user comment to be
heard: "The battle for better debuggers will not
be over until you see users defending their
Javorite debugger with the same fervor as they
defend their favorite machine, their favorite
editor, or their favorite GUIL"
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USER DEBUGGING
TECHNIQUES

WRITE (*, *) 'ENTERING SUB1'
WRITE ( *’ *) As B9 (X (l)’ I=1,N)
WRITE (*, *) 'EXITING SUBI'

X
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OTHER TOOLS USED
* lint
* flint (IPT)
e compiler

e profiler
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USER COMPLAINTS

* Difficult

* Inconsistent
* Primative
* Incomplete

¢ Doesn't Fit
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INTERFACE PROBLEMS

Learning Curve

User Frustrated

Long Intervals Batween Uses

Complexity of Debugger

Unfamiliar With Code

INTERFACE SUGGESTIONS

* More Intuitive

X Window Graphics Interface

Detailed Online Help

* "Print Point"

"Watch Point"

Conditionals on
- Break Point
- Print Point
- Watch Point

Install With Click on Menu & Source Window

* "Explain” Feature for Errors
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GRAPHICS/APPEARANCE PROBLEMS

» User Often Not Familiar With Code

* Many Debuggers Use DBX Interface
With Buttons For Typing Short Cuts
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GRAPHICS SUGGESTIONS \
* Show Traceback On Calling Tree
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/" GRAPHICSSUGGESTIONS '\

* Memory Map Graphic
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K GRAPHICS SUGGESTIONS

* Allow Source Access Via Point Click on Call Tree
¢ Allow Point Click Access To Data Structures
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VISUAILIZING DATA

* Line {ranhs

* Muld-Lire Graphs
*  Contour Pints

* Scatter Plots

* Histograms
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e ™

LANGUAGES AND SYMBOLS

* Full Support For All Languages/Compilers

e Ability To Examine Data Structure With
High Level Language Syntax

¢ Consistency of Symbols

e D

COMPLETE ENVIRONMENTS

* Source Editor (vi, emacs, other)
e Corspiler & Loader
¢ "Unoptimize' Button

» Syntax & Type Checkers
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f USER ENVIRONMENT
¢ Time Limits
- No Optimization Runs Too Slow
- Codes Run Long
e Suggestions
- Source Level Debugging Must Be
Provided “or Fully Optimized Codes
- As Much Information As Possible Must

Be Extracted From A Core Dump
Without Recompiling and Re-running

\ TRy mm——
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USER ENVIRONMENT

* Memory Limits
- Jobs With Large Memory Requirements
Cannot Be Run Interactively On
Most Machines

* Suggestion
- Develop A Segmenting/Paging
Mechanism To Reduce The Physical
Memory Requirement
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f User Environment \

e Multitasking
* Often Required
- Time Restrictions
- Memory Restrictions
* Suggestions
¢ Provide Support For Debugging Live
Multitasked Jobs

e Attempt to Represent A Multitasked Job
In A Manper That Sequential - Thinking
Users Will Find Intuitive

* Visualization Tools Within Debugger
- Mark Active Routines
- Display Tasks Attaching To Processors

\
/ TOOLS \

* One Debugger Required Use of '"Make" With
A Specific Structure

LIS ser curra oo s mesams: e

T —

_/

* One Debugger Didn't Support The Compiler's
File Include “eature

* Suggestions

- Debugger Should Work With Tools, but
Not Require Their Use

- Debugger Should Support All Compiler
Features
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SUMMARY

* Interface! Interface! Interface!

* "The Battle For Better Debuggers Will Not
Be Over Unatll You See Users Defending Their
Favorite Debugger With The Same Fervor
As They Defend Their Favorite Machine,
Their Favorite Editor, or Their Favorite GUL"




bdb: Vendor Update for 1992

Benjamin Young, Cray Computer Corporation

Abstract

bdb is a new source level debugger being developed by Cray Computer
Corporation. Work has been underway since May, 1990 and it was first
released to a customer in October of 1991.

To accomplish our design goals and to simplify i.nplementation, we chose a
library approach to the debugger design. We split debugger functionality into
several different areas (many of which were common areas for other tools). For
each area we designated a new library to be written or used existing libraries
from other sources where possible.

The end result uf this design technique is a very modular debugger which has
been or can be extended to multi-tasking debugging, distributed debugging,
process monitoring, symbol table debugging, dump debugging, and many
other useful tools.

This update to information presented at SD'91 will first review standard
capabilities of bdb and will then highlight new functionality thac has been or is
currently being added to bdb.

Cray Computer Corporation 1



Standard bdb capabilities bdb

Standard bdb capabilities

bdb is a source level C and Fortran debugger designed and developed by Cray
Computer Corporation. As with any debugger, bdb comes with its own set of
standard features. These include:

Ability to debug multiple independent processes.

Ability to debug live mult-threaded (multi/macro tasked) processes.
Ability to attach to and debug pre-existing processes.

Full symbolic capability for Fortran and C.

Conditional breakpoint capability.

Standard high level debugging capabilities (e.g.: source line stepping,
symbolic access and display, call command).

Good low level debugging capabilities (e.g.: extensive dump support, full
register access, single machine instruction stepping).

Multiple user interfaces available including line mode, Athena Widgets
window mode and OSF/Motif window mode.

Ability to debug core files.
Full on-line help faciliges.

Much of the emphasis tc date in bdb has been in the area of process control
and symbolics. It was decided very early on in the bdb design process that
flexible process control was key to multi-threaded and distributed debugging.
Good symbolic handling was also recognized as tremendously important to
any debugger design. We felt that most user frustration with supercomputer
debuggers could be traced to cither the inability to debug certain types of
processes or the inability to fully support the symbolics of the programming
language being debugged.

This emphasis is reflected in the work performed during this past year on bdb.
New features currently being added include:

Cray Computer Corporation

Ability to debug piped processes (a first step into distributed debugging).
Ability to debug simulated processes (including the operating system).
Inital implementation of C native language expression evaluation.

Full signal control including the ability to have bdb “register” signals to be
ignored or to “vegister” a signal handler for the process being debugged.
integration of stb (symbol table browser) into the windowed versions of
bdb.

Integration of datamash (a generic “data to symbolic” overlay utility) into
all versions of bdb.
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Figure 1

bdb OSF/MOTIF Windows - Debugging a muiti-tasked Fortran Program
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All of the aforementioned uew features exist in the current version of bdb with
the exceptions of stb and datamash. Both stb and datamash have been
created as stand alone products (as proof of concept) and work is currently in
progress to integrate them into the debugger.

The rest of this paper describes each of the new features in greater detail as
well as outlining future directions for bdb in the coming year.
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Debugging Piped Processes bdb

Debugging Piped Processes

We decided that the first step to take in distributed debugging was to be able to
debug distributed processes that exist on the same machine. This led us to the
notion that the debugger should be able to recognize a command line that
included piping from one process to another.

Figure 2 Debugging piped processes in window mode
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‘When a user starts a set of piped processes, bdb creates all pipes and processes
needed and then gives the user control. In window mode, a separate code
window is provided for each process.
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Debugging simulated processes bdb

Debugging simulated processas

Our instruction level simulators (sim and sim3) are our main debugging tools
for the operating system. sim and sim3 have the ability to simulate the CRAY-
2 and CRAY-3 hardware, respectively, but lack the symbolic support found in
bdb. bdb has the symbolic support but lacks the ability to simulate hardware.
With a few minor changes to our process control library and to our simulators,
bdb is now able to debug simulated processes at a source level.

The advantages of being able to debug simulated processes include being able
to debug the operating system at source level and the ability to debug CRAY-3
processes on a CRAY-2,

Figure 3 Debugging simulated processes In window mode

pmpmmmt-

tim sywbol/s. out
stew at 10
run a2
print findwe 122 parray(1] = Saarray(t):
1) parray(2] = Gaarrey 2
:g parry J - sarrey(d):
o pare mare
h comoans: 128 v (nr«:'n’t el 10c(aizonf(atruct test)*s):
l 127 .‘zt LX HEIE 1
128 vmvul = sarray(t);
nl’u? ':"':h: indmet
. ot ane r - { H
s resite :;; :..:‘uc-ﬂn‘n b
r=ce
an‘. = /f/toels/usr/bin/sin :,’: ’u(l . . ‘“‘ 'o 1) ¢
for() =0Q: § ¢ 4;
Brosostnt L2 13 et at 2237 " [ A Sl R
17706 it breskpeint (2] @ Line 130 1n main :13 ord = o"l"< . i - (1° uu
S ed tevt """' { - 32 " vl m“u RIS
1! od! " s
....37,.«”1.« N2 08121110-2"This is & shert K —
unsigned cher N

- '"o:o-»'m- is & shert

signedt int *h) - ™
1tgned int *t - L))
signad int N - ™l
signod int *ng - it
unyigned cher ;(O.J) - :t ght§

[} - 42

f - 8

[} - 0

Cray Compmu Coopouuon 5



Y0

C native language expression evaluation bdb

To the user, debugging a simulated process looks just like debugging a real
process except the process runs a bit slower. All debugger commands (with a
few notable exceptions) that can be used with a real process are available for
use with simulated processes. In fact, in most cases, the debugger doesn’t
know the difference between a simulated or real process.

The modular design of bdb made adding this feature rather simple. Since all
process references made by the debugger (including all memory and register
references) are made through a library, the key changes needed were to the
library itself, not to bdb. By adding the ability to reference (read and write) a
simulated process memory and register set to the library, 95% of bdb’s
capabilities were then available for use in debugging simulated processes. The
main change to bdb itself was the addition of a single new command (called
sim) that caused the debugger to start a user specified simulator instead of the
binary noted on the bdb sim command line.

About the only commands that a user can’t use with a simulated process are the
new bdb signal control commands. This is due to a deficiency in the simulators
used (which at this point in ime do not st nort simulating signals for user
process simulation).

C native language expression evaluation

Our first attempt at native language expression evaluation was added to bdb.
Currently we limited it to the C language and will add Fortran in the near
future. Native language expression evaluation allows users to print the value of
arbitrary expressions in the programming language being debugged. This is
especially useful in window mode where users can mouse off a line of C code
and hit the print button to have the value of a line displayed.

Signal support

Unitil just recently, a deficiency in bdb support was in the area of signals. With
the new signal support in bdb users are able to selectively catch or uncatch
signals, send signals, clear pending signals, and register signal handlers for the
debugged process.

Cray Computer Corporation 6



Signal support bdb

Figure 4 Signal control windows
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Two new windows were created to make signal control easier for the end user.
The first window (on the left in Figure 4) controls which signals will be caught
by the debugger and also provides the user an easy way to select and send a
signal to a process. If any signals are pending for the process, they appear in
the pending list.

To catch a signal, the user clicks on the box next to the desired signal in the
Catch signals window and a check mark appears in the box. To “uncatch” a
signal the user again clicks on the box and the check mark is cleared to indicate
the signal is no longer being caught. To send a signal to a process, the user
selects the signal to send from the Send signal list and then hits the Send Signal
button. To clear a pending signal, the user selects a signal from the pending list
and then hits the Clear Signal button.

When the user selects any signal for either the Catch signals window, the Send
signals list, or the Pending signal mask list, a help message appears in the
window which gives a brief explanation of the signai selected.

‘The second window (on the right in Figure 4) is the signal register window
through which users can register signals to be ignored by their process or can
register a signal handler for their process.
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Symbol Table Browser

Symbol Table Browser

bdb

The symbol table browser (stb) is a stand alone utility that is currently being
integrated into bdb. The purpose of stb is to allow users to easily browse

through symbol tables getting information about program modules, program
variables, type definitions, source code line positions, and scope definitions.
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By integrating stb into bdb, the user not only gets the symbol table browsing
capabilities but also gets a more intuitive way of selecting program variables or



datamash bdb

type definitions for use in other areas of bdb (such as variable display or type
overlays of data).

datamash

datamash (like stb) is a stand alone utility that is currently being integrated
along with stb into bdb. datamash provides the user with the ability to easily
overlay any type definition (from any symbol table file) over any set of data.
Currently, data is found in files, although, once datamash is fully integrated
into bdb, data will come from both files and processes.
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datamash was initially created to help in system dump debugging. Its
usefulness has since been discovered in all kinds of file und data debugging.
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Future Work bdb

The integration of datamash will be the first step in breaking the common link
in debuggers betweer: a process and its associated symbol tables. With
datamash, any symbol table can be overlaid on any process or file data. We
believe the benefits ui this split will become more apparent in the area of
distributed debugging wher= users may need to use the symbolics of one
process in a distributed grouy to help view the daia of another process in the
same group.

The merger ot bdb and datamash will provide more benefits than just a
superset of bdb and 4atamash commands. As mentioned earlier, datamash
will now have access to process data as well as file data. Also, by taking
advantage or bdb’s callback loop, datamash will be able to provide a real time
data and symbolic display of a process while it rugs.

Integration of datamash, stb, and bdb provides a single main challenge, that
being in the user interface area of bdb. One of the things we try to avoid in bdb
(and in all of our tools) is an explosion of windows. At the present time we are
re-examining the current bdb interface to see how we can better present to the
user all the different capabilities bdb will have to offer without overwhelming
the user with a large set of d=fault windows that the user must display.

Future Work

Work for the short term in bdb will continue in the areas of user interface,
graphical data visualization, process simulation, watchpoints, and nativ *
language expression evaluation.

The user interface may go through a major overhaul with the merging of stb
and datamash into bdb. This should be a relatively painless exercise given the
split between bdb and its user interface. The ©.db user interface is written
entirely in Tel (Tool command language de* eloped by John Qusterhout from
the University of California at Berkeley® making the interface changes simply
a matter of rewriting the Tcl code. None of the core code of bdb will be
affected by this change.

Also being added in the near future to the list of bdb interface options is an
OPEN LOOK window mode.

Finishing touches are currently being put onto a set of routines thai will
provide hdb with its first dive into the world of graphical data visualization.

In the area of process simulation, we have had user requests for the ability to
switch a process from real to simulated and back again. We are currently

Cray Computer Corporation 10
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investigating this possible functionality. We are also looking into the ability to
debug a vm (virtual machine) process. vin processes are very similar in nature
to simulated processes but run at machine speed. The main disadvantage of a
vm process over a simulated process is the lack of any debugging capability in
vm. By adding the ability in bdb to debug vm processes, one would gain this
debugging capability.

Watchpoints are another deficiency in bdb. Carrently bdb does not support the
idea of a watchpoint. Our main concern with watchpoints is the performance
overhead one pays to have them. We are currently looking into the fast
watchpoint scheme used in Idb from Los Alamos.

Native language expression evaluation is another area in bdb that needs more
work. Fortran expression evaluation will be added and the C expression
evaluation will be extended to cover the ability to use functions or subroutines
in expressions.

Cray Computr Corporation 1"
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Recap from last year’s talk

- Prism 1.0 was about to be released

- Debugging and performance analysis for
our data-parallel languages (FORTRAN 90, C*)

- dbx-like capabilities with a graphical interface
- OSF/Motif based (slide)

- FORTRAN 90 expression interpretation

- Data visualization capabilities for arrays

- Performance histograms at the source-line level
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Activities in the p..t year

Releases:
- Prism 1.1 was released in summer 1992

- Prism 1.2 is about to be released

What'’s in these releases:

Bug-fixes

Rounding out functionality

Fine-tuning of user interface

Some new features (next few slides)



Extensions to array visualization

- Vector representations of complex numbers

(slide)

- Graph representation for 1-dimensional arrays

(slide)

- Surface representation for 2-dimensional arrays

(slide)
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Structure Visualization

- Follows pointers to show arbitrary

graphical data structures
- Automatic layout
- Zoom in/out for different levels of detail

(slides)
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File Options

total_h = 364
total_w = 1072
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File Options

topwidget = Oxd4b02f8
draw = 0x490128
left_x = 0

top_y = O

total_h = 364
total_w = 1072
hwm_h = 400

win_w = 1078

zoom = 4

win = 6291872
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font = Ox438ee0
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Zoom
ext_data = Ox0
fid = 6291680

direction = 0

in_char_or_byte2
ax_char_or_byte?2
in_bytel =0

max_bytel = 0

all_chars_exist =
default_char = 0
n_properties = 21
properties
in_bounds

lbearing 0
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width = 8
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ax_bounds =
lbearing =
rbearing =
width = 8
ascent

(w2 PN oY

(<000000 nuu”u‘o((nunu e o A 000a00000c 00000000

127

0x438F38 [
£




| File Options

Zoom

o0
on0 rame = Ox29f9f8
rocessors = Ox4ai260
>
name = Ox15f008 "data_loop" length = 1 [node = Ox4aB8630 [0
1id = 2 badbits = 28 line = 100
line = 100 bits = € next = Ox49edd8
parent = 0x29f9d8 Nt 14
3
: node = 0x49e120 []
name = Ox15eff8 “main" line = 120
id =90 next = Ox0 ¥
: line = 13
parent = Ox0 ¥
:




§

..............

Wi

| o

1 o

|

| I“I-
l!': =
=1
4l

[

|

HHHHDE

{
n?ﬂ
i

T e




Assembly-language support

- Split window source/assembler (slide)
- Shows correspondence

- Assembler window acts like a source window

(can set breakpoints, etc)
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Flle Execute Debug Performance Events Utllities Doc Help
[Load...| [Run] |Continue] [intsrrupt] [Step] [Next] [Print..] [Dispiey..] [O Collsction] [Stepi]
Program: optest2.x Status: stopped

Line Source Flle. optest2.fcm

6 complex z1.22.z
7 double complex dzi.dz2.dz3
8 character=10 c
°B 11 = ,false.
10 12 = ,true,
11 13 =11 .and. 12
12 i1 =
13B+} fl =
=2
=

22cc st 210, C[X17 + -3792]
10 22d0 mov -1, X10

22d4 st £10. CX17 + -3800]

22d6 mov 0. X100
11 22dc st %10, [X17 + -3808)
12 22¢0 mov 0. ZlO

22e4 st %10, L[X17 + -38161
13Bs 22¢8 ld [x17 « -306881, xf0

22ec F1 £Ff0. CX17 + -3840)
14 22fF0 ldd (X17 + -3944], Xf0

B 22fF4 std Lf0, [(X17 + -38961]

15 22F8 ldd (Xi7 « -3952]. XfO0

22Fc sathi Zhi (Ox44000), X10

2300 std XFf0, (X10 + 1Bd1]
16 2304 ldd CX17 +« -40801, XfO0

—x

In
stopped in procedure "MAIN" at line 11 in file "optest?,fcm"

s
stopped in procedure "MAIN" at line 12 in file "optest2,fcm”
s
stopped in procedure "MRIN" at line 13 in file "oftest2.fom”
print i1
i1 =0
here
AIN(), line 13 in “optest2.fcm” '
ain{) at Oxiad3d !
CMTS_ScalarMain() at Ox1aBf8
(2) stop at "optestl,fcm”:13
(3) stop *t Ox22f4d




Support for preprocessed source

- Support automatic F77->CMF translation
- Split window F77/CMF
- Shows correspondence

- Either window can act as source window

(set breakpoints, print variables by pointing, etc)



lIXI Prism @ vaniia. think.com [N

File Exacute Debug Performance Events Utllities Doc Help
[Load...] [Run] [Continue] (interrupt Step| [Next] {Print...] Display...| [Q Collection] [Stepi]
Program: flo87 Status: stopped__
Line Source File: JusersicmsgzititieMo87/Mo67.fem

371

372

373 (22222 22 RS2 X Y Y Ry s Yy Y Y Y I L i Iy

g;g Turn vectorization back on far the rest,

376

377 INITIALIZE CM RRRRAYS

376B»

379 w0 .

380 zwil = 0,

381 0 = 0,

374 C Turn vectorization back on for the rest,

37% C

376

377 ¢ INITIALIZE CM ARRAYS

378B- do 1000, k=0, kem

378 - do 1000, =0, jem

378 - do 1000, 4=0,iem

378 = ppO(1, J. k) =0,

379 do 1000, h=1,5

379 2wO(h, 4, J,k)=0,

380 zwiO(h. i, j. k) =0,

381 zwrO{h, i, j.k)x0,

1000 continue

382

383 do 1001, k=0, kel
%’mm
orint ppd
PFO =
{0:.0.0) 0.000000 0,000000 0,020000 0.000000
(4:,0,0) 0, 000000 0,000000 0, 000000 0,000000
(8:.0,0) 0.000000 0,000000 0, 000000 0,000000
(12:.0.0) 0. 000000 0. 000000 0., 000000 0,000000
(16:.0,0) 0.000000 0, 000000 0.000000 0.000000
(20:.0.0) 0.000000 0,000000 0,0000C0 0,000000
(24:.0,Q) 0.000000 0, 000000 0.000000
0:,1.0) 0.900000 0.000000 0,000000 0,000000
(4:,1.0) 0. 000000 0, 000000 0.000000 0,000000
(8:,1.0 0, 000000 0,000000 0.000000 0,000000
(12:.1,.0) 0.000000 0.000000 0.900u00 0,000000
(16:.1.0) 0, 000000 0,000000 0.000000 Q, 000000
(01,00 1, O0aQaa 0, 00Q009 G, Q00000 0L 000000




Future directions

- Remote debugging.
- rSnulggortl'ut od&’.«. . MIMD (message-passing) program-
- Software watchpoint technology

(more efficient watchpoints and conditional breaks)

- ﬁ_isrrgorc distributed internal implementation of



0592

A switch command - changes debugging images

capx Uepbugger|

Release 6.1

Support for multitasked codes.

2 SCC 3.0 and CFT77 5.0 Compiler release support

invoke command - execute user program to process
data.

d reinit command - reinitialize symbol tables

Cray Resecarch, Inc.



Multitasked Codes

1 Supports both autotasked and macrotasked codes

1 Allows switching between tasks and logical CPUs

1 TASK command:

{3] stopped in mtask$c.subtask2 at line 43
43=> geirb = (2 * i) -3;
Current task has id 3 running or logical cpu 95531.
(cdbx) task
Internal
User defined task value Task status

000000000000000000000C2 running on logical cpu 385531
(stopped in subtask2 at line 43 in file mtask.c)

00000000000000000000001 running on logical cpu 95530
(stopped in subtaskl at 0pl1446d)

00000000000006000000000 waiting for task 2

Cray Research, Inc.

84



cdbx Debugger

Multitasked Codes

1 CPU command:

(cdbx) cpu
Cpu id

Active/ If running,
Inactive Internal User defined
task id task value
Inactive
Active 3 00000000000000000000002

(stopped in subtask2 at line 43 in file mtask.c)
Active 2 000000000000000600000001
(stopped in subtaskl at 0pll446d)

[Cray Research, Inc.

5



cdbx Debugger

Release 7.0/7.C

Type casting when printing variables

Hardware watchpoint feature and other C90
support

1 A ‘fuzzy match’ symbol lookup option

Xwindows drag-and-drop support with other
vTools

‘printf’ Xwindows menu button

2 Improved internal interprocess communications

(stdout properly output)

{ Cray Research, Inc. ‘ K _u /

86



10°3:92 I

cdbx Debugger|

Release 8.0
Unbundled / binary release with other vTools

2 Support for CF77 6.0, SCC 4.0 compiler releases

L

L U U v U

Support for new C++ compiler including name
demangling

Support for new FORTRAN 90 compiler
Faster conditicnal breakpoints

MPP Emulator support

CDBX quick reference card

Many other fixes/improvements

Cray Research, Inc. §
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Section1  UDB Basics

UDB: A Parallel Debugger for the KSR1

Steven A. Zimmerman
Kendall Square Research
Waltham, Massachusetts

September 28, 1992

Abstract

UDB is a parallel debugger developed at Kendall Square Research to run on the KSR1.
Its command set is in general a superset of those of GDB and dbx, reflecting the phi-
losophy that the user is well served Ly having available the full variety of features
present in traditional debuggers. In addition, UDB has integrated into this command
set many features specifically designed for debugging parallel programs. Since the
KSR1 runs the OSF operating system, parallel programs running on the KSR1 are typ-
ically written using pthreads. UDB's parallel debugging features are designed to be
used with this type of multithreaded prograin, although they can also be used with pro-
grams that use just the basic kernel threads. Breakpoints and traces may be set in one
thread, all threads, or any combinaton of threads. The user may let all threads exe-
cute, Or nily restrict execution 1o one or a set of threads. Data expressions may also be
evaluated in the context of uny given thread, or sequendaally in all threads or a group
of threads. In general, any valid UDB command can be made to execute in the context
of a given thread, or in the context of all threads where this makes sense.

UDB also has a complete windowing facility. The user can create windows retlecting all
of his or her threads, or windows reflecting just a single thread. The ditference
between the two typesis that windows retlecting all threads contain breakpoint and PG
markers for all threads, while windows retlecung a single thread contain breakponu
and PC markers for that thread only. The user can create source or instruction win-
dows of arbitrary size; a single program /0 window is also available. Since the typical
program has many more threads than can be displayed in windows, UDB has aomech-
anism for automatically displaving interesting threads in available windows.

1 UDB Basics

Kendall Square Research’s KSRI is a massively paradlel supercomputer thar presents .
shated memaor v iodel o the programmer, Phis model allows prograuns (o he wiitie.,
tor the KSR in much the same way as tor single processor machines, and so moststan
dard debugging techniques are usetul with programs that run on the KSRT For dhos



reason, the UDB debugger was developed with the goal of incorporating the best teu-
wures of current state-of-the art serial debuggers, as well as a number of new features
specifically useful for debugging parallel programs. The GDB debugger was selected as
having a wide variety of debugging features as well as a clean and easy-to-use command
set, and so UDB's user interface is based largely on GDB's. As the command set of dbx
has much in common with that of GDB, and as dbx has several important “eatures iiss-
ing in GDB, most notwably trace and assertion facilities, the dbx command set has also
been incorporated into UDB. By supporting both command sets, UDB presents a user
interface that is already familiar to a very large proportion of the Unix user commnu-
nity, as well as one that offers a full range of debugging facilities.

!is addition to standard GDB and dbx facilities, UDB offers a number of new features
thz.t are useful for general purpose debugging. For example, UDB supports the debug-
ging of both C and Foruran programs. Since C is case sensitive while Fortran is not,
UDB allows casc sensitivity to be turned on or off depending on the language of the
object module. UDB'’s signal handling mechanism has been extended so that signals
can have command lists associated with them that are executed when the signal is
received, analogous to the way that breakpoint command lists are executed whin
breakpoints are hit. User-defined commands have been extended from the GDB
model so that they are allowed to take arguments, just as in the dbx-style alias feature.
UDB has “if” and “for” commands, whose function is similar to the corresponding key-
words in the C language. These commands are especially useful in writing command
lists, command files, and user-defined commands. UDB also allows recording of either
the commands being issued in the current session, or a complete record of the entire
session output (including commands), or both. The first facility is very useful for inter-
active development of command scripts. UDB also has a small command tile debugger
which allows the user to step through command files a line at a time. Finally, UDB has
extended the GDB command line editing facility to in<lude a fairly complete vi mode,
although some would not consider this to be a featu. e.

UDB has an optonal windowing system that is available for debugging sessions, A
source window may be created conwining the current source file. Whenever program
execution stops, the source window is automatically updated to retlect the new locaiion
of the PC.. Markers indicate the location of the PC and all enabled breakpoints. Various
UDB commands that list one or more lines of source code automaucally updace this
window as well. Within the window, a basic set of either emacs or vi commands mav
be used to navigate around the window, Single-letter versions of many oi the most fre-
quently used UDB commands are also available within the window and operate v pi-
cally on the current cursor position. These commands allow the user to setand remove
breakpoints; run, step, and continue the program, print out the value of variables; e,



Window

Figure 1 Source Window

1 2 3

Legend

1. Window number
: SNy 2. Thread n_umber
;3 ﬁ%“n&#ﬂ?i‘?’) 3. Source filename
;§ [--_ | M.TAIII'MTA.MHTA ‘. Une numbers
" ’c-r.n- TILE l("x '..‘&5.‘.%;.‘62‘-‘.: .m:x mi‘? 5. Status codes
7 "°. 3 1 Saomce 6 li
Y  Terais . Source lines
4 5 6

m

Table 1 Status Codes

Code Meaning

Source

» PC of the window's thread, if stopped

R PC of tha window's thread, if in run state
B Breakpoint in which the thread participates
W Synchronous breakpoint in which the thread participates

An instruction window may be created that contains the disassembled program insiruc-
tons around the current PC. As in the case of the source window, the current locaton
of the insruction window may be manipulated either by specific commands within
UDB or direcdy by commands within the window. Certain commands within the
instructon window have a slighdy different meaning than when used in the source win-
dow; specifically, the stepping commands when used in the instrucnon window will
step by machine instruction rather than by source line. Also, there are up to three dit-
ferent PC markers, representing the addresses of the three instructions that are cur-
rentdy in the execution pipeline.

Figure 1-2  Instruction Window

0 UDB Ingtractisn Thiead 0 testc : [ )
10001060748 finop ; nu ntr 0,%1).0c3, !l:ﬂ
10001060790 f1nop ; movhl @ Reil )0
1000106078 tinop  gte 3c19,+0n190(%cl))
:000106071C: finop ; movhd § %w12.8129
100010607101 {inop 1 a8 112, +0u130(%11)

11:0001060900 tinep y 1dl.ro «Oxi(Rcll) W11
10001060804 finep i Canep
;0001060010 f i hop i o0 R, Oxe(Rcll)

@ 12:0001060010:0 [tinep ! enwl.atr 0,%12,0n00 818

11:1001060020: »finep 1 wovi@  Oni00, Rcd
10001060028, = finop , snubl.ntr 0,812,004, Rch

14:0001080010°8 flnep D ldB.re Ou(hetS), Reld
nooLD&08 Y. tinop . 1d®.ro Owel(¥eld) AU




Table 1-1  Instrucdon Window Status Codes

[Code Moamia |

> PC
-> PC for the next pipelined instruction
=> PC for the second pipelined instruction

B Breakpoint in which the thread participates

W Synchronous breakpoint in which the thread participates

A prograin 1/0 window is also available; all the program’s input and output may be
directed to this window instead of to the same place where UDB is running. Theie are
also several other types of windows available under UDB, but as these are all used spe-
cifically with parallel debugging, they are described later.

2 Parallel Debugging

2.1

Managing Multiple Threads

Since the KSR1 runs the OSF operating system, parallel programs running on the
KSR1 are typically written using pthreads. UDB's parallel debugging features are
designed to be used with this type of multithreaded program, although they can also
be used with programs that use just the basic kernel threads. UDB identifies individual
threads by both a barrier 1D and a thread 1D within the barrier. Threads that are oper-
ating within the serial portion of the program and are therefore not associaed with a
barrier are assigned a barrier 1D of zero, since barrier numbering normally starts at
one. To remind the user of which thread is current, the barrier [D and thread 1D are
displayed in the user prompt as follows:

TR B A I

In this case, the current thread is thread 2 of barrier 4. Since a thread mav be paruc-
pating in multiple barriers at once, the 1nto pumbers command wis created o discall
the other names or the thread. In UDB output, the thread is atways listed with the name
tound in its innermost barrier, although UDB will recoguized any valid naune oninpnt.
AN into threads command also exists; this command lists either all threads oraspec
itied subset of threads, and gives information about cach thread including the thread
1D, the state of the thread, and its current P
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(udb) info threads
H Thread ID H State Num Address Procedure File:L:ine
> 4:2¢ 17682 N 3step 5 O0x1040938 main myprog .23

By default, most commands are executed in the context of the current thread only.
The main exceptions to this rule are the breakpoint and trace commands; these apply
to all threads by default because the user typically does not know ahead of time which
thread or threads will be of interest. These commands can be restricted to apply to the
current thread only by prefacing them with the thread keyword. Any command,
including the breakpoint and trace commands, can be made to apply to a specific
thread or to a group of threads by prefacing the command with the thread keyword
followed by a list of one or more threads. Finally, those commands that normally apply
to just the current thread can be made to apply to all threads by prefacing them with
the keyword all. In these last two cases, commands that normally produce output will
produce output for each thread specified. Ty,.ing the thread keyword followed by a sin-
gle thread number but without a following command causes the current thread (o be
switched to the specified thread.

Running Multiple Threads

Special issues arise when running multiple threads with breakpoints. One of the most
crucial has to do with how to handle other threads when one thread hits a breakpoint.
UDB monitors the child task’s exception port continuously, and suspends the child
task as soon as a breakpoiit exception is encountered. At this point, the info threads
command may show a number of threads in the run state, but sitize the task is sus-
pended, they are not really running, and the UDB documentation describes them as
frozen. Once UDB has stopped due to a breakpoint, it is possible 1o switch between
threads that are stopped or frozen, examnine and change their data. do stack backuraces
on them, etc. Bydefault, the continue command will continue the current thiead plus
all threads in the run state. The continue command ‘nay be given an optional thread
specification to contnue threads other than or in addition to the current thread; vp-
ingall continue will cause all threads to contin.ie regardless of their run state. The
excepton to this is that individual rhreads may be prevented from executing by speci
fying their names in a hold command; held threads never execute until atter they are
freed by means of a tree command. Both stopped and frozen threads may be held.

The main reason that the decision was made in UDB to suspend the entue task when
any thread hits a breakpoint is that normal program execution patterns ate i
tained by doing so. Parallel programs typically have locks and synchronzanon cade,
and these can cease 1o function properly if some threads are stopped at breakpoins
while other threads continue running. Additonally, there s the problem of what to do
when many threads hit a breakpoint in close sequence. Lither the scieen inay be
Hooded by similar breakpoint messages one tight after the other, ot if the deasion is
made to suppress such messages, threads may sileny and unpredictably change state
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from running to stopped. Suspending the entre task avoids these problerns, and allow
breakpoints to be handled sequentially at the user’s option. When some threads have
hit a breakpoint and it is no longer interesting to watch other threads hit the same
breakpoint, the user can disable the breakpoint in the other threads or in all threads,
and continue execution.

Single stepping in a multithreaded program works somewhat differently in UDB than
just continuing threads. When a thread is being single stepped, the user typically wants
to study the execution of just that thread. If frozen threads are also allowed to run, as
with the continue command, then they may make asynchronous changes to data of
interest, or worse, one of them may hit a breakpoint during the stepping operation. To
avoid these problems, only the stepped thread or threads are allowed 1o execute dur-
ing the stepping operation.

Synchronous Break.points

Normally, a breakpcint suspends the entire task as soon as any thread hits it. When
dealing with parallel programs, often the opposite behavior is desired, that is to say, the
user would like the program to stop only after all threads beionging to a given barrier
hit a spec.fic breakpoint. To handle this case, synchronous breakpoints have been
introduced. Whenever a thread hits a synchronous breakpoint, it stops, but if other
threads belonging "o the barrier are still running, execution of the program continues.
Onlywhen all thre:ads in the barrier have stopped at the breakpoint does UDB suspend
the task and return control to the user. An exception to this case is if some of the
threads stop at this breakpoint and then another thread hits a regular breakpoint; in
this case, the program will stop immediately. If the thread containing the regular
breakpoint is resumed, and no other regular breakpoints are encountered. the pro-
gram will then continire until the synchronous breakpoint is hit in all threads.

If a synchronou; breakpoint contains a command list, the command list will be exe-
cuted by each thread a: the ume thac it first hits the breakpoint.

Windows and Multiple Threads

In multithreaded programs, several other window types are avaulable in addition 10
those descrihed above. The first of these is known as a shared source window. [T win-
dow is similar to a regular source window. except that it contains breakpoint and PC.
mau kers for all of the program’s threads. Since a program may coutain hundreds of
threads, and since breakpoints may exist in erther some threads or i all thieads, the
information for these markers must be encaded efficiently. UDB uses the toltowing
scheme:
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Figure 2-3  Shared Source Window with Status Codes

B 2 W Shared Source All Thrasds wuibtestl.amp [1]
:2 c KSR KAP 13.02 k101210 920620poir2  10-Aug-1992 16:
7 L L e e e L L L L L L L EE L PR P PP
(1] SUBRCUTINE PROCTXS(NUMRECE)

1) INTEGER NMUNRECS

70 REAL INDATA(],1000)

7 REAL OUTDATA().1000)

;; COMMCN /DATA/ ITHDATA ,OUTDATA

™ sl PRINT =, "Btarting tha uu n«nu ImTA

78 Caksma TILE ( ! PRIVATEe( A.B3,.C,X1 }W

% DO J et m

77 X A = INDATA(1,I)

70 § = INDATA(2,1)
Status codes

Table 2-1  Swatus Codes

Window

Shared Source

Code Meaning

—_——
nR PC of a frozen thread. nis the thread's 1D in a barrier.

n*R  PC of several frozen threads. n is the number of threads running at that point

n> Pt of a stopped thread. nis the thread’s |D in a barrier.

n+*>  PC of several stopped threads. nis the number of threads stopped at that point.

Breakpoint that applies to all program threads

Breakpoint that applies to only a subset of threads

Synchronous breakpoint that applies to all threads in a barrier
Synchronous breakpoint that applies to only a subset of threads in a barrier

€ T 0w

Note that this method allows the user to easily distinguish between regular breakpoints
and synchronous breakpoints, which behave rather differendy.

Shared instruction windows are also available in UDB. These work similarly to shared
source windows, with some minor limitations.

An important issue that needs Lo be addressed when using windows with multiple
threads is how many windows to use, and which windows get displaved in which
threads. When UDB is started up with the default windows options, it creates one reg-
ular source window, one shared source window, and one prograin /0 window. When
the program starts executing, the source window displays the program’s initial thread.
Whenever any thread hits a breakpoint that causes program execution to stop, that
thiead s displaved in the soutce window. Also, it the user manually changes the cut-
rent thread by means of the “hraad command, the new thread is automancallv dis-
plaved in the source window,

If more than one regulan source window is desired, the user can either create multiple
vouree windows .t startup or create them individually atany time duting UDR exeon
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tion. When muldple source windows exist, the events described above that cause a
thread to be displayed in a source window use the available source windows in round
robin fashion. If the user wants one or more source windows to always display a certain

thread, he can tell UDB to remove them from the list of windows available for new
thread display.

UDB also allows the user to create prompt windows for use with mulidithreaded pro-
grams. These windows work exactly like the main UDB command window, allowing the
user to execute commands and see their output. They are useful because they are cre-

ated on a per thread basis, and thereby allow the user to segregate UDB command
streams by thread number.
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SUPERSET OF GDB AND DBX

Traditional serial debuggers work well with KSR's programming model
GDB selected as powerful and well known serial debugger

DBX selected for compatibility reasons and trace and assertion facilities

ADDITIONAL SERIAL DEBUGGER EXTENSIONS
Full support for debugging Fortran programs
Command lists for signals

Arguments for user-defined commands

New control commanas "if" and "for”
Command and session recording

Command file debugging

Vi mode for line editing

Doy RGHY 9 KSR, 1992 KENDALL SQUARE RESEARCH
I 1R



Source, instruction, and program |/0 windows avaiiable

Markers indicate the location of the PC and all enabled breakpoints
Windows automatically updated to current location whenever program stops
UDB commands that list source files update source windows as well
Motion within a window is accomplished by either emacs or vi commands
Frequently used UDB commands have single letter window versions

Vool ot KSRV PB2 KENDALL SQUARE RESCARCH
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1 UDB Source Thread 0:0 koo.f i

WO WA H
salfia

b 2 h b
WN-O

-

[

b b b b
O -3 Oy

NN NN
WO

W RN NN NN
OO -~ Ovin &

parameter (n=16)
common / aa/ a(n,n)

c --- Initialization
Bf de 1i=1,n
B dol j=1,n
‘(i:j) = 1.0
1 ccatinue

c --- the a’ia’ linpack loop - in parallel
nai e n -1

do 60 k = 1, nal

kpl « k + 1
t=1.0

C*KSR*x TILE (3, tilesize=(j:i) )
do 30 j = kpl, n
do 31 1 =1, n-k
a(kei,d) = a(kei,i) + tha(kei,k)
31 continue

30 continue
C*KSR* END TILE

60 continue




2 UDB Instruction Thread 0:0 koo.f

:0001090918:
:0001090920:
:0001090928:
:0001090930:
:0001090938:
:0001090940:
:0001090948:
:0001990950:
:0001090958:
:00010909560:
:0001090968:
:0001090970:
:0001090978:
:0001090980:
:0001G90988:
:0001090990:
:0001090998:
:00010909a0
:00010909a8
:00010906b0:
:0001090908:
:0001090%c0
:00010909¢8:
:00010909d0:
:00010909d8:
:00010909e0:
:00010909e8:
:0001090910:
:0001090918:
:00010¢2a00:
:0001090a08:
:000109Ga10:
:0001098a18:
:0001090a20:
:0001090a28:
:0001090a30:

'3

:B

finop
finop
finop
finop
finop
finop
finop
finop
finop
finop
finop

finop
finop

finop

finop
finop
finop
finop
Baovis
->movi8
=>poviB
sovif
moviB
movi8

0:11,%i6
Ox1,%17
0x10,%i2
0x11,%i8
Ox1,%i6
0x10,%13

fuoviB 1,310

finop
finop
finon
firup
f nop
1sh8
finop
finop
finop
finop
finop

Ox7,%17,%17

Ld
H
L]
’
-
)
]
)
’
*
’
’
L3
’
[
)
’
L3
H
L3
’
’
e
’
L4
’
H
k]
H
H
)
’
a
’
’
1
a
’
H
]
’
’
)
’
>
;
)
H
’

ssubB.ntr 0,%c13,%c4,%c13
st8 $c11,+0x170(%c13)
st8 %c12,+0x178(%ci3)

; st8 %$129,+0x140(%c13)
; 5t0 $130,+0x138(3c13)
; st8 $c14,+0x168(%c13)

stb $112,+0x158(3c13)

; movi8 0x180,%c5

mov8_0 %c10,%cil
sadd8.ntr 0,3c13,%c5,%¢12

; movb0_8 $c11,%130

st8 %$11%,+0x150(%c13)
movb8_8 %c12,%i29

; st8 $114,+0x148(%c13)

1d8.ro +0x30(%c11),%c10
cxnop

; cxnop

sadd8.ntr 0,%c31,%c10,%c10

; stB %16,-0xe0(%ci2)
; st8 %17,-0xe0(%c12)

cxnop
st8 $£i8,-0xe8(%c12)

; st8 %16,-OxeB8(%ci2)

: cXnop
1d8.ro -0Oxe8(%c12),%chd

; 1d8.ro -Oxe0(%c12),%c?

;: 1d8.ro +0x28(%c1:),%c8

; movb8_8 %cb6,%17

; cxnop

;i CXnop

; movb8_8 $i7,%c6

; cxnop

; cxnop

; sadd8.ntr 0,%c8,3%cb,3ch
; saddB8.ntr 3,%c7,%cH,%c?
; st8 $£0,-0x88(%c?)




BREANKPOINTS IN MULTITHREADED CODE
Entire task is suspended

Threads in the “run” state are actually frozen
All threads may be examined and manipulated

CONTINUING AND STEPPING
The “continue” command works on the current thread and all frozen threads

Thread execution is affected by “hold” and “free® commands
Stepping commanas execute only specified thead(s)

i ASR I YWw? KENDALL SQUARE RESEARCH
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X| zappa: /langwork7/users/z

Bpt 2 in thread 1:0, MAIN() at koo.f:23
23 B 31 continue
(udb[1:0]) info threads

# Mach ID H State Num _ Address Procedure File:Line
> 1:0 16 H break 2 0x1090dd6é MAIN ' koo .f:23
1:1 18 H run 0x1090dd8 MAIN koo .f:23
1:2 19 run 0x1090dd8 MAIN koo .f:23
1:3 20 H run 0x1090dd8 MAIN koo .f:23
1:4 21 H run 0x1090dd8 MAIN koo.f:23
1:5 22 Y break 1 0x1090cc0 MAIN koo.f:22
1:6 23 H run 0x1090dd8 MAIN koo .f:23
(udb{1:0]) quit

The program is running. .Quit anywvay? (y or n)
EERETES [




Breakpoint is set by default in all threads of the current barrier

Tash is stopped only after all threads hi: the breakpoint

Command lists are executed when the thread actually hits the breakpoint
Program stops in the thread from which “continue” was issued

cew " £ KOR Vww2 KENDALL SQUARL RESEAKRUH

-5 My



THREAD BASICS

Paraliel programs on the KSR1 typically use pthreads

UDB can debug programs that use either pthreads or kernel threads
Thread numbers consist of a barrier ID and a thread ID

Current thwead number is always displayed in the prompt, e.g., “(udb[4:2])"
Other thread names can be listed with “info threads® command

SCOPE OF COMMANDS

Most commands execute in the context of the current thread
table exceptions are breakpoint and trace commands

“thread <command>" restricts command to current thread

“thread n <command>" restricts command to thread n

all <command>" executes command over all threads

Current thread may be changed by typing “thread n”

o PrRiLHT  RER 192 KENDALL SQUARE RESEARUCH
~2Z 3 R}
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SHARED SOURCE AND INSTRUCTION WINDOWS

Windows contain PC and breakpoint markers for all threads

PC markers indicate number of threads at given location

If only one thread at a location, PC marker identifies it

Breakpoint inarkers distinguish between regular and synchronous breakpoints
Breakpoint markers indicate thread scope of breakpoints

SELECTING SINGLE SOURCE WINDOWS

Stopping due to breakpoints, etc. causes thread to be displayed
Selecting new thread causes thread to be displayed

User can create additional windows

windows may be either changeable of fixed

AP N J IR P RENDALL SQUARL KiI st Ak N



The Effects of Register Allocation and Instruction Scheduling on
Symbolic Debugging

Ali-Reza Adl-Tabatabai and Thomas Gross
School of Computer Science
Camegie Mellon University

Pittsburgh, PA 15213

1 Introduction

A number of modem high-performance processors expose instruction-level parallclism as well as
large register files to the compiler. Since the panllelism and the storage hierarchy are exposed, the
compiler has the opportuaity to exploit the parallelism in the program aad to reduce the memory traffic
by keeping the most frequently accessed variables in registers. Instruction scheduling and register
allocation/assignment are two optimizations that are commonly included in compilers for modern
processors. These optimizations, however, affect setting breakpoints and inspecting variables by a
symbolic debugger, which attempts to present to the user a source-level view of program execution.
The instructions for multiple source language statements are intermixed. and source variables are given
different storage locations during the execution of a program.

Superscalar, (V)LIW. and (super)pipelined processors can issue and execute muitiple operations
concurrently. Ap optimiziig compiler can increase the efficiency of such processors by statically
scheduling independent operations for concurrent execution. However, scheduling may result in source
expressions executing out of source order. If assignments are executed out of order, the sequence in
which source level values are computed will be different from that specified in the source program.
Consequently. if the debugger inspects a variable, the value retricved from the variable’s location may
not be the value expected, since some computations specified in the source were performed out of
order.

Due w the increasing gap between processor and memory speeds. cache miss penalties have become
increasingly expensive. One way ip which this problem has been addressed, has beea to include largey
register files on chip, allowing the compller to select frequently accessed values 'o be kept in registers.
Since there are typically many more program values than there are physical rcgisters, a register may
be assigned to different values during execution. Consequently, at a breakpoint, the register assigned
10 a source variable at some point in time may be holding another varlable at the time the breakpoint
is encountered.

tile “"Ressarch un Parallel Computing.” ARPA Order No. 7330. Work fumished in connection with this ressarch is provided
utkler prume contract MDA972-90-C-0018 iussyed by DARPAX'MO) W (Camegis Mellon University.

The view s and wonclusions contained in this document are thuse uf the Authors and shuuld nut be interpreled as representing
the ofticial policies, either eapressed or implisu, o1 we .S, Government.
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Previous work on debugging optimized code has been concerned with a number of issues, e.g.,
which user variables are up to date at a breakpoint (starting with [11,14)), where to find the most
accurate value for 2 user variable ([10]), how to map source code breakpoints to stopping points in the
target code (110,4]), how to deal with specific optimizations([15]), how to deal with implementation
issues ([12,7]), and how to present the information to a user ([6]).

Our work focuses on the debugger issues raised by code reordering and storage location reuse
due to register assignment. We implemented the techniques described in this paper for the iWarp C
compiler, which is based on the PCC2 compiler. In this paper, we present measurements of the effects
of these optimizations on the ability of a debugger to recover source level values for a few benchmarks
selected from a suite of numerical programs(13).

2 Background

In the next section, we briefly introduce the key concepts of our symbolic debugger. Then we discuss
those features of the compiler that are relevant for this paper.

2.1 Debugger model

Our debugger model supports the base operations of control breakpoints, data inspection, and execu-
tion continuation. Control breakpoints are either synchronous, such as source level breakpoints, or
asynchronous, such as program faults or user interrupts. In this paper, “execution stops at instruction
I’ means that the execution stops before I completes. That is, either an asynchronous breakpoint oc-
curred during the execution of / (e.g., an exception), or a synchronous breakpoiat was placed at /. The
topic of mepping source statements to machine instructions has been studied by other researchers(9].
The strategy used by the debugger may restrict which machine instructions can produce breakpoints,
but since we want to allow the user to interrupt the execution of a program at any moment, we do
not impose any restrictions on where a breakpoint can happen. Therefore. our algorithms and our
evaluation is based on the assumption that any instruction can be a breakpoint.

Data inspection is limited to source variables. The debugger does not change the state of a program
except for setting breakpoints; data modification by the user is not supported. When the user inspects
a variable, the value stored in the variable’s location may be irrelevant because the variable has not
been injtialized during the execution of the program. There are two possible policies that a debugger
can adopt:

1. Warn the user that a variable is uninitialized.
2. Let the user beware, do not notify the user.

In the absence of support provided by the runtime system (¢.g., path descriptors [15]) or the archi-
tecture (e.g., memory tags), the first option requires that the debugger ohtains program flow analysis
information from the compiler. If no definition of a user variable V reaches a point L in the source,
thea Vis uninitialized whenever the program breaks at L. This data flow problem is known as reaching
definitions|3). Note that even if policy one is adopted. the debugger cannot help in the case that
definitions reach on some but not all paths to L.

When the debugger is invoked as a result of encountering a control breakpoint. the ac.Jdress in
the object code where the breakpoint occurs is called the object breakpoint, and the source staement
where the breakpoint is reported is called the sounce breakpount.



At a breakpoint, the debugger must determine if a variable is resident. A variable V is called resident
if the debugger can find a storage location that holds the value of V, otherwise V is nonresident. There
are several methods a debugger can use to answer the residency question, they are discussed in Section
3. A register promoted variable V is called evicted if the register assigned assigned to V may be holding
the value of a variable other than V at the breakpoint; this occurs if Vs register has been reassigned to
another variable. An evicted variable must always be reported as nonresident by the debugger (unless
the debugger attempts recovery).

Finding a variable’s residence is only the first step. If the variable is resident, there is no guarantee
that the storage location holds the value that the user expects for this source breakpoint. A source
variable whose run time value at a breakpoint is different from its expected source value due to re-
ordering is called a noncurrent variable. A variable V is endanger=d if the debugger detects that V may
be noncurrent. Only source variables can be noncurrent or nonresident; compiler-generated temporaries
can never be inspected by the user, so the debugger never has to display those values. Also, note that
noncurrency only applies to resident variables since only resident variables have a runtime value.

Consider the source code in Figure 1 and the object code generated shown in Figure 2. Variables d
and £ have been assigned the same register R4, and variable ¢ has been assigned register R3. No other
storage location holds ¢, d, or £. Note that register R3 is also used to hold an expression temporary
at instruction I3. Furthermore, on entrance to this block of code, d is dead, and register R4 (which
hoids the value of d upon exit of this basic block) contains the value of £. Upon exit, £ is dead.

Now Ict us consider the task of a symbolic debugger at different breakpoints. For example, each
of the floating point addition operations may cause an exception. If an exception occurs at the fpadd
instruction I3, the debugger reports that execution halted at statement S1. At this breakpoint, 4 is
reported nonresident, since R4 holds a value belonging to variable £.

Now consider a floating-point exception during execution of I5, This is reported as occurring at
statement S3 in the source code. At this breakpoint, d is still nonresident; c is also nonresident because
of the assignment to R3 at instruction I3. a is noncurrent because its assignment from statement S1
has been delayed by the code scheduler so that 16 is executed after I5 (the breakpoint).

Similarly, when we analyze the situation at a breakpoint caused by instruction I7, which is reported
as a breakpoint at statement S2, ¢ and £ are reported as nonresident. R3 still contains the expression
temporary computed by instruction I3, and d is noncurrent, since the assignment of statement S2 has
already been performed at 15, before the breakpoint.

Note that if no assignments to d reach this block of code in the source, d can be reported as
uninitialized rather than noacurrent or norsesident, at any of the breakpoints.

b+c; /* S1 */
e+g; /* S2 */
a+f; /* 83 */

aa o
i

i

Figure 1: Example source code. All variables are floating point.

The debugger must detect the set of noncurrent and nonresident variables and report them as such
in response (0 a user guery. That is, it is acceptable that the debugger cannot display the value of a
variable in response to a user query, but the debugger is not allowed to provide misicading information.
The debugger may attempt to recover the value of noncurrent or nonresident variable, hut recovery
may not always be successful. (Notice the difference between noncurrent and nonresident variables:
tor a noncurrent variable, the variable's location coutains either an old or future value. A nonresident



I1l: Rl <-~ load b
I2: R2 <-- load g

I3: R} «-- fpadd R1,R3 -- b+c

I4: Rl «<-- load e

I5: R4 <-- fpadd R3, R4 -- d = a+f
I6: a <-- store R3 -~ a =

I7: R} <-- fpadd R1l,R2 -- C = e+g

Figure 2: Object code generated for source of Figure 1.

variable is a variable where the debugger cannot determine the home location, and therefore no value
can be presented.)

2.2 Compiler framework

The iWarp C compiler (release 2.5) performs local code compaction for the iWarp processor. iWarp
is an LIW machine, with 128 registers, of which 94 are available to the compiler. In a single cycle,
the iWarp can execute a floating point multiplication, a floating point addition, 2 integer operations or
memory accesses, as well as a loop termination test(5]. Compaction may cavse function calls to be
reordered with respect to other operations.

Local variables that are not aliase¢ are promoted o a register by the optimizer. These variables
along with compiler temporaries are allocated registers from an infinite pool of virtual registers. Virtual
registers are assigned physical registers after code scheduling, using graph coloring. Live ranges are
not split, and promoted variables have no home locations in memory. Therefore, a promoted variable
resides in its assignec register throughout its live range. The assigner attempts to assign caller saved
registers to live ranges that do not span function calls. Register subsumnrtion or coalescing(8] is
performed to minimize the number of register moves. This optimization assigns the same register to
two virtual registers whose live ranges do not conflict. but are connected by a register move.

The code scheduler and register assigner of the iWarp C compiler create two problems for a
debugger. First, because of code scheduling, the debugger musi detect which assignments and function
call operations havz executed (or not executed) out of order with respect to the source stopping point,
and how source level values have been affected. Second, because registers may be reassigned, the
debugger must detect which of the promoted variables are resident in their assigned registers at a
breakpoint. In this compiler, two types of instructions evict variables. A register promoted variable
may be evicted because its assigned register is re-assigned to another variable. Or, if the variable was
assigned a caller saved register, the variable may be evicted because its value is killed by a function
call. Since promoted variables do not have home locations in memory, recovery of their values is
difhicult.

3 Detecting nonresident and noncurrent variables

Our algorithms for detecting nonresident and noncurrent variables are implemented for the iWarp C
compiler, but the same techniques can be used for other processors and other languages. The C compiler
was modified to pass information describing the results of register allocation and code scheduling to
the debugger. The results of register allocation and assignment are described with two tables, one that



maps register promoted variables to virtual registers and another that maps virtual registers to physical
registers. The intermediate represeatation (IR) of the program is annotated with information describing
the code generated for each IR operation, and the annotated IR is consulted by the debugger.

When a breakpoiat occurs at an object breakpoiat O, this object breakpoint is mapped to the /R
breakpoint operation, the operation in the IR, for which a synchronous breakpoint was reached or
within which an asynchronous breakpoint occurred. The debugger performs data flow analysis on the
object to detect the set of nonresident variables at O. (The decision to determine this set on demand is
motivated by implementation concerns; it is perfectly possible to perform this analysis before program
execution and to record the result tor each possible object breskpoint.) Thean the debugger determines
the set of noncurreat varisbles, by consulting the annotated IR. The approach of annotating the IR
for detecting noncurrent variables is similar to Heanessy’s(11], however, our annotations model the
physical registers of the target machine as well as the instruction-level parallelism exposed by the
concurrent execution of multiple operations. Details of our approach are described in [1] and [2].

3.1 Detecting nonresident variables

Theae are two strategies for a debugger to determine which variables are nonresident. It can make a
conservative approximation, or it can try to obtain the exact solution. One conservative approximation
is to assume that a variable is resident only during its live range. (It must be resident during the live
range, otherwise there is a compiler error!). That is, a variable is considered nonresident after its last
use. The attraction of this approach is that the compiler must maintain the live range information for
register allocation. The drawback is that a variable may stay in its register after its last use if the
register allocator has no immediate need for the variable’s register.

The second sirategy is to determine when a variable has been evicted. Let R(V') denote the register
assigned to a register promoted variable V. A variable V becomes evicted when R(V') is targeted by
an instruction that writes the value of another variable or of a temporary. After its eviction, a variable
is nonresident (unless recovery is undertaken).

Information about eviction is available only trom analyzing the object program. Therefore to detect
evicted variables, cur debugger performs data flow analysis on the object program. Machine operations
that target a variable V's assigned register R(V') but do not correspond to source assigaments to V,
are marked as causing V' to become evicted.! On the other hand, machine operations that target R(V')
and are source level assignments to V are marked as causing V to become resident. All variables are
considered resident at the source node of a program’s coatrol flow graph. Data flow analysis is then
employed to track the eviction of variables along the flow of instructions: a variable V is evicted at a
point O in the object if it is evictad on any path leading to O.

3.2 Detecting noncurrent variables

To detect noncurrent variables, the debugger must detect which assignments have executed out of
sequence with respect to the source breakpoint, since it is these operations that affect source level
values.? Therefore, the annotated IR must record the cancnical (source-order) sequence of assignments
as well as the order in which they are executed in the object. The source order of assignments is
captured by annotating each assignment in the IR with a sequence number. The urdering defined by
the sequence numbers captures the canonical execution order of the IR assignments. The IR operations

'If « variable V is sssigned a caller saved register, then a function call operation is also considered ag targeting V's register.
Ipunction calls also affect source level values and are also considersd. For conciseness, we only mention asaignments.
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on the right hand side of an assignment expression E are marked with the same sequence number as
E.

The order in which IR operations are executed in the object is determined by the code scheduler,
and the code scheduler must pass this information to the debugger. Each IR operation may translate
into multiple operations, which are placed by the scheduler into machine instructions. Therefore, each
IR operation is annotated with a list of basic block schedule offsets. Each offset identifies a machine
instruction in the current basic block.> The offset of the last machine operation generated for an IR
operation determines when the IR operation completes execution.

Using sequence numbers and offsets of machine operations, the debugger can determine which
operations have executed nut of source order at a breakpoint. Let B be the IR breakpoint operation,
and O be the block offset of the object breakpoint. There are two ways that an IR assignment operation
A can be performed out of source sequeace:

1. A executes before the breakpoint operation B in the canonical execution order but was scheduled
to execute after the breakpoint O.

2. A executes after the breakpoint operation B in the canonical execution order but was executed
prematurely before the breakpoint O.

Having detected which assignments have executed out of sequence, the debugger must detect
how source variables have been affected. Pointers and aliased variables complicate the analysis of
noncurrent variables. The debugger must ensure that if it cannot precisely determine the currency
status of a variable, it makes only inconsequential errors. That is, the debugger may not announce a
variable V' as current, if it is possible that V is noncurrent. Consider an assignment into a location
pointed to by p:

a = /* B */
*D <expr> /* S %/

If the store of S is moved above the store of B (the compiler determined that a and *p are not
aliased), then the location pointed to by p is noncurrent if a breakpoint occurs at B. If the debugger
can recover the address of the location stored into by *p, it can precisely detect which variable is
noncurrent at the breakpoint. However, if this is not possibie (for example p may be nonresident at
the breakpoint), the debugger must report any variable that is potensally aliased to *p as endangered
(potentially noncurrent). The compiler’s memory disambiguation or aliasing analysis can improve the
debugger's chance to determine the currency status of potentially alizsed variables. Any variabie that
the compiler certifies as nonaliased wiil not be noncurrent due to *p.

33 Noncurrency caused by register subsumption

A register move operation copies the contents of one register to another, The optimization of reglstey
subsumption[8] or coalescing attempts to eliminate register move operations by assigning the same
physical register to the source and destination virtual registers of the move operation.  However,
climinating a move operation that corresponds to a source lcvel assignment affects debugging. Consider
the following source code:

'Since scheduling is performed at the basic block level, we use an offsst from the beginning of the basic block instead of
an instruction address.



Y Z+W; /* 81 »/

X

Yi /* S2 */

Assume for the sake of exposition that code generation has not reordered execution. Assuming that
both x and y are promoted to registers, the code selector will generate a move operation for the
assignment in S2. Coalescing will assign the same register to both x and y (assuming their live ranges
do not conflict), eliminating the move operation generated for S2. In effect, S1 and S2 are performed
at the same time, and r will hoid the value of both x and y after execution of S1. If a breakpoint
occurs somewhere between S1 and S2, S2 will have executed too early. Consequently, x will be a
noncurrent variable at such a breakpoint. To model this situation, the IR of S2 is marked as being
executed at the same time as S1 so that the noncurrency detection algorithm will detect z as being
noncurrent between S1 and S2.

4 Results

We have analyzed the effects of register allocation and instruction scheduling on nine numerical
programs. In this section, we report results from two programs selected as represeatatives of this set:
bessi (modified Bessel function / of integer order), gaussj (Gauss-Jordan elimination), and ludcmp (LU
decomposition for solving a system of linear equations).

4.1 The effects of register allocation

Figures 3 and $ illustrate the effecis of register allocation on the debugger's ability to recover source
variables, by showing the average number of register allocated variables that are nonresident at a
breakpoint. The leftmost column shows the average number of register promoted variables, while the
other columns show how the number of nonresident variables is reduced by using data flow analysis to
find reaching and evicted variables. The second column from the left shows the number of variables that
are nonresident if the debugger uses a variable’s live range as the range in which a variable is resident.
These z2-e the results that would be obtained if the debugger used a simplistic approach to detecting
nonresident variables. The third column show the results of augmenting live range information with
reaching analysis to find uninitialized variables. The fourth column shows the number of variables
that are nonresident using data flow anaiysis to find evicted variables, and the fifth shows the effects
of using reaching analysis to exclude uninitialized evicted variables.

The results from this figure show that employing data flow analysis techniques in the dcbugger
reduces the number of noaresident variabies. Comparing the second column with the fourth, and the
third column with the fifth, shows the impact of the eviction data flow analysis, while compuring the
second column with the third, and the fourth column with the fifth shows how rcaching analysis helps.

4.2 The effects of instruction scheduling

Because of reordered pointer assignments and function calls, the precise nutmber of noncurrent variables
cannot be determined. Therefore, the effects of instruction scheduling cannot be analyzed based on
the number of noncurrent variables. Instead, the analysis is based on the number of breakpolnts that
contain noncurrent variables.

Figures 4 and 6 illustrate the cffects of Instruction scheduling by showing the percentage of break-
points that have noncurient variables, and compares this with the percentage of breakpolints that have



nonresident variables. The lefimost column shows the percentage of breakpoints that contain non-
current variables. A breakpoint contains noncurrent variables if there are reordered assignments or
function calls at the breakpoint. The second column shows the results of using live range information
to detect nonresident variables, while third column shows the results of using evicted and reaching
data flow angiysis 10 detect nonresident variables.

These resulis show that as fa- as breakpoints are concerned, nonresident variables pose much more
of a problem to symbolic debugging than noncurrent variables. Results from the other aumerical
programs that we iooked at are consistent with those shown here. The percentage of breakpoints
with noncurrent variables ranged from 15-30%, while the percentage of breakpoints with nonresident
variables ranged from 65-100% when the simple live range approach is used and 40-95% when the
reaching and evicted variables data flow analysis is used. Programs that have an average number
of register promoted variables of oves 10, have a high percentage of breakpoints with nonresident
variables, 95% percent or more for the live range case, and 70% or more using data flow analysis.

5 Concluding remarks

Previous work on debugging optimized code has been mostly concerned with noncurrency due to
reordering or elimination of assignments. Our investigations indicate that nonresidency of register
promoted variables is a serious problem that must be addressed by a symbolic detugger for optimized
code.

The techniques used by the debugger to determine residency significan’ impact the ability of
the debugger to allow user inspection of variables. If the debugger relies suiely on the compiler’s
view of a variable's live range to determine rcsidency, the debugger misses many opportunities to find
variables. Those variables that are dead but stll in & register are reported as nonresident. However, if
the debugger analyses the object code, it can determine when a variable is evicted, and only evicted
variables are reported as nonresident. Register promoted variables are evicted by reuse of their assigned
storage locations - either explicitly by an instruction that target the register that holds the value, or
implicitly by a functon call if the value is kept in a caller-save register.
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ABSTRACT

Optimizing compilers produce code that impedes source-level debugging. Optitnization can
disturb the mapping between source statement boundaries and machine instructions. ‘This paper
presents a mapping that enables setting breakpoints at source statemnents and single stepping at the
statement level in optimized code.

Optimization can cause the value of 4 variable Lo be noncurrent - to differ from the value that
woulid be predicted by sunulating the source code. If a debugger does not display a warning when
the debugger user asks for the value of a noncurrent variable, the user will be isled. This paper
describes a simple dataflow algorithm to determine a variable’s currency, and shows how a debugger
can use the results to describe the relevant effects of optimization. The determination method s
tmore general than previously published methods.

Categories and Subject Deacriptors: D.2.5 [Software Engineering): ‘Testing and Debugging  de-
bugging auds, 13 2.6 [Software Engineering]: Programming Envitonments; D.3.4 [Programnung Lan-
guages|. Processors  code gencration, compilers, optimization

General ‘Terma: Algonthma, Languages

Additional Keywords and Phrases: debugging, compiler optimization, reaching delinitions, noncur-
rent. variables



1. Introduction |

Original Source Code After Constant Propagation After Dead-Store Elimination
X = expression; X = expression; x = expression;

X = constant; X = constant;

y=x; y ®= constant; y ®= constant;

Figure 1.1: Potentially Confusing Optimizations: Assume that the only use of x after the
assignment of constant to x is the one shown. Constant propagation removes that use
(shown in the second column). Subsequently, the ascignment of constant to x may be
eliminated as shown in the third column. If the debugger is asked to display the value of
x anywhere after the eliminated assignment, typical debuggers will display expression.
The user, looking at the original source code, may wonder why the displayed value is not
constant, or may wrongly believe that the value being assigned to y is expression.

1 Introduction

Debugger users can set a breakpoint at a source statement (say, S), and when .¢ is reached,
can have the debugger display a variable, say, V. Most debuggers will display whatever is in V's
storage location. Assuming it has not eliminated V, optimization can introduce two problems for
this scenario. After optimization, it may not be clear which instruction generated from 5 (if any)
reflects the user's notion of being “at” §. Even if such an instruction is found, the value in V''s
storage location may not be the value that the source code would lead one to expect. For example,
due to a code motion optimization, an assignment to V may have been done earlier in the generated
code than in the source code. This can confuse, mislead, slow down, and irritate debugger users.
I'igure 1.1 is an example of the latter problem, raused by constant propagation followed by dead
store elimination.

Source-level debugging of optimized code is clearly desirable. 1t would climinate recompilation
steps and enable source-level performance debugging. In particular, it would replace or enhance
machine-level debugging of optimized code when the hug causes the behavior of au optimized
version of a proeram to differ from the behavior of an unoptimized version.

Programmers spend a lot of time on such bugs because they are difficult o locate, If the problem
is a compiler bug, machine-level debugging may still be necossary, though source-level features may
speed the process of narrowing down the search. But if the bug is in the application, it may be
possible to find the bug without ever going to the machine Jevel.

It often surprises engineers to find that the behavior of an optimized version of a program can
differ from the behavior of an unoptimized version even when the compiler is correet. However,
most of us have experienced a program behaving badly, but the bug going away when we run the
program in the debugger. One typical cause is an assignment through a stray pointer that hits a



2 1. Introduction

different piece of data because the program is loaded at a different address. Optimization can have
the same effect: because the size of the code and data space differs from an unoptimized version,
an assignment through a stray pointer can hit a different piece of data.!

Because optimized code does cause difficulties in mapping between the source code and the
machine code, if a debugger provides source-level debugging of optimized code, it should warn the
user when its reponses to queries may have been affected by optimization.

1.1 Overview

Section 2 uescribes a mapping between source statements and machine instructions that allows
breakpoints to be set at the debugger user’s notion of source statement boundaries. When such
a breakpoint is reached, if the value in a variable's storage location is suitable to be displayed
to the user, the variable is current. The remainder of the paper describes how to determine
whether a variable is current at a breakpoint - the problem of currency determination, investigated
by Hennessy [Hen82]. The fundamental ide:. behind this solution to the currency determination
problem is the following: if the definitions of a variable V' that “actually” reach a breakpoint B are
not the ones that “ought™ to reach B, V is not current at B. The definitions of V that actu:ally
reach B are those that reach B in the version of the program executing under debugger control.
The definitions of V that ought to reach B are those that reach B in a strictly uncptimized version
of the program.? Section 4 describes a dataflow computation that produces a set of pairs - the
definition of V that ought to reach B along a path p is paired with the definition of V' that actually
reaches B along p. Given the set of such pairs for V at B (the paired reaching set for V at B,
or l’RS}’,), V is current at B if for each pair, both positions of the pair are occupied by the same
definition.

In order to determine a variable's currency:

1. The compiler must generate a set of debug records relating statements to code addresses;
these debug records are ordered in two flow graphs, one representing the program before
optimization and the other representing the program after optimization.

2. The low graphs are used to compute paired reaching sets.

3. A paired reaching set is inspected to determine the currency of the variable.

' Another typical cause ia the use of an uninitiahized variable that gets a different initial value in the debugger. A
loval variable V' may get a diferent initial value in optimized code because some prior local may have heen eliminated.
I'his may cause V to be allocated at a different stack offset, and it will get ita initial value from a different previous
avcupant of the stack,

!One compilation of the program is sutficient to provide the information with which to compute both the definitiona
that vught o reach # and those that actually reach B



2. Breakpoint Model 3
2 Breakpoint Model

In unoptimized code, the instructions generated from a statement are contiguous,? and code is
generated for every statement in the order in which it appears in the source code. Breaking at a
statement § corresponds to having executed all “previous” statements, that is, having executed all
code that was generated from statements on the path to S, and suspending execution at the first
instruction generated from S. At that point, no “subsequent” statements have begun, that is, no
code that was generated from any statement on the path from S (including code generated from S
itself) has been executed, and the value in each variable's location matches the value of the variable
that would be predicted by a close reading of the source code.

Debugger users expect these characteristics to hold when execution is suspended at a statement
boundary. Considerable optimization can take place without compromising these characteristics
(for one example, invariant address calculations can be moved to loop pre-headers). Such opti-
mization may be largely ignored by the debugger without impeding source-level debugging.* The
user needs to be informed only about optimization that affects source code variables and statement
flow-of-control. Telling the user about optimization on compiler temporaries is likely to make the
debugging job harder, not easier.’

2.1 Syntactic and Semantic Breakpoints

The machine instruction used as the breakpoint location for a statement should uve chosen
based on the user’s intent. The user may set a breakpoint in a loop to be able to poke around
on each iteration. If the statement at which the breakpoint is set were moved out of the loop by
optimization, it would be appropriate to set the breakpoint where it used to be. On the other
hand, the user may have set the breakpoint to check the values of variables used in an expression in
that statement. In that case, if the statement were moved out of the loop, it would be appropriate
to set the breakpoint where it ended up, so the values the debugger displays are the actual values
used in the expression.

Of course, the debugger does not know the user’s intent. If these situations are to bhe distin-
guished, two types of breakpoints are needed. Zellweger [Zel84) introduced the terms syntactic and
semantic breakpoints. The order in which syntactic breakpoints are reached reflects the syntactic

order of source statements; the syntactic breakpoint for statement n is never after the syntactic

*Caode generaled from looping or branching statements is typically not contiguous. However, this lack of contiguity
is present m the source code as well as the generated code.

Note that such code motion Ia relevant o trap location reporting. If an address computation is moved ap ont
of a loop, and the cumputation traps, the uner should be infermed that the trap occurred in the statement that the
address computation originated in.

“There are crcumatances i which it is important for the debugger to reveal the effects of optimzation at this
level of detal, snch as ailowing the user Lo track down a code -generation bug In such circumatances, it is appropnate
to shuft to machine level debugging.
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Unoptimized Optimized
Semantic Breakpoint /a. = 5;
while (conditio while (condition) {
5 ——— Syntactic Breakpoint — .
a =5
b = fen(); b = fen();
} }

Figure 2.1: Semantic and Syntactic Breakpoin. Locations

breakpoint for statement n + 1. It will be at the same location if the code for n is moved or elimi-
nated. If the code generated from statement n is moved out of a loop, a syntactic breakpoint for n
remains inside the loop. The semantic breakpoint for a statement is where the action specified by
the statement .akes place; where the code that implements the essence of the statement ends up.
If no code motion or elimination has occurred, syntactic and semantic breakpoints are the same.

Figure 2.1 provides an example of the syntactic and semantic breakpoints for a loop from which
optimization has moved an invariant statement.

The proposed breakpoint model supports both syntactic and semantic breakpoints. Section 4
assumes only syntactic breakpoints are available.

2.2 Breakpoint Locations (Representative Instructions)

The instructions generated from a statement that are possible breakpoint locations for that
statement are the statement’s representctive instructions. The first instruction generated from a
statement that has an effect that is visible at the source level is an instruction at which the user
may want to break, and thus is selected as a representative statement. If a statement has multiple
effects that are visible at the source level, it will have one representative instruction for each. lor
an assignment, the representative instruction is the instruction that accomplisk.es the store of the
rosult into the variable (whether it is a store instruction or a computation into a register). Choosing
the store as the representative instruction for variable modifications is crucial to the correctness of
the work presented in the remainder of the paper. For loops and branches, the branch instruction
is the representative instruction.

The € statement if ((1i = j++) == k) has three rcpresentative instructions (and therefore
three possible breakpoint locations), one at the store into j, one at the store into 1, and one at the
branch to the then or else case.

For the duration of this paper, the term breakpoint refers to a source-level breakpoint, that is,

the location of a representative instruction.
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Unoptimized Optimized
a=Xx a=X
bkpt bkpt

Figure 3.1: Variable a is current at bkpt

3 Currency

If the debugger usor asks the debugger to display a value that optimization has caused to
be different from the value that would be displayed at the same point in unoptimized code, the
debugger should warn the user.

I call the value in a variable V’s storage location when execution is suspended at a breakpoint
its actual value. Vs expected value at a breakpoint is the value that would be predicted by hand-
simulating the program to the breakpoint.

In unoptimized code, at each breakpoint the expected value of every variable is identical to its
actual value, but this is not the case for optimized code. Hennessy [Her82] introduced the terms
current, noncurrent, and endangered, which describe the relationship between a variable’s actual
value and its expected value at a breakpoint based on a static analysis of the program.

Informally, a variable V' is current at a breakpoint B if its actual value at B is guaranteed to
be the same as its expected value at B no matter what path was taken to B. Examples of current
variables are given in Figures 3.1 and 3.2. In the examples, bkpt represents the breakpoint.

b is noncurrent at B if its actual value at B may differ from its expected value at B along
every path to B (though the two values may happen to be the same on some particular input).
Figures 3.3 and 3.4 show examples of noncurrent variables.

V' is endangered at B if there is at least one path to B along which V's actual value at B may
ditfer from its expected value at B. Figure 3.5 i an example of an endangered variable.

In Figure 3.5, a is said to be current along the left-hand path and noncurrent along the right-
hand path.

This work builds on previous work that defined a vocabulary for discussing the problem. The
definitions and discussion in the remainder of this section are largely as taken from [Cop92).

Because optimization may modify the program’s flow graph, path must be defined in such a way

that it makes sense in both the unoptimized and optimized versions of the program. There are
two relevant relationships: the relationship between the optimized and unoptimized flow graphs
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Figure 3.5: Variable a is endangered at bkpt

(a8 would be induced from generated code), and the relationship between the data structures used
to determine a variable's currency; the pre-optimization flow graph and the post-optimization flow
graph.

Definition 1: A path pis a pair < p,,p, > where p, is the sequence of basic blocks
visited in an execution of an unoptimized version of a program and p, is the sequence
of logical blocks visited in an execution of an optimized version of the same code on the
same inputs.

The correspondence between basic blocks in p, and logical blocks in p, is as follows:
1. All of the code in block b, ia p, may have been moved or eliminated by optimiza-
tion. In that case b, corresponds to block b, in p,, where b, is an empty block
that has been left in the post-optimization flow graph precisely to maintain the
correspondence.

2. A basic block introduced by optimization that has a single successor (such as a
loop pre-header), together with its successor forins a single logical block. If z is
such a block and y is its successor, logical bluck y, in p, denotes both z and y,
and corresponds to y, in p,.5

3. There may be one block b, in p, corresponding to a sequence of blocks in py, on
condition that if the firast block in the sequence in p, is entered, execution will
always proceed through the entire sequence. In thia circumstance, the single block
b, is treated as a sequence of logical blocks corresponding to the sequence in p,.

4. Multiple blocks by,83,...,b, in p, (not necessarily contiguous) may correspond to
multiple instances of a single block b in py, on condition that one of the b; is in p,

Since the Supercomputer Debugging Workshop, this correspondence has been found in some cases to introduce
4 vonservative inaccuracy into the currency determination algorithm A variable will be claimed to be endangered
hetween the top of a loop and an assignment into the variable within the loop when it is in fact current in that region,
if an asmignment into that variable is moved down into the loop pre-header from above. No such inaccuracy ocvurs
if an assignment is moved {rom the budy of the loop to the pre-header.



8 3. Currency
iff b is at the same point in the sequence p,.”

5. A block b, in p, has one corresponding block b, in p, otherwise.

These correspondences may be combined, so for example, blocks in an unrolled loop may be
coalesced. Optimizations that modify the flow graph in other ways are not handled by the algorithm
presented herein.

Both assignments to a variable and side effects on that variable modify the value stored in that
variable’s location. These terms do not distinguish whether the source code or generated code is
under discussion. Furthermore, they do not distingrish between unoptimized generated code and
optimized generated code. These distinctions are needed in this work because it compares reaching
definitions computed on unoptimized code with reaching definitions computed on optimized code.

Henceforth the term assignment refers to assignments and side effects in the source code. It
is convenient to have a term definition that can denote either an assignment or its representative
instruction in unoptimized code. This does not introduce ambiguity because either one identifies the
other, and the order of occurrence is the same in the source code and unoptimized code generated
from it. In contrast, the term store denotes a representative instruction for an assignment in
optirized code. As with definitions, an assignment corresponds to a store, but unlike definitions,
the order of occurrence of assignments in the source code may differ from the order of occurrence
of stores in the machine code.

An optimizing compiler may be able to determine that two assignments to a variable are
equivalent and produce a single instance of generated code for the two of them, or it may generate
multiple instances of generated code from a single assignment. Such optimizations essentially make
equivalent definitions (or stores) indistinguishable from one another. We will be concerned with
determining whether a store that reaches a breakpoint was generated from a definition that reaches
the breakpoint. If definitions d and d' are equivalent, and store s was generated from d while ¢
was generated from d’, the compiler is free to eliminate s’ so long as s reaches all uses of d'. 'To
account for this, s needs to be treated as if it was generated from either d or d'.

Definition 2: A definition of V is an equivalence class of assignments to V occurring
in the source code of a program that have been determined by a compiler to represent
the same or equivalent computations, or the representative instruction generated from

any wember of such an equivalence class in an unoptimized version of the program.

"Note that while this is the correspondence needed for loop unrolling and inlining (procecedure integration), the
work as presented in this paper does not handle either of these optimizations. Section 7 describen limitations on the
optituzations that are handled.
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Definition 3: A store into V is the set of representative instructions occurring in an

optimized version of a program that were generated from any member of the equivalence
class denoted by a definition.?

We can now formally define some of the terms described previously.

Definition 4: A variable V is current at a breakpoint B along path p iff the store into
V that reaches B along p, was generated from the definition of V that reaches B along
Pu:

Definition 8: V is noncurrent at B along p iff the store into V that reaches B along

Po was not generated from the definition of V that reaches B along p,.

Definition 6: V is current at B iff V is current at B along each path to B.

Definition T7: V is noncurrent at B iff V is noncurrent at B along each path to B.

Definition 8: V is endangerea at B iff V is noncurrent at B along at least one path
tu B.

3.1 Assignments Through Aliases

Definitions 4 through 8 assume a single definition or store reaches a breakpoint along any path.
Consider an assignment P through a pointer. When execution is suspended at a breakpoint 8, « P
may be an alias for V. «P must be considered to be a definition of V that reaches B. If « P is not
an alias for V' in some particular execution, the value that V' contains at the breakpoint came from
whatever definition would have reached if « P were not present. Therefore, this definition must also
be considered to reach B. For any language that allows aliasing, a static analysis cannot assume
that a single definition reaches along a given path.

The presence of multiple definitions or stores along a single path requires more complex versions
of Definitions 4, 5 and 8. For clarity of exposition, [ have chosen not to cover aliasing in Lhis paper.
The required definitions may be found in [Cop92).

" A store in an equivalence clasa by the name equivalence relation applied to definitions (having been determined
by a compler Lo represent the same or equivalent computations)

116
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4 Paired Reaching Sets

A paired reaching set PRS is a set of reaching definitions that includes information about what
should reach and what does reach a given breakpoint. Such a set is relative to both a variable and
a breakpoint: PRSY is the paired reaching set of assignments to V that do/should reach B.

An element of a paired reaching set is a pair (d,s) where d is a definition and s is a store.
Loosely, for a definition d of V and a store s into V, the pair (d,s) € PRS!‘; means d should reach
B and s does reach B.

More precisely, given such a definition d and a store 3, independent of whether s was generated
from d:
(d, s) € PRSY, means there is a path p such that d reaches B along p, and s reaches 8 along p,.
o V is current at B iff ¥(d,s) € PRSY,, s was generated from d.

o V is endangered at B iff 3(d,s) € PRS}’, such that s was not generated from d.

e V is noncurrent at B iff V(d,s) € PRS}, s was not generated from d.

Because | want to use familiar notation for familiar tasks, [ will allow ‘dotting into’ a pair: if
P is the pair (z,y), P.d is the definition clement z and P.s is the store element y. (d,s).d = d and
(d,8).9 =09

Paired reaching sets can be computed by the compller or the debugger. If the compiler
computes them, existing compiler data structures can be modified for the task. Previous work has
described the data structures the compiler must provide the debugger if the debugger computes
them ([C'op92], [CM91a], [Cop9D]). The computation requires a pre-optimization flow graph giving
control flow information and the order of representative instructions (definitions) as it exists prior
to optimization, and a post-optimization flow graph giving control flow information and the order
of representative instructions (stores) as it exists after optimization. The correapondence between
basic blocks in the pre-optimization flow graph and logical blocks in the post-optimization fiow
graph must be available, The correspondence between definitions and the stores generated from
them must be available.

In this computation, definition/store pairs will be the elementa of Gen, In, and Qut sets tor cach
basic block. The Gen sot Gen}’; for a variable V and block B contains a single pair? consisting of
the definition of V occurring in B and the store into V occurring in 2. If no definition of V" occurs
in /1, the definition element of the pair is null, If no store into V oceurn in B, the store element ol
the pair is null. An initinl definition of V' and store into Voare associated with the souree node ol a
flow graph component. Null entries do not appear in the In and Out sets of a block becatse some
nou null definition or store reachen every block,

Bocause [ want to introduce unfamiliar notation for unfamiliar tasks, operation & defines the

interaction of a pair that reaches a block with the pair generated in that block. Given two pars

"In the presenie of aiaaing a Gen aet may contain multiple pairs.
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(d,s) and (e,t) where d and e are definitions of a variable V', s and ¢ are stores into V, and d or s
may be null, Table 4.1 defines (e, t)x (d, s).

(e,t)x(d,s) || dis null | dis non-null
s is null [| (e.t) (d, )
s is non-null || (e,3) (d, )

Table 4.1: The definition of x: (e,t) x(d, s)

The s operation corresponds to the kill operation in standard dataflow algorithms. Definitions
kill definitions, and stores kill stores. If a block contains a store, its Gen pair contains that (non-
null) store as its second element, and pairs leaving that block contain that store as their second
element. If a block does not contain a store, its Gen pair contains a null second element, and pairs
leaving that block contain the second element they arrived at that block with. The same goes
for definitions. To make this appear similar to a familiar dataflow operation (which it is), the x
operation has been extended o a set of puirs (the In set) and a pair. The In set may be empty
(in fact, every In set is initially empty), in which case if the Gen pair contains a null, the result is
empty, otherwise the result is the set containing the Gen pair:

00 (nuli,null) = 9

00 (d, null) = 9

00 (null,s) =0

00 (d, 9) = (d,s). This is correct because the U operation is used to define the Qut set of a block.
If the block generates both a store and a definition, its Out set will contain the pair consisting of
that store and definition. If it contains a null in cither position (or both), its Out set depends on
the In set. Because every variable is defined to have an initial definition and store, propagation
will eventually cause the block to have a nonewpty In set.!? Given a nonempty set of pairs R and
a pair 8 where S may contain nulls, R Y i equivalent to the set of pairs produced by individual
A operations between each pair in B and the pair 5@ R 08 = {rxSire R).

Algorithm PRS computes paired reaching sets at block boundaries for a flow graph component
(a subroutine), Start is the start node of the low graph component. d-inst and s-init are initial
definitions and stores representing the creation of a variable.

Algorithm PRS
lnput:
the post optimization Hlow graph;
the pre optimization flow graph;
Out put:

" Thw conbl make the algorithm conveoge mote sluwly than a standard reaching defintions alporthin
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The paired reaching sets of each variable at each block boundary.

Step 1:

0 for each variable V

1 GenY,o,e = (d-init, s-init)

2 for each source block B

3 Gen} = (null, null)

4 if a definition d of V is in B and reaches the exit of B in the pre-optimization flow graph
5 Gen}.d=d

6 if a store s into V is in B and reaches the exit of B in the post-optimization flow graph,
7 Geng.a =3

Step 2:

8 for each variable V

9 for blocks B that can be reached in the post-optimization flow graph,

10 In} = Out} =@

11 iteratively compute In}; and Outg until convergence, according to the following,

12 lng = Jp Out}, for P logical predecessors of B in the post-optimization flow graph

13 Out} =Inj U Gen}

End of Algorithm PRS

For ease of exposition, we assume that there is at most one definition of a variable in a block.
A basic block 8 that contains n definitions of V can be transformed into a sequence of blocks
By, By, ..., B, each containing a single definition of V', where ¥, is the sole predecessor of I,
and B, is the sole successor of B,. Similarly, we assume that there is only one store into V' in a
block.

Algorithm PRS provides In and Qut sets at block boundaries. Our goal is to determine a
variable's currency at an arbitrary breakpoint Hp. Let B be the block containing Hp, and let 1, be
the location of the definition of V or store into V' in B, or null if there is none.

if L £ null and (L precedes Bp in # or L Bp)
I'HS;;', = lnz
I'l.\'(‘

I’R.‘w‘};,, = Out}y

V'S curreney at Bp is determined by comparing the definition element with the store element
in the pairs in I’ICS);,,. If in every pair, the store was generated from the definition, Vs current,
If the store was not generated from the definition in any pair, V' is noncurrent. 17 the store wis

generiated from the definition in some pairs but not in others, Vs endangered.
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4.1 Aliasing

Algorithm PRS assumes that a single definition of a variable reaches a breakpoint along a pati.
As discussed in Section 3.1, this is not the case in the presence of aliasing.

Paired reaching sets can be constructed in the presence of aliasing. However, the proof of
correctness of the algorithm was not complete at press time, so the material has been omitted.
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Unoptimized Optimized

a=y 327 a=y 327

336 a=x 336 (342)

bkpt 339 bkpt 339

a=x 342 J

Figure 5.1: The display of a could be accompanied by this message: “Breakpoint | has
been reached at line 339. a should have been set at line 327. However, optimization has
moved the assignment to a at line 342 to near line 336. a was actually set at one of lines
327 or 342."

5 When a Variable is Endangered

When the debugger is asked to display a variable, it determines whether the variable is current.
If the variable is current, the debugger displays its value without comment. If the variable is
endangered, in addition to displaying its value, the debugger can give the user some help in
understanding why the value is endangered. The general flavor of what the debugger can do is
given by the following sample message that might accompany the display of variable a when the
optimization shown in Figure 5.1 has occurred.
“Breakpoint | has been reached at line 339. a should have been sot at line 227. However,
optimization has moved the assignment to a at line 342 to near line 336, a was actually
set al one of lines 327 or 342.7
The information contained in this nessage is available from the paired reaching set PRSY, and
the pre and post-optimization flow graphs. The description of the effects of optimization will vary

in spocificity as the effects of optimization vary in complexity.
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6 Running Time

The worst-case asymptotic cost of Algorithm PRS is dreadful, though polynomial. Let n be
the number of blocks in the flow graph and m be the number of definitions of the variable in
question. Recall that the blocks may be split according to Sections 4 (n is the number of blocks
after splitting). The asymptotic worst case cost is O(n'm?). if n = m, it is an O(n®) algorithm.
However, we will see that in practice two factors of n and a factor of n can be replaced with constant
factors, for an O(nm) running time.

Computing paired reaching sets is done with an iterative algorithm that runs until it converges.
The equations are

In} =Up Outf for ™
Out} =InY% O GenY,

and these are computed iteratively over all blucks B until no /'n or Qut set changes.

We are concerned with definitions of a single variable.

Within each iteration the computation of Qutg is cheaper than the computation of Inp.
Computing Inp involves iterating over the {uy tn n) pruiecessors of B, and Inp is computed
for each of n blocks, so the union operation is performed n? times. The union operation is a
merging of sets containing at most m elements, ~hich can be done in time proportional to m, so
each iteration has worst case cost of n?m.

In the worst case, each iteration could add one definition to one block, so the total aumber of
iterations could be nm, for an O(n3m?) total wor:.. case running time.

If the graph is traversed in the right order, on av_rage 5 iterations are sufficient for convergence
[ASUB86], replacing factors of n m with a factor of 5.

Two factors of n come from iterating over n locks with n predecessors each. In practice, a
fully connected flow graph is a rarity. Most blocks anave one or two predecessors, though some have
many (e.g., the block following a case or switch statement). The number of predecessors is some
small constant - which gives us an O(nm) running time.

I expect m to be fairly small on average, though the sizes of both m and n depend considerably
on program characteristics (and coding style). In particular, because each subroutine is a flow-graph
component, the cost increases with the size of the subroatines. Without a working implementation,
I cannot yet say whether we will achieve speeds acceptable for interactive uge  However, I take

comfort in the fact that machine speeds double regulacly.
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7 Summary

In optimized code, statements may be reordered and the instructions generated from a statement
may not be contiguous in the final executable code. If the statement to breakpoint location mapping
commonly used for statements in unoptimized code is used for optimized code, a debugger user
cannot in general break at what the user considers a statement boundary, or execute a single
statement at a time. Section 2 describes a mapping between statements and breakpoints for
optimized code that provides a reasonable approximation to what the naive user would expect.
It provides exactly what the naive user would expect on unoptimized code. In optimized code,
it isolates points that correspond well to the user’s view of statement boundaries, and provides a
granularity of breakpoint locations fine enough that the user can ‘step’ without executing more
than a single statement. If a statement does not have multiple side effects, one ‘step’ executes the
entire statement.

Optimization can cause the value in a variable’s location to be endangered, which means it is
unexpected and potentially misleading. A debugger must be able to determine a variable’s currency
if it is to issue a warning when asked to display an endangered variable. Hennessy [Hen82] [CM91b]
and Coutant et al [CMRS88] give solutions to special cases of the currency determination problem.
Section 4 describes a general solution to the problem for a large class of local and global sequential
optimizations, including common subexpression elimination, cross-jumping, instruction scheduling,
other code motion, partial redundancy elimination, loop reordering, induction-variab'e elimination,
and loop fusion.

The currency determination algorithm requires reaching-definitions information computed be-
fore and after optimization, but does uot require knowledge of which of these optimizations have
been performed. In addition, this reaching-definitions information allows the debugger to construct
informative warnings as to why a variable is endangered.

The results described in this paper are conservative when a variable is current along all feasible
paths but noncurrent along some infeasible path, in which case it will be claimed to be endangered.'!

There are important sequential optimizations that do not fall into the class delineated by
Definitions 1, 2 and 3. These are optimizations that duplicate code 1n such a manner that a
duplicate does not perform an equivalent computation to the original (as in loop unrolling and
inlining). This work can be extended to handle this class of sequential optimizations, but the

extensions are beyond the scope of this paper. Parallelizing optimizations have not heen considered.

7.1 Future Work

Once a debugger user has found a suspicions variable (one that due to program logic, not

optimization, contains an unexpected value), the next question is ‘How did it get that vaue?.

' An infravble path s one that cannot be taken in any execution



7. Summary 17

The sets of reaching definitions used for currency determination can be used in a straightforward
manner to answer this question (‘x was set at one of lines 323 or 351’). One direction for future
research is whether reaching sets are adaptable to back-chaining such dependences efficiently. This
has been called flowback analysis by Balzer [Bal69], and has been investigated by others ([MC91],
[Kor88)).

Another research avenue is how a debugger can efficiently collect the runtime information needed
to determine whether an endangered variable is in fact current or noncurrent on a particular
execution. In conjunction or as an alternative, how can the information from the compiler be
extended so that the debugger can compute and display the value that a variable would have had if
optimization had not been performed? Finally, an exciting possibility is extending the breakpoint
model and currency determination techniques to parallel code, which is rife with noncurrent
variables.
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1 Introduction

Debugging parallel and distributed programs is much more difficult than
debugging sequential programs. The main reasons for this fact are the miss-
ing reproducability of parallel programs, the added complexity because of
more threads of control, and the great importance of the probe effect [Gai86]
because of time dependencies in parallel programs. This paper shows an ex-
ample how the problems mentioned above can be handled in a debugger for
parallel and distributed programs. This example is the debugger Source for
the parallel and distributed programming language ParMod.

ParMod [Eic86] is a set of language constructs for parallel programming.
These constructs have been combined with different sequential programming
languages for instance Pascal [Eic87] or C [WSF91|. Currently a new version
based on Modula2 is developed. A ParMod program consists of several mod-
ules. A module may contain global and local parallel procedures. Tasks are
created hy asynchronous calls of parallel procedures. Tasks within a mod-
nle may communicate through shared variables whereas different modules
may only commu icate through parameters passed to global procedures i.c.
here is no shared memory between different modules. Figure 1 shows an
example of a snapshot of a ParMod program run. Most imperative parallel
programming languages are  at least partially  similar to these aspects of
ParMod. Therefore most of the following considerations can be generalize:d
to other parallel programming systems.
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Figure 1: Example of a snapshot of a ParMod program run

To deal with the complexity of programming parallel systems, we have
added a programming environment to ParMod. ‘This environment includes
the tools Runtime for performance analysis [EA88] [AFPY0| and Source for
debugging. The first version of the debugger Source was implemented lor
ParMod-Pascal |Wei88]. The ParMod-Pascal system is a simulator which
allows unrestricted parallelism [FZ89). Later Source was extended such that
it can be used with the distributed implementation of ParMod- (' on a network
of UNIX workstation [Mas91]. The following discusgion is based on this
version of Source.



2 Design Goals

Several goals guided the design of the debugger Source: First, we wanted to
provide information on a high level of abstraction, the source code level of
the ParMod language. The debugger should have the same graphical user
interface for all ParMod implementations. Source should allow the repro-
duction of program runs. Therefore we have chosen a trace based approach.
Source should provide a high degree of portability. This means

e as much hardware independence as possible. Therefore Source is a pure
software solution.

e independence of any special dialect of ParMod. Even non-ParMod
programs can be observed if they can generate the necessary trace in-
formation’.

e communication and integration with other tools of the ParMod devel-
opment environment especially with the performance visualization and
analysis tool Runtime.

Another goal was to minimize the probe effect even if this is difficult to
achieve for a pure software approach. A subgoal of this was to minimize the
length of the trace which yielded to the principle: "What is expensive to
trace should be expensive to specify for the user”. Therefore most inter-task
events are traced by default whereas most of the intra-task events, which
should normally occur much more often, must be enabled explicitly by the
user. The following sections show how we achieved our goals.

3 Architecture

Becanse of the reasons mentioned above, Sourre iy a trace based debugger.
But Source ia a combined post-mortem and online debugger, i.e. it is possible
to analyze a program during the program run and also after the program
run. Figure 2 gives an overview of the architecture of Source, when it is used
as an online debugger for a ParMod-(' program running on a workstation
network. Fvery ParMod module writes a local trace file on its node, ‘This file
iw written locally to avoid eentral bottlene-ks (cpu time, disk space). Another
process reads the local file and sends the trace data via UNIX sockets to the

For imntance the A N*S:\ Tenthenek [ANSO0] 1 currently extended to produce ParMod
teace Rlew
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Figure 2: Architecture for online monitoring

central debugger which interacts with the user. This partitioning is chosen
to minimize the probe effect on the module. If a node consists of several
processors the process which reads the trace file can run on its own processor.
If the central debugger has to communicate with a ParMod module this will
he done via sockets and a local debugger. The local debugger has only to
execute simple tasks like to trigger when more or less information has to be
written to the trace file. Therefore the local debugger can be integrated in
the runtime system of every program module.

Furthermore, Source is not only a debugger for the parallel aspects of
a program run  communication and syachronization between tasks, Unlike
many other trace hased debnggers Souree allows to examine variables and



control flow like sequential debuggers do, what we consider as necessary.
How this is done is described below.

Another aspect of the design of Source is that it allows the integra-
tion with other tools of our parallel programming environment like the per-
formance measurement and visualization tool Runtime. This is achieved
through a common trace file format. The same trace can be used in both
tools. This allows to detect a bottleneck with Runtime, and to analyse the
program run at the location of the bottleneck in more detail with Source.

4 Trace Generation

When a ParMod program is compiled and linked with the debug option
enabled, the compiler instruments the program for tracing certain events,
including the creation and destruction of tasks, the entering and leaving of
critical sections, and similar communication and synchronization oriented
events. Overall there are about 40 different events of this kind. Additionally,
the programmer may specify trace events with the following expression:
trace ( ezpression! ) if ( erpression?

The ParMod-compiler generates code from this expression which will
write the value and an identification of erpression! in the trace when ez-
pression?is true. The value of this expression is the value of expression! in-
dependent of the value of cxpression?. ‘The purpose of erpression? is mainly
to limit the size of the trace. 'if ( erpression2 )’ can be omitted. This iy
cquivalent to 'if (1 ). erpression! may also be omitted, Then trace may
only he used in a position where a statement is allowed and only the current
line number is written in the trace, The purpose of this is Lo see more posi-
tions in the program run when the program is visualized. A sunitable external
representation of erpression! is deduced from the type of erpressionl. This
is an advantage of the integration of the trace statement in the programming
language ParMod.

The following examples show how this construct can be used.

Framples:

await(trace(:) - 5H)---

altrace()if(y - n)]  teace(bteace()]);
trace(),

trace( )if(: > «n);

The trace is wiitten in a very compact binary format, This reduces the

| L

trace size compared with the former ASCH trace format to less than 25



%. But the main reason was not to reduce the size of the trace but to
reduce the probe effect. This is achieved since the costs for compressing at
runtime are significantly lower than the i/o costs for writing 4 times more
trace information.

5 Visualization

Source presents the user a global snapshot of the program on the screen. The
user can move forward and backward in a program run from one snapshot
to the other with a step size to be set. Source visualizes every task in a
separate window. The headline of each task window shows inform. on for
the identification of the task (module, procedure, task number, caller) and
about the current status of the task. The rest of a task window is divided
into two parts:

e a possibly empty subwindow which shows the values of traced expres-
sions which are valid in the current snapshot, and

e a subwindow which shows the source code with the current line high-

lighted.

All tasks of a module are grouped. In a module all tasks which execute
the same procedure are also grouped. The user may move windows on the
screen via a window manager but the debugger normally places the windows
at useful default positions. If the screen is too crowded with to many task
windows, the user can unselect modules or procedures which are not inter-
esting in the moment, The user can also specify breakpoints and so called
clock breakpoints, ie. breakpoints which are triggered by time, He may also
specify the module, the procedure, line numbers, expression identifications or
expression values, when he sets a breakpomt. Clock breakpoints are useful
for reaching a snapshot which corresponds to a position of a program run
which is dentified in Huntime.

A sample sereen can be seen in tigure 3. The window in the upper right
corer is for entering a breakpoint, the window in the lower right corner
is for selecting modules and procedunres. The window in the middle at the
lower border of the «ereen is the contiol window, in which commands for the
debiugger are entered
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6 Comparison with other approaches

Other debuggers for parallel and distributed programs have been described
for instance in [ACM91] and [ACMS88]. Source differs from most of these
approaches by the possibility to move forward and backward in a program,
by the integration with the other monitoring tools through a common trace
format and the ability to inspect variables in a trace based tool.

7 Current status and future work

Currently the modifications necessary for online-debugging in the debugger
Source are completed. The tracing in the workstaticn implementation of
ParMod-C will be finished at the end of 1992. The implementation of a
stand-alo..e reproduction system has just started.

We will use the debugging tools in our parallel programming course and
for development of software systems whick are implemented in ParMod-C.
This includes a parallel database system and recursive numerical algorithms.
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Abstract

One important kind of correctness and performance debugging tool for parallel
programs determines and presents temporal ordering relationships between the vari-
ous synchronization operations in the program. The particular ordering relationship
we study is the “always happens before” relationship for arbitrary programs using
semaphore synchronization. Our analysis is based on an execution trace of the pro-
gram rather than the program itself. We have previously published a polynomial time
conservative approximation of the “always happens before” relationship. Determining
the exact “always happens before” relationship is intractable (co-NP Hard).

We built a random program generator and applied our algorithm to the random
programs it generated. Our algorithm'’s results were compared with the partial orders
produced by an exponential time brute force algorithm which appears practical only
for the relatively small programs generated. This process quickly identified traces
where our algorithm failed to find some of the “always happens before” orderings. The
findings from these experiments and the resulting modifications to our algorithm are
described in this paper.

1 Introduction

Parallel programs with explicit synchronization can be notoriously difficult to debug. One
important kind of correctness and performance debugging tool determines and presents the
temporal ordering relationships between the various synchronization operations in the pro-
gram. The particular ordering relationship we study is the “always happens before™ rela-
tionship. Informally, event ¢, “always happens before™ event e if ¢y happens before e in
every execution in which ¢ occurs,

The complexity of determining the ordering relationships varies depending upon the type
of synchronization and the branching characteristies of the program. There are polynomial
time algorithms for simple models such as message passing with two-way naming or post
and wait events with no clear in straight line proegrams (with no branches except bounded



loops) [NG92]. On the other hand, undecidability issues arise when arbitrary programs are
considered. We have been studying this problem for arbitrary programs using semaphore
synchronization. We avoid the undecidability problems by basing our analysis on a trace
of the program rather than the program itself. Even with this restriction the problem is
intractable (co-NP Hard), so we settle for a polynomial time conservative approximation of
the “always happens before” relationship.

One possible application of the “always happens before” relationship is the detection of
data races. If all accesses to a shared variable are ordered by the “always happens before™
relationship then there is no race on the variable. Our conservative approximation of the
“always happens before” relationship leads to the detection oi .nore races than can occur,
but guarantees the detection of every race that did occur in the execution of the program
that was analyzed.

Care must be taken when generalizing from a trace to the entire program. One important
situation where our trace results can be generalized is when we detect that there are no data
races in the trace. This means that there are also no data races in the program (when
executed with the same input).

In [HMWar| we described our basic approach. That algorithm takes an execution trace
and produces a partial order representing the temporal orderings that always hold for the
given prograrn on the given input with two limitations:

1. It may fail to indicate that two events are ordered when they must always occur in a

particular order (i.e. it is a conservative under-approximation of the “always happens
before” relationship).

[ %)

[t may indicate that event e, “always happens before” event e; when there is a radi-
cally different execution where e; happens before ¢;. When this happens the radical
difference between the executions is caused (directly or indirectly) by some other race
in the program that will be detected by our algorithms. (l.e. if we report there are no
races then there are none, but we may not report all of the races.)

(ther researchers are pursuing this problem from the other end (e.g. [NM9I1]). Given
a set of potential races (as might be reported by our analysis) their techniques identify a
subset of the races that that can actually occur. We believe these to be complementary
approaches and are continuing to refine our algorithms to reduce the above limitations.

[n order to refine our algorithm it was necessary to determine when it failed (i.e. find a
program and an execution trace containing two events ¢ and e; such that e; happens before
¢, in every execution of the program in which they both oceur and our algorithm indicates
that ¢, and e, are unordered). Given the limited set of “real” programs available to us in the
prograunning language we currently support (1BM Parallel Fortran) our algorithm never fails
(i.e. it finds exactly those orderings that ) ld for all executions given a particular input). We
therefore built a random program generacor and used our algorithm on the random programs
it generated, Our algorithm's results were compared with the partial orders produced hy
an exponential time “brute force™ algorithm which appears practical only for the relatively

)



small programs generated. This process quickly identified traces where our algorithm failed
to find some of the “always happens before” orderings. These experimentai results have lead
to considerable modifications to our algorithms.

2 Overview of the Algorithm

Our algorithms use vector timestamps [Fid8R] for each «vent tc represent the partial order.
We call a partial order safe if it contains a proper rubse: of the edges in the “always happens
before” ordering. We first compute a very conservative safe partial order from an execution
trace and then attempt to insert new edges into this safe partial order while maintaining the
safeaess property. Edges are inserted into the partial order by manipulating the timestamps
assigned to the events.

We only consider synchronization using counting semaphores with the two semaphore
operations signal aud wait'. To compute the initial safe partial order we assume that any
signal event could have been the signal that releases any wait. Our previous algorithm for
inserting additional edges was based upon the following observations:

Observation 1 If some wait event e, on semaphore A is known to follow n other waits
on semaphore A (given the safe partial order already computed) then we know that e, must
follow n + 1 signal events on semaphore A. Thus additional edges can be inserted into the
partial order by increasing the (vector) timestamp for e,, so that each component is al least
as big as the corresponding components in n + 1 of the timestamps for the signal events on
semaphore A.

Observation 2 If one of the n + 1 signals, call it e,, needed in observation [ is known to
be preceded by an additional wait event on semaphore A that is not one of the n wait events
known to precede event e, then n + 2 signals occur before e, whenever e, occurs before e,,.

This second observation implies that n + 1 signals other than e, occur betore e,,. In the
program of Figure 1, the S} cvent in task D corresponds to the e, event in Observation 2.
We call this phenomenon shadowing, as the “shadow” cast by the preceding wait prevents
¢, from satisfying the signals needed by e,

Our study of random programs has motivated changes in the algorithms so that they
exploit the following additional observations:

Observation 3 If wait cvent ¢, on scmaphore A is known to follow n waits on sone other
semaphore B (given the safc partial order already computed) then we know that e,, must
follow n signal events on semaphore 1.

This extends observation | to apply to semaphores other than the one specified in the
event ¢,,. The example that lead w uhis observation is shown in Fignre 2.

"I'hese are more deseniptive for English speakers than the original V and P of Dikjstra.



Task A Task C Task D

RES

—= Arcs implied by Observation 1
- > Arcs implied by Observation 2 o

Figure 1: An Example of Observations 1 and 2. Note that the program can deadlock with
Task D waiting on semaphore 1.

w-w Lependencies found by brute forve and algorithm
- Dependencies found by brute forve only

Figure 2: Example motivating observation 3. Event ¢ iy preceded by two wait on semaphore
0 events (Hvu s) and therefore nust. be preceded by two Sp's,



Observations 1 and 3 lead to what could be called first order inferences. A par “icular event
must be preceded by a certain number of wait events on various semaphores and therefore
the event in question must be preceded by as many signals as there are waits preceding it.
Shadowing is a second order inference, i.e. if signal e, happens before wait e,, then we also
need additional signals for the waits that precede e, (and have not already been accounted
for because they also precede e,). Our next observation is a second-order extension of
Observation 3, somewhat like shadowing is a second-order extension of Observation 1.

Observation 4 If some signal event e, is going o help satisfy the signals needed for wait
event e, then e, will also have to follow any signals needed by wait events that precede e,.

This can be seen best by the example shown in Figure 3.

Task A Task B

SN}
So

. - Dependencies found by brute force only

—a Dependencies found by brute force and by algorithm

Figure 3: Example motivating observation 4. Events labeled e, and e, correspond to those
in the observation.

This chaining effect (the execution needs n signals but one of those signals needs ' more
signals) can be repeated arbitrarily? and Figure 4 gives an example that takes this chaining
cffect one step further. Our goal was to capture this chaining in a recursive algorithm that
can be allowed to recurse as deep as time will allow. The algorithin becomes polynomial
(and ronservative) when the recursion is limited to a fixed bound. The complete algorithm
it given in the appendix.

3 Testing Random Traces

As mentioned before, we have a limited number of real programs on which to test our
algorithms. ‘T'hus we have bnilt a simple random program generator that creates input
traces. In order to determine the effectiveness of our algorithms we have also bult a simple
brite force trace analyzer that exactly determines the *always happens belore™ relationship.

We believe thia chaining may occur infrequently if at all in real progeams,

iy |



Task A Task B Task C

—» Dependencies found by brute force and algorithm
- -=>= Dependencies found by brute force only

Figure 4: Example requiring two applications of observation 4.

A trace of an execution is simply a totally ordered list of signal and wait events together
with an indication of which task performed each event. As events are entered in the trace
only when the associated operation completes, every prefix of the trace contains at least as
many signal events on each semaphor: as wait events.

The “program” corresponding to the trace can be viewed as in Figures 1, 2, 3, and 4.
There the events are grouped in vertical lists by task. Within each vertical list the events
appear in the same order as thiey occurred in the trace. A “state™ of the program corresponds
to selecting a (possibly empty) prefix of each vertical list. Usually some program states are
unreachable by any execution. For example, in Figure 4 the state where Tasks A and B have
executed no events but Task C has executed its first event (W, ) is unreachiable as the wait
cannot complete until after semapiiore | has been signaled.

The brute force analyzer performs a depth-firat search on the program’s (exponentially
large) state space to discover all of the reachable states. 1f event e, has been executed in every
reachable state where event 3 has been executed then the brute force analyzer indicates that
r1 “must happen before” ¢;. Performing this test for each pair of eventa allows the brute
force analyzer to compute the “must happen before” relationship for the “program”.

If a real program makes conditional branches that could be affected by races, then the
the brute force analyzer may overestimate the must happen before” relationship. Our
algorithms also have this drawback as noted in the introduction. However, even the overesti-
mated “inust happen before” relationship allows the race affecting the conditional branch to
he Nagged. Our experitments concentrate on how often the *must happen before” relationship
compnted by our other algorithms matches that returned by the brute force analyzer.

The random trace generator uses the parameters MaxTasks, MaxSemaphores, and
Numbvents. For each trace pick NumTasks (between 2 and MaxVasks) and NumSemaphores
(hetween 1 and MaxSemaphores) uniformly at random. Onee these values have been set,
the generator executes the loop in Figure 5 to output the trace of a non blocking execution,



while less than NumEvents generated do
select T randomly between | *nd NumTasks
select sem randomly between 1 and NumSemaphores
if more signals than waits have been generated for sem
then
flip a coin
if heads then output: W,,,, by task T
if tails then output: S,,n by task T
else
output: S,.m by task T
end while

Figure 5: Random program generator.

# of events || original | depth 1 | depth 2 | depth 3 | tctal # of traces
30 54 3 0.26 0.05 5726
35 58 3.7 1.4 1.1 840
40 59 34 0.75 0.56 1070

‘Table 1: Percentage of random traces that failed to find at least one edge when compared to
the actual “must happen before” partial order. Results are given for the original algorithm
and for our revised algorithm with the depth of recursion set as indicated.

At the time of this writing we have done only a few tests aimed at determining the

aceuracy of the algorithm, but the numbers are very encouraging. The results are given in
Table 1.

4 Conclusion

Our approach of using randomly generated programy to improve our algorithms has heen
extremely successful. When applied to small randomly generated straight line parallel pro.
grams, our new algorithm failed to find all *must happen before™ edges less thau 0.25% of
the time. We helieve that for real programs the failure rate will be significantly lower
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A Algorithm Details

Before each trace is analyzed, every event contained in that trace is assigned a vector times-
tamp. A timestamp contains one ent:y for each task. For a timestamp r, r[i] is the number
of events completed by task 7, at the time the event associated with 7 completed. When
properly maintained, ordered and unordered event pairs can can easily be distinguished by
comparing their time vectors.

An event ¢ with timestamp r(¢) precedes another event ¢’ with timestamp r(¢’) in the
partial order if and only if every component of r(e) is less than or equai Lo the corresponding
component of r{e’). Events e and ¢’ are unrelat~d in the partial order wien both some
component of 7{e) is greater than the corresponding component of r(¢’), and some (other)
component of r(e’) is greater than the corresponding component in 7(e).

Definition 1 For any two time vectors ry.ry in 2"
1. n < rp <> Yi(rfi] < nli))
lnenesn<ryandrn £,

Aon Ao e=s N(ri] < rafi))

Phe tun= vector 1y iy caslicr than fome vector ry (or vy is later than ry) when ry -y,



At present, we use three algorithms to build the partial orders which approximate the
ordering properties of events in a program trace. The first extracts the corresponding partial
order from the event trace. The second modifies this partial order to ensure that it is valid
for all possible executions in which the same events occur. The third uses the observations
presented earlier in this paper to add back some ordering arcs which still are present in all
executions.

Before defining our algorithms it is necessary to define a few common functions that we
employ:

Definition 2 For any m time vectors 1y,...,Tm of Z"

o ming(ry,...,Tm) k > 0 is the vector of Z™ whose ith component is the k'* smallest
element in the collection 7[i], m4[3], ..., Tm[i],

® MAX(T1,...,7m) i8 the vector in Z" whose ith compenent is max(mifi), ..., Tm[i]).

Conventionally, we define ming(7y,...,7m) to be 0, the all-zero vector.

As an example, ming({1,2],[1,3], (2, 4], 2,5), [3,2]) is [2,3)].
We also employ two special types of timestamps:

Definition 3 Given an cvent e performed by task T; in a trace, let T#(e) be the time vec-
tor containing the local cvent count for e (one more than the number of events previously
performed by T, ir: the trace) in the ith component and :eros elsewhere.

Definition 4 Gliven an event ¢ performed by task T, in a trace, let ¢® denote the previous
cvent performed by T, in that trace (or the all zero vector if no such an event ezists).

'To obtain an initial partial order for an execution trace, on which further analysis can be
based, we use an algorithm based on the one provided in Fidge [I'id88] and Mattern [Mat8s].
This process associates a Wait event with an unused Signal event on the same semaphore,
creating a partial order which pairs every Wait event with a Signal event which allowed it to
precede. This generates a partial order that containg orderings that are not “must happen
before” orderings. Instead, this partial order represents the causal orderings that did occur
in a particular execution.

To generalize this partial order information to make it valid for all possible execations
containing the same events, we use a process called rewinding (Algorithm 1) to decouple
Wait events from specific Signal events, After rewinding, every Wait event has a time vector
that reflects the assumption that any Signal (on the same semaphore) could have been the
Signal that triggered the Wait.



Algorithm 1 (Rewind)

Repeat the following procedure until no further changes are possible.

for each event e in the trace
if e is a Wait event on semaphore S,
let e} ... e} be all the Signal events on S;
set v, = min(7(e!),...,r(el));

else
set v, = 0, the all zero vector;
end if;
set r(e) = MAR(r(cP), 7#(e),v,);
end for;

Unfortunately, the newly established safe order relation is too conservative because some
“must happen before” ordering arcs are deleted as a part of the rewind procedure. At this
point we apply an algorithm based on the observations described in Section 2.

The Expand algorithm (Algorithm 2) cycles through the entire timestamp representation
of the trace, using a routine called nodi fy to advance the timestamps of Wait events based
on Observation 4.

It does this by considering the set of Signal events, R, and the set of Wait events, W, that.
exist in relation to two timestamps: 7, and r(¢). Timestamp 7,, is an amalgamated times-
tamp representing all the events previously considered through recursive calls to modi fy. It
will act as the event e, in the current application of Observation 4. Event € functions as
the Signal ¢, from Oovservation 4. ‘The quantity depth indicates the number of times that
Observation 4 is to be recursively applied.

Function modify builds up a set, T', of virtual tiiznestamps returned by calling modi fy
recursively on the events in /2. 1t then employs Observation 3, taking the &* component-wise
minimun of T' (where k is the number of Wait events in W) to determine the earliest time
that ¢ can oceur. It then returns ¢’ new timestamp in the quantity 7,

Finally, the main loop takes the timestamp returned by modi fy for a specilic Wait event,
and uses AR to combine it with r(¢?) and r#(¢).



Algorithm 2 (Recursive Expand):
Repeat the following procedure until no more changes are possible.

for each event ¢ in the trace
if e is a Wait event on semaphore S,
T(e) = modi fy(r(e), r(e), e, depth);
e set 7(e) = MEX((e), 7(e"), T(e));
e
set 7(e) = MERX(r(e), 7(e”));
end if;
end for;

Function modi fy(Tiese; Tin, €, depth):
let 7 = 7(é)
if depth = 0
return(7y);
end if;
for each semaphore o,
lt T = .;
let W(o) = {ey : e, is a Wait event on &, and
vither 7(ey) € T or 7(ea) < 7(€)};
let R(o) = {e, : ¢, is a Signal event on o,
7(r.) 2 Tn and 7(e,) < Tigu);
for each e, in R,
r = WXy, 7());
T = {modi fy(Tase T\ €0, (depth — 1))} U T;
end for;
let k =] W(a)|;
let r, = n—ﬂ-ﬁi('r);
let T = MEX(Tm, 7, );
end for;
return(rm );
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Abstract

To date, both on-the-fly methods for detecting data
races during program executions and post-mortem
methods for analyzing traces of program executions
have made little use of compile-time analysis to reduce
the number of accesses that must be examined. In
this paper we describe program analysis for this pur-
pose that has been implemented as part of a debug-
ging systemn for the ParaScope Programming Environ-
ment. To demonstrate the effectiveness of our analysis
techniques, we present measurements that compare the
overhead of race detection with three levels of compile-
time analysis ranging from little analysis to aggressive
nterprocedural analysis. Since the monitoring over-
nead of run-time techniques for data race detection is
high. improvements achieved using compile-time sup-
port will play an important role in making run-time
techniques for detecting data races practical.

1 Introduction

In an execution of a shared-tnemory pacallel program,
a data race s said to exist when there are two or more
unordersd accesses to the same shared variable and at
lenst one v a write. In the presence of a data race,
the program’s execution behavior may depend on the
tempornl order of the accesses participating in the race.
The result is that the program may exhibit erroneous
Lishavior in some, but nol necessarily all, executions.
Detecting data eaces In shared-memory paralle) pro.
geams s a difficnlt problem.  Strategien for detect.
ing such race conditions can be generally clasified
am (1) statie analys analyms of a progeatu's text
to determine when two references miay tefer to the
wune shared vanable [1, 3, 4, 21}, (2) post mortem
analymis collection of n log of events that occur
during a progeam’s execution and post processing the

*I'hin work was suppurted i part by National Soience Foun
dation Cooperative Agresment CCH R 200N,

log to isolate data races (2, 8, 17], or (3) on-the-
fly analysis — augmentation of a programn to detect
and report data races as they occur during its execu-
tion (11, 12, 15, 16, 18, 19, 20].

Static analysis techniques rely on classical program
dependence analysis and an analysis of a program’s con-
currency structure to deterinine when two references
may potentially be involved in a Jata race. Static tech-
niques are inherently conservative, which often leads
to reports of data races that could never occur during
execution. Experience with static analysis tools has
shown that the number of {alse positives reported us-
ing these techniques is too high for programmers to rely
exclusively on static methods for isolating data races.
C'ombining static analysis with symbolic execution of-
fers hope for reducing reports of infeasible races [23].

Post-mortem techniques for detecting data races have
the advantage that they can limit reports to feasble
races. However, to guarantee that only feasible races
are reported, exhaustive execution trace logs are necea
sary. ‘The size of such execution logs is o serious draw-
back for these methods mince the logs can be enormous
for parallel progeams that execute for more than o triv-
inl amount of time, A promising alternative to pure
post-mortem analysis is a hybrid approach that uses
abbreviated logs containing only synchromization infor
mation to compute guaranteed orderings. Such order
ings can be used in conjunction with subsequent static
analysin or on-the-fly monitoring to report race conds
fionn.

On the-fly techniquea maintain additional state 1
formation during a program’s execution to deternune
when conflicting aceesaes to i shared variable have o
curred. The prncipal drawhack of on the fly techugues
in that in the general cane, the spaee and tune overhead
of detecting races dunng a program's execution can be
cROrNous,

For on the fly techuigues to become widely aceepted,
then apace and time overhead must be reduced tooa
level that progeammern can tolerate in practice Known
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on-the-fly techniques applicable to programs with an
unrestricted concurrency structure have asymptotic,
worst-case space overhead that includes a term propor-
tional VT, where V is the number of shared variables
and T is the maximum logical concurrency in the pro-
gram execution [11]. However, when the structure of
logical concurrency is restricted to that achievable with
closed, nested fork-join constructs (e.g., nested paraliel
loops), the worst-case asymptotic space overhead can be
reduced to O(VN), where N is the maximum dynamic
nesting depth of parallel constructs, and the asymptotic
time for testing if a particular access participates in a
data race can be reduced to O(N) [15). These tighter
bounds offer the promise of efficient on-the-fly detection
of data races for this restricted class of programs.

In addition to having asymptotically efficient meth-
ods for testing whetber a variable access is involved in
a data race, for on-the-fly techniques to be practical,
the number of acceas checks to test [or data races dur-
ing a program's execution must be minimized. In this
paper we focus on a compile-time strategy for automat-
ically instrumenting a program to detect data races at
run time. Our instrumentation system, implemented as
a component of the Rice University's ParaScope Pro-
gramming Environment, exploits sophisticated static
anslysis to reduce the number of data race access checks
added to programs.

Section 2 briefly describes the ParaScope system and
provides context for the implementation. Sections 3.1-
3.3 describe three approaches Lo data race instrumenta-
tion that rely on increasing amounts of program analy-
sis to reduce the number of access checks added to a pro-
gram. Section 4 describes soine preliminary experimen-
tal results that compare the effectiveness of the three
ditferent instrumentation strategies. Finally, section 5
briefly outlines our plans for enhancing the instrumen-
tation system o exploit additional kinds of analysia to
further prune the number of accesa checks added to pro-
KEALNS

2 ParaScope Environment

ParaScope 18 a programmng environment for scientific
Fortran programmers [t has fostered research on ag
gressive optinzation of seientific coden for both sealar
and shared memory maclines (7] ParaScope provides
an ifrastruetiee for management, analynis, and trans
formation of programs written i a Fortean dialect with
extensiona for shared memory parallelism. It provides
a riech collection of analyses including dependence anal
yaix, conteol How graph analysis, computation of statie:
sigle assignment forme, and global value numbering
anong others
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Through careful design, the compilation process in
ParaScope preserves separate compilation of procedures
to a large extent. Tools in the environment cooperate
to minimise the number of times a procedure needs to
be examined during compilation. In general, the exist-
ing compilation system uses the following 3-phase ap-
proach {7, 9, 13}:

1. Local Analysis. At the end of an editing session,
ParaScope calcvlates and stores summary informa-
tion concerning all local interprocedural effects for
oach procedure. This information includes details
on call sites, formal parameters, scalat and array
section uses and definitions, local constants, sym-
bolics, loops and index variables. Since the iuitial
summary information for each procedure does not
depend on interprocedural effects, it only needs to
be collected after an editing session, even if the pro-
gram is compiled multip:s times or if the procedure
is part of several programs.

2. Interprocedural Propagation. The compiler
collects local summary information from each pro-
cedure in the program to build an augmented call
graph containing loop information [14]. It then
propagates the initial information on the call graph
to compute interprocedural solutions.

3. Interprocedural Code Generation. 'The com-
piler directs compilation of all procedures in the
progeam based on the results of interprocedural
analysis.

Another important aspect of the compilation system
is what happens on subsequent compilations. In an
interprocedural system, a module that has not been
edited since the last compile inay require recompilation
if it has heen indirectly affected by changes to some
other module. Rather than recompiling the entire pro-
gram nfter each change, ParaScope performs recompa-
lation analysis to identify modules that have not heen
affected by program changes, thus reducing recompila
tion costa [5, 10).

ParaScope computes interprocedural REF,  MoD,
ALIAS and CONSTANTS. lmplementations are underway
to solve a number of other unportant wterprocedural
problemn, including interprocedural symbolic and reg
ular section analysin of arrnys.

3 Data Race Instrumentation

Interually, ParaScope reprenents progeam modules
the form of absteact syntax trees annotated with seman
fie mformation A program transformation subsystem
supports arhteary transformation and angmentanion of
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Fortran ASTs. This system serves as the framework
for the data race instrumentation system that we have
constructed as part of ParaScope. The data race instru-
mentation systemn uses the transformation subsystem to
transform Fortran ASTs, adding calls to run-time sup-
port routines that enable a program to detect data races
during its own execution.

The focus of the ParaScope data race instrumen-
tation system is to detect data races that arise dur-
ing execution of parallel loops. This restriction in the
current implementation of the instrumentation system
stems from the lack of full support in ParaScope for
heterogeneous parallelism that arises from Fortran par-
allel section constructs (analogous to the more familiar
cobegin-coend construct of other parallel languages).
Whereever this deficiency of the analysis affects the
insttumentation system, the term paralle! loop will be
used in place of the term parallel construct in order to
remain faithful to the actual implementation.

To prepare a program for data race instrumentation,
the following sequence of transformations are applied
to put the code in a canonical form:

o Transform logical IF statements into block IF
statements 8o that instrumentation can be readily
be added to the consequent as necessary.

e 'Transform each ELSE.F construct into an IF-
THEN construct nested inside an ELSE con-
struct. If any access in the ELSEIF guard needs
instrumentation, the system must have a place to
insert the instrumentation so that the access check
gets executed 1ff the guard will be executed.

e Hoist all function invocations out of subscript ex-
pressions.  Since subscript expressions are dupli-
cated into access check code, subscript expressions
must be side-rffect free.

e Move each statement label to a CONTINUE that
precedey the statement. Since the system will in-
sert data race nstrumentation for a statement im-
mediately before the statement, the system must
ensure thau it is impoasible to reach a statement
without executing its corresponding aceess check
instrumentation.

Ouee the code 1w in a canonical form, the data race
imstrmentation ean proceed. ‘Thie data race instrumen
titron process consists of adding several dificeent types
of stalements

o concurrency bookkeeping  calls to race detection
ron tune hibrary routines to indicate the creation
or termination of a logieal thread!,

"We use the (a1 tAread 1o denote the basic unit of conon
tetcy (o g . an inteeation ol a paraliel loop body)
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o access checks — calls to the race detection run-time
library READCHECK or WRITECHECK opera-
tions that test if an access participates in a data
race,

e access history declarations — each variable that
may be involved in a data race is allocated storage
for an access history in which information is stored
about the threads that access the variable, and

o acceas history initialization and finalization -— ac-
cess histories for all local variables must be initial-
ized upon procedure entry and finalized before the
procedure returns or halts.

The next three sections describe data race instrumenta-
tion strategies that rely on increasing levels of program
analysis.

3.1 Basic Strategy

Without any sophisticated analysis, data race instru-
mentation must be very conservative. Each procedure
must assume that it is called in the scope of a parallel
construct. Therefore, references to its formal param-
eters (which are passed by reference in Fortran) and
global variables must be instrumented since they could
conflict with other accesses made in the context of an
enclosing parallel construct. The system must also add
access checks for references to local variables that oc-
cur inside the scope of a parallel construct in the pro-
cedure. This is necessary since without further analymis
one cannot be certain that the variable is not the target
of conflicting, concurrent accesses within the scope of
the parallel construct.

ven if a procedure containa no parallel constructs,
nll local variables passed as actual arguments to wser-
detined procedures must have access history storage al-
located in the current scope and referencea to that stor-
age must be passed to each called procedure since any
called procedure could contain a parallel constraet i
side of which it relercnces its arguments. Local van
ablea not pamsed to called procedures need not be in
strumented nor have accens history stornge alloeated (f
no parallel constructs are present in the current proce-
dure.

Variable references passed to inteinsic functions re
quire special handling.  Intrinsic functions in Fortran
read, but never inodify their arguments Sinee the bol
ien of instrinsic functions are got mstramented by this
system, in some cases, the system must add instramen
tation at the point of call to rellect that the imtnnse
rends itn arguments. o particulae, 4 READCHECK
for a varable reference pagsed o anonteisee tinst he
adeded at the point of callof
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e the variable is a formal parameter or a global vari-
able, or

¢ the variable is a local variable and the call to the
instrinsic is inside the scope of a parallel construct
in the current procedure.

For each statement, the instrumentation system ac-
cumulates the set of variable references that need data
race instrumentation. If multiple array element refer-
ences in the same statement have the same sequence of
subscript expressions, only one access check is needed
for all of the references. This is true even if the
references are a mix of reads and writes — a single
WRITECHECK will suffice since any access that conflicts
with a read will certainly conflict with a write.

3.2 Intraprocedural Strategy

To detect all data races, not all references to shared
variabies inside parallel loops need be instrumented. In
particular, references to variables that are not accessed
by more than one thread of control do not need data
race instrumentation.

Data dependence analysis is a deep compile-time
analysis of program variables and their subscripts to de-
termine when two variable references may refer to the
same memory location. Compile-time dependence anal-
ysis computes a conservative superset of a program's
run-time dependences. In ParaScope, a dependence
graph contains an edge for each data dependence, where
each node in the graph represents s variable reference.
A dependenc: edge between references R, and Rj is
carried by a loop if the execution of R; in loop itera-
tion i can potentially access the same memory location
as the execution of R in loop iteration j, 1 # j. De-
pendences that are not carried by loops are said to be
loop independrnt.

Three types of carried data dependences are impor-
tant for data race instrumentation. A true dependence
(also known as flow dependence) signifies that a mem-
ory location read during some loop iteration may he
overwritten in a later iteration. An anti dependence
sigmlies that a riemory location weitten during sotne
loop iteration may be read in a later iterstion. Finally,
an oulput dependence signifies that a memory location
may be written duning more than one loop iteration
When a data dependence is earried by a parallel loop,
two ditferent instances of the loop body may access the
same memory location an parallel resulting 1in a data
race at run time.

In the absence of procedure cali, all variable aceesses
that may be wvolved in a data race must be the end-
point of same data dependence that is carried by a par
allel loop In this case, 1t suflices to ndd accens checks
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only for variable references that are endpoints of data
dependences.

When procedure calls are present, but no interproce-
dural information is available, conservative assumptions
are necessary to ensure correctness. When building a
dependence graph, conservative assumptions must be
made about the side eflects of each procedure call. In
particular, the dependence analyzer must assume that
each procedure call modifies each of its actual parame-
ters (in fact, the analyzer 1nust assume that any time a
reference to an array elrment is passed to a procedure,
the procedure modifies the whole array) and all global
variables. As before, access checks are added for each
endpoint of a data dependence. Also, as in the basic
instrumentation strategy presented in the previous sec-
tion, each procedure must conservativily assume that
it is invoked from inside a parallel construct which re-
quires acceas checks for references to global variables
and its formal parameters in addition to access checks
at dependence endpoints.

3.3 Interprocedural Strategy

In the instrumentation strategies presented thus far,
conservative assumptions are made in the presence of
procedures. At each callsite, the system must assume
that the called procedure modifies each of . actual
parameters and all global variables. Furthermore, the
system must assume that each procedure may be in-
voked from within a parallel construct.

These two assumptions lead the system Lo insert in-
strumentation conservatively. Interprocedural informa-
tion can help the instrumentation system reduce the
amount of data race instrumentation and its run-time
overhead in two simple ways:

o Ifthe system knows that a procedure s never called
from within a parallel construct, no access checks
are necessary in the procedure for references to ity
formal parameters except inside any parallel con-
structs contained in the procedure.

e If the dependence analyzer has interprocedural
sunmary information about the side-effects (MOD
and REF) of procedure calla in parallel constructs,
it will not have to make the conservative assump.
tion that all variables accesnible to the procedure
are modifisd. This ean reduce the number of de
pendence endpoints, thus reducing instrumenta.
Lion.

Additional improvementa can be obtained in more sub
tle casen uning Lhe interprocedural analysis strategy
deacribed helow. The deacription of the implementa
tion strategy i presented for each of the three analy
siv phrses in the ParaScope compilation system. loeal
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parameters require instrumentation, but the third does
not.

For each procedure, ita final data race instrumenta-
tion set describes which formal parameters and global
variables require access checks inside the procedure
body. However, with only the information computed
thus far, each caller must conservatively assume that
each actual argument that it passes to a called proce-
dure requires access history storage. In the example
shown in figure 1, there is no way for the loop calling ¢
to know that the second parameter to £ requires access
history storage but that the third does not since these
requirements are dictated from below by h.

Which variables require access histories allocated can
be computed in a single backward dataflow pass over
the callgraph. The initial value of the storage alloca-
lion get for each procedure is a copy of the procedure's
final data race instrumentation set. During a backward
dataflow pass, the storage allocation sets flow to each
procedure from all the procedures it calls (along an edge
for each callsite inside the procedure). For each callsite,
only the variables known to the caller are propagated
through the callsite up io the caller. The sets propa-
gated to a node along the callsite edges are unioned to
achieve the final version of the storage allocation set for
that procedure.

After applying this analysis to the program fragment
shown in figure 1, the callsites for £ and g will know
that no access history storage is needed for x and y
respectively. Furthermore, the call interface for each
of the procedures needs to be e-panded only for the
parameters that actually require access history storage
instead of for all variables would be the case if the basic
and intraprocedural strategy.

After the storage allocation set is computed for each
procedure, only the top-level program is aware of all
of the common variables that must be expanded. A
forward interprocedural dataflow pass is necessary to
guarantee that each procedure has a consistent defini-
tion of which variables in each common block need to
he augmented with access history storage. This pass
croates a common allocation set for each procedure.

Coude Instrumontation

After all of the interprocedural analysis is complete,
the data race instrumenter uses the information col.
feeted to instrunent the Fortran AST for the program.
Each reference that is an endpoint of a depeadence car-
e by a paeallel loop haa a corresponding access check.
Also, each reference to a vanable in a procedure’s data
race strunentation set has accens checking added. For
cach loear vanable i the procedure’s storage allocation
wt, storage 18 allocated, and calls to run-time support
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routines are added to initialize and finalize the storage
upon entry and exit of the procedure respectively. Com-
mon block definitions are expanded with access history
storage added for each variable in the procedure’s com-
mon allocation set. Actual argument lists are expanded
at callsites to pass sccese history storage only for pa-
rameters in the callee’s storage allocation set. Calls to
concurrency bookkeeping routines are added only for
parallel constructs that carry a data dependence. Thus,
if a data race can never occur in the context of a paral-
lel construct, no concurrency bookkeeping is performed
at run time.

4 Preliminary Results

In order to test the efficacy of the compile-time analy-
sis described in the previous section it is important to
apply the analysis to some real programs. To date, we
have preliminary results with two programs.

The first program, search, implements a multi-
directional direct search method for finding a local min-
imizer of an unconstrained minimization problem [22].
Search contains four parallel loop nests (each of which
contain a call to the same evaluator function) sur-
rounded by an outer serial loop that tests for conver-
gence. The second p.ogram, buck, tests the adjointness
of a routine that cornputes a one-dimensional seismic
inversion (used fo: vil exnloration) with its associated
adjoint code. The code contains seven parallel loop
nests, four of which contain calls to substantial proce-
dures.

Table 1 contrasts static and dynamic statistics for the
search program. The table shows measures for both the
uninstrumented code anc for code automatically gencr-
ated by the ParaScope data race instrumentation sys-
temn using the three differer,t data race instrumentation
strategies. The first column in the table shows source
lines comparing the size of the original uninstrumente|
ptograin versus the size with each style of insteurmen-
tation. 'I'he dramatic increase in source line count re-
flects the addition of access checks, concurreney book-
keeping calls, declarations for access histories calls 10
initialize and finalize each locally declared access his.
tory, as well as declarations and data statements thal
contain information that enables the ParaScope data
tace run-time suppuort hibrary to report errors by relit
ing them back to the original source code. The next
two columns respectively indicate how many READ
CHECK and WRITECHECK calls were added to the
program for each instrumentation strategy  Compired
to the basic strategy, the interprocedural approach re
Juces the combined number of access checks added to
the code by B7%  Since the remaining aceess checks e

v
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parallel loop i = 1, n
call f(alaindex[il)), bli],
end loop

x(i])

parallel loop 1 = i, n

call g(dfi), eleindex(i)}, y[il)
end loop

subroutine f(f4, £2, 13)
call h(g1, £2, 13)
end

subroutine g(gl, g2, g3)
call h(g1, g2, g3)
end

Figure 1: Different contexts have different instrumena-
tion requirements.

analysis, interprocedural analysis, and module compi-
lation.

Local Phase

As described in section 2, at the end of an editing ses-
sion the ParaScope editing tools record initial infor-
mation about a module for use during interprocedu-
ral analysis. Before support for data race instrumen-
tation was envisioned in ParaScope, initial information
recorded included a descriptor {or each procedure spec-
ifying the names and types of formal parameters, initial
MOD and REF information for formal parameters and
common variables, callsite descriptoras including name
of the invoked procedure (or procedure variable) and
the actual arguments. To support data race instru-
mentation, this information was reorganized so that it
is not summarized at the procedure level, but rather
collected at the lcop level. Also, the information was
augmented to contain a description of the lcop nesting
structure an:d an indication of which loops are parallel.
Loop-level information is important for data race in-
struimentation so that interprocedural analysis can de-
termine which precedures are (possibly transitively) in-
voked from within the context of a parallel loop.

Interprocedural Phase

Ay was the case before support for data race instrumen-
tation was envisioned in ParaScope, a callgraph is con-
struct *d and interprocedural ALIAS, MOD, and RYF
sunimary information is computed for each procedure
nsing the initial information collected during the local
phmu'

Conceptually, at this pont a null data race instru.
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mentalion sel is created for each procedure. After in-
terprocedural analysis is complete, this set will indicate
which formal parameters and global variables require
access checks for references to them inside the proce-
dure body.

The interprocedural analysis driver then invokes the
dependence analyzer for each procedure using the inter-
procedural solutions for MOD and REF to increase the
precision of dependence information at callsites. Using
the MOD and REF solutions, the dependence analyzer
identifies when a data dependence involves side-effects
of a callsite. Such dependences indicate accesses made
by the called procedure (or its descendents in the call-
graph) that may be involved in data races and instru-
mentation will be needed for any access to that variable
in the called procedure (or its descendants).

For each dependence endpoint at a callsite (referring
to an actual or global accessed as a side-effect of the
call), the data race instrumentation set for the pro-
cedure is augmented to indicate that some context in
which the procedure is called requires instrumentation
for accesses to a particular formal parameter or global.
When all of the callsites inside parallel loops in the
program has been processed, the instrumentation sets
are ready for dataflow propagation through the edges
in the callgraph. Final values for the instrumentation
sets result from forward dataflow propagation of all of
the data race instrumentation sets along calisite edges
in the callgraph. At each calisite, global variables and
variables passed as actuals are propagate instrumen-
tation requirements into the caliee. During datatiow
propagation, the instrumentation requiements flowing
to a node (i.e., procedure) from each of its callsite edges
are unioned to achieve the final version of the data race
instrumentation set for that procedure.

A contrived example shown in figure 1 illustrates how
context can impose ‘lifferent instrumentation requite-
ments on a procedure’s formal parameters. Assume
that subroutine h moulifies its ficst two arguments, but
only reads the third. Interprocedursl MOD aummary
analysis will indicate that subroutines £ and g modify
their first two arguments (via their call to h). In the
context of the first loop, the ParaScope dependence an-
alyzer cannot prove that accesses to alaindex(']] are
independent, but can prove that modifications to b(il
are independent. Since the third parameter to £ i3 net
in £'s MOD set, there is 110 loop-carried dependence in-
volving this parameter. ‘The context of this loop thus
requiires instrumentation inside £ (and thus h as well)
only for accesscs to £'s first formal. In the second loop,
the situation similar for the call to g: only accesses to
its second formal parameter require instruinentation
After terprocedurnl dataflow propagation of the
strumentation seta, insude hots first and second formal
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static measures dynamic measures
source | access checks acceas checks execution
lines | read | write read write time
uninstrumented 569 | 0 0 0 36.9
basic 1073 | 70 15270102 602.3
intraprocedural 1065 68 15270102 552.6
interprocedural 697 4 15260825 247.8

Table 1: Data race instrumentation statistics for the search program.

static measures dynamic measures
source | instrumented | access checks access checks execution
lines loop nests | read | write read write time
uninstrumented | 2212 0 0 0 0 0 204
basic 3961 7| 234 63 || 70085036 | 7295204 327.8
intraprocedural 3961 7] 234 63 || 70085036 | 7295204 327.1
interprocedural 2518 3 14 20 || 15781629 | 4100000 91.1

Table 2: Data race instrumentation statistics for the buck program.

all in the computational kernel, the effective reduction
of the dynamic access checks is not nearly as dramatic.
In comparison ‘o the basic strategy, the interprocedu-
ral strategy reduced the combined number of dynamir
checks by 70%.

Table 2 contrasts the sar- . measures for the buck pro-
gram. Dependence analysis alone was able to determine
that there are no dependences carried by three parallel
loops, each encapsulated in its own procedure. How-
ever, since each of the loops contains accesses to the ar-
guments of the enclosing procedure, access checks 1re
still necessary inside the parallel loops since nothing
is known about the contexts in which the procedures
containing the loops are called, and whether accesses
to the arguments could cause data races. With iater-
procedu:al information, the instrumentation system is
able to determine that none of the procedures contain-
inz a parallel loop ia called from within another paral-
lel loop; therefore, all instrumentation can be omitted
from the aforementioned three parallel loops immedi-
ately. For a fourth parallel loop that contains a call
to a procedurs, all instrumentation also was eliminated
hecause the analysin was able to determine that the side
rffecta of the procedure did not result in any carried de-
pendences. (No instrumentation was needed inside the
procedure called from within the fourtn paraliel loop
either ) The interprocedural approach reduces the the
combimed number of static access checks by 89% over
hoth the bame and intraprocedural strategies. 'The in-
terprocedural steategy reduced the number of dynamie
cheekn 74% over in comparision to the other approaches.

All execution hmes reported in the laat column of
tables 1 and 2 are from scquential executions of the in

strumented programs on a Sun? 4/490. Elsewhere we
have shown that sequential executions suffice for de-
tecting data races in programs with loop-based par-
allelism [15]. All programs were compiled with the
Sun {77 compiler using -O optimisation. Comparing
raw execution times of the uninstrumented and instru-
mented code varietiea shows the run-time overhead for
on-the-fly monitoring to be relatively high. These num-
bers offer a conservative picture of the overhead of
on-the-fly monitoring since the ParaScope data race
run-time library is written in a modular style of C++
and has not been tuned for performance; for instance,
the concurrency bookkeeping routines invoke “malloc”
for dynamic memory allocation of each thread label
rather than a tuned special-purpose allocator. For the
search program, the execution overhead (computed as
(instrumented execution time - uninstrumented execu-
tion titne)/uninstrumented execution time) of the basic
strategy was a factor of 1532%, whereas the interpro-
cedural approach reduced this to 571%. For the buck
program, the execution overhead was 1507% for the ha-
sic and intraprocedural strategies. ‘The interprocedural
strategy reduced the run-iime overhead for race inatru-
mentation of buck to 347%.

5 Future Plans

The instrumentation system currently performs no
Lerstatement analysis to remove redundant access check
operations within a procedure. We are plannig explore
the use uf use global value rumbers, information from
control flow graph analysis, and analyas develeped for

15un 10 & trademark of Sun Microsyvatems
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recognizing reuse of array variables [6] to eliminate re-
dundant access check operations.
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Direct Manipulation Techniques for Parallel Debuggers
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Abstract: Graphic displays offer the debugger dcveloper a means of managing the density and
complexity of the data generated during execution of pa-allel programs. In addition, graphical techniques
can be used to simplify the ways in which the user interacts with the tool. Direct manipulation (using a
mouse or other pointer device) of graphical objects reduces the number of physical and cognitive
operations required of the user. This paper discusses how direct manipulation can be applied to debugger
interfaces. Examples are drawn from prototype trace-based and breakpoint-style debuggers, but most can
be applied to any parallel debugging tool.

Introduction'

Graphical user interfaces, increasingly common among all types of software tools, are now
a normal part of most production-level parallel debuggers. To date, however, "GUI" has been
something of an exaggeration, ‘These debuggers typically exhibit few graphical capabilitics other
than scrollable display windows and pushbutton controls.  Mere sophisticated  graphical
technigues -- in the form of visualizations and direct manipulation mechanisms for interacting
with them -- largely have been neglected.

' I'ie research described here was carried out wt the Department of Computer Science and Engineering, Aubum
University (Aubum. Al 16844), and at the Center tor Theory and Simulation n Science and Engineering, Cornell
University (Ithaca, NY 14881)  PE-View wax developed with Sue Utter-Honig as part of a joint study funded by 1M
Corporation, the XIPD project was supgonted by the Superconguter Systems Division ot Intel Cooration,



The criticisms of debugging tools voiced by the user community reflect this shortcoming.
The complexity of parallel debuggers, the difficulty with which they are operated, and their
inability to characterize program execution in useful ways are cited frequently as sources of
dissatisfaction [11]. Graphical display techniques offer the debugger developer a means of
managing the density and complexity of the data generated during execution of parallel programs
(14]. Moreover, graphical mechanisms can be used to simplify the ways in which the user
interacts with the tool.

This paper focuses on direct manipulation: the use of a mouse (or other pointer device)
to interact via graphical objects displayed on the screen. The first section describes how direct
manipulation mechanisms can enhance the ergonomic and cognitive’? aspects of software tools.
The discussion then tumns to examples of how direct manipulation can be introduced into parallel
debuggers. Specific examples demonstrate how direct manipulation facilitates user control over

* the rate at which information is displayed,

* the sequence in which information is displayed,

e  the amount of information presented,

* the level of information presented, and

» the contents of debugger-controlled entities.
A final section draws some conclusions on the current state of direct manipulation techniques for
parallel debuggers.

The Basis for Direct Manipulation

Recent advances in graphics technology have revolutionized the area of user interfaces.
The widespread availability of graphics hardware, windowing platforms, and standard graphics
librarics make it possible to develop software tools that can be ported across a variety of host
machines and operating systems. In particular, the proliferation of inexpensive graphical display
hardware and the subsequent popularity of window-based user interfaces have led o increasing
demands on parallel debugger developers for graphical support.

Strictly speaking, graphica! techniques are those which are non-textual in nature.  They
rely on shape, color, screened textures, ete., to represent logical and physical characteristics in
figurative or symbolic form. It can be argued, however, that a short word (e.g., "run®, "step”,
or "exit") in some cases conveys more direct meaning than a contrived icon. Consequently, the

! .
" Ihe terms ergonomie and cognitive are nsed here according to the tazonomy outhined o [Curtis|

)
-~



definition of graphical will be broadened somewhat for the purposes of this discussion,
encompassing symbolic use of simple words or acronyms as well as more traditional iconic,
plotted, or rendered representations.

The importance of graphical representations for managing large and complex data domains
-- such as those imposed by parallel debuggers -- has been dealt with elsewhere (e.g., [18, 21,
19, 24]). Well designed graphical displays can integrate substantial amounts of detail without
sacrificing intelligibility. They capitalize on the fact that humans a2 visually oriented, and
especially adept at recognizing visual patterns and deviations from those patterns. As Tufte [22)
has demonstrated, visual displays can make quantitative information much more intelligible by

(1) making large data sets coherent,

(2) reflecting both the statistical and the logical nature of the data,

(3) revealing data at varying levels of detail, and

(4) encouraging the eye to compare and contrast elements.
Although all these characteristics affect the usefulness of a parallel debugger, the last two
transcend display techniques to play key roles in managing user interaction.

The availability of a graphical interface platform, whether or not visualization techniques
are employed, makes it possible to incorporate direct manipulation techniques. These offer
several advantages (cf. [8. 6, 18, 13]):

*  The "control language" which must be leamed to operate the software tool is
reduced.
e Direct manipulation controls are cited by users as being more enjoyable to leamn
and use than textual languages.
Common typing errors are eliminated.
*  The number of physical actions required to perform each operation is reduced.
¢  There are fewer opportunities for syntax errors.
*  Since operations are selected by recognition rather than recall, a slower delay
period intervenes before action initiation.
When visualization is present, the combination of dircct manipulation with  graphical
representations (urther enhances the user environment.  Individual operations are more intuitive,
since the user no longer needs (0 make a conscious correlation between information displayed
graphically and arbitrary wxtual strings, There is some evidence that this reduction in cognitive
load reduces the number of semantic errors (8, 26, 16].

A user interface can implement direct manipulation techniques at several fevels of
implementation,  For our purposes, ¢ach interaction mechanism can be categorized acenrding o
the directness of its physical and logical support.  This taxonomy is summarized in "Table 1.



Table 1. Direct manipulation mechanisms, classified by directness

Physical Direcmess Logical Directness
least direct cascaded menus
pointer device menu
touch screen button
. . . v aohi .
most direct virtual reality glove graphical object
h——-—b———-_—_—:—-——_u

Physical directness: The purest form of direct manipulation occurs when the user’s hand
is moved within A virmal reality glove to mimic the manipulation of a physical object. A less
tactile interaction is achieved when a touch-screen registers the positioning of the user's hand
over elements displayed on the screen. Alternatively, a pointer device can be employed to
redirect hand motion so that cursor movement follows the general direction and proportion of
user movements.

Clearly, specialized hardware is required to implement virtual reality and touch-screen
mechanisms. At the present time, such facilities are inordinately expensive and somewhat
disappointing in terms of reliability. The remainder of this discussion therefore concentrates on
pointer-based mechanisms. To simplify terminology, references to "mouse” actions should be
interpreted as generic; that is, applicable (o any standard pointer device (mouse, tracking ball,
joystick, stylus, etc.).

Logical directness: Manipulation is most direct when the user i permitted to "grab” a
graphical entity from the display and move, resize, or otherwise affect its graphical attributes,
thereby causing a change in the logical entity which it represents. Interaction is less direct when
the user manipulates a control button, causing a command or function to be applizd o the logical
entity; the display is then updated to reflect the effects of the operation. At a sull lower level
of directness, the user selects a button in order to display a menu list, from which an item is
chosen, causing application of a command, ete. Cascaded menus or popups reduces the level ol
directness even more,

The use of butlons and menus (0 manage interaction has been well established, and is
often dictated by the style policy guidelines of the windowing platform (e.g., [ 10, 20]). leonic



buttons, which are simply a graphical extension of text-string buttons, do not raise the level of
logical directness, although they can improve recognition in situations where multiple words
would be required to represent the command textually [16]. For this reason, the examples given
in subsequent sections focus on direct manipulation of graphical objects projected in some larger
representational framework rather than icons per se.

Direct Manipulation to Control Order of Display

Once visualization has been employed to present of debugging information, graphical
techniques can be extended so that the user manipulates the represeutational images displayed
on the screen. Unlike more traditional ways of supporting user choices -- via selectable buttons
and menus which make use of textual labels -- this approach allows the user to control the
progress of debugging without the need to mentally interpret and apply arbitrary word sequences,
numeric identification codes, elc.

Consider, for example, how the speed and direction of execution are controlled in a
parallel debugger. A command-driven debugger. such as Intel's [PD [7], requires that the user
correctly recall and apply one of several commands (run, rerun, step, halt, continue, etc.) and
their syntactic variations (e.g., "step -i" vs. "step -c"). The adoption of a window-based interface
simplifies this through the provision of labeled buttons or menu lists. In CONVEX's CXdb [2),
tor example, a row of button controls offers faster interaction sequences for functions like those
of IPD. In this case, the user moves the mouse to position the cursor over the butiyn, then
presses a mouse button indicating his or her selection. (Note that in a typical debugging
scenario, the user subsequently must position the cursor over another button in order to
discontinue execution.)

Button- and menu-based interfaces offer the advantage that user interaction is more
cconomical than typed commands, in terms of the number of physical movements required.
What's more, opportunities for errors are reduced since the user is no longer responsible tor
syatax. Semantic errors can also be minimized, by de-sensitizing buttons or menu items when
their selection would be inappropriate.  However, constant mouse movement and fine-grained
posiioning is required -- particularly when buttons and menus are located at opposite extremes
of the debugger window (a design policy typical of most graphical interface platforms).

Such maotions can be streamlined through (e incorporation of  graphical direct
manipulation technaques, which invest mouse actions with explicit control over functionality. Al
the simplest level, mouse buttons may be employed to shortcut menu or button selections, In the

trace-based debugger illustrated in Figure 1, for example, button presses replicate the actions of
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Figure 1. High-level execution replay from PF-View [25].
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Figure 2. Low-level execution replay from PF-View [25].
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the buttons located at the bottom of the window. To step forward through the program, the user
can either activate the "next" control or click the lefthand mouse button anywhere in the display

area. Backward movement is specified similarly, via the "previous" control or the middle mouse
button.

Direct Manipulation to Control Level of Detail

The concept can be expanded to provide more manipulative power. The PF-View tool
permits the user to change the level at which program events are animated by positioning the
cursor on a higher-level icon and clicking the righthand mouse button. Figure 2 illustrates the
effect of "expanding” a high-level parallel loop representation to reveal more detail about its
execution. In this example, six processors were participating in execution of the loop (green
circles), but two became suspended (red ciicles with icons) as they tried to gain access to shared
variables guarded by locks. The white outlines -- indicating the holder of the lock and all current
contenders -- appeared when the user clicked the middle mouse button over one of the suspended
processors to gain access to even lower-level information. Had the user clicked instead in the
background area of the expanded display, a return to the high-level animation would have been
effected.

Direct manipulation can also be used to control the status of debugging filters or other
controls. Figure 3 presents a sample display from a prototype breakpoint-style debugger for the
Intel iPSC/860. A closeup (Figure 4) shows how the status of processor nodes is animated' here,
nodes are arranged in a mesh, but the topology can be altered to reflect the logical
communications patterns of the program under study. The color of each element changes during
execution to reflect the execution state of the corresponding node. Moreover, as the display
legend indicates, the user is free to click on processors directly with the mouse. Selecting a
node’s graphical image brings it in or out of the current focus of interest, thereby controlling the
nature and quantity of debugger information reported during execution. In practice, the graphical
mechanism means that the user is no longer forced to memorize (a) arbitrary process numbers
(assigned by the previous debugger without regard to communications patterns), or (b) the set
of those numbers which form the current context tor applying debugger commands.

Once direct graphical control is introduced, rubber-banding capabilities can be added to
streamline the specification of debugger operations.  In the XIPD prototype user, for example,
the user can press and hold the mouse button while dragging the cursor across the display. An
outline appears which can be manipulated to encompass the desired number of nodes. When the

buiton 1s released. the operation is applied o all nodes contained within the outline area. To
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Figure 3. Procotype user interface from XIPD [12].
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Figure 4. Process status display is manipulatable in XI1PD [12].



provide consistency as well as ease-of-use, the same type of node diagram is used to manage
several XIPD operations:

* to specify what nodes should be loaded with a given executable

* to add/remove behavior reporting filters

*  to control the set of messages to be reported

*  to select what processes should be killed

v

Root Node :‘root Root Mode : ‘root
Update C whole/Partial Dimpley C elective Update Cwhole/Partisl Display Jall

taodet tline. titae. tline.
llnel 41 [linet ¢ ’ 3. ...... s
Jl‘ﬁ‘ h’_ll 7 iy .
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14 1t 1] ) 14 lime
ne Xt ad 00

Figure 5. Navigating data structures in VIPS [17].

Direct Manipulation to Control Program Values

Another application of direct manipulation is to support the navigation of data structures.
To date, serial debuggers (e.8., [17, 15]) have provided more flexible data traversal mechanisms
than do parallel tools. but the same techniques apply in both cases. The example in Figure 5
illustrates how arbitrary linked data structures can be porurayed for examination and interactive
update. The user first views a high-level (ie., iconic) representation including all nodes in the

tree or graph.  Selecting a node icon with the mouse results in a lower-level display ot the



portion of the wee immediately surrounding that node. The data is visible in this representation
and can be edited interactively. It is also possible to view selectively just a portion of the graph
by indicating particular pointer values (the highlighted boxes at tiie lower left in Figure 5); a
special window shows just the portion of the list corurolled by those pointers.

Ve ke Docde e te o ar e v

e souge tiniene Intonnation
1 »
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R L Iength p
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e rives anly

Figure 6. Graphical control of message queues in XIPD [12].

The graphical mechanisms become even more expressive when the user can grab clements
and move them or delete them from the display, provoking a corresponding change in the
underlying program data. In a parallel debugging environment, such techniques allow the user
o examine and control interprocessor messages. Figure 6 portrays another display from X1PD.
this time reporting the contents of message queues in terms of source node, destination node, and
whetter the node is blocked pending a send or a receive operation. By clicking on one of the
message symbols (top display). the user can popup a supplementary window with message
specifics. Depressing the control key while the message icon is clicked instructs the debugger
1o delete the pending message from the queue. (A two-handed control sequence was chosca so

that messages would not be deleted inadvertently.)
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Conclusions

Direct manipulation techniques can yield significant benefits for parallel debuggers.
Graphical displays accommodate the volume and complexity of program behavior data mu-h
better than their textual counterparts. The addition of direct manipulation enhances user
interaction even more. Such facilities support faster operation than do keyed sequences. They
also sidestep many opportunities for syntactic and semantic errors, thereby maximizing interface
effectiveness.

{t should be noted that the examples presented here are from prototype tools developed
in research environments. To date, the so-called graphical debugging tools marketed by parallel
computer vendors do not exploit graphical direct manipulation. They employ window-based
platforms to interact with the programmer, but the information displayed within the windows is
textual (though multiple fonts, reverse-video, or other highlighting techniques may be utilized)
and user interaction is managed through menus and pushbutton controls, labeled with text strings.

The examples discussed also fail to reflect the full range of possibilities for direct
manipulation. Parallel debuggers are not keeping pace with other interactive software in their
use of the new technology. Tools for visualizing scientific data, for example, provide more
flexible mechanisms for editing and reformatting graphical layouts and also offer interactive
graphical languages for specifying how the raw data should be processed for display (cf. [23. 5,
4]). Program development environments have progressed even further; they now rely on
languages and approaches that are inherently visual, not just graphical translations of textual
systems. Such concepts have not yet been adapted to parallel debugging tools.

To yield substantial benefits for tool developers, the new techniques must be assessed
from cognitive as well as ergonomic perspectives. Clearly, direct manipulation mechanisms can
only be effective if the graphical representation and the ways in which it is manipulated
correspond well to the user's mental model of program and debugger behavior [9, 8, 13]. I a
new, visual language must be committed to memory, graphical control will be frustrating and
even counterproductive.  Just as in debugger visualization, the challenge is to arnve at
mechanisms that are both intuitive and fast.
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How Useful Are Today’s Parallel Debuggers?

» Complaints from the user community
"too hard to learn”
"tedious to use"
"the information is microscopic”
"won’t give me the information | really need"
"too hard to make sense of the data”
"doesn’t really help me find the errors"

 Recent survey of distributed-memory MIMD system users
80% have never even tried to use the parallel debugger available
90% still rely primarily on hand-coded instrumentation

e A number of users have developed their own specialized tools



Challanges for the Parallel Tool Developer

* Technological challenges: stabilize an inherently unstable environment
intrusiveness problem

nonreproducibility problem

» Data reduction challenges: reduce execution data to manageable size
filter out redundant or unnecessary data
extrapolate higher-level “events" from low-level data

e Cognitive challenges: present information in meaningful way
must relate to programmer’s concept of program
must be clearly applicable to task(s) at hand
should be straightforward to learn
operations should be intuitively obvious from displayed info

» Ergonomic challenges: make debugger use efficient physically
should minimize number of keystrokes
should minimize possibilities for manual errors
should minimize amount of mouse motion required



"Graphical” Debuggers (Convex CXdb, Cray ATscope)
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How Graphical Techniques Help

» Graphical techniques: non-textual in nature
rely on graphical attributes (shape, color, screened texture, etc.)
figurative or symbolic representation of objects, characteristics
iconic, plotted, rendered elements
"iconic words"

« Graphical displays of quantitative data
can make large data sets coherent
can reveal data at varying levels of detail
can reflect both the statistical and the logical nature of the data
can encourage the eye to compare/contrast elements

e Graphics can also be used to manage user interaction



Graphical Interactions with the User

* Direct manipulation mechanisms
require mouse or other pointer device
user manipulates graphical objects displayed on screen

 Direct manipulation can support many debugger activities
control over direction and speed of execution
control over level of information presented
control over amount of information presented
control over contents of program values

» Advantages
smaller "control language" -> reduced learning time
fewer physical actions required to perform operation
recognition rather than recail —> slower action initiation delay
elimination of common typing errors
fewer opportunities for syntax errors
no display/text correlation --> reduced cognitive load
reduced cognitive load > fewer semantic errors
users claim they are more enjoyable than text-based techniques
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How "“Direct” Is Manipulation?

Logical Directness

T

cascaded menus
menu
button

least direct

graphical object |  most direct

Physical Directness

pointer device
touch screen
virtual reality glove

.




Controlling Program Execution (Intel IPD)

(3:0) > context (all:0)
(all:0) > break gsuss.f{)#175

(all:0) > b
(all:0)
Bp § Type File name Procedure Breakpoint Condition Bp context
shadow Line 175 (all:0)

1 C Bp gauss.f
Now you eater run followed by wait. The run command starts the program from the beginning;

walt displays user process information when it reaches the breakpoint.

{all:0) > zrun ; wait

Context State Reason Src/Obj Name Procedure Location
L L 1 U | | | L1 ] L 1 ] RN T SR OE AN GS TR AR N T R TR D S L G
*(all:0) Breakpoint C Bp 1 gauss.f shadow Line 175

Now, once again, dispiay the current value of nbraodes, and then, on node 3, use the assign
command 1o temporarily reassign the value of nbraodes to 3, instead of 4.

(all:0) > disp abrnodes

** gauss.f{)shadow()nbrnodes **
*kkwk (n]]:0) thawn

nbrnodes = 4

(all:0) > context (3:0)
(3:0) > assign nbrnodes=3
(3:0) > disp abrnodes

** gauss.f{)}shadow()nbrnodes *#

rhank (3:0) AnhaN

nbrnodes = 3




Controlling Program Execution (CONVEX CXdb)

%° Commpndiindow CXdbiindows

Llnrc Events Execution Process Configuration Misc
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Reacirg ccaoller data files, |

20: break routine. on (80/e], Enabled. ignore 0/0
{OxB000i 324 UNITS (n example.f line 2
{CXdb) run
Starting process {20): a.out
Process (¢G/C] stopped by Bkpt O, at (OxBO001324) UNITS (n example.f line 2
I} (CXdb? bresk line 1S

®#1: break line, on [(#0/=], Enabled. ignore 0/0
[Ox800013#6] ABC in examplc,.f line 15
(CXdb) contirmue
Resuming execution of Process (20/«}
Process (#0/0] stopped by Bkpt 1. at [0x800013e6) ABC in example.f line 15
(CXdb) set step expression
(CAdb) step

Stepping process [%C/=) by 1 sxpression
Procenl {20/0) stopped stepping at (0x800013F0) ABC in example.f line 15
(CXdb)

= n
Lstep _Jj| next llcontinue]| break ][ trace }[backirace][ print ][ help |

The example program has started.

[Sour‘cewndou FileView SourceUnit Processdindows

file: example.f process: [#0/0)1 Aljve

PROGRAM NITS

PRINT =, “The example program has started,”
CALL ABC

P;RINT », "The example program (s done,”

ND




Controiling Direction/Speed of Execution (PF-View)
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Controlling Level of Information (PF-View)
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Controlling Amount of Information Presented (xipd)
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Navigating Data Structures (VIPS)
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Controlling Message Exchanges (xipd)
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Conclusions

 Direct manipulation techniques can improve parallel debugger usability
expioit pattern recognition capabilities
minimize hand movements to perform complex operations
displays can be manipulated directly rather than indirectly
sidestep many opportunities for syntactic/semantic errors

e Open areas for further research
flexible mechanisms for editing/reformatting graphical layouts
graphical specifications of how raw data should be processed
approaches that are inherently visual —~ not translated from text

* Dual goals: must meet cognitive as well as ergonomic needs



Problem Areas

« Direct manipulation must be assessed according to ergonomic value
e Must also count cognitive costs

» Effective only if
graphical representation corresponds to mental model
ways it is manipulated correspond to mental model

» Consistency is critical
(example) xipd uses same graphical manipulations to control
where to load given executable
add/remove behavior reporting filters
domain of message info reporting
which processes should be killed



Transparent Observation
of XENOOPS Objects

S. Bijnens, W_ Joosen, P. Verbaeten
Department of Computer Science K.U.Leuven
Celestijnenlaan 200A
3001 Leuven
Belgium
e-mail: stijn@cs. kuleuven.ac.be

Keywords : transparent debugging, object-oriented parallel sysiems, distributed memory multiprocessors,
reflection, meta-objects.

Within our research 1eam we are building XENOOPS, a prototvpe execution environment for disiributed
memory multiprocessors which suppons the developmeni of complex parallel applications.

The construction of such applications requires the use of a tool to debug the various components of an
application and 1o observe their behaviour (interacnion) on a distributed memory computer. In this paper,
we will outline the basic concepis behind our debugging tool, and mainly focus on the mechanism 10 realise
a transparent and dynamic observation of object-oriented parallel applications.

Our approach is based on the concept of computational reflection, which leads to a clean separation
berween applicarion and observation aspects. The code that realises application dependent observaiion
will be generased by a preprocessor for C++.

1. Introduction

XENOOPS, an acronym for an eXecution ENvironment for Object Oriented Parallel Software[ 1], supports
the development of adaptive parallel applications. Such applications cofrespond to panaliel computations in
which the workload distribution changes as the computations evolve. In this context dynamic load
halancing can realise a relevant performance gain by reducing imbalances in the workload distribution as
they occur. It is our believe that the production of patallel software for distributed memory computers will
be accelerated if application writers adopt the bhenefits of the object-oriented methodology. Object-oriented
programming organizes programs as cooperative collections of objects, each of which represems an
instance of some class. and whose classes are all inembers of a hierarchy of classes united via inheritance
relationships.

This paper will focus on the basic mechanism to reahise a transparent and dynamic observation at the object
level. By transparent we mean that no changes to the application code are required, and that the semantics
of the application code are -apart from performance- not influenced. By dynamic we mean that the
debugger may be activated at any time, without restarting the application.

Section 2 describes the XENOOPS model and illustrates some of its specific idvantages like reusability
with regard to load balancing.

Section three discusses the required debugging funcuonalities within an object oriented framework, which
is essentially different from low level event tracing.

Our debugger design is based on the concept of computational reflection|2), which is described in section
tour In contrast to the common ad hoe ‘pnnt statement insertion' debugging techniques. we use the
concept of reflecion t develop a modular and transparent way ot adding debugging and/or monitoring
funcuionalities to a system. The noton of telection provides an extra dimension of abstraction (ineta-
abstrnction) that complements data abstraction amnd super-ubstraction. In object-oriented systems nieta-



Section S treats the realisation of the proposed mechanism by describing a preprocessor which generates
application dependent observation code for XENOOPS applications in C++. To illustrate the proposed
concepts, we describe an example from the domain of computational fluid dynamics (CFD) [4).

In section 6 we will illustrate some specific debugging policies that can easily be realized with the
proposed mechanism.

Section 7 will describe the support that is offered by XENOOPS to realize the mechanism. Section 8 will
compare our appoach to dynamic debugging with related work. We summarise in section 9.

2. The XENOOPS model

The primary objects of our system are work unirs. Each of them encapsulates a fraction of the work to be
executed by the application'. These objects are mobile to enable a load balancing system to reallocase
work at run time. Object migration[5] is initiated by the invocation of the Migrale operation on a work
unit. Basically, the Migrare operation uses Pack and UnPack opertions provided by the programmer,
to achieve efficient migration while respecting the semantics of the applications data. Two additional
operations (Spliz and Join) provide a mechanism to control object granularity: the Split operation will
divide a work unit into several migratable units, the Join operation on a group of work units will
consolidate them into one.

On each node, the work units are stored in an objecr table. Two active objects (objects with an own thread
of control) manipulate this table:

o First, the Culculasor executes the typical application code by selecting a work unit from the table, then
performing an operation (for example one iteration step in a CFD application(4]), sending resuits
and/or waiting for results from other work units, and finally putting the work unit back in the table. This
component corresponds to the application’s algorithm and will be provided by the application
programmer.

o The second active object is the load manager, which runs simultaneously with the calculator. Dynamis
load balancing will be realised by transparently migrating work units between nodes.

Figure 1 illustrates the XENOOPS model.

(('aln ulakw é\i‘r’u‘e ]
' . \'\ / n N .
DI T

Object Table |

Figure | XENOOPS ubjects in a single node

| Formstance, in the case of date parallel wpplications ke C1D, @ wiork unil comesponds 1o the dats of & trsction of the discrelised
physical domain.
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balancing component and simplifies the task of the application writer if he wants to integrate, test and
oplimise load balancing strategies for a particular problem. Disabling the load balancing component can be
done in a straightforward way.

3. Debugging functionality

The task of obsesving the behaviour of parallel applications requires an environment in which to execute
potentially errant code under controlled conditions.

In an object oriented system all interaction between objects is accomplished by method invocation The
process of lesting object-oriented systems involves two phases. First, component level testing is done.
Classes (cemplates for creating objects) are debugged individually. This way the comrectness of each
operation on an individual object is tested. Secondly, the integration of the individual components requires
testing of their ineraction. In particular, method invocations and their effect on state changes of interacting
components must be controlled. We will focus on the second phase, because the first one can be
accomplished by classical sequential debuggers.

Debugging functionalities can be classified by considering that debugging involves several agents and can
be expressed in terms of interfaces between these agents. The User initintes a debugging session with a
System that must be debugged. A Tool must realise the above as unobtrusively as possible.

Functoaality

User Tool Mechmies

-~ = System

Figure 2: Debugging

The interface between the user and the tool specifies the debugging functionality. Several approaches
exist[6): post-mortem debugging. instant replay, lowback analysis[7] and others. These functionalities are
often integrated with a graphical interface.

The interface between the tool and the system needs a mechanism to realise the required debugging
functionality.

v K P e————
) \ g . |n mcl wnlh
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T ()h[etl Table

Figure ¥ Debugging im XENOQOPS

I'he interaction between the tool and the XENOOPS run-time system is accomplished by adding on each
node a third active component : a debugger. This debugger can control and manipulate work units, stored
in the object table. The mechamsm tor achieving this interaction in a transparent way will be described in
the next section. ‘Thia mechanism can he used to realise a broad spectrum of functionalities.
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added (o the system in a tnnspmm way. Fmally. if debugging is required another active component can be
added (dynamically) without any modification of the other two components. In the next section we
describe the mechanism for achieving this transparency

4. Modelling transparent debugging as reflective computation

Most computational systems exhibit not only object-computation, i.e. computation about their problem
domnain, but also reflective computation, i.c. computation sbout thelr own execution. Examples of reflective
computations are :

o the gathering of performance statistics,
» the collection of information for debugging purposes, stepping a1d tracing facilities,
o self-optimisation, self-nodification and self-activation.

The decomposition of a computation into object-computation and reflective-computation introduces more
modulariry into computational systems. The computation at the object-level manipulates dasa representing
the problem domain. The computation at the reflective level takes care of the internal organisation of the
computational system and its interface to the outside world. It manipulates data representing the actual
object-level computation.

In (2], the concept of a meta-object is introduced: a meta-object is an object that controls and manipulates
another object. In other words, a metwa-object is an object ‘about’ another object, able to observe and to
conuol it. Reflection is achieved by setting up a 'causal connection’ between the meta-object and its
corresponding object. This means that the meta-object and the object are linked in such a way that a change
in one of the two leads to an effect upon the other.

Within the XENOOPS system, a meta-object will be created dynamically for every object, that’s worth
monitoring. We apply this rule to work units, as they are the key objects. and the User is especially
interested in their behaviour. Ir particular, the User is interested in: the operations that are invoked on a
specific work unit, the caller and the resulting state changes.

The debugging component will interact with the meta-objects. This interface is specified by a set of
operations,

Typical operations invoked by the debugger on a meta-object can be classified as :
. opemtions to realise the dynamic creation and destruction of meta-objects:
» Constructor(object) creates a meta-object for a specific object.
o Destructor( ) destroys a meta-object (when it is not relevant any more for debugging purposes.
2. operations to realise the debugging functionality:

o Trur«_Method_Invocation(): to trace method invocations on the object. This operation will
intercept all invocations on the object and react in a appropriate way. The meta-object will
inform the debugger about the event. The type of information that will be exchanged depends on
the debugging functionality (post mortern, instant reply ...). Note that the proposed mechanism is
general and does not restrict itself to a specific functionality.

o Get_State() : 1o read the state of the object.

These operations are automatically generated by the XENOOPS debugging system using compile-time
heunstics. For example. an operation like (e _State() makes use of the Pack() and U/npack() operations
on an ohject. These operations are already supplied by the programuner for implementing the Migrate()
uperation (object migration).

This way we are building a debugging system on top of the application’s object-system. It is a general and
modular framework. The mechani.m of meta-objects makes 1t possible to transparently add debugging



specific parallel application.

5. Realization of the Mechanism
5.1 General approach

A meta-object-class must be generated for every class, frem which an object can be instantiated that is
worth coulrouing (e.g. work units). A preprocessor generates automatically a meta-object-class that will be
dynamically integrased into the system during a debugging session.

%

Figure 4: Dynamic debugging

Transparency is achieved by intercepting all relevant invocations called by the object system. (In Figure 4,
only the Calculator is illustrated for simplification.) The meta-object will intercept all method invocations,
inform the debugger and delegate the invocation to the object itself. The object system consisting of the
calculator, the load manager and the object table does not notice the existence of meta-objects: a meta-
object behaves like an ordinary object because it offers the same functionality.

We use the inheritance relation to achieve lransparency.
A preprocessor realizes the necessary code (o achieve transparent debugging:

wuU Abstract
isa is a
wu -
Class
.. . Appl_WU Mewa_WU
ongmul source Class Class

gencmied
Class Hierarchy

Figure §. Preprocessor

The preprocessor generates a specific hierarchy. This way we achieve causal connection in a trunsparent
way. The meta work unit object “is a" work unit object (by inheritance). So the other system components
(calculator, load manager) only work with objects of type work unit (WU) and will not notice the
difference whether the work unit is a real application work unit (Appl_WU) or a meta-object (Meta_WU),
as they can invoke the same operations. This way de debugger can intercept all method invocations
(through a meta-object) and state changes while no other system component will notice it.



The XENOOPS prototype is implemented in C++{8], and we use language specific features 1o realise the
propossd concepis. The application progammer implements the fanctionality of work snits.

The gencraied componsnts am :

o the application work unit class (Appl_WU) is a copy of the origiaal work unit class providsd by the
PrOgranuner.

o the meta work walt cless (Meta_WU) is peoerated by the preprocessor and incorporsiss all debugging
funcrionalicies. This ciass is made a friend{8] of the spplicatios work wnit class. This way the meta
object can accem privam dets members of the work wnit itssif (cassal connsction).

o The work unik class (WU) s a viitual base ciass (sbstract clam) with the same interface & the
application work wnit class but all methods are deciared as pure virteal[8).

clam WU[ clam Appl_WU : public WU {
fioriginel code for & work unit provided # Ounly differsncs with thy origimal WU class
#by i CFD spplication programmer. # is this frioad staement, which allows the
X moia object the accews of privame data,
# tha discretised physical domain. friend class Meta_WU;
STATE my_data:
Messags Pack(): privats:
vold Unpack{Mosmgs): STATE my_das:
public :
# Coastrecyor Mossage Pack();
WUO: void Unpsck(Measage):
# Dagtrecior public ;
“WUO: # Coagaractor
Appl_WUQ:
#/ imration over the physical domain
# 1 Uhe work umix covers # Dagtructor
“Appl_WUO:
void Do_sa_Tarssion():
#/ communication fumctions that involve vold Do_sa_leration(;
// the swapping of cdge values beiween
//neighboring WU void Sead_Update( WU):
void Sead_Update{ WU); i void Receive_Updas(WU);
void Receive_Updae(WU):
N migmina
#/ migration void Migrate( Node):
void Migraie( Node ):
Hygranslarity control
Higranularky control void Spligiat):
void Spliatias): void Jola( 1.ist <WU>):
vuid Joia( Ligt <WU>)

COrigingl WU claxs Genoraied Appl_WU Clam




private :
// pointer 1o the Appl_WU, that
// must be debugged.

Appl_WU*® my_appl_WU;
public :

{// Constructor (called by the debugger)
/] the parameter of type WU is the Appl_WU
// that must be debugged.

Mea_WU( WU):

/] Deswructor
“Meta_WU();

1/l App). Specific member functions

// Called by Calculator or Load Manager
void Do_an_Iteration();
void Send_Update( WU);
void Receive_Updaic(WU);

i 1o achieve dynamic binding
class WU {

private ;
// no privaie members
public :

/! Constructor
wuU0:

// virtual Destructor
virtual “"WUQ:

/1 all member functions are declared
{/ as pure virwal (=0)

virtual void Do_an_Iteration()=0;
virtual void Send_Update( WU)=0;
virual void Receive_Update(WU)=0;

void Migrase( Node); // migration // migration
void Spliy(int); //granularity control virtual vaid Migrate( Nodc)=0:
void Join( List <WU>);
//granularity control

// Debug Specific member functions virtual void Split(int)=0;

/i Called by Debugge: virtual void Join( List <WU>)=0;
void Trace_Method_Invocation();
void Get_State();

JH J:
Generated Meta_WU class Generted virtual WU class

The cbject system only expects objects of type WU. Method invocations are intercepted through dynamic
binding, which means that method binding happens at run-time depending on the object’s actual type. The
ability to call a variety of functions using exactly the same interface -as provided by virtual functions- is
also called polymorphism.



- tamae LURLGL HIGLLGPIS @Il INVULUUUIS U1 UE ODJECT. A Specilc gebug policy must be specified by the
User. The code for the Pre- an Post-actions included by the preprocessor are generated from the
specification of the debug policy.

void Meta_WU::Send_Update(WU neighbor, DATA msg){
// This function is called by the Calculator

// PRE-action
Pre_Action_Send_update(dest, msg,.id);

/! Delegate invocation of the original
{// operation on the Appl_WU
my_appl_WU ->Send_Update(WU dest);

1/ POST-action
Post_Action_Send_Update_end();
I

void Meta_WU::Get_State(){
// This function is called by the Debugger
/Af the User wants to see the state of a
//specific WU.

// the marshalling of the WU into a message.
/1 the pack-operation is already

//available for realizing migration.

msg = my_appl_WU->Pack();

// Send the information to the User
Send_to_Host(msg);

L

Implementatica of some Meta_ WU methods
Post-Mortem debugging/ Instant replay

This technique is very easy to realize. In the case of Post-Mortem debugging, the Pre- and Post actions just
have to register the invocation.

To realize Instant Replay, the task of the Pre-action will be the registration (in the meta work unit) of a
history of invocations that include enough information to realize the replay.

Snapshots

The realization of a consistent global snapshot of the distributed computation, essentially requires to find a
set of local snapshots such that the causal relation between all events (invocations) that are included in the
snapshots is respected. This means that: if an event is contained In the global snapshot and this event s
caused by another event. then the latter event must be in the global snapshot too. This causal dependency
can be realised with the use of vector clocks[9] included in the meta objects.



The proposed mechanism for transparent debugging with the use of meta objects can only function
optimally if XENOOPS offers some advanced support.

7.1 Synchronization

The XENOOPS model provides on each node of the multprocessor three active objects. Because these
objects have there own independent life (thread) and simultaneously interact on shared data (work units),
race conditions can occur. For example, when the Calculator has invoked the Do_an_lteration() operation
and the Debugger invokes simultaneously the Get_State() operation, inconsistent data will be passed to the
debugger. Another race condition occurs when the load manager wants to migrate a work unit that is
currently selected by the Calculator. These examples show that there exist already some synchronization
constraints on a work unit's implementation provided by application programmer and that the debugging
concept just inherits these constraints and adds some more.

'n the literature, different strategies for handling synchronization constraints exist. One means (currendy
adopted in XENOOPS) of controlling parallel execution of methods is to specify the allowabtle control
paths through each object (e.g Path Expressions [10]). The purpose of path expressions is to constrain
parallel activities, which means they usually impose sequencing rather than indicating parallelism.

Notation Meaning

ml.m2 m1 and m2 can be run in parallel
(ml} 0 or more m1 in parallel

ml +m2 ml and m2 must execute serially

It should be noted that, because the specific specification policy used, is orthogonal to our debugging
concept, we are not limited to one of them. Another way of specifying synchronization constraints can be
realized by the use of synchronizaiion counters [11].

7.2 Scheduling

Scheduling between the active components must be provided. One might expect active components to be
mapped on the processes that are offered by the operating system kemel. The major difference between a
MIMD panallel system and a traditional operating system lies in the fact that the processes running on a
given node do not really compete for the processor, but cooperate to improve the global performance of
one single application. To realize this cooperation the existing active objects (in our model a fixed set) have
at least implicit knowledge about each other.

XENOQOPS defines a control hierarchy between active objects :

. For the case with two active objects (Joad manager and calculator), we decided to localize the
scheduling control in the load manager. This way, the application writer will not have to deal with
scheduling in the default case.

2. Fur the case with a calculator, load manager and dehugger, we recursively apply the approach to the
given situation: the debugger will control the scheduling between himself and the lower part of the
hierarchy (load manager controlling the calculation).

Since the debugger controls the CPU allocation, he can give himself the highest priority if necessary. For
example, when the invocation of Giet_State() operation is blocked becsuse of the Do_an_lteration() has
been invoked on a work unit, the debugger will have the highest priority if the Do_an_lteration() operation
tinishes T'his way an invocation of Get_State() will always be the nearest consistent state in the future.

The selected control hierarchy between calculator and load manager can be justified by the observation
that, when only running the calculntor (an unb-iianced execution of the application), nothing will have to be
specified. Then the calculator is the top of the hierarchy, and will have maximal use of the CPU



Our work has been partially inspired by research projects in the area of object oriented programming
languages (OOPL) and operating systems (OOOS). We will now refer to both.

The dynamic approach of transforming functionalities during the objects’ lifetime is fairly commonplace.
For example, in nature, a butterfly begins life as a caterpillar, molts into a chrysalis and reappears as a
butterfly. In object oriented jargon this process can be stated as ‘an object that dynamically changes its
type'. In class based object-oriented languages this dynamic behavior can be captured by meta-objects
[12].

Another area of study are OOPLs that use delegation based inheritance and do not even support the concept
of a class. Upon receiving a message (= method invocation), an object compares it to its known methods. If
no match can be found, it ‘delegates’ responsibility for the message by passing the message to another
object (prototype). An object may dynamically select a prototype. This changes the way its messages are
processed, effectively chenging its ‘class’. The language SELF uses prototypical inheritance [13].

The Actor model also supports a ‘become statement’, which results in the fact that incoming messages can
be handled differendy. (14].

Some object oriented operating systems also use a dynamic approach for modifying the behavior of
resources. The Muse distributed operating system [15) provides an open and self-advancing dynamic
environment. Muse provides reflective computing that presents facilities for self-modifying an object with
its environment. Objects reside in the context of a collection of meta-objects to handle dynamic system
behavior and to provide an optimal execution environment for the obje-.i.

Computational reflection is also employed in Choices [16], a family of object-oriented operating systems.
For example, when Choices boots, few operating system facilitics are available. Therefore the initial heap
manager uses a simple algorithm that has few features and pluces few requirements on the operating
systems. As the boot progresses and both virtual memory and process-switching facilities become
available, the default heap manager is changed to a multi-threaded allocator that provides an appropriate
balance of time and space usage properties for a multi-threaded kemel. Thus, the load manager
dynamically changes its behavior.

9. Conclusion

We proposed a mechanism to control and observe interacting objects. Debugging functionalities are
dynamically applied. Method invocations on relevant objects are intercepted by a meta-object and all
interactions are accomplished in a transparent way. This dynamic approach minimizes the resource
utilization for debugging.

The proposed mechanism is integrated in the XENOOPS environment, an execution environment for
adaptive parallel programs. The debugger isn't restricted to a specific debug policy and/or graphical
environment.
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Abstract

Program monitors must fulfill a number of requirements o be ¢ffective. Performance, reliability, generality, portability, and
retargetability are all desirable and necessary attributes. On massively paraliel distributed memory machines, these require-
ments present special challenges. As new, increasingly parallel and exotic architectures are created, program mofutors must
be able t0 move 10 these massive sysiems without massive re-implementation.

This paper describes the Tools Application Monitor (TAM), a perallel server that acts as a software monitor for parallel de-
bugging and performance tools. The TAM provides a public interface that allows tools such as debuggers to control and mon-
1toe the behavior of numerous application processes with simple function calls. The TAM provides the basis for the next gen-

eration of programming tools targeted toward Intel Paragon™ systems.

1. Introduction

Software for parallel computers has been an area of

active research since the inroduction of the first parallel

systems 1n the mid-1980's. Parallel systcms present spe-

cisl challenges for developers of software tools such as 3.
debuggers and performance monitors. Some of those
vhallenges include the following:

1. Tool Complexity

Parallel performances and debugging tools are

more difticult 10 develop than their sequental 4,
counterparts because the state of a parallel
apphicauon 1s more difficult to describe and

control. The added complexity increases the
development ume and mainienance
requirements for paraliel tols.

Y Massive Amounts of Data

Performance monitoring, in particular, can
require the collection and reduction of large
amounts of daw  from large numbery of
CONCLITENL Processes.

Debugger display of program data, when scaled
to hundred: or thousands of processes, can
result i an overwhelming amount of data as
well.

Performance

Tool performance issues require special
attention on disnbuted memory machines
because of the potenually large number of
processes (0 be monitored.

Machine Dependence and Programming Madel
Dependence

The reiative lack of hardware and software
standards for parallel systems makes o difticult
w retarget paraliel tools for new syswiems.

Also, the wide vanety of compeuny
programming  paradigmy  for  parallel
computation such as control ve. data parallehism
and expheitvs, imphcitmessage-passing makes
wnting general purpose parallel tools ditticult,

To address these problems, Intel ss developing a parallel
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Tools Application Monitor (TAM), initially targeted for
use on Intel Paragon™ systems. The TAM is a parallel
software monitor that will serve as the lowest level in a
layered tools architecture. Parallel debugging and perfor-
mance tools will reside at a higher level and will rely on
the TAM for machine dependent process monitoring and
control. A paraliel interface library will connect the lay-
ers and allow parallel tools to perform operstions such as
“single step” or “‘read memory” on nume.ous application
processes with a single function call. This approach
allows the tool developer to concentrate ¢n what func-
tions to provide and how (o present them to the user
rather than the machine dependent aspects of parallel
process control,

The paper is organized as follows: in section 2 we
describe the target system, an Intel Paragon running Par-
agon OSF/1. Section 3 describes the motvation for the
TAM. Section 4 lists the TAM design goals. Section 5
provides an overview of the TAM. Seciion 6 describes
the insorumentation techniques used in the TAM. Section
7 provides an example of a debugger implemnented using
thc TAM. Section 8 gives some background on relazed
work, and section 9 summarizes ow conclusions.

2. Paragon OSF/1

The Paragon OSF/] operating system is 4 truc distributed
Unix operating system. Each node of the: paallel machine
runs a Mach 3 microkemel and an extended OSF/1 server.
The operaung system provides a single-system image,
mcaning that there 18 a single name space for process 1d's,
lile systems, and all other system resources. Parullel appli-
canons are gang-scheduled in system pararions. which arc
Ingical divisions of node resourves, A special partition, the
service partition, is used w execute login shells and
non-paraliel Cnix processes. This partion is dynamically
lowd -balanced and processes may migrate freely among the
tuxies in the service paruon.

s single-system image, or global pid space, allows pro-
cesses on distinet nodes (o signal each other, wait for each
uther, creale pipes between cach other, and 0 tace one
another via the Umix purace() sysem call[12). These fea-
tures are useful for single -provess Unix debuggery in that
whena process under debug mugrates away from the debug -
¥et vor vice versa), the user 1s unaware of the migration and
the debugger continues w work as normal. We have demon-
strated thas capabdity using the GNU debugger, gdb( 15].

Parallel apphcanons tunmimg under Pairagon OSEF/1 com
muncate v typed message passing, compatible with the
(UESSRe RSSO previous geaeniton Intel nuwchines
nntng the NX operatimg syseemj 1),

On the Paragon sysiem, parallel applications are invoked in
the same manner as any other Unix program. However, par-
allel applications are linked with a special library containing
routines that turn the initial Unix process into a parallel
application. The initial Unix process, (also known as the
conirolling process), may become a parallel application
cither implicitly or through explicit function calls, depend-
ing on how the programmer builds the application. In either
case, the controliing process executes a parallel fork opera-
tion, possibly followed by an exec, to create the parallel por-
ton of the applicaion. This “load model” presents a
significant challenge in bringing the application under mon-
itor control. Operating system extensions were required o
implement this.

3. Motivation for the TAM

Given the single-system image presented by Paragon
OSF/, one could implement a front-end tool that directly
calls ptrace() to monitor multipie processes running on mul-
tiple nodes. However, this approach has two basic flaws:

1. For hundreds or thousands of processes, the
front-end tool would have to call ptrace() once
for each operation on each process. This would
create an unacceptable bottleneck.

2. The operations offered by ptrace() are (0o
primitive for efficient remote usc on a parallel
system. A massively parallel monitor requires
high-level operations that van be done locally,
on the same nodle as the monitored process, 1O
minimize intrusion on the message passing
nctwork caused by numerous low-level momtor
requesis.

Th effect & solution that overcomey these flaws, the monitor
must be implemented tn perform high-level operations in
paralicl,

For example, single siepping by source line, implemented
using the breakpoint mechanism, requires repeated memory
reads ant writes, executions, and register reads in onder
sct @ breawpoint, run o it, and get the progrun counter,
respectvely. Doing this remoses: requires multiple mes-
siges between processory; doing it remotely for hundreds or
thousands of provesses creates s senious bottleneck ad ser

alizes the unplementation. Thus, the TAM impkementation
moves much of this work out W the ides, as i the 1D
debupger| S,



4. Design Goals/Requirements

This section describes the requiremente that constrained the

design of the TAM.

« Reliability
This is an obvious requirement, but important and
difficult to achieve in a pamallel remote monitor,
where an operation might succeed for some

processes but fail in differing ways for others. This
overrides all other requirements.

s«  Performance

This is another obvious but difficult requirement.
We arbitrarily set a limit of 1 second response time
for interactive commands such as read memory, get
stack tracebacks, and so forth.

~  Ponrtability / Retargetability

Parallel architectures are evolving rapidly. In a
sense, this stifles the evolution of parallel
programming tools, since tool builders are
constantly scrambling to put the basic tools back
onio the latest architecture. The TAM is intended to
live past the current generation of Intel sysiems,

«  General Interface

A goal for the TAM interface is to provide tool
builders outside Intel the capability to port existing
tools to the interface as well as create new tools
using the interface. Research into paraliel
programming tools is a growing field, and this
interface must enable researchers 10 concentrate on
the imponant problems without having (o reinvent
the monutor for each tool.

« Integrution of Monitoring Facilities

By combining monitoring facilities into a single
monilor, any programming tool may make use of the
tacilines traditonally tied to any other tool, For
cxample, a debugger can run to a breakpoint, then
turn on profiling. All 100ls get a consistent picture of
the program,

+  Monitor Any Program

The TAM must be able to monitor any application
that can run on the machine, without special
compilation or linking to special libraries. A
monitor t:uling this requirement is uscless for
production codes,

5. Design of the TAM

The TAM is comprised of two major components: an inter-
face library, and a server. Multiple instances of the TAM
server exist, one on each node in the partition where the
application runs. The individual TAM servers are stared
when a call o0 the interface library loads an application,
and each server is responsible for monitoring all pro-
cesses in the application on its local node. Services pro-
vided by the TAM include traditional Unix monitoring
activities such as reading and writing the application data
space, management of breakpoints, watchpoints and tra-
cepoints, program single steppirg, and protiling, as well
as features specific 10 a parallel message passing system
such as inspection of message queues, data reduction and
event logging.

One of the TAM servers has special responsibilities in that
it monitors the controlling process of a parallel application;
this TAM is called the parens TAM. When the controlling
process begins to crease the paralle! part of the applicaton,
the parent TAM is responsible for starting a TAM server on
each node of the partition. It also esmsblishes the communi-
cation parts between itself and the rest of the TAMs.These
ports are used 0 implement remote procedure calls (RPCs)
in the parallel server.

Figure 1 illustrates the Jesign of the TAM and its interac ..n
with the front-end 100l and the application being monitored.
In that figure, bold arrows represent the RPC/Mach port net-
work connecting the TAM servers, thin arrows represent the
message passing network connecting application processes,
and thin lines without amowheads represont the ptrace()
communication between each TAM sexver and the applica-
tion processes under its control.

5.1 Interface Library

The TAM interface library, libtam.a, provides an external C
Language intecface 10 the services of the TAM. The inter-
face hides the implementation of the RPC interface from the
caller (the RPC mechanism is described in detail in section
5.4). [n addition, the interface provides tacilities tor manag-
ing program data returned as a result of a dita request as
well as error reporting mechanisms,

‘The data buffering mochanism is based on the one usad in
the IPD parallel debugger on the PSC®2  and
iPSCE/M60(5). It has been re-implemented and extenderd W
sutisfy the general requirements of the TAM. The mecha-
nism has been improved through dynamic bufler allocation,
removing the arbitrary 1K-per-node limit on dita requests.
A tool can then manipulate these bulfers, via the intertice
routnes, 1o collect idenucal data sent trom different noxdes
so that it noed only be displayed once. Redundant data
oceurs ofien in prctice, for example, when miny prxcesses



are stopped at the same breakpoint and their stack traceback
is identical. The buffer mechanism provides only primitve
facilites for managing data retumed from the TAM. As a
result, much of the responsibility for this management is left
o the front-end wol, such as releasing the buffers o be
de-allocated when they are no longer needed. The TAM
library requires the front-end tool to live up to these respon-
sibilities through stnict exrror checking.

Any TAM request for data involving multiple nodes may
result in data and/or error information being returned as
some nodes fail and others succeed. Error information may
vary from node to node just as program data can. To rewmn
earh of the error numbers with the list of nodes associated
with each error is exactly the same problem as retuming
program data with the list of nodes which produced it
When an emmor occurs, a TAM library routine can be called
1o refum an error message string and a list of nodes on which
the error occurred.

52 TAM Servers
Each TAM server consists of four major components:
1. A node in the broadcast snanning tree.
2. Aprocess list
3. Anextemnal interface (RPC).
4. A selectable racing and logging facility.

Each TAM server must respond to two external stimuli:
TAM RPCs and debugger events generated by monitored
processes. Since the primary debugging instrurmnentation is
done using the ptrace() system call, debugger evenis result
in a signal, SIGCHLD, being sent to the monitor. The TAM
servers block awaiting an RPC request. If a debugger event
occurs, control transfers to a signal handler, which calls a
“handle event” RPC on the local RPC port and returns to
receive the request and handle the ¢vent.

Application
Process

Application
Process

TAM

Host
Process

. (TAM |

Application
Process

Application
Process

Figure 1. TAM Usage Model



5.3 Loading a Paraliel Application for Debug

One of the more system-dependent parts of the TAM is the
“load program” interface. As described in section 2, Joading
a paralle} application on Paagon is a relatively straighifor-
ward operation. Loading it for debug, however, is more
complicated.

A perallel application is invoked by running a single Unix
process. This process calls a routine that allocates a partition
of nodes. The parent TAM uses internal breakpoints o stop
the process on requrn from that routine so that it may start a
TAM server running on each node of the partition. Each of
these servers notifies the OS of the ID of the application it
wishes to monitor. The parent TAM may then resume the
initial controlling process so that the application processes
are loaded on the nodes as well. As these start up, the oper-
ating system suspends them and notifies each local TAM
that a new traced process has been created, and the TAM
sends an event message back to the interface library.

5.4 RPC implementation

The TAM library provides an interface for remote proce-
dure calls to the TAM. The RPC implemeniation is gener-
ated using the Mach Interface Generator (MIG)[9]{10].
MIG reads the RPC specification and outputs C code 0
implement the RPCs using Mach ports.

RPCs are synchronous with respect w the interface library;
an interface routine will not return to the front-end wol until
the RPC is complete. However, sach TAM server executes
the RPC asynchronously. The TAM server receives the
request, forwards it to the TAM servers downstream from it
in the spanning tree, executes the request if it is part of the
request, then receives any emrors returned from downstream
and forwards those, plus its own, upstream. [f the request is
tor program data, a subsequent call o receive the datn is
mquired. Data is received and stored in buffers in the TAM
interface library.

There were three communication mechanisms available to
implement the TAM communication network: Mach ports,
swkets, and NX message passing. Sockets were diunissed
almost immediately because the software overhead would
deygride performance below the specified limits. NX mes-
sige passing is very atractive because of its high speed and
the absence of a need for initialization, but because the mon-
ttor has w0 run i the same application space as the moni-
tored processes (%o that they are gang-scheduled ogether),
a name-space conflict between the application and the mon-
nor would be created. Thus, Mach ports were the only
chowee with the necessary pertormance and security fea-
tures.

Mach ports have nearly the speed of NX message passing
oce the connevuon has been made, with the added attrac -

tion of the security that only processes that have been
granted send rights to that port may send to it However, the
initialization required for the TAM communication network
10 use this paradigm is significant.

In order to broadcast TAM requests 10 potentially thousands
of TAM servers, the communication network is created in
the form of a spanning tree, rooted at the node where the
front-end tool resides. This allows the interface library 10
send a request 10 at most log(n) nodes, where n is the num-
ber of nodes allocared for the application, and have them
forward it in parallel using the contention free algorithm
described in [1]. Although some commands may be
direcied to only a subeet of the nodes, all commands follow
this complese path out and beck, since the overhead of cal-
culating different paths based on the node list outweighs the
extra message passing.

The pathways used to send event information and program
data to the front-end currently circumvent the spanning tree
network. These initial connections are candidates for future
optimizadon. The impact of such connections is not yet
Clear.

6. Instrumentation and Examination
Techniques

The TAM provides instrumentation traditionally used by
debuggers and performance monitors. In this section we
describe the monitoring echniques used by the TAM for
these types of tools, but we categorize them in this way for
reference only. In the TAM environment these facilities are
interchangeable.

6.1' Debugging

The TAM uses ptrace() 0 perform debugging operations.
The significance of this is that the TAM is able to make the
connection through the operating System o trace parallel
application processes started on a remote node. Bretly,
maodifications to the OSF/1 server were required

allow the TAM 10 be notified of any new
(raced) processes in 4 specified process group
and to vace them

allow the TAM w wait for sibling processes

OSE/t provides two potential mechanisms for monitonng
processes: ptrace(), using the Unix faciliies of the OSH/I
server, and Mach excepuon ports, using the facilitics of the
Mach 1.0 microkemel| 10]. Purace() seemed o be the chowee
for a portable, retargetable momiwr, The model s simple
and changes W support debugging paratlel applicauons
could be isolated in the OSF/1 server, leaving the nncnoker.
nel alone, which helps with mamunability of the OS.



Although the method of instrumentation for debugging is
conventional, this instrumentation is employed to imple-
ment high-level operations on behalf of the front-end tool.
For example, to do a stack traceback uting a “read memory”
monitor command, a front-end 0ol would have o call the
monitor repeatedly. The TAM provides a ““stack traceback”™
command, so that a single call can reazn what nonnally
requires many calls. This technique is used for calculating
other functiong in much the same way that IPD oo the
iPSC/B60 did, but with a public ineerface.

6.2 Performance instrumentstion
TAM will provide only profiling capability, However, an
event trace mechanism will be added in the near future.
The Application Perfarmance Monitoring Subsystem con-
sists of three parts:

1. The TAM

2. A performance monitoring library linked with

every application proceas

3. Anevent trace server that moves event trace
data off the application nodes
The performance monisoring library is auomatically linked
with every application; no special swikches are required and
the library adds only 10-20K bytwes 1o the size of a user pro-
vated, these libraries creste event trace buffers and other
structures dynamically.

To do event tracing of a parallel application, the TAM serv-
a3 will insrument the application process in memory by
repiacing application code at the trace address with a branch
0 a new page. This new page will be allocated by the TAM
server and attached to the application process. The new
page will contain code which calls the performance library
event trace code. The library will wrise the event trace to the
trace buffer. On return, the code in the new page will exe-
cute the replaced instructions and branch back to the origi-
nal application code.

Al pre-desermined points daxring performance monitoring,
the performance library will send the event trace buffer o an
event trace servex: This server will run in the service parti-
tion. It will collect event traces from the nodes and cither
write the traces 10 a file, forward them to an interactive tool

libtsl

Figure 2. IPD (Components



for real-time animation, or both. The trace sexver will be
used in this way to minimize the intrusion of writing out
buffer contents from the application.

Profiling an application is somewhat simpler. To profile a
paralle! application, the TAM servers call the performance
library to dynamically activate the OSF/1 profil() mecha-
nism. Boin event tracing and OSF/1 profiling can be active
simultaneously.

7. An Example

The Interactive Paralle]l Debugger (IPD) is a symbolic,
source-level debugger for parallel programs written in C,
FORTRAN and Assembler Language(5). [PD offers the
ability to load, start and stop parallel processes, sing-
le-step their execution, set breakpoints and watchpoints,
display and change data, and examine message queues.
The first implementation of IPD was for the Intel iPSC/2
and iPSC/860 computers. That implementation was
developed prior to the TAM and had w rely on code
within the NX operating sysiem (o handle low-level
chores such as setting breakpoint traps, single-stepping
an application, or modifying an application’s data space.

IPD has recently been posted 1o the Intel Paragon sysiem
and interfaced with the TAM, The interface consists of a
few high-level function calls to TAM library routines and
replaces over 6,000 lines of cperating system code that
previously supporied [PD. A separate library of routines
for symbol table processing (libisi.a) has been developed
and is now being used by [PD. A graphical user interface
is currently being developed. A component diagram
appears in Figure 2.

The operation of IPD and its interface with the TAM can
be characterized as a loop consisting of three basic
acuons:

. Parse and validate a user request.
2. Forward the validaled request 1o the TAM.
1. Receive process events back from the TAM.

Step 1 1s standard o any interactive tool and is not
atfected by the use of the TAM. In Step 2, TAM services
are requested through calls to TAM inwerface library
functions, The librivy functions translate the requests
into remate procedure calls and forward them on to the
TAM. TAM library funcbons used by IPD include the
tollowing:

taml.oad()

Loads an application program. The program may be
cither a sequential or parallel program.

« tamExecute() and tamStop()
Starts or stops a set of processes.

* tamAddBreakpoint() and tamAddWatchpoint()

Adds code breakpoints or data watchpoints to a set
of processcs.

+ 1amReadMemary() and tamWriteMemory()

Reads or writes to the data space of a set of
processes.
¢ @amReadMsgQQ and tamReadRecvQ()

Reads the pending messages being sent or received
by a set of processes.

» tamReadRegisters() and tamWritcRegisters()

Reads or writes the register file for a set of
processes.

¢ taminstructionStep() and tamSourceStepQ

Steps a set of processes cither one machine
instruction or one source line.

+ amReadTraceback()

Reads the stack frame for a set of application
processes.

Step 3 is the mechanism through which the TAM informs
IPD when the stae of a process being monitwred
changes. State changes are communicated as events,
retumed when [PD calls the TAM library routire, am-
RecvEvents(). Events are generated whenever a process
is created, stepped, stopped or killed, or when it is inter-
rupted by a signal, breakpoint or watchpoint. Typically,
[PD will receive any pending events and update its inter-
nal process tables beiween cach user request.

In addition to the services described above, [PD relies on
the data buffering and error hundling functions included
in the TAM interface library. These funcuons allocate
space for the data and error codes returned from the par-
allel applicadon and consolidate the buffers when 1denti-
cal data or errors are retuned from different processes.
IPD then uses TAM library routines to access the consol-
idated data or errors.

Paragon IPD is more portable and extensible than its
iPSC predecessor because it no longer relies on custom
operating system support. All monitoring of application
processes is accomplished through the calls w the TAM
intertace library routines which hide the complexites of
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machine dependencies, inter-processor communication
and data/error reduction. Additionally, Paragon [PD
incorporates new applicanon profiling features which
allow closer integration of debugging and performance
monitoring functions. The integration of these functions
is made possible by the use of the TAM as a common
monitor.

8. Reiated Work

Software trends in general are moving toward portable,
re-targetable, and general implementations using san-
dard interfaces. Despits this, relatively few portable tools
exist for parallel systems. Notable exceptions include
Express(13], PICL/ParaGraph(7] and Pablo[14]. We
believe that this is due in large part to the absence of a
usable public interface to general monitoring facilities.

Integrated monitoring is not a new idea. The TOPSYS
project[2](3]. in particular, has implemented a sophist-
cated monitoring facility that is used by multiple tools.
TAM technology draws heavily upon the results of this
work, and will likely continue to exploit the results of
this research.

Hoven(8) has implemented a Mach 2.5 interface for process
monitoring that is intended 0 support a variety of servers
running on a microkemel. Our OS extensions solve most of
the same problems using Unix signals and ptrace(), with the
exception of thread-level monitoring. Brealoint debug-
ging of threads is of questionable value due to its intrusive-
ness, but clearly ptrace() is not the answer for threads.

The instrumentation mechanism for event tracing is similar
in concept to the work of Cargille and Miller(6] in that it
modifies any existing program for event tracing, although
the modification lakes place in memory rather than the
object tile and the method of instrumnentation is somewhat
different.

9. Conclusions

‘The TAM approach provides several advantages when
developing parallel sofiware tools. Some of those advan-
tages are as follows;

1. Reduced Tool Complexity

Parallel tools can be developed more quickly
when  the  complextties  of  machine
dependencies and the back-end application
momtonng tasks are hidden, The TAM hides
this complexity by providing a high-level
interface for such tools. Also, the TAM code is

shared by multiple front-end tols, thereby
reducing the total amount of code 0 be
maintained.

2. Daia Reduction

The services provided by the TAM include data
buffering and reduction. These services assist
the front-end tools in collecting and presenting
data from multiple processes.

3. Tool Performance

The TAM network is highly tuned to minimize
the inter-processor communication required for
application monitoring. The state information
maintained by the TAM reduces the number of
communications required between the
fronti-end tool and the TAM and the fast
spanning ‘re¢ broadcast algorithm optimizes
communications tetween the TAM processes.

4. Tool Portability and Retargetability

The high-level TAM interface eliminates most
machine dependencies from the front-end tools,
allowing them to be retargeted to new sysiems
more easily. Also, the TAM is a Unix-based
product, written in an object-oriented fashion
using C++. The use of Unix improves the
portability of the TAM itself, thereby making it
easier to retarget any of the front-end tools built
on op of the TAM. The TAM's modular, object
oriented design ensures that additional features
can be added to the TAM as needed to support
future tool requirements.

5. Tool Integration

Concentration of monitoring (acilitics that are
wraditionally tied to debuggers or perforrnance
monitors in a single monitor increases the
power and flexibility of both types of tools. For
example, a performance monitor can profile a
section of a program by running 10 a breakpoint,
tumning profiling on. running to another
breakpoint, and tuming profiling off and
flushing the results.

It is our intention that the public TAM interface be used
by multiple tools from different sources. Experience has
shown that academic and research institutions arc contin-
ually building new tools and enhancing old ones; TAM
technology is mtended to cnable and ease these cfforts.
Tool builders should be free 1o concentrate on managing
programming paradigms, parallclism, and user inter-
faces, and should not be burdened with re-mvenung
monutonng faciliues for each new tool,
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e Paragon System Overview
e Tools Application Monitor (TAM)
* Paragon Tools Overview
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Paragon System Architecture

e Up to 1000 nodes connected by high speed
message routing H/W

e Each node has 2 i860/XP CPUs (75 MFlops double
precision) and 16-64MB RAM

e NO Remote Memory Access (NORMA)
e Some nodes attached to 10 devices

e RPM - global clock and H/W performance counters
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Interconnection Architecture

e Nodes connected in 2-D mesh

* “Worm Hole” routing (vs. “store and forward”)

* 200 MB/s full duplex, 40 nsec latency per hop
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Paragon OS Architecture

e Mach 3 microkernel, emulation library, and single
OSF/1 server on every node.

¢ Notall services of OSF/1 server used on each node;
e.g., file services.

 Unused portions of server are paged out.

emulation emulatioﬂ emuiation| emulation|
library library library library
( server ' server | server server
/ N/
nkernel pikernel pkernel pkernel
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Distributed Unix

* Process management fully distributed across
OSF/1 servers

e process IDs

* signals
e wait()
e ptrace()!

* Parallel File System - files striped across /O nodes
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Multicomputer Extensions

e Multicomputer programming model
» Typed message passing a la NX/2
e Facilities for loading and controlling parallel applications

« Node allocation and partitioning

e “Service partition” load balancing and process
migration provides scalable “front end”

* Gang scheduling in the “compute partition”
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Debugging a Parallel Program: Capturing Inter-Processor
Communication in an iWarp Torus
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Abstract

To understand or improve the execution behavior of a program on a parallel system, it is often
necessary (o consider the interaction between the processors in the system. Since communication is
impontant for all parallel programs, obtaining information about the inter-process communication of
the program is an important aspect of understanding program execution. If the user's concern is the
performance of the parallel program, then the user must be able to capture the dynamic aspects of inter-
processor communication. Unfortunately, timing information about inter-processor communication
is often not easy to obtain. Building a special-purpose hardware performance monitor is too costly
in most scenarios, and the use of VLSI to integrate communication and computation on a single
component often provides only a few externally visible measurement points. A software monitor
on the other hand is often too slow to allow execution of the monitored program without serious
perturbation,

Although the integration of communication and computation engines on a single component
provides some challenges to monitoring, il also opens the opportunity to program the processors in
a parallcl system so that they can monitor communication trafic. That is, during monitoring some
processors execute the user program (to be monitored) while other processors execute a special monitor
program (which captures information on the inter-processor communication). With adequate software
tools, this information then can be analyzed 1o present a picture of the communication between the user
processes. This paper discusses the benefits and difficulties of an implementation based on this idea
for the iWarp system. We conclude that a programmable processor that integrates communication and
computation is also suited to serve as a hardware monitor at a fraction of the cost of a special-purpose
design.

1 Introduction

Debupging a program on a parallel system is difficult when the objective is to get a correct program.
Gewmpg a program o run fast (while maintaining its correctness) is even harder and requires a wide range
ol mtomation about the execution behavior of the program. A performance debugger must provide
information on how computation cycles, memory bandwidth, communication bandwidth, or other system

Supported in pan by the Detense Advanced Research Projects Agency. Information Science and Technology Ottice, uader the
ttle "Rescarch on Parallel Computing,” ARPA Order No. 7330, Work turnished in connection with this research is provided
under prme contract MIDAY72 90 C 0035 issued by DARPA/CMO 1o Camegie Mellon Univeruty.

I'he views and conclusions contamed in this document are those of the authors and should not be interpreted as represennng the
otfical policies, either expressed or implied, of the 1).§. Government.



r=sources are spent by the program. With this knowledge the programmer knows where to concentrate
her efforts in tuning the program to remove bottlenecks.

Obtaining, analyzing, and presenting performance information fo. a sequential system is sometimes
difficult and still an active area of revearch[SK90]. For parallel systems, the situation is even worse; in
addition to the information that must be obtained for each processor, we must understand the interaction
between the processors in the paralle] system.

We have been exploring issues in performance debugging while working on the iWarp system, a
private-memory, MIMD, paraliel computer(BCC*88]. A single-node gdb-like debugger exists to debug
the code on individual nodes of the iWarp, but this provides only a pigeon-hole view of the execution
of a program. The single-node debugger treats inter-processor communication by a node the same way
input/output is treated by a uniprocessor debugger: after a message has been sent, it is invisible and
cannot be tracked until it is received by another node (when the single-node debugger for that node is
able to inspect the message). To understand or improve the execution behavior of a program on a parallel
system, it is often necessary to monitor this inter-processor communication. If we can observe how
messages travel through the parallel system, we can combine this information with the information about
the execution on each node to provide the user with a global picture of system performance. Consider
the example where processor A must receive messages from both processors B and C before it can begin
some computation. Suppose the message from C will amive long after the message from B has arrived. If
the compiled program on processor A has committed to receive C's message first, processor A will block,
waiting 1o receive the message from C, and processor B will block, waiting for its message to be received.
A single-node debugger is of little help in identifying such situations, since it cannot capture the reason for
the delay in processor B by solely inspecting this processor’s state. Furthermore, a single-node debugger
may perturb the execution of the inspected process. Some pertinent communication issues to measure are
frequency of messages, the number of words transmitted, and specific pattems in the messages.

There exist two approaches to obtaining such communication information: using a hardware monitor
or software instrumentation, There is a well-known cost versus accuracy tradeoff between these two
options. Using additional hardware 10 monitor performance is more accurate, because the monitoring
does not sical any resources from the monitored program. However, using additional hardware takes much
more effort. The monitoring hardware must bc dcsigned and built, and since it is special purpose, it cannot
be used when the programmer is not interested in monitoring, For this reason, the buyers of systems are
isually unwilling to pay for additional monitoring hardware (and the component designers are unwiliing
to sacafice significant area or design cffort to provide it). Furthermore, as advances in VLSI allow
a tighter coupling of communication and computation, the monitoring of inter-process communication
becomes more and more difficult. On an iWarp system, a hardware monitor that attempts to observe
the communication between two adjacent nodes must to understand an inter-processor bus protocol that
¢ ludes resource allocation, routing, and flow-control. Once two or more processor nodes are integrated
onto the same component, obtaining access to any cornmunication between two such nodes will be next
o impossible.

Software instrumentation costs less, because only the software is changed. The program or the
svstem software can be instrumented to gather information. This option is more flexible than an approach
hased on a hardware monitor, but the additional software steals cycles and hardware resources from the
original progrun, so the execution of the monitored program is perturbed. As communication overhecad
in parallel systems has decreased over the years enabling finer-grained communication, this software
monitoring intrusion becomes less acceptable. For example, an iWarp node can send and receive four
12-bit words every 100 ns (the time it takes o perform either one single-precision floating point . liton or



multiplication or two integer operations), so “‘bracketing” each communication operation with monitoring
code may slow down a program on the iWarp by up to a factor of 40.

However, a parallel system like iWarp offers a hybrid solution. Each iWarp processor contains a
commputation and communication engine, which are tightly coupled, providing the computation engine
with a detailed view of the communication system. At the same time, the computation engine can be
programmed like a general-purpose processor. providing the opportunity to use such a processor as a
monitor processor. The absence of a global memory makes all communication explicit at the hardware
level, so if we monitor the communication between processors, we can obtain a complete picture of the
communication in the system.

For the iWarp amay, we have created a hybrid performance monitoring system that has many of the
benefits of hardware monitoring while incurring costs close to those associated with software instrumen-
tation. Section 2 gives some background about the monitored parallel system. In Section 3 we describe
this idea for performance monitoring on iWarp in detail. In Section 4 we evaluate the current implemen-
tation of this performance monitoring system. Section 5 describes tools to display the inter-processor
information captured by the monitor and gives an example of its use.

2 Background

In this section, we describe some key aspects of the parallel system.

2.1 Communication

We distinguish between two communication styles: memory communication and systoliccommunication{BCC*90].
In memory communication, all communication between two processors is directed through the local mem-

ory of the sender and recciver processors. The sender assembles a message in memory and then passes

it to the communication system, which transfers the message to the memory of the receiver processor.
Message passing is a well-known paradigm that is based on memory communication.

For systolic communication, the processor is directly connected to the communication subsystem. On
the sender processor, the words of a message are passed to the communication system as they are generated
without any buffering in memory. Similarly, the receiving processor consumes the words directly from
thc communication system without first buffering them in memory.

With memory communication, the unit of transfer from the sender pmcessor to the receiver is a block
of data; cach block contains a number of words. Memory communication is easier to monitor than
systolic communication. If a sender program uses memory communication, the data of a message are first
assembled in inemory, then the communication system is invoked to transfer the data. The entry pointinto
the conumunication system is well-defined, and the communication system can record infortnation li.:c
the starting time of the message transfer. the message size, and (upon completion) the transfer band width.
Any overhead associated with such bookkeeping operation is paid for only once per message. However,
recording information at the stant and end of a message transfcr is not sufficient if the programmer necds
information about the transfer of the individual words of a message. c.g.. if data are transmitted in bursts.

With systohic communication, the data of a message are produced (or consumed) on the {ly. That is,
data are sent as they are produced by a computation unit (¢.g., the floating point adder). Since the data are
generated by processor on the (ly, the processor cannot be used to record any information like the time the



item was sent. If we wanted to use the processor to capture such information, then the processor would
have to stop generating data. So if we want 10 obtain timing information about systolic communication
or if we need information for memory communication at 4 finer grain than complete messages, we cannot
use the sending or receiving processor t0 monitor communication without serious perturbation of the
program execution.

2.2 The iWarp system

The design of the iWarp component has been described carlie{BCC*88, BCC*90]; here we summarize
only those aspects that are essential for the understanding of this paper.

The iWarp processor supports multiple logical channels between adjacent nodes, so multiple high
speed connections can be set up using the same physical busses. On each node there is a finite number of
cueues, which buffer the data sent over the logical channels. A logical channel is assigned a queue on the
source node and another queue on the destination node. These logical channels can be chained together
to form a pathway by using the destination queue of one logical cl - .inel as the source queue of another
logical channel. The communication hardware takes care of forwarding data through the intermediate
nodes of chained logical channels, so the pathways provide direct, hign-speed connections between nodes
that are not physically adjacent. Pathways can be used to reserve resources for memory communication
(message passing), or to set up connections for systolic communication.

An iWarp system is built out of iWarp processors and is arranged in an 2 x m torus. Each iWarp
system is connected to a workstation that server as its front end, c.g., the output of a print £ statement
executing on a node appears on the file system of the front end. To date (August 1992), a number of
systems have been built ranging in size from 4 to 256 nodes.

2.3 User model

The user scldom programs the iWarp sysiem at the tevel of logical channels. Instead, she either uses a
parallel program generator or describes the computation as a set of processes with connections Letween
these processes. A parallel program generator like Assign [O'H91] or Apply [HWW89, BG91] takes a
high-level description of a computation (that is. without any explicit staiements for communication or
data placement) and translates that description into a program for each node of the iWarp system with
connections between nodes as appropriate. It the programmer describes the computation as a set of
processes, a 1ol maps this sct of processes onto the target i Warp torus, provided the number of processes
15 less than or equal the number of nodes in the target iWarp torus. After the processes are mapped onto
the iWarp torus (either by the parallel program generator or the tool mentioned above), another tool scts
up logical channels to implement a connection between any two nodes if the programs mapped onto these
nodes are connected. The number of connections that can pass through a node is limited by the number
of logical channels, which is taken into account when mapping the processes onto nodes. Figure | shows
the mapping of a set of processes and connections onto an iWarp torus.

3 Monitoring inter-process communication

To get a handle on inter-process communication in a parallel system, it is nezessary to stant with the
mer-processor communication. For example, if we want 10 observe the flow of data from Node 2 1o
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Figure 1: An example of mapping processes onto the iWarp array and mapping connections onto
logical channels.

Node 3 in Figure 1, we must consider Node 4 as well, since the data travel through this node. Since
the current runtime system allows only a single user process per node (and this is not likely to change
in the future), information about the flow of data between processors can be directly mapped onto the
inter-process communication of the user program.

If we know how the length of a logical channel queu=changes over time, we have an idea of the run time
communication pattems. For instance, while a queue is empty, we know either there is no communication
going on over this logical channel or the receiving node is waiting for data from the sending node. While
the queue is fuli, the sending node is sending faster than the receiving node is receiving. By waiching
how queues fill and empty during the course of a program’s execution, the programmer can visualize the
communication flow of her program and identify bottlenecks or dependences between messages. The
actual number of words in a queue is less important at this level of analysis than the state (full, empty,
partially full) of the queue. If the queue is full, the sender cannot proceed. If the queue is empty, the
receiver cannot proceed; otherwise both can go on.

To get an a>curate picture from monitoring inter-process communication we must try to maximize the
accuracy of the gathered data and minimize the perturbation caused by monitoring. Section 1 explained
how pure hardware or pure software monitoring solutions are not practical for the iWarp system. A pure
hardware solution could not gather sufficiently detailed data about the communication, and instrumenting
all communication functions could add too much perturbation for programs with fine-grained systolic
communication requirements. However. we notice that not all nodes of an iWarp array are used all the
time, and these unused nodes have the same capabilitics as the nodes used to execute the user program,
s0 we caa usc these nodes to gather information about the execution of the user program. That is, some
nodes are program nodes (executing the user program), and others are monitor nodes, capturing the
inter-processor communication between program nodes. Since the monitoring programs are running on a
different sct of nodes, they are not stealing cycles from the user program. one of the advantages of using
addiional hardware to monitor performance. Since the nodes are programmable, no extra hardware needs
to be designed, and when monitonng is not desired, the monitoring nodes can run user programs.

This hybnd approach of using some of the nodes in the parallel system for user program cxecution
and the rest for monitoring is integrated inio the standard communication tool chain [Hin91]. Whenever
the user selects the monitoring option, the tool chain spreads out the connection definitions and node
mappings, so monitoring nodes can be in “rted between cach adjacent pair of uscr program nodes. The
pathways between any two nodes are lengthened to pass through the monitoring nodes. See Figure 2
for two examples of this transformation. The me itoring nodes (shown dashed) are loaded with the
momonng program.
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Figure 2: Network layout of original program is on the left. Two different network layouts of the
munitored program are to the right. The current monitoring tool chain uses the center laye .

During the execution of the user program, the monitoring nodes gather data about the size of the
logical channel qucues of the pathways that pass through them. At the end of exe-ution, this information
isdownloaded to a general-purpose workstation that is connected to the iWarp torus. There the programmer
can use other tools 10 process, analyze and view the queue length data.

3.1 Gathering queue state data

To gather accurate queue length data while adding little perturbation, the monitoring program takes
advantage of several features of the i Warp architecture. Each i Warp node consists of a computation agent
and a communication agent that coexist on the same chip. These agonts can execute asynchronously, or
the computation agent can control the communication agent. The monitoring program runs the two agents
asynchronously, so data passing on pathways through the monitoring node can continue without software
interference. Since the computation and communication agents cxist on the same chip, the computation
agent can sample the state of the communication agent with little overhead. To determine the length of
all network queues, the computation agent must read 4 control space registers, which takes 4 cycles.

The monitoring program also takes advantage of the hardware support for configuring multiple logical
channels between nodes. The program's connections are mapped onto logical channels, and different
connections use different logical channels with distinct physical queues, so the monitor program can
casily dilfcrentiate between differen: program connections. if all the communication traffic was collected
in a single queue, this division would be diffici:.t to discern without additional protocol information and
bookkeeping.

The monitoring program stores timestamps with the qucue length data, so the programmer can sce
how network queue length changes overtime. It is also interesting to compare how queue lengths change
over time between different nodes. To make this comparison accurately, there must be some sensc of
giobal system ime. Each iWarp processor contains two clock timers (with a resolution of 8 clocks, ic.
400 ns on a 20 MH7 system), and one of these timers is reserved for the user prugram. Qurimplementation
sets the user timers of all nades 10 a common global time in two steps using a synchronization package
developed locally[FGOS92].



3.2 Processing queue state data

The monitoring program stores the gathered data in a buffer. At the end of execution or when the buffer
fills up, the monitoring program sends this data to the host processor. If the data is transferred after the
end of the monitored program'’s execution, the time and bandwidth spent sending the data is not critical.
However, if the buffered data must be sent during execution of the user program, this transfer steals
bandwidth from the monitored program, and the queue length cannot be monitored by this node while it
is sending the data. This problem could be avoided by hslting execution of all nodes in the iWarp torus.
However, since the monitoring nodes pre-process the samples on the fly (see below), there has been no
need so far to download the monitoring data before the end of the user program's execution.

Forms of data compression can be used to reduce the amount of sampled data stored on the monitoring
node. We have observed that network queues are often in a steady state, so the queue length from the last
sample is often the same as the queue length of the current sample. Data from these two samples can be
merged into one entry. This sort of data compression should be performed some time before the data is
analyzed by the programmer to merge large blocks of redundant data. Other standard data compression
techniques can also be used to reduce the amount of space needed to store individual entries. These data
compression techniques can be performed during the sampling loop to reduce the amount of space needed
in the monitoring buffers and so increase the amount of time before the monitor data buffer is filled.
However, adding this additional computation to the critical sampling loop may reduce the queuc length
sampling rate.

To determine the cost of the data compression, we created two versions of the time critical sampling
loop in assembly code. The first version did no data compression and stored all samples in the monitoring
buffer. The second version compared the current sample with the last stored sample, and only stored the
curren: sample if it was different. On a set of example programs, the first version on average took 31
cycles per iteration. The second version on average took 30 cycles per iteration. It may seem surprising
that the loop speeds are so similar, even though the first loop is simpler and performs fewer conditionals.
However. often the queue length does not change between between samples, so the second loop performs
fewer stores, and the comparisons are slightly faster than the stores. We decided 10 use the version of the
loop that performed data compression in the loop, becausc the times of the two loops were very close and
the sccond loop consumes far less buffer space.

4 Evaluation of the current implementation

We implemented o prototype version of the monitoring system described in the previous section. This
section discusses how close we came to our goals of minimizing perturbation of the monitored program
and maximizing accuracy of the yathered network data.

4.1 Monitored program perturbation

From 1iming several monitored programs it appears that the monitoring code does not significantly affect
the execution time of the monitored program. To get a better idea of how monitoring affects the execution
of the monitored program, we looked at individual factors that might skew the execution,

Spreading networks over monitoring nodes can cause two types of skew. Finst, each network must go
aver twice as many links, so the time to transmit a word doubles. The other pessible source of skew is the



addition of network queues. Each monitoring node adds one queue to the network capable of buffering 8
additional words. If a sender and receiver are just barely blocking, the additional buffering may keep the
sending node from blocking.

—— Distance: 1 cell

—— Distance: 7 cells

Time (Cycles)

10 110 210 310 410
Message size (words)

Figure 3: Graph of message size versus message sending time when the sender is faster than the
recciver.

To determine the effect of longer networks, we ran and timed several versions of a simple send and
receive program that varied the distance between the sending node and the receiving node. For one sct
of these programs, the sender sent messages faster than the receiver could receive them. For another set
of programs, the sender and receiver operated at the same rate. Sce Figures 3 and 4 for graphs ol the
results. From these graphs you can see when the sender was faster than the receiver, the distance between
the sending and receiving nodes made more difference. The additional buffer space on the intermediate
nodes could store more data so the sender that was further away finished faster, but the slope of the graph
is the same regardless of the node distance. Once the queues had initially tilled, the sender sent at the
same rate regardless of the distance between the sender and the receiver. When the sender and receiver
were working at the same speed, the distance between the nodes made a much smaller difference. When
the sender and receiver are communicating at the same speed, the messages is not really taking advantage
of the buffers added by the longer network. In this case the only change dependent on the network length
would be additional time it takes to travel over twice as many links.

The node programs address other nodes to specily the destination when sending data over networks.
Nades are addressed by the row und column numbers of their location in the processor array. After the
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Figure 4: Roundtrip message time when the sender and receiver are operating at the same speed.

user's program has been spread out to insert monitoring nodes, the addresses of destination nodes in the
node programs must be adjusied. This address transformation is performed at run time by multiplying the
row and column numbers of the destination by 2 (or equivalently shifting these numbers 1 bit to the left),
which adds a small overhead to the setup of a connection.

4.2 Sample data accuracy

The monitor program reads the current network queue sizes from 4 control space registers. ‘The length of
cach queuc is stored in four bits, and these bits are striped over the 4 control space registers. Since the
queuc lengths can change with each cycle, itis the possible for a queue length to change while the contrul
space registers are being sampled. The queue lengths are constrained to change at most by one with cach
clock tick for single word transfers (queue lengths can change by two per each clock tick for double word
transters), so the percentage of errors is lower than it would be if the queue lengths could change to any
viluc. We have also observed that the queue lengths tend not to change continually with each clock tick,
so the odds of sampling during a queue length trunsition are low.

Over the period the program is reading the control space registers, the length of a queue may vary by
} for single word transfers. Congider the four number transitions that are allowed on the 0 10 8 counter,



cg 8—7—=6—50r4 —4 — 5 — 4, There are 203 valid four number transitions over the range
of 0 to 8. The monitor program reads the queue length registers one bit at a time while the actual queue
length goes through one of these four number transitions. The queue size read is inaccurate if it was not
one of the queue length values during the 4 cycles it took to read the queue length regiesters.

The monitor program reads the queue lengths starting with the most significant bit, so the worst
inaccuracies occur when the top bit changes in transitions such ag 8§ — 7 — ¢ — «0r7 — 8 — » — «,
Downward transitions from 8 will result in numbers greater than 8. The monitor program truncates such
numbers to 8. In this case the queue size is accurate, because 8 one of the queue length values during
the time it took to read the queue length register. However, transitions that start from 7 to 8 are bad
because the two most significant bits read will be 0 and the resulting value read will be at most 3, at least
4 off from either 8 or 7. The next worst inaccuracies occur in transitionsuch as ¢« — 4 — 3 — s or
+ — 3 — 4 — «, because the the middle two bits will be inaccurately set to 1 or to 0, For transitions of
the form « — 4 — 3 — « the resulting number read will be 6 or 7 at least two off. For transitions of the
form »+ — 3 — 4 — « the resulting number will be 0 or 1 at least 2 numbers off.

Without more accurate information about the distribution of queue length changes, we cannot deter-
mine the sampling error introduced by misreading queue lengths, ! However, as stuted earlier, for an
understanding of inter-processor communication, the state of the queue is more important than the actual
number of words in the queue, so the current sarnpling technique is adequate. Designers of future system
may want to chose a different design for the status regisicrs that allows an atomic read of the queue length
regislers.

5 Using queue length data

After the monitored program has been executed, the programmer is left with large files of numbers. To get
any useful information from this data, the programmer nceds tools to effectively manipulate and display
the queuc size data. Much work has been done on displaying monitored data (e.g. Tapestry [Mal90)],
BEE [BruY0|, and others). We have created two relatively simple programs to aid in the post-mornem
understanding of the collected data.

The first program xmon is an X window program that examines the data tiles and displays the user’s
array and input logical channel queues. [t steps through the execution of the monitored program and
displays the queue lengths at cach point in the original execution. Figure § shows a screen image of xmon
in action. In that figure, xmon is working on a program that ran ona 4 « 4 armay of nodes. There are two
distribution networks snuking through the array, and there are networks between cach par of physically
adjacent nodes. Figure 6 shows the logical arrangement of the networks used in that array program. The
ucuces 1in the xmon display are shaded to reflect their length. The display reflects the state of the queues
at the point in the execution of the original program shown by the time bar at the bottom of the screen.
Uhe time bar s labeled from () to the end of the oniginal execution and is filled to the currently displayed
evecunion time (Figure S shows the state of queues after the program has executed for 74,080 cycles). The
user can step to the next or previous state of the queues. The user can also run in daimate mode, where
vnon automatically displays each consecutive state,

By looking at the changes in queue lengrh, the programmer can visualize the flow of data m her

“The reason for this stnped arrangement ot the quene length regisiers wan that i simplified the dexign of the commun stion
agent (whieh contaia @ number of speed cntical paths). I the original processar design, the queae lengih reginien weee sl
testing registers and so dit not need (o be read quickly.,



program. For example, she can see periods where one set of networks is more active than another set or
where a set of queues is consistently full. While xmon is helpful in visualizing the global data flow, it
is not so good for presenting the fine details of the communication pattems. xmon only shows changes
in queue length, so when running in animate mode, the time bar does not move forward smoothly. If the
queue lengths did not change for a long time, the time bar will jump ahead to the time of the next queue
length change. If there are short alternations of communication and computation, the shorn jumps in the
time bar are easy to miss.

T
T
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Figure S: This is a picture of xmon displuying the data obtained from mnning the Al matrix
muluply program.

Bv graphing queuce length versus monitored execution time for each node, the programmer can enlarge
interesting arcas to see the fine detals of the communication pattern, We created a tool called mon-graph
that transtors the monitored data into load and data files for gnuplot. Ry adjusting the X range in the
load hiles, the programmer can create graphy that zoom in on the interesting subsequences. Of course this
creates many graphs, bt by using a postscript previewer like ghostseript, the programmer can quickly

¢ umine many diflerent queue length graphs.



Figure 6: A picture of the logical connections used in the in the AL matrix multiply program.

5.1 FExamples

Here we show an example of using xmon and mon-graph to evaluate the monitored data from two matrix
multiply programs. One was an AL program which uses memory communication (see | Tse89] tor details).
The other program uses systolic communication and was generated by another mapping tool [Rib%)],
Hoth programs runon a4 - 4 amay of iWarp nodes (using a preliminary version of the runtime system
and version 2.3 of the ¢ compiler). Figure 5 shows the queue states of the Al. program displayed by
vmon. By wnmng xmon for cach program, we can distinguish the main phases of the programs: loading,
computing, anid closing down.

From wxmon the communication pattems of the two programs looked similar. In both programs the
lengths o1 the active queues quickly changed between cpty and partially tull. By using mon-graph, we
were able to zoom in on the computation phases ot the two programs. Figures 7 and 8 show the resuliing
ptaphs  In the Al. program queucs regularly aliemated between being empty and oscillating between
bemng cmpty and having one entry. From knowmng the block orented nature of AL, this s expected. The
properan aliemates between exchanging blocks of data and computing on those blocks. While computing,
the program exchanges no data, so the queues stay empty. In the systolic program, communication appeirs
to be ierspersed with the computation. ‘The first part of the graph shows the queue hay length one most
ot the tme, dioppmg to zero at regular intervals. The second parnt shows u quene length of se1o most of
the ime, jumping to one ol regular intervals. Since the systolic program sends and receives datain one
word mtervals as it s compunng, tus pastemas reasonable  In the flise halt, the program s consunmimy,
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Figure 7: A graph of the queue lengths on node (1,1) over time during the execution of the AL
matrix multiply program.

data slower than it is being sent. 3o the data stays on the queuc. In the second half, the program is trying
to consume data faster than it is being sent, so data is quickly read out of the input queue.

£.2 The next step

In the previousexample, we gathered data on inter-processor communication and saw that there no message
was blocked in the communication system. If we had discovered a blockage, the display precgram would
have identified the node{s) that were involved in the communication, but if the nodcs exchange multiple
messages, the user would have to identify which message was affected. Without data from the user
nudes, there is no way to relate the queue sizes and times directly with the user node activity. For some
programs, the information from the monitoring nodes alone is sufficient to understand the communication
pattems, but for complicated or unfamiliar programs, relating the queue sizes back to instructions in the
node program would be very useful. Specifically, we would like 1o link queue lengths with the exccution
of user instructions and with the user node state (either active or spinring). One of the challenges that
such a 100l must overcome 18 that any more detailed recording of information may perturb the program
cxecubon significantly.

6 C(Conclusions

Our expernmental monitor shows that a processor that provides a close coupling between communication
svstem and the computation units can be programmed 0 serve as a performance monitor. - Although
this wdea s simple, 10s qute useful. Usang idle nodes o capture mfonnation about the inter processon
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Figure 8: A graph of the queue lengths on node (1.1) over time during the execution of the systolic
matrix multiply program.

communication does aot require any additional hardware, and wher. the programmer is not interested in
monitoring, all resources in the system are available to execute user programs. The information gathered
by such 2 monitor can be used to identify ¢/ mmunicution bottlenccks, and building a visualization system
is not difficult.

Future designery of integrated components that are to serve as building blocks for parallel systems
may want to consider this usage of a processor during the design phase. Although we did not encounter
any insurmountable problem in implementing the monitor, there are several rough edges (like the need to
rcad the queuc length registers sequentially).

The close coupling between the communication agent and the computation agent of the i Warp com-
ponent is crucial for the successful operation of the monitoring program. It is not clear if other syzstems
(where communication and computation are not integrated as closcly as in iWarp) can build a similar tool
as casilv. However, the advantager of tightly integrated communication and computation are recognized
by uther parallel systems, so future sysiems may provide the foundation for similar hybrid monitoring.
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Introduction

Performance debugging hard for sirgle processor and
even harder for multiprocessor

Need to gather execution information for complete
system view

C:
long comp() recelve(A) send(B)
send(B) receive(C)

Message t:ming important to understand performance
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Target machine

iWarp, an array of private memory cells connected in a
2 D torus by 40 Mbyte/sec busses
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64 cell system 1.2 GFLOPS (s. p

ﬁﬁ

—@ p to 1024 cells (20 GFLOPS)
Memory/ce!l .5MB -- 16.5 MB




iWarp cell

Each cell is a tightly integrated pair of communication
and computation agents. The agents can operate
synchronously or asynchronously.

Communication Agent E

Ui
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Logical channels

Hardware support for a finite number of logical
channels. Logical channels enable multiple high speed
connections over the same physical channel.

Each connection uses logical channel buffers at the
source and destination cells. Logical channels can be
chained together to form pathways, direct connections
between distant “neighbors”.
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f A Logical Channel Connects Two Neighbor Cells\

Cell 0 Cell 1

Communication Agent Communication Agent
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Program communication

Cell programs communicate by sending messages over
pathways.

Programming tools map processes to processors and
communication networks to pathways.
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Monitoring implementation extremes

e Monitoring hardware

- Very accurate
- Steals no resources from monitored program

- Expensive: requires new, special purpose
hardware

e Profiling software

- Inexpensive: requires no new hardware
- Less accurate

egle . s .
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Hybrid monitoring approach

Communication connections through intermediate
cells have logical channels assigned on those cells.

—

Intermediate cell can read status registers to determine
length of logical channel.

Amount of data in the logical channel reflects the
communication pattern.

e empty
e not empty / not full

e full
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Implementation outline

e Compile user program with monitoring flag
e Gather data on separate cells during execution
e Dump data to host system after execution

e Post-mortem analysis of data on host system

"\
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Communication networks
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Monitoring cell

vy

———————— =il

while (executing) _
log_channel lengths()
dump_ log ()

M



Analyzing profile data

Two simple programs to post-mortem analyze the
monitored data.

xmon - replays the logical channel lengths

mon-graph - statically graphs queue lengths on a
single cell

‘E:)elfle 13 School of Computer Science
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Mon-graph

Queue use
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Hybrid monitoring benefits

e No specialized hardware

¢ Monitoring programs use separate resources from
user program

¢ The user makes no changes to the code

o .
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Evaluation

Possible sources of skew

¢ Doubling communication routes
e Changing destination cell address

e Accurately reading logical channel length registers

\
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—— Distance: 1 cell

—— Distance: 7 cells
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Summary

Tightly integrated communication and computation
enables effective communication monitoring

Hybrid approach provides reasonable cost / accuracy
tradeoff

Another usage model to consider in the design of such
multiprocessor systems.
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The Application of Code Instrumentation Technology
in the Los Alamos Debugger

Fast Conditional Software Watchpoints,
Integrated Performance and Coverage Analysis

Jeffrey S. Brown, Richaré Klautann
Los Alamos National Laboratory

Jjxyb@lanl.gov, rmk@Ilanl.gov
Introduction

This paper will discuss applications of code instrumentation technology in the Los Alamos
Debugger (LDB). By code instrumentation, we mean debugger modifications of the traced
process to monitor execution in order to acquire information about the process while it is running.
The objective is to implem=nt debugger functionality in a way that enhances usability while
remaining non-intrusive. Tlds paper will discuss the application of code instrumentation in the
implementation of fast conditional software watchpoints, and integrated performance and
coverage analysis. We conclude by suggesting future application areas.

Watchpoints

Watchpoint is a debugger feature that causes a traced process to stop when a data ciement (or
range) is modified possibly subject to a user-specified condition on the modified data. In the
absence of hardware support (which is the case on the Cray YMP) the traditional implementation
is to stop the traced process frequently to check the condition in the debugger while the process
remans stopped. While this approach will centainly work, impact on performance of the traced
process is such that the user runs out of patiencc long before the watchpoint condition is satisfied.
With hardware support, the traced process stops only when the data element (or range) is written
to. This is much more efficient than the frequent stopping of the traced process, but doesn’t help
when the user specifies a conditional watchpoint. The traced data clement (or range) can
poteniially be written to millions of times before the condition of interest is satisfied again
causing a severe impact on performance of the traced process.

Fast conditional softweure watchpoints are implemented in [.DB by modifying the traced process
to check the watch condition on-the-fly. This implementation allows the user to specify i
complex condition on the data element being walched while minimizing the impact on
performance of the traced process. Detection of the watch condition requires that the user run the
code twice. The first run checks the condition at every subroutine entry and exit (warch all).
Once the offending subroutine is located, the second run  “ecks for the condition at every
line/label (watch in). The granularity of the second pass is a4 function of compiler optimization
level. T'he two-pass approach is necessary due to the time and code space required to inst:aniemt
the entire program at the line/label level.  Entry/exit level code instrumentation is fast and
requires hittle code space in the traced process to implement.



User Interface

Watch All

Here's an example cf the sort of problem watchpoints are good at solving:

COMMON X(2,50), A(100), Y(2,50), B(100)

READ(2) A
100 CONTINUE
CALL 88WR:(100,X,2,Y,3)

C = A(1)

Suppose you're debugging this code and discover that, at the point of the assignment to C, A(1)
has been trashed. You rerun the code from the beginning, stopping after the READ, and verify
that the value of A(1) is correct at that time. So somewhere between the read and the assignment,
A(l) is being corrupted.

Note that SSWAP must be the source of the data corruption. SSWAP is a Cray LIBSCI routine
that swaps the contents of two vectors. In this case it appears that the programmer wished to
swap the first row of X with the first row of Y, however, the first argument to SSWAP should be
the number of elements to swap, not the size of the array, so we've inadvertently swapped the odd
elements of A with the odd elements of B, as well swapping portions of X and Y.

In this context the problem clearly needs no tools to be solved. In practice these lines of Fortran
are usually in separate routines, anc the ellipsis are replace by thousands of lines of code. This is
not a trivial bug to detect. Most programmers will scatter print statements randomly about their
code and home in on the bug after a day or two.

Here's how the experienced LDB user tackles this problem: (We'll use "LDB>" as the LDB
prompt; in real life the prompt would be the name of the currently active subroutine in the code
being debugged.)

LDB> run to §100
LDB> watch all forxr change(A(l))
L.DB> run

First we run to a point just after the read of A, where we know the contents of the array are
correct. Next we tell LDB to instrument our code by patching in instructions at each subroutine
entry and exit to detect a change in A(1). Lastly we continue executton of the code and wait for a
diagnostic. In this case LDB will tell us that a change in A(1) was detected on the exit from
SSWAP(). QED.

The all clause 15 a new variant to LDB's watch command: it replaces watch from, which
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attempted to patch all breakpointable lines and labels in a potentially huge call tree. The new
watch all is fast, but can only resolve to the subroutine level. In this case that was all we needed;
checking the parameters to SSWAP revealed the problem. In other cases we may need to rerun
the problem with a watchpoint set in the routine indicated by watch all

Watch In

Here's a harder bug. Say you've just integrated code from your development team into a rather
large application, and now a part of the code that nobody touched is broken. You put the
application under LDB, run it, and get the following:

user process received signal 7 (Error exit)
user process stopped at program counter: 366pb = REDUCE{) + 4pb

Error exits are caused by executing zero instructions, which we verify by listing the CAL
surrounding the error:

LDB> 4i reg(pc)-1 for 7

00000365pb: 025 2 02 BO2 A2
00000365pc: 025 6 01 801 A6
00000365pda: 024 0 01 A0 BO1
00000366pa: 000 000 ERR
00000366pb: 000 000 ERR
00000366pc: 000 000 ERR
00000366pd: 000 000 ERR

This looks like a classic case of code being overwritten by data. To solve this, we'll set a
watchpoint to stop as soon as we detect that this code has been clobbered:

LDB> watch all for mem(366b) .eq. 0
LDB> rexrun

From this we get the following diagnostic:

watchpuint condition met in subroutine: BURN
(detected at entry to XLATE)

In this case BURN is a very large subroutine and XLLATE is called somewhere in the middle of it
- the large granulanty of the watch all command still leaves us with a difficult problem.
Fortunately watch can hone the problem down further, given that we know the routine and
approximate location. Let's try the following:

LDB> watch ino BURN from 755L to B34L
LDB> rerun



The above watch command requires some explanation. The in BURN clause tells LDB to
instrument routine BURN only, and to instrument all breakpointable locations -- lines and labels.
This process can be slow if the routine is large, which BURN is, so we've specified a code range
to instrument witi the from and to clauses.

The to clause is simply the line number of the call to XLATE, in this case line 834. We know
from the watch all result that we needn't instrument past that point. A missing to clause would
cause LDB to instrument through the end of BURN.

The from clause was obtained by looking for the last subroutine call within BURN prior to the
call to XLATE. Why the previous subroutine call? A negative inference available to us from
having run watch in is that the test condition (code zeroed) was not true for ar routine called
pric” to executing XLATE. Since the last previous routine was called at iine 755, that's where
we'll start the search. A missing from clause would cause LDB to instrument from the beginning
of BURN.

Perhaps the most important point to notice in the above watch command is the specified
condition, or rather the lack of it. If no condition is specified, LDB will reuse the previous
condition. (And if there is no previous condition, LDB will generate a trivially true condition.)

The result of the second watch narrows the problem down to an assignment into a pointered array.
Although the array references are all in bounds, the pointer itself is seen to have the octal value
366b; evidently the pointer has been corrupted. Since the pointer points into code space, any
assignment to the pointee will overwrite code.

Implementation

Conditional watchpoints are implemented in LDB by patching the traced process to check for tise
watch condition on-the-fly while the process continues running. This is accomplished in two
stages. code generation and process instrumentation.

Code Generation

L.LDB contains its own mini-compiler, capable of generating code for most Fortran conditional
expressions. The compiler supports the standard relational operators, and uses a short-circuit
technique to evaluate boolean combinations of relational clauses. Arithmetic expressions are
hmited to simple infix operators, bit manipulation intrinsics, an indirection function, and a
register access intrinsic. Integer and single precision real are the only duta types supported.
lamited suppert for C-language syntax is available, including C-style array references, bt
operators, and pointer dereterencing, however non-word data types such as characters and
structures are not supported.

The compiler is simple, sitting on top of the LALR (YACC generated) parser and allocating
address and scalar registers in dual stacks. Optimization is done via repeated passes through a
peep-hole optimizer. and by recognizing indirect addressing situations during code generation.
Machine code laced with relocation information 1s generated at the time the watch command is



processed; executable text is relocated and patched into the target executable as part of run
command processing. No use is made of CRI compilers, assemblers, or loaders.

Process Instrumentation

On-the-fly checking of the watch condition involvss re-routing program execution to check the
condition at regular points in the program. In our initial implementation, we attempted to
instrument at the line/label level for a subroutine or subtree as specified by the user. The subtree
could be as large as the entire program if the user called for a subtree with the main program as
the root. While this technique found the watch condition in one pass and worked fine for small
programs, the time required to do the instrumentation and code space required in the traced
process for large programs rendered this approach infeasible. We  settled upon an
implementation that quickly instrumented the entire program at the subroutine level while
requiring little code space in the traced process. Once the offending subroutine was located, a
second pass could effectively instrument at the line/label level in that subroutine only, and home-
in on the offending code at a granularity dependent upon the optimization level used in compiling
the code being watched. Los Alamos uses the RI CFT77 compiler on UNICOS configured to
always generate symbol tables and generate code at an intermediate optimization level which
causes symbol table lines/labels to be generated at optimization block boundaries.

The first step in processing the LDB run command is to instrument the traced process with all
active breakpoints and watchpoints. The mechanics of watchpoint instrumentation depend upon
whether the user is doing a warch all or a watch ir.

For either watch option, the first instrumentation step is to patch in and relocate the pseudo
machine code generated by the parser in the code generation phase. The traced process is then
instrumented to re-route execution flow to execute the conditional code.

Watch all causes LDB to instrument all subroutine entries and exits in the traced process that
contain "standard" entry sequences. Thus, even system library routines that were not compiled
with symbols, but contain a "standard” entry sequence, ar= instrumented. The entry sequence is
modified to cause a return jump to the conditional code. If the condition is satisfied, a zero
instructior ‘n the conditional code is executed causing a SIGERR signal to be generated. The
traced process signal mask is set up to trap the SIGERRP, the traced process becomes stopped, and
control returns to LDB. The traced process program counter is thecn modified to the point where
execution flow was re-routed so that the user sees execution stopped at the appropriate place in
the process. Watchpoint (and breakpoint) instrumentation is cleared prior to returning control to
the user.

Exit checking for the watch condition is accomplished by modifying the return address stored in
register BOO (Cray convention) via the conditional code entry execution is routed through. Upon
retum to the "standard" entry seauence, the modified register BOO 1s stored in the traceback area
associated with the subroutine to be restored at subroutine exit (nurmal cntry sequence
mechanics). The last instruction in a standard CRI exit scquence 1s a jump (o the address stored
i register BOC, which was modified to cause a jump to the conditional code.  Thus, no
modification of exit sequeace code is required. A stack of original register BOO contents 18
maintained in a scratch area in the traced process. If the condition is not satisfied during the exit



check, register BOO is restored to its original contents (at subroutine entry), the stack of saved
return addresses is popped. and exccution continues at the restored return address.

Instrumentation of the entire program using this technique can be accomplished quickly because
only one pass is required through the loader-generated list of entry points and no symbol table
access is required. The instrumentation scratch code space required is small because a standard
template of conditional code works for all "standard" entry (and exit) sequences.

Warch in causes LDB to instrument all lines and labels in a specific subroutine (possibly within a
user specified range) to route execution flow through the conditional code associated with the
watchpoint. The machine instruction located at a line/label is overlayed with a return jump 0 a
code template for the line/label. The code template executes the overlayed instruction then jumps
to the conditional code. If the condition is satisfied the process stops as described above,
otherwise a jumip tn the contents of register BOO occurs and executinn resuines at the instruction
following the one that was overlayed (register BOO was set in the return jump instruction). This
technique requires about ~ne word of code space per line/label instrumented for the code
template, plus the code space vequived for the conditional cude.

For subroutines containing thousands of iines and labels it is possibl. that the cdbx$cnd code
cpace scratch block will overflow (we allocate 512 words of code space in every UNICOS
executable to be used by the debugger for instrumentation). If this occurs, LDB will prompt the
user for the name of a code block or data block (must reside < 4dMW) where instrumentation
resumes. Good candidates for additicnal code scratch space on UNICOS are file conversion
routines (IBM2CRAY, etc.) that are called only if a user assigns an attribute to a file that causes
automatic data conversion during I/O. In practice these routines are never called and thus the
code space is available. The choice is the users. The debugger does not assume the presence of
particular code blocks sense they may go away with a future release of the operating system. The
user may respond to the prompt with a <CR> which aborts the watchpoint instrumentation. The
user-specified block is restored to its original contents when the watch condition is disabled (rel
watch). You can sec why this approach is not viable for an entire large program containing
Lundreds of thousands of lines and labels. The code space and cpu time required to do the
instrumentation is prohibitive. But within the scope of one subroutine this approach is viable.

Watchpoint Summary

1.DB's watchpoint facility provides a unique and efficient method for isolating data corruption
bugs. The watch all command quickly instruments all entry and exit sequences; it is used to
isolate the routine that is causing the corruption. A second run using the warch in command may
be needed to isolate the problem code further. The from and to clauses are used to limit the
expensive instrumentation done by warck .



Integrated Performance Analysis

Performance analysis provides the user with statistical information about where CPU time was
spent during a run of a program. With this information, the user can determine program
bottlenecks and can often greatly enhance overall performance via small changes to specific areas
in the program. A program that fails to deliver right answers iu a timely way is little better than a
program that produces wrong answers. Therefore, the analysis and tuning of program
performance can be considered a form of debugging. Integration of performance analysis with
the debugger combines statistical profiling with process control. A user can achieve fine-grained
performance data, for example one pass through a do-loop, which is not possible via stand-alone
performance analysis.

Cray Research performance analysis tools require that the user load with a special library
(LIBPROF) to enable profiling. A subsequent run produces a profile data file that must be run
through the CRI PROF and PROFVIEW utilities to produce a report. The Los Alamos Debugger
integrates statistical profiling such that the user does not need to load a special library and
invocation of the PROF and PROFVIEW utilities is automatic. Thus, performance analysis can
be done on the production versicn of a code.

User Interface

Profiling is controlled by typing profile at an LDB prompt, followed by on, off, clear, dump, or
report. Profiling data is accumulated for each run aficr profiling has been turned on. Sampling is
disabled by tuming profiling ¢ff. Data from previous runs may be erased with the clear option.
Profiling statistics are generaied by report, which puts the user into a PROFVIEW session to
view the results. Further analysis can be done by generating the raw file appropriate for PROF
input via dump.

The tollowing example illustrates LDB’s features. Say that we're building a multi-user database
sysiem in which the performance of the system as a whole is important, but in particular the
performance of the UPDATE function is critical -- we don't want lock the entire system for very
long each time we need to update our tables.

Profiling this code as a whole won't be very helpful since we require not aggregate times, but
tinies relative to a particular activity. Knowing that routine ABC consumed 35% of our compu'c
cycles does not tell us how important ABC is to our time-critical UPDATE function; perhaps
UPDATE doesn’t rely on ABC at all.

Here's how an L.DB user would profile a particular logical segment: (For clarity we'll show the
[.DB prompt as [LDB>).)

LDB> rup to UPDATE

LDB> profile on

LDB> run to $999 # last statement in UPDATE
LDB> profile oft

LDB> profile report
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Thus we've managed to profile only the routine UPDATE and its children, with timing statistics
for the children accrued only when invoked within the UPDATE call-tree.

In a real database system the time to do a single UPDATE may vary widely depending on scope
and system load -- timing a single instance may be misleading. We can profile all invocations of
UPDATE together by doing the following:

LDB> bkp UPDATE

LDB> link UPDATE to "profile on;) run®

LDB> bkp $§999@UPDATE

LDB> link §$999@UPDATE to "profile off; run*
LDB> run

LDB’s link command is used to associate a string of LDB commands with a given breakpoint,
which is automatically executed whenever the breakpoint is hit. The above sequence will tumn
profiling on (off) at each entry to (exit from) UPDATE, and then continue the run. At the
completion of the run (LDB stops at Sexit, just before termination) we'll issue a profile report to
view the accumulated data.

PROF and PROFVIEW

Eoth PROF and PROFVIEW are CRI developed tools for presenting the results of a profiling run.
We won't document them here except to give a couple of simple examples.

LDB’s profile report command is equivalent to the following seauence:

LDB> profile dump

LDB> sh "prof -x {(your_executable) > rawfile"
LDB> sh "profview rawfile”

LDB> sh "rm rawfile"

The profile dump command creates a profile file containing the sampling data collected so far.
LDB’s sh command rur's quoted UNIX commands under a shell; here we first use the PROF
utility to post-process the results, and then PROFVIEW to view them. If you're in an X-Window
System environment, PROFVIEW will create its owa window, otherwise a linc-mode menu
interface is employed.

PROF can also be used to format a report directly. After creating the profile data file and exiting
LDB, the foilowing will generate a summary of activity for thuse areas of the code that consumed
more that % of the total profil=d execution:

prof -st -H 1 {your_executable) > report

The scope and impact of profiling can be controlled via debugger variables. The effect of these
vanables will be clearer if we understand a little about how profiling is implemented on UNICOS.

Los Alamos National Laboratory 8 (irtnhar 1007



A process that wishes to be profiled does so by first logically partitioning its instruction segment
into a set of "buckets”, where the number of buckets depends both on the size of the program
instruction segment to be monitored, and the size of each bucket. By default the entire code
segment is monitored, and the bucket size is 4 words. This may %e altered under LDB by setting

$PROF_SADDR (start address), SPROF_EADDR (end addres:), and/or $PROF_WPB (words
per bucket).

The profiling process then allocates memory from the heap to hold counters for the bucket set,
passing a pointer to this area, along with a sampling interval, to the UNICOS kernel via a system
call. Profiling is now enabled. The default sampling interval of 512 microseconds can be altered
by setting the LDB variable SPROF_RATE ( a poor choice of terms because this is really a
sampling interval, not a rate - we are following Cray conventions here).

For any process that has requested profiling, the UNICOS kernel periodically interrupts that
process to examine its program counter (pc). The kemnel then maps the pc to a logical bucket, and
increments the corresponding bucket counter in the target process. At the end of execution, the
profiled process dumps its bucket counters to the file named by the LDB variable SPROF_DATA,
(default file name is prof.dara)..

The LDB variables mentioned above, minus the leading dollar sign, correspond to the
environment variables that control CRI's profiling library, LIBPROF.

As always, there are trade offs to be considered when changing the defaults. Setting . smaller
bucket size to achieve finer granularity will require a larger heap for the profiled process. The
heap requirements can be reduced by setting start and end addresses to monitor only a fraction of
the application’s code. Because profiling is an expensive procedure requiring repeated operating
system intervention, the variable SPROF_RATE should be set to a high number (lowering the
frequency!) when profiling any long-running job. The only negative effect of setting this
parameter large is to degrade the statistical quality of the report, an effect mitigated by the size of
the job.

Implementation

The implementation of statistical profiling in LDB is done in three phases: initialization, enabling
(disabling), and reporting.

During the code instrumentation phasc processing of the first run command following the first
profile on command, LDB initializes profiling in the traced process. [Initialization prepares the
traced process to collect statistical profiling data during subsequent runs. Memory is allocated in
the heap of the traced process to hold the profiling data. This is done by setting up a call
malloc in the traced process while the process is stopped (standard CRI argument st
conventions), setting the traced process program counter to the entry point for malloc, and setting
register BOO to the code location of a zero instruction The traced process is then released to run.
The process runs through malloc allocating a block of memory on the heap as specified in the
mput arguments. The process retums to the code location stored in register BOO on entry, which
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was modified to contain the address of an instruction containing a zero instruction, which stops
the traced process and returns control to LDB. LDB then saves the contents of register S1 (Cray
function return convention) in the traced process which contains the address of the malloced
block. This address is later used as an argument to the profile system call during the enabling
phase. Profiling is initialized once. Debugger variables that control bucket size and code range
must be set prior to initialization as they affect the size of the heap allocated in the traced process.

Enabling (disabling)

Profiling is enabled during the code instrumentation phase of run command processing following
profile initialization. Profiling may be enabled and disabled many time during a debugging
session, but initialization occurs once. Enabling profiling involves patching in code in the traced
process to execute the projile system call. While the process is stopped, LDB sets up an

argument list following standard Cray system call conventions, and patches in the following
instructions:

sM16 0
sM14 0
RX

SM16 1
ERR

The SM instructions have to do with Cray multitasking. The EX instruction is an exchange to the
UNICOS kemel to execute the profile system call. LDB set up the system call argument list
specifying sampling rate, location of profile data buffer (returned from malloc), and start and end
of code area being profiled. These arguments are controlled by the user via debugger variables
and must be set prior to enabling profiling. Once the above code is patched in, LDB sets the
program counter of the traced process to the patch code and releases the process to run. The
process stops at the zero instruction (ERR) and control returns to LDB. Statistical profiling is
now cnabled. Profiling is disabled by the same mechanism but with a very large sampling
rate(interval).

Reporting

Profiling statistical data is reported to the user by 1.DB upon entering the profile report command.
This data is cumulative and represents runs after initialization when profiling was enabled (on).
Profile data may be cleared (zeroed) by the user via the profile clear command. Reporting is
implemented in LDB by generating a profile data file suitable for input to the PROF utility. 1.DB
reads data from the profile data buffer in the heap of the traced process as input to the generation
of & PROF input file. 1.DB then issues a shell command to run the PROF utility on the profile
data file created. PROF associaies profile data with symbol table information and generates an
wmput file for the PROFVIEW utility. L.DB then issues a shell command to execute PROFVIEW
on the PROF output. PROFVIEW is an interactive utility that displays profiling data to the user
in vanous formats utilizing 8 command line or X-window interface. The profile data file is
retained after the debugging session is terminated for further analysis by the user. The nume of
the profile data file is controlled by the user via a debugger variable. Thus, several duta files may
be generated and saved at different points in the program.
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Integrated Performance Analysis Summary

Sampling data for statistical profiling purposes can be collected and controlled via the LDB
profilecommand Sampling characteristics can be altered by setting debugger variables to control

granularity, range, and frequency. Profiling reports are generated with the standard UNICOS
tools PROF and PROFVIEW.
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Integrated Coverage Analysis

Coverage data reports whether or not code was executed at least once. Coverage information can
be useful in analyzing the effectiveness of a program test suite, tracking where new tests need to
be developed, and determining "dead” code. Typical coverage tools are source level translators
that instrument source code with library calls to gather coverage data at block boundaries. These
tools are language dependant and require that an additional version of the code be maintained in
order to analyze coverage. We are integrating coverage analysis into LDB much like
performance analysis, although with a different intemal mechanism. Integration into the
debugger combines coverage analysis with process control allowing the user to control scope and
granularity similar to integrated profiling. Coverage analysis via the debugger can be done against
the production version of the code (must be compiled with symbols) and supports a combination
of source languages (currently fortran, Iritran, C, and cal). The integration of coverage analysis
into LDB is currently in development.

User Interface

The syntax of the LDB cover command will mirror the profile command. Five options will be
supported: on, off. clear, dump, and report. Coverage analysis will be turned on and off by the
user as required during the debugging session. A coverage analysis data file will be gencrated via
the dump and report options. Coverage data will be viewed via the report option. Debugger
variables will control the range of code space in the traced process to be covered and the name of
the coverage data file. LDB will invoke a locally written utility to report coverage data to the
user.

Implementation

Integrated coverage analysis will be implemented using existing LDB temporary breakpoint
technology. During the initialization phase (first run command following first cover cn
command), LDB will populate the intemal breakpoint table (a linked list) with LDB-generated
temporary breakpoints at all lines and labels within the range of code space being covered as
specified by the user via debugger variables. The temporary breakpoints are then applied to the
traced process as normal. When a coverage temporary breakpoini is hit a routine will be called to
update coverage data and the temporary breakpoint will be released. Thus. a code block will be
trapped for coverage only once, which is all that is required. The effect an performance should
not be great because the traced process is only stopped once at each code block houndary.
Coverage will be disabled by setting coverage temporary breakpoints to a disabled state in the
hreakpoint table. Coverage data will be cleared merely by zeroing the cover data accumulated in
[.DB. A coverage data file will be generated while processing the dump and report options, and
will be retained after the debugging session terminates.

Integrated Coverage Analysis Summary
Data for analyzing program coverage can be collected and controlled vin the LDB cover

command  Debugger vanables control code range and data file name.  Coverage reponts are
generated wath a locally written interactive utility to view covirage data.
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Other Applications

Other possible applications of code instrumentation technology include incremental compilation,
automatic data race detection, and integrated visualization/animation.

Incremental compilation would allow the user to compile new routines at debug time to be
patched in to the traced process. Thus, calculations and analysis not anticipated at compile time
would be supported and would run at full speed.

Data race detection will become increasing important as the high performance computing
community moves to distributed and MIMD paraliel computing environments that introduce non-
determinism in program execution. An integrated debugger tool to detect data races on-the-fly
would be very usefui.

Integrated visualization is a feature of many debuggers now, including LDB. Debuggers allow
visual snapshots of data while the process is stopped. Implementations typically pipe user data to
a graphics process or call intemal hard-wired graphics routines. Piping provides flexibility at the
expense of performance (LDB utilizes piping). Internal hard-wired graphics provides better
performance (ie can handle more user data) at the expense of flexibility. 1 suggest for future
development debugger functionality that allows visualization (animation) of user data while the
code is running via non-intrusive code instrumentation.

Summary
Code instrumentation is a powerful debugger tool capable of integrating diverse functionality

under debugger control. This paper describes three applications and suggests others for future
consideration.

L.ox Alamos National Laboratory 13 October 1992



The Application of Code Instrumentation Technology
in the Los Alamos Debuggcr

Fast Conditional Software Watchpoints
Integrated Performance and Coverage Analysis

Supercomputer Debugging Workshop
October, 1992

Jeffrey S. Brown
Los Alamos National Laboratory



Fast Conditional Software Watchpoints

Code generation

mini compiler

fortran, limited C

peep-hole optimizer

three stage compiler:
mackine independent ''stack' code
relocatable pseudo machine code
absolute machine code

Process Instrumentation
on-the-fly detection
two pass approach

watch all mechanism
watch in mechanism

TMC collaboration

compiled events



r:/usr/tmp/jxyb/1ldb% 1ldb -n test/test77yez.x

1db version 1.3
builr: 09/21/92 at 12:29:51

attached to absolute file: test/test77yez.x
entering debug mode ...
processing commands in .ldbinit file ...
$srcdir = 0000000000000000000000
Ssrcdir = 0721453467200000000000
TEST> watch all for k .gt. 1334
TEST> list
watchpoint active (watch all for k .gt. 1234)
no user-specified breakpoints
TEST> run
instrumenting code for watcchpointing: done
watchpoint condition met in subroutine: SUB (detected at exit)
user process stopped at program counter: 445pb = 48L @ TEST() - l4pa
TEST> watch in sub
TEST> list
watchpoint active (watch in sub for k .gt. 1234)
no user-specified breakpointe
TEST> rerun
instrumenting code for watchpointing: done
watchpoint condition met
user process stopped at program counter: 475pa = 5L @ SUB()
SUB> k
00000243020b: k = 1235
SUB> list source
subroutine sub(ch, k)
character*(*) ch
print *,"in the userpcrt routine®

[#]

SUB({) k =k +1
=>W SL return
end

TIB»



r:/usr/tmp/3ixyb/1db% 1ldb test/test77yez.x

ldb version 1.3
built: 09/21/92 at 12:29:51

attached to absolute file: /usr/tmp/l1d44028.copy (copy of
test/test77yez.x)
entering debug mode ..
processing commands in .ldbinit file ...
$srcdir = 0000000000000000000000
$srcdir = 0721453467200000000000
TEST> watch all for kk .gt. 4231
TEST> list
watchpoint active (watch all for kk .gt. 4321)
no user-specified breakpoiants
TEST> run
instrumenting code for watchpointing: done
watchpoint condition met in subroutine: TEST (detected at entry to SUB)
user process stopped at program counter: 471pc = SUB() + 2pc
SUB> watch in test
SUB> list
watchpoint active (watch in test for kk .gt. 4321)
no user-specified breakpoints
SUB> rerun
instrumenting code for watchpointing: done
watchpoint condition met
user process stopped at program counter: 3J43pc = $10A @ TEST()
TEST> kk
00000243021b: kk = 4322
TEST> list source

k =0
kk = 0
p = loc(b)
W $5 5 continue
kk = kk + 1
=>W $10A do 10 i=1,maxi
W 58A do 8 l=maxi,l,-1
b(i) = 100-1
c(i) =1 + bti) -1
ali) = b(i) + cti) ¢ i + 1
W SHB B continue
W 510
W 510B 10 continue

pa(l) = 23.0
TEST~

204



TEST> cdbxScnd+3\70

00052426pa:
00052426pb:
00052427pa:
00052427pd:
00052430pc:
00052431pb:
00052431pc:
00052432pb:
00052433pa:
00052433pb:
00052433pc:
00052434pb:
00052434pc:
00052434pd:
00052435pa:
00052435pb:
00052436pa:
00052436pd:
0005243 7pa:
0005243 7pc:
00052437p4:
00052440pa:
00052440pb:
00052440pc:
00052441pa:
0005244 1pb:
00052441pc:
00052442pa:
00052442pd:
000524413pc:
00052444pa:
00052444pd:
00052445pa:
00052445pb:
00052445pc¢:
00052445pd:
00052446pc:
00052446pd:
00052447pa:
00052447pb:
0005.447pc:
00052450pb:
00052451pa:
00052451pc:
00052452pb:

031200

110 0 CO 01263400001
110 1 00 01263600001
110 2 00 01264000001
100 1 00 01272200001
030110

111 3 00 000

110 1 00 01272200001
024 1 00

025 1 76

020 1 00 12455000001
025 1 00

025 2 77

051101

022 0 00

120 1 00 10604000001
040 2 00 00464400000
061 021

016 000252177
031000

044 4 4 4

024 1 76

071011

017 000252301

024 1 77

071011

017 000252236

100 1 00 01263600001
100 2 00 01264000001
010 000252227

100 0 00 01263400001
025 0 77

030 0 0 2

035177

000 000

100 00 01263400001
025 77

030 02

035 77

005 76

100 00 01263600001
.00 00 01264000001
010 000252255

100 0 00 01263400001
025 0 77

N - O = O 00

A2

-1

00000205316,0 A0
00000205317,0 Al
00000205320,0 A2

Al 00000205351, 0
Al Al+l

,Al A3
00000205351,0 Al

Al BOO

B76 Al

Al 00000252264
800 Al

B77 A2

Ss1 Sl

AQ 00

S1 00000241020, 0
S2 00000002322
so 82-S1

JSP 00052437pd

A0 -1

sS4 S4&S4

Al B76

S0 +Al

JSM 00052460pb

Al B77

=]0] +Al

JSM 00052447pc

Al 00000205317,0
A2 00000205320, 0
JAZ 00052445pd
AQ 00000205316,0
B77 AO

AO A2

0,A0 B77.,Al

ERR

Aad 00000205316, 0
B77 AQ

AO A2

0.,A0 B77,Al

J B76

Al 00000205317, 0
A2 00000205320,0
JAZ 00052453pb
AO 00000205316, 0
R77 A0

K @ TEST{)

cdbxscnd()

cdbxscnd ()

cdbx$cnd ()

cdbxs$Scend ()

cdbxScnd ()

+ ldpd

+ 35pb

+ 24pc

+ 22pd

v Vph



00052452pc: 024 0 66 AD B66

00052452pd: 024 2 66 A2 B66
00052453pa: 000 000 ERR

00052453pb: 100 0 00 01263400001 A0 00000205316,0
00052454pa: 025 0 77 B77 A0
00052454pb: 024 0 66 A0 B66
00052454pc: 024 2 66 A2 B66
00052454pd: 005 0 76 J B76
00052455pa: 031 1 0 0 Al -1
00052455pb: 025 1 76 B76 Al
00052:-S5pc: 130 0 00 01262600001 00000205313,0 SO
00052456pb: 130 1 00 01263000001 00000205314,0 S1
00052457pa: 130 2 00 0123200001 00000205315,0 s2
00052457pd: 006 000252164 J 00052435pa cdbx$cnd() + l2pa
00052460pb: 120 0 00 01262600001 0] 00000205313,0
00052461pa: 120 1 00 01263000001 sl 00000205314, 0
00052461pd: 120 2 00 01263200001 S2 00000205315,0
00052462pc: 100 1 00 01272200001 Al 00000205351,0
00052463pb: 101 2 00 000 A2 Al
00052464pa: 025 2 00 BOO A2
00052464pb: 031 1 1 0 Al aAl-1
00052464pc: 110 1 00 01272200001 00000205351,0 Al
00052465pb: 010 000252330 JAZ 00052466pa cdbxScnd() + 43pa
00052465pd: 000 000 ERR

00052466pa: 005 0 00 J BOO

RUT



r:/usr/tmp/jxyb/1dbs ldb l.3a/bin/cray-ymp/ldbl.3a

ldb version 1.3
built: 09/21/92 at 12:29:51

attached to absolute file: /usr/tmp/ldd44287.copy (copy of

1l.3a/bin/cray-ymp/ldbl.3a)

entering debug mode ...

processing commands in .ldbinit file ...
$srcdir « 0000000000000000000000
$srcdir = 0721453467200000000000

main> bkp ldclrbkp

main> run with “-a test/test77yes.x"

ldb version l.3a
built: 10/02/92 at 17:25:39

attached to absolute file: test/test77yez.x
entering debug mode ...
processing commands in .ldbirit file ...
$srcdir = 0000000000000000000000
$srcdir = 0721453467200000000000
TEST> BUB\10

SUB() =
00000467pa: 020 0 00 37724000000 A0
00000467pd: €25 0 77 B77
00000470pa: 020 2 00 377226000C0 A2
00000470pd: 030 0 0 2 AO
00000471pa: 022 1 04 Al
00000471pb: 035 1 77 0.A0
00000471pc: 025 2 02 B02
00000471pd: 025 & 01 BO1
00000472pa: 024 7 01 A7
00000472pb: 107 1 00 00000400000 Al

TEST> watch all for k .gt, 33
TEST> rJn
instrumenting code for watchpointing: done

user process stopped at program counter: 6221pc

ldclrbkp» sh

00000177520

AC

00000177513

A2

04

B77.Al

A2

A6

BO1
00000000002, A7

21L @ ldclrbkp()

1y}
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r:/usr/ctmp/jxyb/1db% iagquiry

Machine R Mon Oct S 20:11:44

User=jxyb uid=(1726]:

PID SIZE SECONDS_USED_USER+SYSTEM
[ 42416) 0.07MW CPU= 0.4470+ 0.8136s
[ 43867] 0.07MW CPU= 0.4128+ 0.6145s
[ 44287] 0.36MW CPU= 0.5353+ 0.6435s
[ 44288] 0.05MWw CPU= 0.0401+ 0.0467s
([ 44336] 0.35MW CPU= 0.4739+ 0.3608s
[ 443137] 0.05MW CPU= 0.039%9+ 0.0280s
[ 44334) 0.13MW CPU= 0.0867+ 0.01a4ds
[ 44359] 0.03MW CPU= 0.0040+ 0.0053s
[ 44360]) 0.06MW CPU= 0.1410+ 0.21513s
[ 44363) 0.32MW CPU= 0.0022+ 0.0148s
CPU 1

r:/usr/tmp/jxyb/1db% 1db -p 44354 test/test77yex.x

ldb version 1.3
built: 09/21/92 at 12:29:51

attached to running process: /proc/44354

entering debug mode

nrocessing commands in .ldbinit file ...
$srcdir = 0000000000000000000000
Ssrcdir = 0721453467200000000000

TEST> 8UB\10

SuB() =
00000467pa: 020 0 00 37724000000 AQ
00000467pd: 020 2 00 37722600000 A2
00000470pc: 022 1 04 Al
00000470pd: 024 3 00 Al
00000471pa: 007 000252131 R
00000471pc: 025 2 02 BO2
00000471pd: 025 6 01 BOI
00000472pa: 024 7 01 A7
10000472pb: 107 1 00 00000400000 Al
N0000473pa: 121 7 00 000 57

TEST »

00000177520
00000177513
04

BOO
000392426pb
A2

Ab

BO1

(00000000002, A7

yAL

1992
TTY: PROCESS_STATUS
L7:csh SLEEPING

p008:csh SLEEPING&
p008:1db SLEEPINGS&
p008:klam SLEEPING&
p008:1344287. STOPPED&
p008:klam SLEEPING&
p00@:test77ye STOPPED&
p008:sh SLEEPINGA&
p008:csh SLEEPING&

p008:inquiry RUNNING on

cdbx$cnd() + 3pb



r:/usr/tmp/jixyb/ldby !!
ldb 1.3a/bin/cray-ymp/ldbl.3a

ldb version 1.3
built: 09/21/92 at 12:29:51

attached to absolute file: /usr/tmp/1d44538.copy (copy of l.3a/bin/cray-ymp/ldbl.3a)

entering debug mode ...

processing commands in .ldbinit file ...
$srcdir = 0000000000000000000000
$srcdir = 0721453467200000000000

main> bkp ldclrbkp

main> run with ®"-n test/test77yes.x"

ldb version 1l.3a
built: 10/02/92 a*r 17:25:39

attached to absolute file: test/test77yez.x
entering debug mode ...
processing commands in .ldbinit file
$srcdir = 0000000000000000000000
$srcdir = 0721453467200000000000
TEST> $5\8
$5 @ TEST() =

*

00000334pc: 042 3 7 7 S3 1

00000334pd: 060 6 7 3 56 57+S3

p0000D335pa: 040 7 00 00031000000 s7 00000000144

00000335pd: 041 5 00 00030600000 55 1777777777777777777634
00000336pc: 130 6 00 10604200001 00000243021,0 s6 KK @ TESTI()

TEST> watch for kk .gt. 54
TEST> run

1nst rument ing code for wetchpointing: done
user process stopped at program counter: 6221pc

ldelrbkp~ sh

210 @ ldelrbkp()

Yoo



r:/usr/tmp/jxyb/1db% inquiry

Machine R Mon Oct 5 20:18:25 1992

User=jxyb uid=[1726]:
PID SIZE

ldb version ..3
built: 09/21/92 at 12:29:51

attached to running process: /proc/44558

entering debuqg mode ...

processing commands in .ldbinit file ..
$srcdir = 0000000000000000000000
$srcdir = 0721453467200000000000

TEST> $3\53

$5 @ TEST()

N0000334pc: 007 000252204
00000313¥%pa: 040 7 00 00031000000
00000335pd: 041 5 00 0003060000G
0n0v0I36pc. 130 6 00 10604200001
nonno3IITpb: 130 3 00 10604400001

7

K

]

r

TEOT . 00032441palNS
nons244lpa: 042 31 77 H

00042441ph: 060 6 7 1 b
noesy2441lpe: 006 0002521130 J
onnhld42pa: N4 7 038 At

nonys442pb: Q0 0 70 Al

SECONDS_USED_USER+SYSTEM

[ 42416] 0.07MW CPUa 0.4470+ 0.8136s
[ 43867) 0.07MW CPUx= 0.4207+ 0.6410s
[ 44503] 0.12MW CPU= 2.4194+ 24.6967s
[ 44538] 0.36MW CPU= 0.5361+ 0.5048s8
[ 44539] 0.05MW CPU= 0.0402+ 0.0816s
[ 44551) U.36MW CPUa= 0.3866+ 0.2740s
[ 44552) 0.05MW CPU= 0.0299+ 0.07628
[ 44558) 0.12M8 CPU= 0.0941+ 0.0133s
[ 44559] 0.03MW CPUs 0.0040+ 0.0074s
[ 44560] 0.06MW CPU= 0.1406+ 0.2128s
[ 44562] 0.32MW CPUa 0.0022+ 0.0149s
r

00000243021,0 S6
nno0nn241022,0 S3

TTY : PROCESS_STATUS

L7:csh SLEEPING
p008:csh SLEEPING&
p008:test77ye IN MEMORY&
p008:1db SLEEPING&
p008:klam SLEEPING&
p008:1d44538. STOPPED&
p008:klam SLEEPING&
p008i1test?7ye ATOPPEDS
p008:sh SLEEPING&
p008:csh SLEEPING&

p008:inquiry RUNNING on CPU 1
:/usr/tmp/jxyb/ldbs ldb -p 44558 test/test77yez.x

00053441pa
N0000000144
L271771711777171°7°117776134

KK @ TEST()

KK @ TEsT() o 1b

cdbxscend () ¢+ lhpa

1

RYEHE
00032426pa
no?

Al

cddbxSend () o oa



00052426pa:
00052426pd:
00052427pc:
00052430pb:
0005243 1pa:
00052431pb:
00052432pa:
00052432pd:
00052433pa:
00052433pc:
00052433pd:
00052434pa:
00052434pd:
00052435pc:
00052436pk:
00052436pd:
00052437pc:
00052437pd:
00052440pc:
00052440pd:
00052441pa:
00052441pD:
00052441pc:
00052442pa:
00052442pb:
00052442pc:
0052443pa:
00052443pb:
0005244%pc:
00052444pa:

TEST »

130
130
130
110
022
120
040
061
016
031
044
120
120
120
010
100
000
100
005
051
042
060
nos
vad
030
006
075
055
006
020

TEST> 00032426pa\30

00
00
00
00

01262600001
01263000001
01263200001
01263400001

00000205313,0 soO
00000205314.0 sl
00000205315,0 s2
00000205316,0 AO

00

00 10604200001
00 00015400000
021

000252157

000

444

0 00 01262600001
1 00 01263000001
2 00 01263200001
000252177

0 00 01263400001
000

0 00 0. :63400001
0 00

101
3
6

N OONKHDO

77
713
000252130
7 03
070
000252130
3 06
jol
000252130
0 00 01751600001

A0 00

Sl 00000243021,0
S2 00000000066
S0 §2-S1

JSP 00052433pd

AQ -1

sS4 S4&84

S0 00000205313,0
S1 00000205314, 0
S2 00000205315, 0
JAZ 00052437pd

AO 00000205316, 0
ERR

AQ 00000205316, 0
J BOO

Sl sl

Ss3 1

Sé6 57+8)

J 000%52426pa

A7 RO1J

AQ A7+1

J 00052426pa
TO6 S3

Gl 53>77

J 00052426pa

A0 00000207647

KK @ TEST()

cdbx$cnd ()

cdbxs$cnd ()

cdbx$cnd ()

cdbxu$cnd()

cdbx$Scnd ()

10pd

l4pd

3pa

Ipa

ipa



Integrated Performance Analysis

Interested in where cycles are spent

statistical profiling

Profiling against production version of code

no special libraries required at load uime

Initialization

run through malloc in traced process

Enabling
patch in exchange to profile system call

run through patch code

Reporting

generate CRI standard profile data file

shell escape to PROF and PROFVIEW



Integrated Coverage Analysis

Interested in code executed at least once

useful in determining validity of testing,
which test need to be developed,
weeding out ''dead'’' code

Coverage analysis against production version of code
no source code instrumentation

multi-language support

Initialization

temporary breakpoints at all lines/labels with covered code range

Enabling

apply temporary breakpoints as normal

Reporting

shell escape to locally written interactive utility



Other Applications

Incremental compilation
Data Race Detection

Integrated Animation
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Abstract

In wday's development environment, where typical sys-
tems consist of multi-host networks, there is a need t0 run
the debugger on one kost «.nd debug a.a application run-
ning on a different host. Thi: functionality requires the
development of several components: abstractions within
the debugger to hide the “remote-ness’ of the targel pro-
cess, a remote server to perform the actual debug opera-
tions, and a protocol for communications between the
client debugger and the remole server. This paper covers
the design and implementation of these three components
in Convex's CXdb debugging system.

1.0 Introduction

This paper describes; the implementation of remote debug-
gimg capabilities within the CXdb debugging system
[StHrv 1] [BuChYl] [Conv9 La] [Convy Ib). The approach
used i CXdb is similar 10 other remote implementations,
such as GDR [Stal89], and work done at BBN [Lawr90)]
[WeMig4]

Most remote debugging systems consist of three compo-
nents a local debugger client, a remote debug server, and
a commumcation protocol between the client and server.
fagure ! shows a high level view CXdb's remote debug-
Ring enviromment

e actual implementition of the CXdb remote debugging
system contmned severul features nit typically found in
carhier (or traditional) systems, ‘These features greatly
decreased the development time required and enhanced
the mantasmabnlity of the final product. They are:

1. The development and use of the Message Interface
Generator (MIG). In order to decrease the
development lime and maintenance overhead
involved in the protocol manipulation routines we
developed an automated code generation system, the
MIG. Tte MIG tools generates code that handle the
tasks of building packets, sending packets. receiving
packets, and extracting daia fields from packets.

2. Softwarc abstractions within the local debug client
that hide the “remote-ness” of the target process from
the majority of the CXdb code. This minimized the
changes required to implement remote dcbugging.

3. A clean separation of tasks between the debug client
and remote server. The local debug client is
responsible for all symbolic undersiznding of the
target application. The remote server is strictly a
machine level debugger.

‘This paper will cover the following major arcas:

e 'The motivation behind the development of CXdb's
remole debugging capabillry.

e The Remote Debugging Protocol and the MIG tools
vreated o work with it

¢ The abatraction model used within (' Xdb to inegrate
remote processes.

* ‘The design of the remute debugging server

1.1 Motivation

More and more frequently, the solution to today’s comput:
ing problems are no tonger being handicd by a sinple

10130
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Architecture Overview

machine. Typical computing configurations include coop-
erative nctworks with multiple, often heterogeneous,
hosts. Client-server architecCtures are becoming the norm,
and the number of distributed applications is increasiog
rapidly. With all of this distributed functionality, the envi-
ronment needed 10 effectively debug these applications
must also become disributed.

Additionally, many specialized compute servers require a
general purpose front-end machine to provide access md
control. A good example is a typical real-time system
(RTS). Often, only a minimal environment is provided >a
the actual RTS. A more general-purpose host typically
front-ends the RTS. Real-time applications are compiled
and prepared on the frout-end and then down-loaded (o the
RTS. This environment usually provides little debugging
capability on the RTS. With a debugger capable of han-
dling remote processes, then all that need be written for
the RTS is the remote debug server, which requires far less
application level support than a full symbolic debugger.

For support of kernel debugging, the remote syster: may
not even have an application environment in which (o run.
The remote debug server can be embedded within the ker-
nel to be debugged. The remote server, as described in this
paper, is relatively simple to implement.

2.0 Architecture Overview

Figure |1 shows the major components within the CXdb
remote debugging system. CXdb runs on host A, the
“loca!” hoat, and communicates with the remote server on
boat B, the “remote” host. The remote server performs all
actual control of the targe* process being debugged. The
connection between the hosts is assumed to be reliable
(current'y TCP/TP).

The initial design of CXdb's remote debugging capabili-
tics was meant to be sufficieat to support remote debug-
ging betweeti two Convex hosts running ConvexOS or a
local Coavex host running ConvexOS and a remote host
running ConvexRTS/rtk (Coavex's real-time kernel).

Standard Unix Interpet services are used (o create the
remoie server. An entry is made in the /efc. services file
specifying a pre-defined port for connecting to the remote
server, and an entry in /ete/inetd.conf will cause inetd to
stan the remote server when a connecticn is made (o that
port

in cases v here inetd is not available, as is the case for
ConvexRTS/rtk, then a Remote Dacmon must be imple-
mented which takes its place The remote daemon simply
listens ou a specific port (ConvexRTS/rtk does support
TCP connections) and spawns the remote server when a
connectioc is detected.

Figure 1.  Remote Debugging Environment
Local Host Remote Host
A B
. ¢
CXdb : dasmon |
-l grossreessesasess N S, : Ramow
) Y ! CXdbopens s channel tothe Remate Daenion (which T
! can be jaetd), H
I;.u.m ' '
- e E The Daemon then create the Remote Server which E
i wontrols the targer provess. i - m
! Me Remmom Debugging Momcol specifies the : Pncess | KD
L communianon prowcol auross the rermoe channal. }
E he local client accesses the reusote provess and Ale E
| aystem via prowoul commaruds. E
NesassgnasstEn-uassafnar sstgnemsanabinanaians .
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The Remote Debugging Protocol

The Remote Protocol used by CXdb to communicate v.ith
the remote server does not place any restrictions on the
actual connection other than it cransmit data reliably and in
order. Thus, any transport layer could be used, given suffi-
cient support to make the link reliable. The protocol does
assume that the transport layer may place restrictions on
maximum packet length. How physical packet length
restrictions are handled is discussed in section 3.3, “Multi-
Packet Messages™.

When the remote server is started, CXdb initiates a config-
uration dialog with the server (o verify that they are com-
patible. If the local and remote sides are compatible, then a
debugging dialog is started. When the local client is fin-
ished it terminates the connection to the remole server. See
section 3.0, “The Remote Debugging Protocol”, for more
deuails.

There is a considerable amount of software machinery that
must be put in place t fully process the remote protocol.
Much of this code can be generated from a description of
the protocol. A series of code generation tools, collectively
called the Message Interface Generator (MIG), were
developed to provide an automated mechanism for pro-
ducing this source code. See section 4.0, “The Message
Interface Generator”, for more details.

The majority of the software components within CXdb
have no concept of a remote process. The process interface
provides a consistent interface for local and remote pro-
cesses. An overview of the internal architecture that pro-
vides this uniform interface is provided in section 5.0,
“The Process Interface.”

‘The remote server is responsible for all uf the actual con-
rol of the target process. It provides a protocol based
interface for operating on the target. The server also pro-
vides rudimentary file services to provide CXdb with
access to files on the remote host. This mechanism
removes any requirement that the remote and local bosts
share file systems. See section 6.0, “The Remote Server”,
for more details.

3.0 The Remota Debugging Protocol

The Remote Debugging Protocol (RDP) is a protocol defi-
nition that provides the mechanism for cooperation
hetween the CXdb clientand the remote debugging server.

This psotocol also provides a level of arciitecture indepen-
dence. The protocol defines the operations allowed on a
target process, not how they are implenwented. The remote
server is free to implement the operations in any form
required by, or acceptable to, the remote host architecture.

The sections below describe the physical protocol packet
layout and the protocol commands currently defined.

3.1 ROP Packet Layout

Each RDP packet consists of a fixed format header and a
variable format body. Figure 2 shows the layout of ar. RDP
packet. The individual packet components are described in
the sections below.

Figure2. RDP Packet Layout
Packet Header
Type |Category opcode Duata Leng:ui | Packet Daa......
0 1 2 4 78 n
byte offest
3.1.1 Type

There are twa types of RDP packets: Commands and
Replies. Not all command packets require a reply. In an
effort to simplify the deselopment of the protocol han-
dling, we decided to use a strict command-reply model in
the protocol. The CXdb client will aever send a command
until the reply for the previous command has been
received!. With this paradigm in place, reply packets sun-
ply contain the command category and opcode instead ol a
more complicated mechanism for matching a reply to a
command (such as sequence numbering).

Not all commands originate on the client side of the con-
nection. There are commands which are sent by the remote
server (the P_STATECHANGE command for an ¢xam-
ple). These commanda appear (o the (’Xdb client as out-of-
band packets since they may be sent asynchronously with
respect to client commands. Any out-of-band packets

e e At —

1. This is true for uil cases except the C_ABORT command
which is a special command used to abort prior cotnmands.

CXdb: The Road to Remote Debugging
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The Remote Debugging Protocol

received while waiting for a reply are processed normally,
but do not interrupt the wait for the reply.

3.1.2 Category

The Remoate Debugging Protocol is broken into three
major categories of operations. All of the operations avail-
able within the protocol could have been lumped into a
single long list, but we felt that organizing the operations
into conceptual categories simplified the task of docu-
menting the protocol as well as making it easier 10 discuss.

We added the cat:gory field to the physical packet layout
to increase the modularity of the code that performs the
packet dispatch operations. The three defined categories
are:

CONNECT Messages controlling the remoie
connection and configuration. This
includes session initiation, version
arbitration, configuration control (such as
debug enabling), and session termination.

FILE Messages controlling access to files on the
remote host. This includes opening,

reading, writing, and closing remote files.

PROCESS Messages providing access to and control
of the remote process image. This

includes creating, attaching, and

Figure3. REPLY Packet Formats

detaching a remote process. Access 0
process memory, registers, attributes, and
state.

3.1.3 Opcode

Each category contains a set of specific commands, or
opcodes?. The specific commands will be detailed in the
chapters discussing each major category.

In the sections that icllow, specific protocol commands
will be referenced using the first letter of the category and
the opcode name. For example, the CONFIG command
from the CONNECT category will be referenced as
C_CONFIG.

3.1.4 Data Length

The data length field contains the length in bytes of the
subsequ:nt command or reply data. It does not include the
leng: nf the packet header. A length of zero is a valid
length; some packets contain no additional data. For
example, the C_TT “1.INATE commszid contains no data
fields.

3.1.5 Packet Data

The length and format of the remainder of the RDP packet
is specific to the individual command or reply. The section
on each command will detail the format of the packet data
for that command. If a given command requires a reply,

Success REPLY packet

. Failure Code .
Packet Header 0-Su Optional Reply Data......
Q0 78 10 n
Failure REPLY packet
Failure Code anonical , _
Packat Header 1= 0 - Failure g{m Optional Error String.....
a 7 8 10 n 12 n

2. The terms opcode and commaund will be used interchangeably
within this document.

4 of 30
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The Remote Debugging Protocol

then the section describing that command will also detail
the format of the packet data for the expected reply.

Reply packets have a standardized partial format for the
packet data. See the section titied “REPLY Packet Fos-
mats” for more details.

3.2 REPLY Packet Formats

There are two forms of a reply packet: success and fail-
ure. Reply packets have a header identical to command
packets. The first byte of uie packer data is always used
as a success indicator. For a success packet the remainder
of the packet data is specific to each reply. For failure
packets the format of the packet data is common for all
command replies. Figure 3 shows the structure of both
reply packets.

3.3 Multi-Packet Messages

Due to puiential limits on physical packet size, the packet
data for a command or a reply may 2ot fit in a single
physical packet. To handle this condition a multi-packet
message is used to transmit the data. The packet data will
be spread across multiple physical packets. A flag word
in the packet data indicates when the last packet has been
transmitted. It is the responsibility of the recipient (o0
assembie all the data transmitted. If the message being
received requires a reply, the reply will not be sent vatil
all the data has been collected and processed.

A given protocol implementation will define a maximum
packet size that is appropriate for the physical media being
used. The protocol requires that the C_CONFIG packet
will fit in a single physical packet. This is required so that
the debugger client and the server can arbitrate the maxi-
mum packet size.

The following list contains the commands and replics
that are currently implemented as multi-packet messages.

s F_READ reply

¢ I'_WRITE command

¢ P_SETENV command

s P_CREATE commuand

e P_THDINQ reply

¢ PP_RDREGSET reply

e P_WRREGSET command

¢ P_READ reply

¢ P_WRITE command

* P_STDINDATA command

¢ P_STDOUTDATA command
* P_STDERRDATA command

3.4 Basic Data Types

There are several basic data types that are used in
describing the packet data formats for commands and
replies. Table ! shows the standard data types used
within RDP packets,

Each field within a protocol packet is assigned a basic
type. This type allows the MIG to properly generate code
to extract and manipulate the field data in a type consistent
fashion. Sce section 4.2.3.4, “Sender Actions”, for a
description of how each basic protocol type is mapped
onto a specific C or C++ language type.

3.5 Packst Categories

As described above, the protocol commands are grouped
into three categories. Each of the categories is bricfly
described in the following sections. Please refer t0 Appen-
dix A for a complete listing of the commands within each
category.

3.5.1 CONNECT Commands

The CONNECT commands are used to initiate a session
with a remote server, arbitrate configurations, out-of-
band control, and terminating a remote session. A
description of the C_CONFIG and C_TERMINATE pack-
cts are given below.

C_CONFIG The C_CONFIG command is the first
packet sent to the remote server after the
low level connection (i.e. TCP/IP) has
been established. This comunand informs
the remote server of the local clients
protocol version and architecture. The
remote serv~r verifies that it can work
properly wun the local client and then
replies with a message that indicates its
architecture, protocol version, max packet
size, and an indication of compatibility. It
is the remote servers task to decide il the
protocol versions are compatible.

CXdb: The Road to Remote Debugging
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The Remote Debugging Protocol

Table 1: Basic Data Types

Type Size Name Description
int 1,2,4,0r8 Integer data. Number of bytes determines precision. Unless other-
wise stated int’s are unsigned.
boolean 1 Boolean value: 0 = False, 1 = True
cods 1,2,0r4 Integer (as above) whose value is a coded enumeration. Legal val-
ues will be listed for each use of this type.
string variable Variable length string encoding. Format is:
STRLEN 2bytes = Length of string, excluding NULL byte
STRING nbytes = NULL terminated string
buffe. variable Variable length data buffer. Format is:
NBYTES 8 bytes = Length of data
BYTES nbytes = raw data bytes
C_TERMINATE The reply to the F_OPEN command will

Terminate the connection between the
local client and the remote server. The
remote server should release any
resources it has acquired on behalf of this
connection and then exit. If the remote
server is controlling an executing process,
then process should either be killed (if it
was created) or detached (if it was
atached). There is no data associated with
this command.

35.2 Fli.LE Commands

The FILE commands are used o access the file system on
the remote host. Commands within thix category provide
open, seek, read, write, and close access to files on the
remote host. This allows the loral debugger to have access
to remote executable and core files without requiring some
kind of remote disk mounting. A description of the
U'_OPEN and F_READ packets are given below.

specify the file handle (like a file
descriptor) for use in later commands
referencing this file.

F_READ Requests the remote server to read a

specified amount of data from a given file.
The read begins at the current file
position. The current (ile position is
updated by the number of bytes read.

The r>ply, which is a multi-packet
messige, cootains the data requested.

3.5.3 PROCESS Commands

The PROCESS commands are used (o access and control
the (arget process on the remote system. The general types
of operations are:

1. Process creation (start, kill, uttach, detach)
2. Access and control of process attiibutes and limits

3. Process ¢xecution control (stop, single step,

continue)
F_OPEN Requ sts the remote Server to open a 4. Access and control of process register sets
specified file for furthes processing. The 5. Access 10 Process memory
open mode (i.e read, read/write, or write) .
will also be specified. 6. Setting eventpoints (breakpoints, watchpoints)
6 of 30 CXdb: The Road to Remote Debugging



The Message Interface Generator

A description of the P_SETEXEC, P_CREATE, and
P_STATECHANGE packets are given below.

P_SETEXEC Specifies the path name of the executable
to manipulate. This must be specified
before a subsequent P_CREATE
command can be issued. It is the
responsibility of the remote server to
verify that the file exists, can be accessed,
and is a valid executable.

P_CREATE Create a process from the executable
specified in a previous P_SETEXEC
commard. The zrguments o supply the
process are specified as part of this
command. [t is the responsibility of the
server to perform wildcard expansion and
VO redirection based on the argument list.

P_STATECHANGE

This message ix initiated by the remote
server. When the scrver sends this
message it indicates that the target process
has changed state (i.c. stopped) for some
reason. The local client should send
P_PROCINQ and P_THDINQ commands
to determine the new state of the process.

There are four commands which call for a little more dis-
cussion: C_ERRCR, P_STATECHANGE, P_STDOUT-
DATA, and P_STDERRDATA. Typically commands
originate with the local debug client. However, with these
four commands, they are generated by the remote server,
They may be generated asynchronously to any command
sent by the local client. As described previously, they are
handled as out-of-band messages.

4.0 The Message Interface Generator

Much of the source code needed to manage the remote
protocol packets is automatically generated based on a
protocol definition. The Message Interface Generator
(MIG) is an automated code generation sysiem that was
designed with the following goals in mind:

1. Decrease the time required to develop the protocol
support modules.

2. Increase the maintainability of the protocol support
moduies.

3. Support development of servers in either C or C++.

4. Support our automated testing facilitics already in use
on CXdb.

To achieve these goals, the following features were
designed into the MIG:

1. Generation of test drivers for use in automated testing.

2. Geperation of sending functions that construct and
send protocol packets.

3. Generation of receiving functions that break apart
protocol packets.

The development and use of the MIG met all of the goals
we had initially set forth. See section 4.3, “MIG Usage
Experience” for more details.

The generation of these source modules by the MIG is
controlled by a protocol definition and a driver specifica-
tion. The MIC can generate source modules in cither C or
C++. The format of these control files is presented in the
following sections.

4.1 The Protocol Definltion

CXdb and the remote server communicate via a well
defined protocol as was described previously. The protocol
definition file describes this protocol in a machine process-
able manner. The MIG tools make use of this description

for two purposes:

1. Generaiing an include file which contains manifest
coastants that describe the protocol. This file is called
proto_descrip.h.

2. Generating source modules which automatically
handle operations on the protocol packets.

The MIG generates the file proto_descrip.h to contan a
series of #defined constants that specify the protocol orga-
nization, packet layout, and field structures. The reasons
for generating this file are:

1. This allows the code generated by the MIG to
reference these symbolic names and, thus, be more
buman readable. This will inake the mmp-up time for
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a new developer trying to understand the protocol
operation much shorter.

2. It provides a basis for writing
routines by hand, if nece .

1 manipulation

Within each packet type, multiple packet categories can be
defined, and within each category, any number of packets
can be defined. For ease of implementation, the MIG tools
currently use the list of categories and packets defined
within tbe first type to be the canonical list. Subsequent
type definitions may not define new categories or packets
within categories.

4.1.1 Major Protocol Sectione

The protocol definition is composed of several major sec-
uons;

name The name of the protocol

version The version number of the protocol
definition

packet size The maximum size of a protocol packet

cade sets Definition of mnemoaic codes that will be
used to defined packet ficld values

packet types Detinition of the actual packets that

comprise each packet type

The protocol definition is composed of a series of key.
words and parameters. Keywords are case insensitive,
Complex keyword entries will be described ia individual
sections below. The high level structure of the protocol
definition file is shown in figure 4. Keywords are shown in
bold face.

The simple definition entries, name, version, and
packet size, are described below. The complex
entries, codes set definitions and packet type defi-
nitions, are covered in subsequent sections.

Protocol Name
The MIG twols generate a series of
#define's that describe the packet layouts.
The protocol name is used as a prefix for
all these names. This name should be

}. The peed W hand-code some proioco! manipulation routines
was planned for, but never actually needed in the (CXdb system.

Figure 4. High Level Protocol Detinition Structure

PROTOCOL: <name>
VERSION: <persion>
MAX_PACKET: <size>

START_CODE_SETS:
<code set definitions>
END_CODE_SETS:

START_TYPE:

<packet type definitions>
END_TYPE:

END_PROTOCOL:

short and meaningful. For example, the
p.otocol name used for CXdbd’s remote
debugging protoco! is RDP.

Protocol Version
The protocol version number is meant to
be used by client/server pairs to verify that
they can communicate properly. [t is up to
the applications 1o make use of this value.
The MIG tools do nothing more than
provide a #define name by which to
reference it. The #dcfine name is
<name>_PROTOCOL_VERSION. For
example, the #define name for the RDP
protocol is
RDP_PROTOCOL._VERSION.

Maximum Packet Size
This specifies the maximum packet size
that the MIG tools will generate. When
specifying the RDP protocol, we defincd
the concept of multi-packets, These
packets contain a single logical message,
but due to physical constraints (media,
transport, elc.) are broken into multiple
physical packets.

4.1.2 Code Set Definitione

Many of the data ficlds within the packets supported by
the RDP can only have a specific set of values that arc best

8013
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defined viz a set of mnemonic names (like an enumeration

in C). A specific set of mnemoaic values is called a Code
Set.

When the MIG tools process a code set, a corresponding
group of #defined constants are created using the protocol
name, the code set name, and the specific mnemonic
name. An example of a code set is the open mode specifier
in the F_OPEN packet. It can bave one of three specific
values: RDONLY, WRONLY, and RDWR.

The format of a code set definition is shown below.

start_codes: <name> <comment>
mnemonic 1
mnemonic 2

end_codes:

The code set definition for the open mode example above
is shown below.

start_codes: OMODE File open modes
RDONLY

WRONLY

RDWR

end_codes:

The corresponding generated output in the proto_descrip.h
file is shown below.

/* File open m>des */

tdefine RDP_OMODE_RDONLY 1
¥define RDP_OMODE_WRONLY 2
¥define RDP_OMODE_RDWR k]

4.1.3 Packet Type Definitions

The current RDP defines two major types of protocol
packets: command and reply. In order to provide possible
extensions in the future, the protocol definition language
allows (or an arbitrary number of packet types.

Recall that the RDP consists of two major types, conmand
and reply, each broken into three categories, CONNECT,
FILE, and PROCESS, wbich are in turn broken into a
series of commands. The type definition syntax parallels
this hicrarchy; opcode definitions are nested within cate-
gory definitons which are nested within type definitions.

The format of a packet type definition is sbown below, fol-
lowed by an example.

start_type: <name> <abbrev> <prefix>
start_category:

start_opcode:

end_opcode:

end_category:
end_type:

Exampie:

start_type: COMMAND CMD CFLD

end_type:
The parameters to the start_type entry are defined below.

name The name parameter is used to create
comments within the proto_descrip.h file
as well as a series of #define constants,
one per packet type. From the example
above, the constant for type COMMAND

would be RDP_PACKET_COMMAND.

As stated above, the packets defined
within the first type entry form the
canonical list. The abbrev parameter is
used in the construction of a constant
name for cach packet. An example, using
the FILE OPEN packet, is
RDP_CMD_F_OPEN. The 'F’ comes
from the packet category and is described
below.

abbrev

fleld prefix  Defined constants are generated that
describe all of the ficlds in the packets
defined. Since the field layout of
corresponding packets in different types
will differ, the field prefix purameter is
used in the #define name to differentinte
fields that might have common names. An
example is

ROP_CFLD_F_OPEN_MODE _TYPLE.

The category and fiekd definitions are descrided in the fol-
lowing sections.

4.1.4 Packet Category Definitions

Within cacb packet tyne muitiple categories can bhe
defined. The current RDP defines three categories: CON-
NECT, FILE, and PROCESS. The category entry is uscd

CXdb: The Road to Remote Debugging
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to define these categories. The syntax of the category entry
is shown below, followed by an example.

gstart_category: <name> <prefix>
start_opcode:
end_opcode:

end_category:

Example:
start_category: FILE F

end_category:

The parameters of the start_category entry are defined
below.
name The name parameter is used o create
commenis within the proto_descrip.b file
as well as constants, oue per packet
category. From the example above, the
constmnt for category FILE would be
RDP_CATEGORY_FILE.

prefix The prefix parameter is used in the
consgruction of constant names for each
packet defined 2nd all of the fields defined
within packets. For example,
RDP_CMD_F_OPEN and

RDP_CFLD_F_OPEN_MODE_TYPE.

4.1.5 Packet Fleld Definitions

Within each category, the packets that fall within that cate-
gury are defined. The definition of each packet, also called
an opcode, contains the name and type of each field in the
packet. The syntax of the ficld definition entry i shown
helow, followed by an example.

start_opcode: <name>

start_opcode: OPEN

field: MODE _4byte OMODE
field: FILE string
end_opcode:

The name argument is used in generating named constants
that ideatify the packet and constants that describe the
fields within the packet. Using the example above,
RDP_CMD_F_OPEN and RDP_CFLD_F_OPEN_MO-
DE_TYPE.

There are three eatry types within an opcode definition:
feld, reset_offast, and include. Each of these entries is
described below.

416 FIELD Entry

Each fleld cntry defines a single field within the current
packet. The syntax of the Beld catry is shown below, fol-
lowed by an example.

field: <name> <type> [«<code set>]

Example:
field: MODE _4byte OMODE

The parameter ‘0 the Beld entry are defined below.

4.1.6.1 name

The name of the field. This will be used in gencrating the
#define constants which describ : the field. Each field is
described by one or three constants depending on the field
type. Sec the type parameter below for more details.

4.1.6.2 type

The type of the field. As described easlier, cach field
within a packet is assigned a basic type. The MIG uses this
type information to generate code which can properly han-
die the field value. There are 10 supported field types:

_lbyte | byte integeal Gcld, _1byte_s for signed
field: <name> <type> |«<code set>]
C. _2byte 2 byte integral ficid, _2byte_s for signed
[teset_offuet:] _dbyte 4 byt integral field, _4byte_s for signed
linclude:
< include teoxt - _Bbyte 8 byte integral field, _8hyte_s for signed
d_inc fe:
n::; ‘;l‘):;}i:‘- = string 4 byte integer length followed by NULI
e terminated chamcter string
Lxample: buffer R byte length followed by mw binary data
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The type of the field is used to determine its size and the
type of variables that will be used to work with its value
within the generated code. The MIG tools generate a series
of #define constants to describe the fleld contents. If the
type is one of the integral values, then three constants are
generated: offset, length, and type. If the type is string or
buffer, then only an offset conatant is created since the size
is variable.

An cxample of the constants created, taken from the
MODE field of the OPEN packet, is shown below.

#define RDP_CFLD_F_OPEN_MODE_OFF 0
¢define RDP_CFLD_F_OPEN_MODE_LZN 4
#define RDP_CFLD_F_OPEN_MODE_TYPE _4byte

/* Use RDP_OMODE_... codes */

The comment is automatically added by the MIG tools w0
make the include file more readable. Any time a field ref-
erences a code set the name of the code set is added as a
comment in the generated proto_descrip.b file.

4.1.8.3 codeset

This optional entry is used to indicate which code set, \f
any, the Aelds value will be taken from. This information
is only used by the MIG for gencrating test drivers that
need (o construct packets with valid data within them. The
name specificd must be a previously defined code set.

4.1.7 RESET_OFFSET Entry

As each field entry is processed its offset from the begin-
ning of the packet is maintained by the MIG wols. The
reset_ofTset entry resets the current offset to 0. This fea-
ture can he used for creating variant rocords. An exunple,
used for handling architecture variations of the attach
packet, is shown below,

titart_opcode: ATTACH
inctlude:
/* Convex0S gpecific */
end include:
field: PID _dbyte

tenel _offael:

include:

/* ConvexRTS/i1tk upecific */
ond_Include:

firld: APPNAME =U1ing

and_opcode:

4.1.8 INCLUDE Entry

The include entry is used to add output Lo the generated
proto_descrip.h file. The specified text is placed in the out-
put file in sequence with the fields defined for this packet.
An example, used for adding comments to the THDINQ
reply packet, is shown below.

start_opcode: THDINQ

field: TOTLEN _8byte

field: LAST _4byte

field: NTHDS _4byte

include:

/* Remaining fields repeat per
thread. Offsets are relative to
thread entry.*/

end_include:

reset_offsat:

field: TID _4byte

field: STATE _4byte TSTATE
field: SIGNAL _4byte

field: SUBCODE _dbyte

include:

/* TNAME field only axists for
ConvexRTS/rtx architecture */
end_include:

field: TNAME string
end_opcode:

4.2 Driver Specifications

The MIG tools provide a mechanism for automatically
geoerating code which can manage the packets for the
defined protocol. The MIG can produce four different
kinds of source modules: generators, dumpers, senders,
and receivers.

"The four types of drivers are also broken down into two
major categories: senders (generators and senders) and
receivers (dumpera and receivens). The tenninology is o
bit awkward, but that's bow it evolved.

A generator is a self contained program which generates
one of every kind of packet defined within the protxcol. A
dumper is a self contained program which dumps the con-
tenta of every packet that it recelves. The generntor nmd
dumper modules together form the basis for the automated
testing of the remote protwcol and MIG tools.

A sender is a module that provides functions that construct
and send packets (o the remote peer. A receiver s i ied-
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ule that receives a packet and breaks it apart for further
processing.

The generation of a driver is controlled by a driver specifi-
cation language. The operation of the MIG 00ls and the
syntax options of the language depends on the type of
driver being created. The syntax of the driver specification
language is described in the sections below.

4.2.1 Major Sectione

The driver specification language is broken into two
major sections: setup and packet Aandling. The setup
section indicates which type of driver is being created
and other options about the generation process. The
packet handling section determines which packets will be
handled by the driver and exacily how those selected
packets will be bandled. Each of these scctions is
described below.

4.2.2 Satup Section

The setup section tells the MIG specific information that
will control the overall process of creating the driver mod-
ule. It consists of the following eatries (some of which are
optional as indicated).

creale This must be the first non comment entry
in the driver specification. The MIG wols
will skip all entries in the specification
untl it nds the initial create entry. This
entry selecta the type of driver being

created.

name pattern This entry defincs the pattera which is
used when construcling generated
function names. Special characters allow
for the inclusion of the category prefix and
opcode name to be included in the
genereed name. The default pattem |s
<driver_type> <category>_<opcode>.
{optional)

no fail reply Indicates that no failure reply function
should be gencrated. Thig is necossary
when multiple driver specifications are
being used to construct one driver.
(optional)

start include The following text 1s copied t the
gencrated source file (optional)

42.3 Packet Handling Section

Following the setup section, the packet handling section
describes how each packel is 1o be handled. The format
of thia section closely resembles the packet type defini-
tion section of the Protocol Definition langusge. The sec-
tions below describe how to select specific types.
categories, and packets, and bow to specify the handling
for a specific packet.

42.3.1 Type and Category Section

A driver specification must select the packets it will han-
dle. The syntax for selecting packet types and categories is
similar to the syntax used in the Protocol Definition lan-
guage. For example, a driver specification that sclects
packets within the COMMAND type and all the categories
is presented below.

start_type: COMMAND
start_cataegory: CONNECT

end_category:
start_category: FILE
end_rategory:

start_category: PROCESS
and _category:
end_type:

Any packet types or categories within a type taat are not
selocted will not be processed by the generated driver.

42.3.2 Packet Sslection

Within each category, the packets to ha handled must be
wlected. Packets are selected using a syntax similat to the
Protocol Definition Isnguage. A start_opcode entry iy
used to select a packet, and an end _opcode cntry s used
tu lerminate the specification for a selected packet.

One extension, compared (o the Protocol Definition lan-
guage, han heen added (o simplify the maintenunce of
standand drivers. ‘The start_opcude entry will necept nn
opeode of * all . This indicates that all packets not yel
seleciod within the current category should be selected wd
have the defaylt action applied ) them.

12 ot 3O
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Driver types generator, sender, and dumper have default
acuons built into the MIG. The defau)t actions are summa-
rized below.

generator Coastruct a function that generates a
packet with valid data for each field in the

packet and sends it to the remote client.

dumper Ceastruct a function that dumps the
conteats of the packet in a readable

format

sander Construct a function that constructs a
packet from the arguments supplied o the
function and sends it to the remote client.
The name_pattern entry, or the default
name pattem, will be used (o construct the
name of the funcuon that handles each

packeL

Currendy, oo default action is defined (or a driver of type
receiver; a specific action must be specified for every

packet (0 be processed.

An example of .\ sectdon (rom a scnder type driver specifi-
cation that uses ali default processing is shown below.

start_type: KEPLY
start _category:
start _opcode:
end_opcoda:
end_category:

CONNECT
Lall_

start category: FILE
start_opcode: _all_
end_opcode:

end category:

PROCESS
_all_

ntarll _category:
ntart _opcode:
end _oprode:
rnd category:
rd type:

4233 Action Specifications

Specific actions can be specified for any selected packet,
IMe actions avallable depend on the category uf driver,
winder or recelver, being generatod. [f no actions are spec-
ifled for & selected packet, then the default processing, If
any, v applied to the packet. For example, the specifica-

tion fragment shown below selects the indicated packet
and appliea the default processing o it

start_opcode:
end_opcode:

STATECHANGE

The actions available for sender and receiver drivers are
described in the sections below.

42.3.4 Sender Actions

For all packets selected in the driver specification, the
MIG will generate a function (o handle each packet. The
exact functioning of that function, bow it is called, how it
processes each field, etc., are determined by the action
specifications made for that packet.

Unleas overridden by an action specification, each sender
function produced will have one argument for each field
defined for the packet The type of the argument will be
determiped from the type of the field. The field types
string and bulfer produce two arguments: one for the
length and one for the pointer to the data The ble below
summarizes the field type o language type translation.

Table 2: Fleld Type to Language Type

Translation
Field Type Language Type

-lbyte unsigned char
-Ibyta_s char
_2bywn unsigned short
_2byte_» short
.Abyte unsigned int
_4byte 3 int —
Shyte unsigned long Inn—g“—-
_Kbyte_a long long
bulfer unsigned int

amst vold *
Mring unaigned long long

const vald *

e sction apecifications are described below

CXdb: The Road to Rermwie Debugging
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args Overrides the default argument list for the used. An example of two scalar fields and
generated funcuoan. The syniax is: a string feld in a generator specification
are shown below.
args(arg decl|, arg decl, ...])
celect (VERSION, 10)
calledas Overrides the generated name of the select (HWARCH, RDP_HWARCH_C3)
functdon. This is generally used when, for select (USER, 5, “streepy®
. 5, PY®)
some reason, you want a function name
that doesn’t follow the defined name Note that only the fields sclected will be
pattern. The ‘%’ code available in the placed in the argument list for the
name_pattern entry described above may generated function.
be used in the specified name. The syntax
is: special This actiou is identical in syntax (0 the
select action described above. However,
calledas <name> use of this action does not exclude fields
generats  This s the default action for a driver of m;?r :"“ml “"m:."l'(;"::laf“.;d o
Lype generator. It is an emor (0 use this .
is listed in a special action, then that field
specification on any other type of driver.
will bave the special values associated
This action causes the function generated
with it and the other nine flelds will be
to construct the packet from a set of valid given default values
values based on cach selected ficld’s type. )
The values placed in the packet can be
overridden with the select and special 423.5 Recelver Actione
actions described below. For all selected packets in a receiver specification, the
MIG will generate a functon to handle that packet. The
velect This action is used to select specific fields  MIG will also generate a function which will break apart
for processing. This action may be the header of the packet and dispatch the packet to the
specified muluple times to select multiple proper generated handling function.
fields. If any select action is specified.
m.‘:‘“':'::: ::I'I‘"h:'m"%:f By default, the generated packet handling function will
. extract all of the fields within the packet into variables of a
are two different syntaxes supported: one . .
for senders and one for generaton. The rcasonable type. See Table 2 above for the type correla-
sender syntax is: tions. For dump drivers, the contents of each Aeld will
' ) ) then be output. For recelver drivers, there is no default
ueloct{ «fleld name>) action; one of dumgp, call, or raweall must be specified.
‘The action specifications are described below.
The gencrutor syntax is:
call ‘Thic action will generate a call w the
nelect («field name>, specified function. Only those fields that
«valuel>l, <«<valuels)) have bezn selected (by default, or via
. select or special actions) will be included
For scalar ficlds the valuel specification ax arguments t the call. The syntax is:
is used as the value W be placed in the
ficld. If the field selected is of type string call «<function name-
or buffer, then valuel apecifics the length
and valuel specities the data for the field.  dump Dump the contents of the sclected Hields o
the measage function (as specifled in the
The text specitied in the values is direcily may parameter (o the create eniry). The
copied into the generated source cude so0 name of the ficld and its value will be
#define constants or expressions may be output.
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handle_fail  Specifies that code should be generated 1o
check the failure code in the packet and
the name of the function to call if a failure
is detected. This is only valid on REPLY
type packets. The function named in the
action will be passed to the
__dispatchReplyFalil function (which is
generated by the MIG unless the
no_fail_reply entry was used in the setup
section). The syntax is:

handle_fail <function>

rawcall This action is identical to call except that
the length of, and a pointer to the raw
packet data are added 'o the end of the
argument list of the function called. The

syntax is:
rawcall <function>

The length argument is of type
unsigned long long and the data
pointer is of type char *,

select ‘This action is used to select specific ficlds
for processing. This action may be
specified multiple times to select multiple
fields. If any select action is specified,
then only those fields listed in select and
special actions will be processed. There

are two different syntaxes supported:
select (<field name>)

select (<fleld name>,
<varname>, <type>,
[<varnamel2>, «<typel>|)

For scalar fields, only a singie variable
name and type are allowed. For string and
buffer fields, the first variable name and
type are for data length and the second are
for the data pointer. The specification
provides a mechanism for overriding the
default variable name and type chosen for
the variables used to extract the fields
from the packet. This can be nzeded to
provide type consistency in the function
call specitied in the csll action described
above. An example of the two formais is
shown below.

select (VERSION)

select (CLTYPE, cltype,

select (USER, ulen, int,
uname, char *)

int)

special This action is identical in syntax to the
select action described above. However,
use of this action does not exclude fields
that are not specifically named. For
example, if a packet has 10 ficlds and one
is listed in a special action, then that field
will have the special values associated
with it and the other nine fields will be
given default values.

4.3 MIG Usage Experience

The development of the MIG tools proved to be a very
large win for the development of CXdb's remote capabili-
tics. Table 3 provides data comparing the relative amounts
of code generated versus configuration table size.

Table 3: MIG Source Code Summary

Source Lines
MIG source code - Pert (22% comments) 3320

Protocol Definition 663
Driver specifications 991

Total 4974
Generated source code 21341

As indicated by the table, roughly 5000 lines of source and
tables generated 21000 lines of source code. Aside from
the 4X direct benefit, the overall maintainability of the
system has been greatly enhanced. 'The maintenance of
protocol manipulation routines by hand is tedrous and
etror prone. With the use of the MIG, modifications to the
protocol require a change to the protcol definition and
regencrating the derived sources. ‘The chance for error in
the maintenance is virtually nil, assuming a correct speciti-
cation (odviously, the client and server will have o be
modified to handle any modified protocol values, but the
maintcnance of the protocol handlers has been removed).
For a complete example of the protocol definition and
driver specifications, see Appendix B,
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5.0 The Remote Server

The remote server provides all of the actual debugging
control of the target proceas. CXdb controls the activity of
the server with the Remote Debugging Protocol, The
server has absolutely no high-level understanding of the
process being debugged; it is restricted to machine-level
debugging.

The rationale for excluding source-level information from
the server is two-fold: one, reduce the complexity of the
remote server; and two, cleanly separate the tasks per-
formed by the server and CXdb. It is important to keep the
server small and easy to port/implement. This leads to
quicker development on new architectures. The second
reason needs a little more explaining.

Figure 5. Remots Server Architectural Overview

Unlike DBX &nd other STAB*-based debuggers, CXdb
does oot maintain its symbolic information within the exe-
cutable. As described in {Stre91), CXdb uses a set of aux-
iliary daia files to maintain the debugging information.
Access 0 tibese files by both CXdb and the remote server
would pose a serious limitation oa the debugging environ-
ment. The user wnuld either have to maintain duplicate
files cn each machine, or provide some kind of remote
disk mounting. Either approach can be problematic to the
user. To mitigate these problems, only CXdb needs access
to the data files; the server only needs access to the execut-
able. Any information tat CXdb needs from the execut-
able is retricved using the FILE commands of the RDP.

4. STAB (Symbol TABle) informaticn includes name, type. and
location for variables and address ranges for source statements
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Figure 5 presents a graphical overview of the organization
of the major server components. Each of the major data
structures and modules are further described in the fol-
lowing sections.

Several major data objects are shown in the diagram, spe-
cifically: RemoteConnection, TargetnferiorProcess, and
GlobalFileTable. These objects are described in section
5.1, “Major Data Objects”.

The server is casentially a protocol engine. It is always
waiting for either a state change within the target process
or a command 0 be received from the remote client. This
“wailing” is performed by the /O Manager Module
(IDMM). See section 5.2, “IOMM™ for mare details.

The server incorporales a rudimentary file server in order
to implemeat the FILE commands required by the RDP.
The operations performed by this module are described in
section 5.3, “File I/O",

All of the actual control of the target pro-ess is contained
within the Process Interface (PI). The CuavexOS remote
sever's Pl was yerived direclly from its equivalent in
CXdb (with all symbolic understanding removed). Sce
section 5.4, “Server PI” for more details.

5.1 Major Data Objects

As shown in Figure §, there are several major data objects
that are central 0 the servers operaton. Each of these data
ubjects are briefly described here.

RemoteConnection
This object encompatses ali aspecis of the
network connection to the remote client. It
provides openitions to initialize the
connection, monitor the connection for
traffic(used by se lect ()), and read and
dispaich packets from the retnote client
(using the MIG generated functions).

TargetinferiorProces
This is the object which embodies the
Process Interface. All the operations
described in the "PI” section are provided
by this ubject.

Figure 8. OMM Processing Aigomhm

while igetMainLoopExit ()

mselm
?I’S
Allow SIGCHLD

v

SELECT

X3
Block SIGCHLD

'
/0

Eed\
Fenkois packet ‘
]

GlobalFileTable
The server maintains a single table of
open fles for processing FILE category
RDP commands. The operations
described in the “File /O" section are
provided by this object.

52 IOMM

The IOMM module is the central event dispaich systcm
for all of the remote server. Figure 6 shows the algorith-
mic control of the server’s main loop. The individual
sicps are vutlined below.

1. Szt up all the descriptors that need to be monitored for
activity, This includes the connection fo the remote
client and the sidout and stderr of the target process.
Any activity on these descriptors will cause the select
call W exit.

2. Allow SIGCHLD signals 10 be delivered. The
SIGCHLD signal is normally blocked to prevent
problems with reentrancy of the PI modules
(especially in malloc). SIGCHLD s only allowed m
this nammow region.

CXdb: The Road to Remote Debugging
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3. Perform a select call. The server will wait here uatil
some activity on the file descriptors, or a SIGCHLD
(indicaling a target process state change) occurs.

4. Block SIGCHLD.

5. Dispatch any target process /O that was detected on
it's stdout and stderr. This data is sent back (o the
remote client to be displayed to the user.

6. Read and dispatch any remote packet. This will call
MIG generated functions to do the actual packet

parsing and dispatch.

53 FilelVO

All file /O performed on behalf of the remote client (due
10 FILE category commands) is managed by the GlobalFi-
leTable. This data object maintains a set of OpenFile
objects to handle each file. An Openlile object provides
methods for the following operations: open, close, seek,
read, and write. The GlobalFileTable provides methods
for allocating and deallocating OpenFile entries.

5.4 Server Pl

The Process Interface (PI) within the remoe server is
modeiled after the PI within CXdb. CXdb's Pl is described
in section 6.0, “The Process Interface”. This section will
only discuss the differences between the implementations.

Several Pl components were removed as part of construct-
ing the server, they are:

1. Support for core files. This is handled directly by
(CXdb using the file /O operations supported by the
server.

2. Support for remote images. Although possible, it
didn’t seem reasonable to support multi-level remote
dACCCss.

1. The breakpoint table. All breakpoints are managed by
(*Xdb using remote read/write of the process address
sp.ace. This implementation may be modified in the
future 1! the overhead of managing the breakpoints
remotel v becomes unacceptable.

4 All references to symbolic debugging information.
No debugging infonnation beyond the machine »\ale
1s maintaned by the server.

6.0 The Process Interface

The Process Interface (PI) within CXdb is the point of
access and control for all process related information. This
includes:

1. Maintaining the process’ environment (environment
data, initial working directory, command line
arguments, elc.).

2. Creation of the process or attaching to an existing
proceas.

3. Managing the breakpoints placed by the user and
created by CXdb to control process execution.

4. Access (0 each thread's machine state: scalar, vector,
and communication registers.

5. Handling of all signals received by the target process.
6. Access to each thread’s stack and memory.

In order to hide the details of accessing all of this process
information, several major abstractions were designed into
the PI. Figure 7 shows the high-level design of the PI.

Brief descriptions of the important elements of the dia-
gram are given below.

inferiorProcess This maintains the state of the target
process across instantiations of a process
image. For example, the information that
is used to initially create the target process
is stored here,

Access to the process as a whole (such as
stopping, starting, etc.).

threadControl Access to individual thread attributes
(registers, memory, stack, etc.).

procControl

Processimage All manipulation of the connection to the
remote server is managed within the
Remotelmage object. The Remotelmage
object is a derivation of the Processimage
base class that defines tbe standard
interface t & process image.

By using a standard base class for all
access to images (be they exccutables,
core files, or local or remote processes),
the Pl presents a common view of a
process image. This minimizes the impact
on the rest of CXdbh when the intemal

180t 3
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Figure 7.  PI High-Leve! Organization
IOChannel inferiorProcess SignalControl
bpTbl procControl
l xecCo tEx
threadCortrol rocExecControl ecControl
ThreadMemory |[«g—
Processimage memBuffer
ThreadStack 4——‘-—7
Corelmage
ThreadRegisters
i Execlmage
~——»1 Localimage
Remotelmage

representation of a process image is
modified, as was done when remote
images were added.

With these abstractions in piace, all the components of
(CXdb can make requests for control or information on the
target process and the Pl handles the activity regardless of
the location of the process image.

7.0 Summary

The development of CXdb's remote debugging capabili-
ties took roughly | person year (three developers for about
4 months) to complete. The develor>ant w s done in
these general phases:

1 Define the Remote Debugging Protocol.

2. Develop the MIG tools.

3. Develop the CXdb process inage modifications and
implement the ConvexOS remote server.

4. Develop the RTK server (this was really done
concurrently with step 3).

By fully defining the remote protocol and developing the
M.G tools up front, we saved valuable time during the
implementation of the CXdb and remote server code. As
development progressed, small oversights or misunder-
standings in the RDP would be uncovered. The MIG wols
made the task of updating the protocol code a snap.

Ooviously, we hase only begun to leverage the usefulness
of reciote debugging. There are several classes of debug
operations that can benefit from this technology. Some of
them are:

1. Kernel debugging. By embedding the remote server
within the Kernel, CXdb could be used to perform
kernel debugging on a remote machine. This would

CXdb: The Road to Remote Debugging
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provide an improved debugging environment for
kernel developers.

2. Remote debugging over dial-in lines. This would
enabie customer support personnel 10 debug
processes running on a customers machine using only
a standard modem line. This would greatly enhance
tne level of support available to the customers.

3. Embedded systems. Any embedded system which
can have a remote server built into it can benefit from
this technology (in the same way as the Real-time
system).

All-in-all, the developmen: of CXdb's remote capabilities
was a definite success and a step forward in both the func-
tionality and the maintainability of the system.
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A Complete Protocol Command List

This appendix contains a complete list and description of
all the commands within the remote debugging protocol.

A.1 CONNECT Commands

C_CONFIG The C_CONFIG command is the first
packet seat to the remote server after the
low level connecton (i.¢. TCP/IP) has
been established. This command will
inform the remote server of the local
clients protocol version and architecture.
The remote sexver should verify that it can
work properly with the local client and
then reply with a message that indicates
its architecture, protocol version, max
packet size, and an indication of
compatibility. It is the remote servers task
to decide if the protocoi versions are
compatible.

C_DEBUG To aid in debuggiug the connection to the
remote server and the operation of the
server itseif, servers should support a
debug mode which can be enabled with
this command. No reply is expected from
this command.

Abort any operation the remote server
may be performing and reset it to akrown
state. This can be used in response to a
user interrupting the local client during a
long operation on the remote (such &s
reading large amounts of data). There is
00 data associated with this command.

This mesgage is initiated by the remote
server. [f any error other than normal
error detection while handling a command
packet is encountered, then a C_ERROR
packet is sent to the debug client. It is the
responsibility of the client to display the
error message 1o the user.

C_TERMINATE
Terminate the connection between the
local client and the remote server. The
remote server should release any
resources it has acquired on behalf of this
connection and then exit. If the remote
server is controlling an executing process,
then process should either he kiiled (if it
was created) or detached (if it was
attached). There is no data associated with
this command.

C_ABORT

C_ERROR

200t 30
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A.2 FILE Commands

F_OPEN Requests the remote server to open a
specified file for further processing. The
open mode (i.¢ read, read/write, or write)
will also be specified.

Tue reply to the F_OPEN command will
scccify the file handle (like a file
descriptor) for use in later commands
referencing this file.

F_CLOSE Requests the remote server to close a file
previously opened. The file to close is
specified by file haadle.

F_SEEK Requests the remote server (o seek to a
specified location within a given file. The
seek is an absolute offset from the start of
the file; relative seeks are not supported.

F_READ Requests the remote server to read a
specified amount of data from a given file.
The read begins at the current file
position. The current file position is
updated by the number of bytes read.

The reply, which is a multi-packet
message, contains the data requested.

F_WRITE Requests the remote server (o write a
specified amount of data to a given file.
The writing begins at the current file
position. The current file position is
updated by the number of bytes written.

F_SETCWD Specifies the directory pathname that the
remote server should use to interpret
relative path names. The actual
interpretation of the path uame is server
dependent.

A.3 PROCESS Commands

P_SETEXEC Specifics the path name of the executable
1o manipulate. This must be specified
beforc a subsequent P_CREATE
command can be issued. It is the
responsibility of the remote server o
verify that the file exists, can be accessed,
and is a valid executable.

P_SETENV

P_ATTACH

P_DETACH

P_CREATE

P_KILL

Specifies the environment that a created
target process will start with. This may not
be applicable to all architectures.

Auach to a process running on the remote
host. The identifier of the process to attach
to may differ between architectures. On
most Unix systems it will be a process id
(PID).

Detach the current process and let it
continue running outside the remote
servers coutrol.

Create a process from the executable
specified in a previous P_SETEXEC
command. The arguments to supply the
process are specified as part of this
command. It is the responsibility of the
server o perform wildcard expansion and
/O redirection based oii the argument List.

Terminate the target process. Do not send
the reply until the target is killed.

P_PROCINQ Inquire on the target process’ state. The

P_THDINQ

P_GETCWD

P_SETDIR

reply includes, among other things, the
number of threads, the signal and sub-
code that caused it to stop or die and, CPU
time consumed.

Inquire on the state of all threads or a
specific thread. A thread id of -1 indicates
all threads. Information retrieved is
similar to that of P_PROCINQ, but on a
per-thread basis.

Get the current working directory of the
target process.

Set the initial working directory for the
target process. When the remotle server
creates the target process it will first chdir
to this directory.

P_STATECHANGE

This ~ressage ls initiated by the remaote
server. When the server sends this
message it indicates that rhe target process
has changed state (i.c. stopped) for some
reason. The local client should send
P_PROCINQ and P_THDINQ comruands
10 determine the new stte of the process.

CXdb: The Road to Remote Debugging
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P_STOP Stop the target process. The remote server
should perform whatever operation is
necessary (o stop the exezution of the
target process. The repiy should not be
sent until the process has stopped.

P_THDSTEP Preparc the indicated thread to single step
when the process is resumed. A signal
may be specified (o give the thread upon
resumption.

P_THDCONTPrepare the indicated thread to continue
when the process is resumed. A signal
may be specified to give the thread upon
resumption.

P_RESUME Resume the execution of the target
process. The P_THDSTEP and
P_THDCONT commands should have
been used to specify how each thread will

execute prior (0 using this command.

P_RDREGSET
Read a specified register set from a
specific thread within the target process.
Tae binding of register set number to
actual registers is architecture dependent.

P_WRREGSET
Write a specified register set in a specific
thread within the target process.
P_SEEK Requests the remote server to seek o a

specified location within the process
image. The seck is to a virtual address
within the address space of the process;
relative seeks are not supported.

P_READ Requests the remote server (o read a
specified amount of data from the process
imaye. The read begins at the current
image position. The current image
position is updated by the number of bytes
read. Since individual threads can have
private memory the thread to read from

muist be specified.

Requests the remote server to write a
specified amount of data 10 the process
image. The writing begins at the current
image position. The current image
position is updated by the number of bytes
written.

P WRITE

P_STDINDATA
Sends data from the local clieat to be sent
to the target process’ stdin. This is
normally data typed by the user of the
local clieat.

P_STDOUTDATA
This message is initiated by the remote
server. When the server sends this
message it indicates the target process has
written data to stdout and it needs to be
handled by the local client.

P_STDERRDATA
This message is initiated by the remote
server. When the server scads this
message it indicates the target process has
written data to stderr and it needs to be
handled by the local client.

B Protocol Definition Example

A considerable amount of information was relayed in the
description of the protocol definition. it is generally diffi-
cult to see how all the pieces fit together withust a reason-
able example. The example presented below is a trimmed
version of the actual RDP used by CXdb. Figure 7 con-
tains the protocol definition, Figure 8 contains the CXdb
sender driver, figure 9 contains the CXdb receier driver.
Even though some packets have been trimmed from the
definition, it is still very lengthy. Without the MIG tools,
the job of ~onstruciing the protocol bandling modules
would have been very time-consuming, error-prore, and
boring.

Figured.  Exampie Protocol Definition

¥ Copyright (c¢) 1992 Convex Computer
] Corporation

# All rights reserved.

L]

Re+ 4444444444444+ 440044+

¥ Protocol definition

Rt 4 344444414444+ 44 4444040

protocol: RDP
version: 1
max_packet: 10240

22 o1 30

CXdb: The Road to Remote Debugging



Trademarks and Copyrights

start_code_sets:

start_codes: CLTYPE Client types
CXDB

RTKDB

ADTODB

RTKRUN
end_codes:

start_codes: HWARCH Hardware arch
C1

c2

C3

MP1

end_codes:

start_codes: SWARCH Software arch
CX089_1

CX0s10_0

RTK2_0

end_codes:

start_codes: OMODE File open modes
RDONLY

WRONLY

RDWR

end_codes:

start_codes: REGSET Register sets
SCALAR

VECTOR

COMM

end_codes:

start_codes: PSTATE Process state
RUNNING
STOPPED
SIGNALED
EXITED
end_codes:

start_codes: TSTATE Thread state
RUNNING

STOPPED

DEAD

end _codey:

end_code_set::

start_type: COMMAND CMD CFLD

start_category: CONNECT C
start_opcode: CONFIG

field: VERSION _4byte
field: CLTYPE _4byte CLTYPE
field: HWARCH _4byte HWARCH
field: SWARCH _4byte SWARCH
field: USER string
end_opcode:

start_opcode: PASSWORD
field: PASSWORD string
end_opcode:

start_opcode: DEBUG
field: FLAGS _4byte
field: LOG _4byte
field: LOGFILE string
end_opcode:

start_opcode: ABORT
end_opcode:

start_opcode: TERMINATE
end_opcode:

start_opcode: ERROR
field: MSG string
end_opcode:

end_category:

start_category: FILE F
start_opcode: OPEN
field: MODE _d4byte OMODE
field: FILE string
end_opcode:

start_opcode: CLOSE
field: HANDLE _4byte
end _opcode:

start_opcode: SEEK
field: HANDLE _dbyte
field: POS _HBhyte
end_opucode:

start_opcode: READ
field: HANDLE _4byte
field: NBYTES _Hbyte

CXdb: The Road to Remote Debugging
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end_opcode:

start_opcode: WRITE
field: HANDLE _4byte
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcode: SETCWD
field: CWD string
end_opcode:

end_category:

start_category: PROCESS P
start_opcode: SETEXEC
field: PATH string
end_opcode:

start_opcode: SETENV
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcode: ATTACH
include:
/* ConvexOS specific */
end_include:

field: PID _4byte
reset_of fset:

include:

/* ConvexRTS/rtk specific */
end_jinclude:

field: APPNAME string
end_opcode:
start_opcode: DETACH
end_opcode:

start_opcode: CREATE
field: TOTLEN _8byte
fiaeld: LAST _4byte
fleld: NARUS _dbyte
field: ARCGS buffer
end_opcode:

start_opcode: KIILL
end _opcode:

start_opcode: PROCINQ
end_opcode:

start_opcode: THDINQ
field: ALL _4byte
field: TID _4byte
end_opcode:

start_opcode: SETDIR
field: PATH string
end_opcode:

start_opcode: STATECHANGE
field: PROCNUM _dbyte
end_opcode:

start_opcode: STOP
end_opcode:

start_opcode: THDSTEP
fleld: TID _4byte
field: SIGNAL _d4byte
end_opcode:

start_opcode: THDCONT
field: TID _4byte
field: SIGCNAL _dbyte
end_opcode:

start_opcode: RESUME
end_opcode:

start_opcode: RDREGSET
fliald: TID _4byte

field: REGSET _d4byte REGSET
end_opcods;

start_opcode: WRREGSET
field: TID _4byte

field: TOTLEN _8byte

fleld: LAST _4byte

field: REGSET _4byte REGSET
fimld: DATA buffer
end_opcode:

start_opcode: SEKEK
field: TID _4byte
field: VADDR _Bbyte
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end_opcode:

start_opcode: READ
field: TID _4byte
field: NBYTES _8byte
end_opcode:

start_opcode: WRITE
field: TID _4byte
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcode: STDINDATA
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:

start_opcocde: STDOUTDATA
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcocde:

start_opcode: STDERRDATA
field: TOTLEN _8byte
field: LAST _d4byte
field: DATA buffer
end_opcode:

end_category:
end_type:

start_type:

start_category: CONNECT C
start_opcode: CONFIG
field: VERSION _d4byte
field: COMPAT _4byte
field: PWREQ _4byte

field: HWARCH _4byte HWARCH
field: SWARCH _4byte SWARCH

end _opcode:

start_opcode: PASSWORD
field: VALID _dbyte
end_opcode:

REPLY RPLY RFLD

start_opcode: DEBUG
end opcode:
start_opcode: ABORT
end_opcode:

start_opcode: TERMINATE
end_opcode:
end_category:

start_category: FILE F
start_opcode: OPEN
field: HANDLE _d4byte
end_oupcode:

start_opcode: CLOSE
end_opcode:

start_opcode: SEEK
field: POS _Bbyte
end_opcode:

start_opcode: READ
field: TOTLEN _8byte
field: LAST _4byte
field: DATA huffer
end_opcode:

start_opcode: WRITE
field: NBYTES _8byte
end _opcode:

start_opcode: SETCWD
end_opcode:
end_category:

start_category: PROCESS P
start_opcode: SETEXEC
en i_opcode:

start_opcode: SETENV
end_opcode:

start_opcode: ATTACH
ond_opcode:

start _opcode: DETACH
end_opcacde:
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start_opcode: CREATE
end_opcode:

start_opcode: KILL
end_ _opcode:

start_opcode: PROCINQ
field: STATE _4byte PSTATE
field: TCNT _4byte
field: SIGNAL _4byte
field: SUBCODE _4byte
fiald: ESTATUS _4byte
field: CORE _4byte
fiald: UCPUSEC _4byte
field: UCPUMS _4byte
field: SCPUSEC _4dbyte
field: SCPUMS _d4byte
field: PID _4byte
end_opcode:

start_opcode: THDINQ

field: TOTLEN _8byte

field: LAST _4byte

field: NTHDS _4byte

include:

/* Remaining flields repeat par
thread. Offesets are relative to
thread entry.*/

end_include:

reset_offset:

field: TID _4byte

field: STATE _4byte TSTATE
field: SIGNAL _4byte
[ield: SUHCODE _4byte
field: WPID _4byte

f1eld: UCPUSEC _4byte
ficld: UCPUMS _4dbyte

start_opcode:
end_opcode:

start_opcode:
end_opcode:

start_opcode:
end_opcode:

start_opcode:
end_opcode:

start_opcode:
end_opcode:

start_opcode!
field: TOTLEN

STATECHANCE

STOP

THDSTEP

THDCONT

RESUME

RDREGSET
_8byte

field: LAST _dbyte
field: DATA buffer

and_opcode:

start_opcode:
end_opcode:

start_opcode:

WRREGSET

SEEK

field: VADDR _8byte

end_opcode:

start_opcode:
field: TOTLEN

READ
_Hbyte

fleld: LAST _4byte
fleld: DATA buffer

end_opcode:

start_opcode: WRITE
. bl 4
fleld: SCPUSEC _dbyte field: NBYTES _Hbyte
field: SCPUMS _4bytae
and opcode:
e lude:
/* TNAME field only exists for . .
ConvexRTS/rtk architecture */ start_opcode: STHINDATA
end include: end_opcode:
field: THAME utring
end opeode atart _opeode: STDOUTDATA
end opcode:
start opeode: SETDIR
ond opende ntart _opcode: STOERRDATA
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end_opcode:
end_category:

end_typ :
end_protocol:

Figure 8. Example Sender Specifioation

# Copyright (c) 1992 Convex Computer
Corporation

¢ All rights reserved.
]

create: sender
name_pattern: cltand_\c_&t

start_type: COMMAND

start_category: CONNECT
start_opcode: _all_
end_opcode:
end_category:

start_category: FILE
start _opcode: _all_
end_opcode:
ond_catagory:

utarl. _category: PROCESS

Juut do PLD, APPNAME im for

tealt ime
starl _opcode: ATTACH
nelect (PID)
ond_opcode!

¢ Copyright (c) 1992 Convex Computer

" Corporation
# All rights reserved.

[ ]

create:

receiver=digpatchPacket, ,meg=printt
name_pattern: clcrcv_Sc_Wt

start_include:

#include <stdio.h>»

#include ®“common/ExecObject.h”
tinclude "pi/Remoteimage.h”
#include “pi/SigchldQueue.h”
#include “iomm/rmtReceive.h”
end_include:

start_type: COMMAND
start_category: CONNECT
etart_opcode: ERROR
call handleRemoteError
end_opcode:

and_category:

wtart_cataegory: PROCESS
atartv_opcode: STATECHANGE

call SigchldQueue.handleStatechange

end_opcode:

utart_opcode: STDOUTDATA
call handleRamot ast dout.
end_opcoda;

wtart _opcode STDERRDATA
call hand)alkemot et dard

snd_opcrode:

whd_cateygory:
and_typeat

ntart _type: REPLY

ntart _opcode:r _all_ utart _category: FILE
e opcode: utart _opcods s OPEN
handle fatl KaecObjoct o :handloopentaal
call ExecoObject : thandlepaniteply
enil category:
and apeode;
end type:
utatt opeode: CLOLE
handle fall Execobfect - chand oo Sonelaig
call ExacOhjoct -I|.1||-|ln"lun|nlu||ply
1 opreade:
Figure 10. Example Receiver Specification and opcade
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starc_opcode: READ

handle_fail ExecObject::handleReadFail
call ExecObject::handleReadReply
end_opcode:

start_opcode: WRITE

handle_fail ExecObject::handleWriceFajl
call ExecObject::handleWriteRaeply
end_opcode:

start_opcode: SEEK

handle_fail ExecObject::handleSeekFail

call ExecObject::handleSeekReply
end_opcode:

start_opcode: SETCWD

handle_fail Serverobj::handleSetCwdFail
call ServeroObj::handleSetCwdReply
end_opcode:

starc_opcode: SETFS

handle_fail RemotelImage::handleStdFalil
call Raemotalmage::handleStandardReply
end_opcode:

end_category:
start_category: CONNECT

starr_opcode: CONFIQ

handle_faill ServerObj::handleContigFail
call ServerObj: handleConf{gReply
awnd_opcode:

ytart _opcode; PASSWORD

hatildloe_fall SearverObj: :handlestdFallure
call ServarObj::handlaParswordReply

o _opeode:

utart _opcode: DERUG

handloe_fail ServeroObt: :handlegtdrailure
call ServerObhj::handlesiandardReply

ond opcode:

sttt _opeode s ABORT

handle fall Setverob|: :handleAbort IFaf |
call Sorveirobf:chandleAbor tReply

I |||u‘|)c|l‘1

ond catagory

Lrart category s PROCESH

qbarlt o onde o SETEXEC

handle_fail RemoteImage: :handleStdFail
call Remotelmage::handleStandardReply
end_opcodea:

starc_opcode: SETENV

handle_fai]l RemotelImage::handleStdFalil
call Remotelmage::handleStandardReply
end_opcoda:

start_opcode: ATTACH

handle_fail Remotelmage::handleStdFail
call Remotelmage::handleStandardReply
end_opcods:

start_opcode: DETACH

handle_fail Remotelmage::handleStdFail
call Remotelmage::handleStandardReply
end_opcode:

start_opcode: CREATE

handle_fail Remotelmage::handleStdralil
call Remotelmage::handleStandardReply
and_opcode!

start_opcode: KILL

handle_fail Remotelmage::handleStdFail
call Remotelmage::handleStandardReply
and_opcode:

start_opcode: PROCINQ

handle_fail Remotelmage::handlestdrail
call RamotelImage::handleProcStateReply
end_opcode:

gtart_opcode: THDINQ
handle_fall Ramotelmage: :handlestdFatl
saelect (FAILCODE, _fc, ungigned lnt)
uelect (‘TOTLEN, _totlen, unsligned lung
long)

galect (LAST, _laest, boolean)
walact (NTHDS., _nthda, unaigned int)
rawcall

Romot e Image: :handlaThreadiit at aReply
and_opcode:

wtar! _opcode. BETDIR

handle_fail Serverob|: :handlelitdPailure
vall dServerObh): handlatitandardieply
aid_opicode:

ut art _oprode: 57OP

handle fall Remotelmags: hand)lenitdball
call Nemot elmage - handlostandardiloply
el npcode:
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start_opcode: THDSTEP

handle_fail RemoteImage::handleStdFail
call Remotelmage::handleStandardReply
end_opcode:

start_opcode: THDCONT

handle_fail RemotelImage::handleStdFail
call Remotelmage::handleStandardReply
end_opcode:

start_opcode: RESUME

handle_fail Remotelmage::handleStdFail
call RemotelImage::handleStandardReply
end_opcode:

start_opcode: RDREGSET

handle_fall RemotelImage::handleStdFail
call Remotelmage::handleReadRegsReply
and_opcode:

start_opcode: WRREGSET

handle_fail Remotelmage::handleStdFail
call Remote¢Image::handleStandardReply
end_opcode:

start_opcode: SEEK

handle_fail Remotelmage::handleStdFaijl
call Remotelmage::handlaSeekReply
end_opcode:

start_opcode: READ

handle_fall Remotelmage::handleStdFall
vall Remotelmage::handleReadReply
end_opcode:

start_opcode: WRITE

handle_fall Remotelmage::handleStdFail
call Remotelmage::handleWwriteReply
end_opcode:

ubtart_opcode: STDINDATA

handle_fall Remotelmage: :handleStdFall
all Remotelmayge::handleStandardieply
end _opcode:

This is an example of the generated code for the sender
driver that handles the C_CONFIG and P_ATTACH com-
mands.

vold
clesnd_C_CONFIG_COMMAND (
BaseRdpTransport & link, unsigned int
~version, unsigned int _cltype, unsigned
int _hwarch, unsigned {nt _swarch,
unsigned int _user_len, const void *
_user_ptr)

(

char *datap = Packet + RDP_PACKET_HDRSZ;
int type = RDP_PACKET_COMMAND;

int catagory = RDP_CATEGORY_CONNECT;
int opcode = RDP_CMD_C_CONFIG;

DatalLen = 0;

SET_RDP_HDR_FLD(Packet, TYPE, type);

SET_RDP_HDR_FLD(Packet, CATEGORY,
category):

SET_RDP_HDR_FLD (Packet ,OPCODE, opcode) ;

/* Now that the header ls setup, do each
fleld */

DataLaen =RDP_CFLD_C_CONFIG_VER"ION_OFF;

SET_RDP_CMD_FLD(datap, C_CONFIG,
VERSION, _version);

DataLen+=RDP_CFLD_C_CONFIG_VERSION_LEN;

DatalLen = RDP_CFLD_C_CONFIG_CLTYPE_OFF;

SET_RDP_CMD_FLD(datap, C_CONFIG,
CLTYPE, _cltype);

DataLen +=zRDP_CFLD_C_CONFIG_CLTYPE_LEN;

DataLen = RDP_CFLD_C_CONFIG_HWARCH_OFF;

SET_RDP_CMD_FLD({datap, C_CONFIG,
HWARCH, _hwarch};

DataLen +=RDP_CFLD_C_CONFIG_HWARCH_LEN;

DatalLen » RDP_CFLD_C_CONFIG_SWARCH_OFF;

SET_RDP_CMD_FLD(datap, C_CONFIG,
SWARCH, swarch);

DataLen +=RDP_CFLD_C_CONFIG_SWARCH_LEN;

Datal.en = RDP_CFLD_C_CONFIG_USER _OFF;
end_cateqgory SET_RDP_CMD_STRING_LEN (dat.ap,

C_CONFIG, NSER, _uuser_len);

srad type: Datal,en +» RDP_AFLD_STRING_STRLEN _LEN,
GET_RDP_CMD_STRING_PTR (dat ap, C_CONF [,
HOSER, Dataltyp),;
atrepy (DataPtr, (congt char®) _user ptri;

F'gu_'.“ " _E_.":_T!_._‘_]Tt'_‘:d Sender Code Datal.an += _uner_len o 1
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SET_RDP_HDR_FLD({Packet, DATALEN,
Datalen) ;

/* Now that the packet is built,send {t*/

link.write(Packet, RDP_PACKET_HDRSZ +
DatalLen);

recurn;

}

void

cltsnd_P_ATTACH_COMMAND (
BaseRdpTransport & link,
unsigned int _pid)

char *datap = Packet + RDP_PACKET_HDRSZ;
int type = RDP_PACKET_COMMAND;

int category = RDP_CATECORY_PROCESS;
int opcode = RDP_C.®D_P_ATTACH;

DacaLen = 0;

SET_RDP_HDR_FLD(Packet, TYPE, type);

SET_RDP_HDR_. uD{Packet, CATEGOQY,
category);

SET_RDP_HDR_FLD(Packet,OPCODE, opcode) ;

/* Now that the header im setup, do
each fiald */

Datalen = RDP_CFLD_P_ATTACH_PIN_OFF;
SET_RNP_CMD_FLD(datap, P_ATTACE.

PID, _pid);
DataLen += RDP_CFLD_P_ATTACH_PID_LEN;

SET_RDP_HDR_FLD(Packet, DATALEN,
Datalen) ;

/* Now that the packet is built,send .t*/

link.write(Packet, RDP_PACKET_HDRSZ +
Datalen);
retuin;
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Motivation

« Typical computing configurations include cooperative
networks with muitiple, often heterogeneous, hosts.

« Many special-purpose compute servers, real-time
systems for example, require front-end machines to
provide access and control.

+ While performing kernel debugging the application
environment of the target machine is not active.
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Remote Debugging Environment

Remote Host
B
Remote |
daemon
i : Remote
. : CXdb opens a channel to the Remote Server
Disk = : Daemon (which can be inetd). Iy
Target : ,
Process :
| The Daemon then creates the Remote ¥ (D
: Server which controls the target process. | —
: The Remote Debugging Protocol C

 specifies tne communication protocol
! across the remote channcl

: The local client accesses the remote
: process and file system via protocol
commands.
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Remote Protocol

RDP Packet Layout

Packftlgada Bedy
Type Category opcode Data Length Packet Data......
0 1 2 4 7 8 n
byte offset
Type There are two types of RDP packets: Command and Reply.

p.ot all command packets require a reply. Strict command-

reply model.

Category There are three major operation categories:
CONNECT Control of remote connection and

configuration. Includes session initiation,
version arbitration, configuration controi, and

session termination.

FILE Access to files on the remote host. Includes

open, seek, read, write, and close.

PROCESS Access to and control of the remote process.
Includes creating, attaching, and detaching a
remote process; access to process memory,

registers, attributes, and state.

Opcode The specific operation, or command, within a category.

There are currently over 120 commands In all three
categories.

Data Length The length of the body of the packet. This may be zero.

Packet Data The data associated with the command or reply, if any.

CXdb: The Road tc Remote Debugging
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Message Interface Genera
Design Goals:

¢ Decrease the time required to develop the
protocol support modules.

¢ Increase the maintainability of the protocol
support modules.

+ Support development of servers in both C
and C++.

o

or

¢ Support our automated testing facilities
already in use on CXdb.

Supported Features:

o Generation of test drivers for use in
automated testing.

+ Generation of sending functions that
construct and send protocol packets.

+ Generation of receiving functions that break
apart protocol packets.

+ Generates code in both C and C++.

CXdb: The Road to Remote Debugging Streepy - 6/17



Protocol Definition

+ Machine-processable description of the
protocol.

+ Used to generate an include file which
contains manifest constants that describe
the protocol.

+ Used to control the process of generating
source modules that automatically handle
operations on the protocol packets.

High Level Protocol Definition Structure

PROTOCOL: <name>
VERSION: <version>
MAX_PACKET: <size>

START_CODE_SETS:
<code set definitions>
END_CODE_SETS:

START_TYPE:
<packet type definitions>
END_TYPE:

END_PROTOCOL:
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Example Definition -
protocol: RDP
version: 1
max_packet: 10240
gtart_code_sets:
start_codes: CLTYPE Client types
CXDB
RTKDB
end_codes:
start_codes: HWARCH Hardware arch
Cl
C2
C3
MP1
end_codes:
end_code_sets:
start_type: COMMAND CMD CFLD
start_category: CONNECT C
gstart_opcode: CONFIG
field: VERSION _4byte
field: CLTYPE _4byte CLTYPE
field: HWARCH _4byte HWARCH
field: SWARCH _4byte SWARCH
field: USER string
end_opcode:
CXdb: The Road to Remote Debugging Streepy - 8/17



start_opcode: DEBUG
field: FLAGS _4byte
field: LOG _4byte
field: LOGFILE string
end_opcode:

start_opcode: ABORT
end_opcode:

start_opcode: TERMINATE
end_opcode:

start_opcode: ERROR
field: MSG string
end_opcode:

end_category:
start_category: FILE F
start_opcode: OPEN
field: MODE _4byte OMODE
field: FILE string
end_opcode:

start_opcode: WRITE
field: HANDLE _4byte
field: TOTLEN _8byte
field: LAST _4byte
field: DATA buffer
end_opcode:
end_category:

CXdb: The Road to Remote Debugging
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start__category: PROCESS P

start_opcode: ATTACH
include:

/* Convex0S specific */
end_include:

field: PID _4byte
reset_offset:

include:

/* ConvexRTS/rtk specific */
end_include:

field: APPNAME string
end_opcode:

start_opcode: CREATE
field: TOTLEN _8byte
field: LAST _4byte
field: NARGS _4byte
field: ARGS buffer
end_opcode:

start_opcode: STATECHANGE
field: PROCNUM _4byte
end_opcode:

end_category:
end_type:
end _protocol:

CXdb: The Road to Remote Debugging
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Driver Specifications

+ The MIG tools generate source code to manage the
packets within the protocol.

+ The source code generation is controlled by the
protocol definition and a driver specification.

+ Four kinds of drivers are supported: generators,
dumpers, senders, and receivers.

+ These four types are also broken into two general
categories: senders (generators and senders) and

receivers (dumpers and receivers).
[isn’t the evolution of names wonderful?]
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Example Driver Spec

create: sender
name_pattern: cltsnd_%c_%t

start_type: COMMAND

start_category: CONNECT
start_opcode: _all_
end_opcode:
end_category:

start_category: FILE
start_opcode: _all_
end_opcode:
end_category:

gtart_category: PROCESS

# Just do PID, APPNAME is for real-time
start_opcode: ATTACH

select (PID)

end_opcode:

start_opcode: _all_
end_opcode:

end_categcry:
end type:
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Example Receiver Spec

create: receiver=dispatchPacket,msg=printf
name_pattern: cltrcv_%c_%t

start_include:

#include <stdio.h>

#include “common/ExecObject.h”
#include “pi/Remotelmage.h”
#include “pi/SigchldQueue.h”
#include “iomm/rmtReceive.h”
end_include:

gtart_type: COMMAND
start_category: CONNECT
start_opcode: ERROR
call handleRemoteError
end _opcode:

end_category:

start__category: PRCCESS
start_opcode: STATECHANGE

call SigchldQueue.handleStatechange
end_opcode:

start_opcode: STDOUTDATA
call handleRemoteStdout
end_opcode:
end_category:
end_type:

CXdb: The Road to Remote Debugging  Streepy - 1317
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MIG Usage Experience

+ All design goals were met.

+ Development time was greatly reduced and
maintainability was dramatically increased.

+ The table below shows some source code statistics.

Source Lines
MIG sgatrce c?di -Erl (22% comments) 3320
Protocol Definiion 663
Driver specifications 991
Total 4974
Generated source code 21341J
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Remote Server Architecture
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CXdb Process Interface Abstractions

CXdb: The Road to Remote Debugging

IOChannel inferiorProcess SignalControl
bpTbl procControl
{ | tExecControl
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Conclusions and Future Directions

« The implementation of the CXdb remote debugging
system used several features not typically found in
earlier (or traditional) systems:

=The development of the MIG decreased development time and
maintenance overhead in the protocol manipulation routines.

=Software abstractions within the local debug client minimized the
modifications required to implement remote capabilities.

=The ciean separation of tasks between the debug client and remote
server decreased the complexity and development time of the
remote server. The remote server is a machine level debugger.

+ Several classes of debug operations can benefit from

remote debugging technology: Kernel debugging,
debugging over dial-in lines, and handling embedded

systems.
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User Needs Discussion Summary

The following Is an unordered list of opinions and desired debugging capabilities expressed
by the group during the user needs discussion.

minimize context switches

intuitive and familiar user interface
easy to use for the first-casual user
easy access to complex features

breakpoint dependencies
break at locatio A if last break location was location B

support a mix of shared memory and dist. ibuted memory models
cvercome the user education problem

sup-port debugging large codes
debugger impact on code performance an issue for large codes

effectively handle the transition from fortran 77 to fortran 90
perfonnance, complexity and portability concerns

provide tools to debug code someone else wrote
program decomposition, etc.

MIMD extension of where tree
fast dynamic print statements
fast tracing via patching and/er hardware

post mortum static analysis tools
apply fortran heuristics

debugging support for homogeneous clusters of workstations
hardware support for proflling, state at interrupt, watchpoints, tracing (buffer)
tool integration

dcbug optimized code
code in continuous state of development



encourage users to use a debugger
overcome perception that debuggers are hard to use

locaie source statement that caused program abort

standards would facilitate debugger development
for example, user (comms~d line and GUI) and symbol-table interface

efTective support for low-level debuggin,, due to
must occasicnally debug code with no symbol table
program state has changed from abort condition
sometimes required due to lack of debugger functionality

graphical representation of
program structure integrated with process control
data structures

breakpoint at entry if called by a particular routine

incremental compilation (patching) linked with breakpojnts
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