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RIPPLE: A NEW MODEL FOR INCOMPRESSIBLE

FLOWS WITH FREE SURFACES

D. B. Kothe and R. C. Mjolsness *

Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

A new free surface ow model, RIPPLE, is summarized. RIPPLE obtains �nite di�erence solutions for

incompressible ow problems having signi�cant surface tension forces at free surfaces of arbitrarily complex

topology. The key innovation is the Continuum Surface Force (CSF) model which represents surface tension

as a localized volume force. Other features include a higher-order momentum advection model, a volume-

of-uid free surface treatment, and an e�cient two-step projection solution method. RIPPLE's unique

capabilities are illustrated with two example problems: low-gravity jet-induced tank ow, and the collision

and coalescence of two cylindrical rods.

Introduction

RIPPLE models transient, two-dimensional, incompressible uid ows with surface tension on free

surfaces of general topology.1 Finite di�erence solutions to the incompressible Navier-Stokes equations are

obtained on an Eulerian, rectilinear mesh in Cartesian or cylindrical geometries. Free surfaces are represented

with volume-of-uid (VOF) data on the mesh. Surface tension is modeled as a volume force derived from

the Continuum Surface Force (CSF) model.2 A two-step projection method is used for the incompressible

uid ow solutions, aided by an incomplete Cholesky conjugate gradient (ICCG) solution technique3 for

the pressure Poisson equation (PPE). Momentum advection is estimated with the weakly monotonic, second

order upwind method of van Leer1. Flow obstacles and curved boundaries interior to the mesh are represented

with a partial cell treatment.

Presented as Paper 91-3548 at the AIAA/NASA/OAI Conference on Advanced SEI Technologies,
Cleveland, OH, Sept. 4{6, 1991.
* Sta� Members, Fluid Dynamics Group T-3, Theoretical Division, Mail Stop B216.
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The RIPPLE numerical scheme contains modern algorithms that reect recent improvements and

advances,2;3;4 resulting in increased robustness and accuracy relative to SOLA-VOF algorithms for incom-

pressible ow.5;6;7 Because the VOF technique is both a practical and accurate Eulerian free surface model,

we have retained the VOF representation of uid interfaces8 as the one common element between RIPPLE

and SOLA-VOF models.

RIPPLE is a versatile tool capable of modeling a wide range of applications, being especially suited

for low-Bond number, low-Weber number, and low-Capillary number ows in which uid accelerations are

weak and uid restoring forces (e.g., surface tensions) are strong. A brief summary of the physical model

and numerical algorithms comprising RIPPLE is given. Its properties are then illustrated by two example

calculations.

Physical Model

Below we briey discuss the RIPPLE models for incompressible hydrodynamics, free surfaces, surface

tension, wall adhesion, and ow obstacles.

Hydrodynamics

The governing equations are the incompressibility condition,

r � ~V = 0 ; (1)

and the transport of uid momentum,

@~V

@t
+r �

�
~V ~V
�
= �1

�
rp + 1

�
r � � + ~g +

1

�
~Fb ; (2)

where ~V is the uid velocity, � the density, p the scalar pressure, � the viscous stress tensor, ~Fb a body force,

and ~g the acceleration due to gravity. The nonlinear advection term is written in conservative form. The

viscous stress tensor � is Newtonian,

� = 2�S ; S =
1

2

��
r~V

�
+
�
r~V

�T�
; (3)

where S is the rate-of-strain tensor and � is the coe�cient of dynamic viscosity.
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Free Surfaces

To avoid the topological restrictions associated with modeling free surfaces with logically-connected

Lagrangian points, as in the LINC technique,9 or with logically-connected massless particles, as in the MAC

technique with surface tension,10;11 free surfaces are represented in RIPPLE with discrete \volume-of-uid"

(VOF) data on the mesh. The VOF method, pioneered by Hirt and Nichols,5;8 is a powerful tool that enables

a �nite di�erence representation of free surfaces and interfaces that are arbitrarily oriented with respect to

the computational grid.12 It has been used with success in both Eulerian and ALE schemes.4 In the VOF

technique, an exact representation of the free surface is not retained. Characteristic marker data (i.e., the

VOF function F ), advected as a Lagrangian invariant, is propagated according to

dF

dt
=

@F

@t
+
�
~V � r

�
F = 0 ; (4)

where F (~x; 0) is given by initializing the free surface geometry. In RIPPLE, F is equal to 1 in the uid, 0

in the void, and 0 � F � 1 at the free surface. Since F is the only available free surface information, an

approximate reconstruction of the free surface must be performed to obtain the free surface location.

Sharp interfaces are maintained by insuring sharp gradients in F . This results numerically from a

special treatment of the advective term in Eq. (4), which models the movement of the uid through the

mesh. A standard treatment of this term (i.e., a centered di�erence or donor cell approximation) leads to

an unacceptable amount of numerical di�usion and spreading of the free surface region. An approximate

free surface reconstruction is the crucial step necessary for computing accurate ux volumes needed for the

advective term. The reconstructed free surface is not normally continuous, instead it is represented as a set

of discrete, discontinuous line segments.

Surface Tension

Surface tension at free surfaces is modeled in RIPPLE with a localized volume force prescribed by the

CSF model.2 Ideally suited for Eulerian interfaces of arbitrary topology, the CSF model's volume reformu-

lation is a new and radical departure from conventional �nite di�erence representations of surface tension.

We discuss the CSF model briey here, and refer the interested reader to Ref. 2 for further details on theory

and numerical implementation.
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In RIPPLE, viscous e�ects are neglected at the free surface and the surface tension coe�cient � is

assumed to be constant, implying that the surface force has no tangential component. Thus, the stress

boundary condition reduces to Laplace's formula,13

ps � p� pv = �� ; (5)

where the surface pressure ps is the surface tension-induced pressure jump, pv the vapor pressure, and � the

mean free surface curvature, given by:2

� = � (r � n̂) = 1

j~nj
�� ~n

j~nj � r
�
j~nj � (r � ~n)

�
; (6)

where the unit normal n̂,

n̂ =
~n

j~nj ; (7)

is derived from a normal vector ~n,

~n = rF ; (8)

that is the gradient of VOF data. Because the curvature is proportional to the second derivatives of the VOF

function, surface force modeling is extraordinarily sensitive to small errors in F . The CSF model results in

a more regular evolution of uid surfaces.1;2

In the CSF model, surface tension is reformulated as a volume force ~Fsv satisfying

lim
h!0

Z
�V

~Fsv(~x)d
3x =

Z
�S

~Fsa(~xs)dS ; (9)

where ~xs is a point on the surface, ~Fsa(~x) the surface tension force per unit interfacial area,

~Fsa(~xs) = ��(~xs)n̂(~xs) ; (10)

and h is a length comparable to the resolution a�orded by a computational mesh with spacing �x. The

area integral is over the portion �S of the surface lying within the small volume of integration �V . The

�nite di�erence approximations in RIPPLE replace free surface discontinuities with �nite thickness transition

regions within which the uid properties, or \color," vary smoothly from uid to vapor over a distance of

O(h). The volume force, nonzero only within free surfaces, is given in the CSF model by2

~Fsv(~x) = ��(~x)
r~c(~x)
[c]

; (11)
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where ~c is the uid color, equated with the VOF function F in RIPPLE, and [c] is the jump in color, equal

to 1.0 when ~c = F . The color function, which serves as a unique material identi�er, is here most simply

taken to be the VOF function. When ~c = F , the volume force is computed accurately for any two uids

meeting at the interface. In particular, the two uids could have equal densities.

With the volume force ~Fsv, surface tension e�ects at free surfaces are modeled as a body force in the

momentum transport equation (Eq. (2)):

~Fb = ~Fsv : (12)

The volume force ~Fsv is of course in addition to other arbitrary body forces present in the ow.

Instead of a surface tensile force or a surface pressure boundary condition applied at a discontinuity, a

volume force ~Fsv in Eq. (11) acts on uid elements lying within �nite thickness transition regions replacing

the discontinuities. It is not appropriate, therefore, to apply in �nite di�erence schemes a pressure jump

induced by surface tension at a free surface \discontinuity." In this model surface tension acts everywhere

within the transition region through the volume force ~Fsv.

Wall Adhesion

Wall adhesion is the surface force acting on uid interfaces at points of contact with \walls," which are

static, rigid boundaries in RIPPLE. Wall adhesion forces are calculated in the same manner as volume forces

due to surface tension are calculated, using Eq. (11) for ~Fsv, except that a boundary condition is applied to

the free surface unit normal n̂ prior to evaluating Eq. (11). The condition is applied only to those vertex

normals lying on or near a rigid boundary, which is either an interior obstacle boundary or a mesh boundary.

Those forces ~Fsv attributed to wall adhesion are therefore only in cells within proximity of a wall.

The wall adhesion boundary condition becomes an expression for the unit free surface normal n̂ at points

of contact ~xw along the wall:

n̂ = n̂w cos �eq + t̂w sin �eq ; (13)

where �eq is the static contact angle between the uid and the wall, n̂w is the unit wall normal directed

into the wall, and t̂w is tangent to the wall, normal to the contact line between the free surface and the

wall at ~xw. The equation uses the geometric identity that �eq, de�ned as the angle between the tangent to
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the uid and t̂w, is also the angle between n̂w and n̂. The unit tangent t̂w is directed into the uid, and is

computed from Eq. (8) with the VOF function F reected at the wall. The angle �eq is not a uid material

property, but a system property, depending also on properties of the wall itself. The value of �eq is measured

experimentally when the uid is at rest. We emphasize that Eq. (13) is applied at a wall whether or not

VOF data indicates that the uid is actually making an angle of contact equal to �eq.

The RIPPLE treatment of wall adhesion is both a physical and a numerical approximation. It is a

physical approximation because �eq is assumed to be a constant when in reality it depends on the local wall

and uid conditions (i.e., velocity, viscosity, and surface tensions). The numerical approximation results

from an inexact treatment of the wall geometries. Both approximations, however, do not prevent the wall

adhesion forces in RIPPLE from being qualitatively correct.

The physical approximation in wall adhesion stems from using the static angle �eq rather than the

\moving" contact angle �M more appropriate to a moving contact line. Unless RIPPLE were applied to a

very localized study of a moving contact line, it would not have the resolution capability to make use of the

actual moving contact angle, which cannot currently be measured. The angle �M depends in a complex way

on material and uid dynamic properties, being at the very least a function of �eq and the capillary number

Ca = V �=�. For many materials the dependence has not been well characterized. The present algorithm

should be adequate when the di�erence between �M and �eq is not very large, so RIPPLE's wall adhesion

treatment is likely to be a good approximation when �eq is small.

Flow Obstacles

Obstacles to ow are modeled in RIPPLE as a special case of two-phase ow, in which the �rst phase

is the uid, with volume fraction �, and the second \phase" is the obstacle, with volume fraction 1:0� �.

The obstacle is characterized as a \uid" of in�nite density and zero velocity. Since all calculations are

performed in the obstacle frame, obstacles are static, so the volume fraction � is a time-independent scalar

�eld, � = �(~x), that is a step function:

�(~x) =

�
1:0; in the uid;
0:0; in the obstacle.

(14)

The volume fraction �, referred to as a \partial ow ag", is a perfect step function only when obstacle

boundaries coincide with mesh lines representing lines of constant x and y. In general, however, obstacle
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boundaries snake arbitrarily through the mesh, cutting through cells. This gives rise to a continuous range

of � from 0.0 to 1.0, which is necessary to avoid a \stair-step" model of a curved interior obstacle boundary.

Those cells having a value of � satisfying 0 < � < 1 are termed \partial ow cells" because a portion � of

their �nite di�erence volume is open to ow and the remaining portion 1:0� � is occupied by an obstacle

closed to ow.

Numerical Model

Finite di�erence conventions follow that of the MAC scheme,10 in which x- and y-velocity components

are located at cell face centers on lines of constant x and y, respectively, and the pressure and VOF function

are located at cell centers. From Fig. 1, the pressure pi;j and VOF function Fi;j are located at ~xi;j =

(xi�1=2 + �xi=2)̂{ + (yj�1=2 + �yj=2)|̂. The x-velocity ui+1=2;j resides at ~xi+1=2;j and the y-velocity vi;j+1=2

resides at ~xi;j+1=2.

Eqs. (1) and (2) are solved in �nite di�erence form with a two step projection method involving the

time discretization of the momentum equation, namely

~eV � ~V n

�t
= �r �

�
~V ~V
�

n +
1

�n
r � � n + ~g n +

1

�n
~Fb

n ; (15)

~V n+1 � ~eV
�t

= � 1

�n
rp n+1 ; (16)

and

r � ~V n+1 = 0 : (17)

In the �rst step, a velocity �eld
~eV is computed from incremental changes in the �eld ~V n resulting from

viscosity, advection, and gravitational accelerations, and body forces. In the second step, this velocity �eld

is projected onto a zero-divergence vector �eld. The two equations in the second step can be combined into

a single Poisson equation for the pressure,

r �
�
1

�n
rp n+1

�
=
r � ~eV
�t

; (18)

which will be referred to as the pressure Poisson equation (PPE). Although the incompressible solutions in

RIPPLE are for constant density uids, the density in Eq. (18) is retained inside the divergence operator.
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This results in an extra term in the PPE proportional to r�, which contributes to the pressure solution

within the free surface transition region where r� 6= 0. The PPE is formulated with the pressure p and

density � as separate terms, instead of using a single term, the kinematic pressure, p=�, as in the majority

of incompressible models.

Momentum Advection

A �nite volume approximation of conservative momentum advection results from integrating the advec-

tion term in Eq. (15) over the control volume Vcv, givingZ
Vcv

r �
�
~V ~V
�
dV =

X
s

h~V is
�
~Vs � n̂s

�
~�As � n̂s ; (19)

where Gauss's theorem has been used and the area integral has been expressed in discrete form as a sum

over sides (s) surrounding the control volume. At each side, the velocity is ~Vs, the unit outward normal is

n̂s, and the area is �As = ~�As � n̂s. The ux velocity is ~Vs � n̂s, so the ux volume is (~Vs � n̂s)�As�tadv , where

�tadv is the advection time step. The bracketed term, h~V is, is the quantity to be uxed, which is the velocity

for constant density momentum advection.

The summation term in Eq. (19) becomes, e.g.,"
r�i+1huiRu i+1;j � r�i huiLu i;j

#
�yj +

"
huiTv i+1=2;j+1=2� huiBv i+1=2;j�1=2

#
�xi+1=2

for integration over the x-momentum control volume. The superscript � on the radius r is a constant equal

to 1 in cylindrical and 0 in Cartesian geometry. The bracketed terms, i.e., huiR, are estimated with either an

interpolated donor cell, a centered di�erence, or an upstream, second-order van Leer approximation.1 The

van Leer algorithm gives the best results in practice, because it attempts to preserve monotonicity of the

uxed quantities within a second order scheme.

An advection �nite di�erence operator, ~Lk, can be de�ned for component k in Eq. (19):

~Lk

�
~V
�
=

�tadv
Vcvk

X
s

h~V is
�
~Vs � n̂sk

�
~�As � n̂sk ; (20)

where Vcvk is Vcvx = r�i+1=2�xi+1=2�yj for x-momentum and Vcvy = r�i �xi�yj+1=2 for y-momentum. With

this operator, the RIPPLE �nite di�erence form of the advection term of Eq. (15) can be rewritten as

~V n+1 = ~V n � ~Lx
~Ly

~Ly
~Lx

�
~V n
�
: (21)
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Advection is therefore broken down into four separate one-dimensional sweeps, ordered x-y-y-x, each with

an advection time step �tadv that is 1/2 of the time step �t used in di�erencing Eq. (15). The sub-cycled,

directionally-split operator gives a more accurate approximation to advective momentum transport in direc-

tions misaligned with the coordinate axes. It also adds back some O(�t2) contributions that are lost in a

�rst order, forward time di�erence of Eq. (15).

PPE Solution

A �nite-di�erence approximation to Eq. (18) leads to a system of linear equations. The resulting matrix

equation is solved with an ICCG (incomplete Cholesky conjugate gradient) solution technique3 that returns

the time tn+1 pressure in every cell, regardless of whether that cell represents uid, surface, void, or an

obstacle. Special attention must therefore be paid to cell face values of the ratio of a geometric coe�cient

to the uid density (i.e., �=�) in cells within an obstacle, a void, or the free surface. This ratio is expressed

within the free surface as a quotient of two averages rather than an average of two quotients, thereby keeping

the principal contribution within the free surface region rather than at the edge near the void.1

We obtain a matrix M that is symmetric and positive de�nite in addition to being sparse and banded,

thus inverted easily and quickly with ICCG methods.3 The ICCG method is a hybrid matrix scheme that

combines an incomplete Cholesky decomposition preconditioning of M with a conjugate gradient iteration.

The decomposition transforms M into LDLT + E, where L is a lower triangular matrix, D is a diagonal

matrix (an approximate identity matrix), and E is a small error matrix. A conjugate gradient algorithm

then accelerates an equivalent problem, neglecting E, toward the solution x of L�1M(LT)�1(LTx) = L�1y,

where (LLT)�1 is used as an approximate inverse for M. With the ICCG method, most solutions requiring

� = r � ~V = 10�8 converge in less than 25 iterations, regardless of the magnitude of the source term (RHS

of Eq. 18).

VOF Advection

A numerical solution of Eq. (4) requires ux volumes for the advective term. The ux volumes are

obtained in RIPPLE with a free surface reconstruction using the Hirt-Nichols (H-N) algorithm.8 The free

surface is reconstructed either horizontally or vertically in each surface cell, depending upon its relation to

neighboring cells. This reconstruction is presumably more accurate than the SLIC algorithm,14 where the
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reconstructed free surface is always forced perpendicular to the uxing direction, but less accurate than the

Youngs algorithm,15 where the reconstructed free surface is allowed to have nonzero slope.

The numerical solution of Eq. (4) is initiated by de�ning a tilde value of F ,

eF = F n � �tr �
�
~V F n

�
: (22)

It is completed with a \divergence correction,"

F n+1 = eF + �t
�
r � ~V

�
F n ; (23)

bringing eF to F n+1.

Eq. (22) is discretized by integrating over the mass control volume, whose boundaries are the cell

boundaries, giving

eFi;j = F n
i;j �

�t

r�i �xi

"
r�i+1=2u

n+1
i+1=2;jhF iR � r�i�1=2u

n+1
i�1=2;jhF iL

#
� �t

�yj

"
vn+1i;j+1=2hF iT � vn+1i;j�1=2hF iB

#
; (24)

where subscripts B, T, L, and R denote quantities taken at the bottom, top, left, and right sides, respectively,

of cell (i,j). VOF advection is computed at the end of each computational cycle, completing the second step

of the projection method, so the velocities advecting F in Eq. (24) above are those at the time tn+1.

Bracketed quantities are the fractional uid volumes crossing each cell boundary. It is these quantities that

are estimated with a free surface reconstruction. Given below, as an example, are the RIPPLE expressions

for hF iR when un+1
i+1=2;j

> 0. Calculation of hF i values follow directly from the H-N reconstruction algorithm,

as stated previously.

The VOF function uxed at the right face of cell (i,j) is the sum of an \upstream" value Fiad;j plus an

increment �F :

hF iR = Fiad;j + �F ; (25)

where the VOF increment,

�F = 0 ; if w = 0:0 or w > jun+1i+1=2;j�tj ; (26)

�F = (Fidm;j � Fia;j) (1 � wjun+1i+1=2;j�tj�1) ; if 0:0 < w < jun+1i+1=2;j�tj : (27)
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depends upon the relative value of a \void width" w, de�ned nonzero only when the reconstructed surface

is parallel to the uxing direction, given by

w =

�
Fidm;j � Fid;j
Fidm;j � Fia;j

�
�xi : (28)

The donor (id), acceptor (ia), and donor-minus (idm) cell indices are always i, i+1, and i� 1, respectively.

The quantity Fiad;j is not necessarily the upstream VOF, as can seen by case analysis.1 Similar free surface

reconstructions are performed for estimates of ux quantities hF iL, hF iT, and hF iB.

The CSF Model

Surface tension modeled with the CSF model eliminates the need for detailed interface information,

so restrictions on the number, complexity, or dynamic evolution of interfaces having surface tension are

not imposed. Direct comparisons between modeling surface tension with the CSF model in RIPPLE and

with a popular interface reconstruction model6;7 show that the CSF model makes more accurate use of

the free surface VOF data.2 The volume force always tends to force the free surface to seek a minimum

surface energy con�guration. Reconstruction models, on the other hand, tend to induce numerical noise

from computed graininess in the surface pressures, often leading to unphysical free surface disruptions.

In addition to providing a more accurate �nite di�erence representation of surface tension without the

topological restrictions, the CSF model is easy to implement computationally. Surface tension is easily

included by calculating and applying an extra body force, ~Fsv, in the momentum equation. In the majority

of RIPPLE calculations, only a few percent of extra CPU time is required for computing surface tension

e�ects.

The volume force in the CSF model is easily calculated by taking �rst and second order spatial derivatives

of the VOF function F . At each point within the free surface transition region, a cell-centered value ~Fsv is

de�ned which is proportional to the cell-centered curvature � of the constant VOF surface at that point. The

curvature is obtained from vertex-centered normal vectors, as illustrated in Fig. 2. The force is normalized to

recover the conventional description of surface tension as the local product �h! 0. Its line integral directed

normally through the free surface transition region is approximately equal to the surface pressure in Eq. (5).
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From Eq. (8), ~n at vertex (i+1/2, j+1/2) is given by

(Fi+1;j+1 � Fi;j+1) �yj + (Fi+1;j � Fi;j) �yj+1
(�yj + �yj+1) �xi+1=2

for the x-component nx, and

(Fi+1;j+1 � Fi+1;j) �xi + (Fi;j+1 � Fi;j) �xi+1
(�xi + �xi+1) �yj+1=2

for the y-component ny. The curvature follows from an indirect di�erentiation of the unit normal n̂, as given

by the two terms on the RHS of equation Eq. (6). The derivatives of the components of ~n follow easily from

knowledge of ~n at vertices. Representatives values are given by

 
@nx
@x

!
i;j

=
1

2�xi

"
nx i+1=2;j+1=2 + nx i+1=2;j�1=2� nx i�1=2;j+1=2� nx i�1=2;j�1=2

#
; (29)

and  
@nx
@y

!
i;j

=
1

2�yj

"
nx i+1=2;j+1=2 + nx i�1=2;j+1=2� nx i+1=2;j�1=2� nx i�1=2;j�1=2

#
: (30)

The cell-centered normal is the average of vertex normals,

~ni;j =
1

4

�
~n i+1=2;j+1=2+ ~n i+1=2;j�1=2 + ~n i�1=2;j+1=2 + ~n i�1=2;j�1=2

�
: (31)

Face-centered values of ~Fsv are needed for the computation of uid acceleration due to surface tension in

RIPPLE, and are obtained by interpolating from the two nearest cell-centered values, giving

Fsvx i+1=2;j =
�xiFsvx i+1;j + �xi+1Fsvx i;j

�xi + �xi+1
; (32)

for the x-component at the right face of cell (i,j), and

Fsvy i;j+1=2 =
�yjFsvy i;j+1 + �yj+1Fsvy i;j

�yj + �yj+1
; (33)

for the y-component at the top face. The face-centered components of ~Fsv are then used to compute uid

accelerations from

�
@~V

@t
= ~Fsv ; (34)

completing the �rst step of the two-step projection method.
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When the surface tension coe�cient � is variable, e.g., due to the presence of surfactants or temperature

gradients, the resulting tangential component of the surface force may be modeled within the framework of

the CSF model. The model may also be extended to three dimensions and to multi-uid ows.

Wall Adhesion

The wall adhesion boundary condition is enforced by computing the normal at \wall" vertices from

Eq. (13). While this procedure introduces �nite-di�erence errors in general, it produces a qualitatively

correct restoring force.

The wall adhesion boundary condition in Eq. (13) is applied only to unit free surface normals residing

at vertices, so the wall boundary is in e�ect forced always to coincide with cell boundaries. This is, of course,

an error for those cells containing a rigid, interior obstacle boundary that does not coincide with a grid line.

An example is in Fig. 3, where a wall boundary cuts through the interior of a cell as shown. In this case,

p
2=2 < n̂w � {̂ < 1, so the wall is assumed to be a \right" wall; hence, equation is applied only to the two

i + 1=2 vertex normals. Similar considerations apply for \left" walls (the two i � 1=2 vertices), \top" walls

(the two j + 1=2 vertices), and \bottom" walls (the two j � 1=2 vertices). The result of Eq. (13) in Fig. 3

is to force the surface normal n̂ to take on the value it would have in static contact with the wall (with the

geometry displayed in Fig. 3) rather than the value that would be calculated from VOF data. This gives

rise to a strong local volume force ~Fsv that quickly drives the uid to a con�guration much closer to the

equilibrium geometry; whereupon the local volume force ~Fsv becomes much smaller. This treatment of wall

adhesion is found to give the correct sign for the wall adhesion force, but can underestimate its magnitude,

especially in the wall cells having a large fractional area blocked to ow.

Example Calculations

RIPPLE has been applied to a wide variety of low-speed ow problems, some of which have been

reported in the literature.1;2 Two examples illustrating RIPPLE's capabilities are discussed in the following.

Jet-Induced Tank Mixing

A number of uid ow scenarios in a reduced gravity environment call for the use of a jet, e.g., to �ll

tanks to capacity or to induce mixing of uid in partially-�lled tanks. For example, cryogenic propellant
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tanks are vulnerable to heat additions that lead to excessive thermal strati�cation, and hence to undesirable

rates of pressure increase. The jet enhances thermal transport by inducing mixing, insuring a more uniform

uid temperature. Jets might also be used in \no-vent �ll" processes, in which a tank is �lled to capacity

without venting the remaining vapor.16 The residual vapor must be condensed during the �ll process to

make room for incoming liquid. An important jet design component that can be addressed with RIPPLE is

the optimal velocity of the jet, which depends upon the application. For example, an optimal jet velocity

might be one that maximizes liquid recirculation without penetrating or disrupting the free surface, which

could destroy the mixing process. On the other hand, penetration of the free surface might be desired, which

allows the jet to impinge upon the opposite tank walls and promote vapor condensation as an aid to the

no-vent �ll process.

As an example of low-gravity tank ows induced by an internal jet, a half-full liquid hydrogen (LH2)

propellant tank (radius 210 cm, height 1020 cm), representing a typical orbital transfer vehicle conceptual

design, was chosen. An internal jet (radius 10 cm, height 60 cm) is centered on the cylindrical axis at the

\bottom" of the tank. The jet velocity is set at 4 cm/s, corresponding to a Weber number (We = �RV 2=�,

where R is the jet radius) of approximately 6. The LH2, prior to turning on the jet, is initially in an

equilibrium meniscus position with �eq = 5� as the equilibrium contact angle.

The jet-induced tank ow is coarsely resolved with a nonuniform, 14�34 mesh that is re�ned along the

tank axis of symmetry and wall. The uid is given the properties of inviscid LH2 in cgs units, and is initially

upright in an equilibrium meniscus position. Gravity is zero. Accurate time resolution over this ow period

follows from limiting the time step to a value of 2.0 s. The obstacle enclosing the jet is characterized with

small modi�cations to the RIPPLE source code.

For a jet velocity of 3 cm/s (We � 3:5), RIPPLE calculations indicate that surface tension forces are

just able to hold back the laminar jet. As shown in Fig. 4, the case is di�erent for a laminar jet of 4 cm/s

(We � 6). Blobs of uid are detached from an intense central geyser of uid. At times later than 3000 s

(where Fig. 4 ends) blobs are thrown against the top of the tank. The �rst blob wets the tank fairly evenly,

while the second accumulates around the jet impingement region.

A new feature in RIPPLE is the capability to track uid properties sampled by Lagrangian marker

particles. This permits a more detailed analysis of complex ow �elds. Some marker trajectories are displayed
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in Fig. 5 for the jet-induced tank ow. The most intricate motions are displayed by particles near the tank

centerline. For these particles the initial motion during entrainment may be directed either toward or away

from the jet. There follows an entrained motion terminating near the free surface, whereupon the particle

motions become very chaotic, reecting the complex pattern of surface waves generated by the jet. Particles

near the tank walls have shorter and less intricate trajectories, except for particles near the uid surface.

The Lagrangian particles are an important diagnostic in this calculation, showing two features of the ow

that are not otherwise readily apparent: (1) tank uid far from the centerline is not entrained by the laminar

jet, and (2) tank uid near the jet opening comprises the leading portion of the �rst blob that is ejected

from the main uid body.

Jet-induced ows are excellent examples of uid ows that can be modeled more realistically when

turbulent e�ects are included. The jet in these calculations would tend to di�use radially, dissipating a

portion of its kinetic energy into turbulent energy, with the addition of a turbulence model such as the k� "

model.17 The turbulent jet velocities required to geyser the free surface would likely be higher than the

laminar jet velocities computed with the standard version RIPPLE. In lieu of a turbulence model, however,

turbulent e�ects can be estimated with RIPPLE by using a turbulent eddy viscosity, � t. One estimate for

� t is � t � fsk1=2, where f is the fraction of jet kinetic energy dissipated into turbulence, s is the turbulent

length scale, and k is the turbulent kinetic energy density. Reasonable values for the jet are f = 0:10;

s = Rj=2, where Rj is the jet radius; and k = fv2j =2, where vj is the jet velocity. With a 4.0 cm/s jet

velocity, the addition of a turbulent eddy viscosity with these values dissipates the jet enough to prevent its

penetration through the free surface.

Water Rod Collision

Consider the collision of two water \drops", or in�nite rods in two dimensions, impacting each other

head-on at equal and opposite velocities. While the phenomena of drop collision and coalescence is inher-

ently three-dimensional, a two-dimensional \rod collision" is interesting because it displays the competition

between inertial and surface forces, and exhibits the hydrodynamic phenomena of breakup and coalescence.

Many computational models, such as boundary integral methods, cannot readily simulate such phenomena

without special modi�cations. RIPPLE can, however, compute straight through pinch-o� (see Fig. 7 and

the example in Ref. 1) and coalescence (see Fig. 6).
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A 10 cm � 10 cm computational domain, partitioned in planar geometry with a 40 � 40 mesh (�x =

�y = 0:25 cm), is chosen to resolve the collision of two 1.5 cm radius rods that are given the properties of

water, except for viscosity, which is neglected. The rods are initially given equal and opposite y-velocities

(one moving up and the other moving down). They collide head-on, overlapping by 1.33 radii. We wish to

explore the competition between inertial and surface tension forces, which, in the end, determines whether or

not the rods remain coalesced. Two di�erent impact velocities are chosen for the rods: 10 cm/s (We � 8:2),

shown in Fig. 6, and 15 cm/s (We � 18:5), shown in Fig. 7.

The two rods form initially a larger rod after impact, that, because of the net angular momentum in the

system, rotates in clockwise sense. Whether or not the larger rod maintains its integrity or breaks up depends

upon the relative magnitude of surface to inertial forces (i.e., the We number). It is evident from Fig. 6 that

the inertial forces resulting from a 10 cm/s collision are not enough to overcome the surface tension forces.

The bridge of water at t = 0:5 s is subject to su�ciently strong surface forces to prevent breakup. In Fig. 7,

a collision velocity of 15 cm/s produces inertial forces su�cient to overcome surface forces, permitting the

two rods to exchange momentum but retain their identity. The rods coalesce and then break up, pinching

o� at about 0.6 s. The lack of symmetry evident in Fig. 7 is the result of directional-splitting in the VOF

advection algorithm.

Status of RIPPLE

Like all numerical models, RIPPLE is continuing to evolve through algorithm enhancements, improve-

ments, and additions, as driven by the needs of a growing user community. Models for heat and turbu-

lence transport, variable surface tension e�ects, and multi-uid ows are planned for the future. A three-

dimensional version of RIPPLE is also planned. Algorithm improvements are also being incorporated into

RIPPLE. An example is the Youngs VOF advection model15 that allows the reconstructed free surface to

have nonzero slope. Additional extensions of the RIPPLE methodology are pointed out in Section V of

Ref. 1.

A detailed user manual1 is available, and the RIPPLE source code can be obtained from the Energy

Science and Technology Software Center (P. O. Box 1020, Oak Ridge, TN, 37831-1020, telephone (615)

576-2606).
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Figures

1. Location of uid variables in a RIPPLE computational cell. The x- and y-velocities are located at cell

faces, and the pressure pi;j and VOF function Fi;j are located at cell centers.

2. In the CSF model for surface tension, a cell-centered volume force due to surface tension, ~Fsv, is derived

from a free surface curvature � at the cell center and unit normals n̂ at the 4 cell vertices.

3. RIPPLE treatment of the wall adhesion boundary condition on a \right" wall. The boundary condition

is applied at two rightmost vertex normals, and since the free surface makes an angle � 6= �eq at the

wall, a nonzero wall adhesion force results that tends to pull the uid into a � = �eq con�guration.

4. Fluid velocity vectors and free surface con�gurations at times of (left-to-right,top-to-bottom) 200, 600,

1200, 1400, 1600, 2000, 2200, 2400, 2600, and 3000 s for the jet-induced tank ow problem. The velocity

of uid exiting the jet at the tank bottom is 4 cm/s.

5. Trajectories of Lagrangian marker particles initially located at various positions (denoted by dots) in

the tank ow displayed in Fig. 4.

6. Fluid velocity vectors and free surface con�gurations at times of (left-to-right,top-to-bottom) 0.0, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 s for two rods of water, each with a radius of 1.5 cm, colliding at an equal

and opposite velocity of 10 cm/s. The collision overlap is 1.33 radii.

7. Fluid velocity vectors and free surface con�gurations at times of (left-to-right,top-to-bottom) 0.0, 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 s for two rods of water, each with a radius of 1.5 cm, colliding at an equal

and opposite velocity of 15 cm/s. The collision overlap is 1.33 radii.
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