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Over the last 50 years, numerous computational turbulence models have been 
proposed for obtaining closure. Obtaining closure means capturing the physical phe-
nomenon of turbulence at computably low resolution, by mimicking the effects of the
small scales on the larger ones without calculating them explicitly. The Lagrangian-
Averaged Navier-Stokes alpha (LANS-α) model is the first to use Lagrangian averag-
ing to address the turbulence closure problem. LANS-α modifies the nonlinearity of
the Navier-Stokes equation, instead of its dissipation, thereby providing an alternative
way to reach closure without enhancing viscosity. The LANS-α model arose from an
educated guess, based on combining Lagrangian-averaged nonlinearity with Navier-
Stokes viscosity. Its derivation from these first principles implied mathematical theo-
rems for its solutions, thereby guaranteeing that the most basic properties of the flow

(energy transport, circulation, variability, instability, dissipation anomaly, and
intermittency) at scales above the effective cutoff scale of alpha are all 

modeled accurately. Mathematical analysis also proved that the LANS-
α solutions converge to Navier-Stokes solutions in the limit as the 

correlation length parameter (alpha) tends to zero, thereby estab-
lishing the LANS-α model’s accuracy. Moreover, the model’s

solutions for nonzero alpha possess a global attractor
whose fractal dimension is finite, thus guaranteeing that

the solutions are rigorously computable using finite 
resolution. The theorem-based approach of the

LANS-α model has raised the mathematical
standards for deriving other computational models

of turbulence. Application of the alpha model is still
in its infancy, but results so far suggest that this new

approach will complement, and in some cases subsume,
earlier approaches for modeling turbulence in real-world

applications. 

                   



Turbulence is an outstanding
unsolved multiscale nonlinear
problem of classical physics. It

occurs spontaneously in a fluid, when
forcing by stirring at the large scales
gets transferred by nonlinearity into
slender, swirling circulations in the
flow. These coherent swirling “blobs”
of fluid, pierced by vortex lines and
bounded by material circulation loops
are called eddies. The eddies are
Lagrangian structures, that is, they
travel with the flow, stretching them-
selves into extended shapes (sheets or
tubes) as they follow the flow induced
by the vortex lines that pierce them.
The coherent eddies, sheets, and tubes
of vorticity, stretching themselves into
finer and finer shapes, comprise the
“sinews” of turbulence.

The characteristic features of turbu-
lence—its distribution of eddy sizes,
shapes, speeds, vorticity, circulation,
nonlinear convection, and viscous dis-
sipation—may all be captured by using
the exact Navier-Stokes equations. The
Navier-Stokes equations correctly pre-
dict how the cascade of turbulent
kinetic energy and vorticity accelerates
and how the sinews of turbulence
stretch themselves into finer and finer
scales, until their motions reach scales
of only a few molecular mean free
paths, where they may finally be dissi-
pated by viscosity into heat. However,
the fidelity of the Navier-Stokes equa-
tions in capturing the cascade of turbu-
lence is also their downfall for direct
numerical simulations of turbulence.

The number of active degrees of
freedom required to simulate the turbu-
lent cascade in high-Reynolds-number
flows quickly outstrips the numerical
resolution capabilities of even the
largest computer. To make turbulence
computable, scientists have developed
various approximate models that halt

the cascade into smaller, faster eddies.
In most models, this effect is accom-
plished by causing the eddies below a
certain size to dissipate computational-
ly into heat. This dissipative imperative
causes errors, however, because it
damps out the variability in the larger-
scale flow caused by the myriad of
small scales of motion interacting non-
linearly together in the fields of the
larger motion. 

Consider the problem of modeling
the average effects of turbulence on
ocean currents in the North Atlantic
Ocean. The North Atlantic contains
circulations ranging in size from thou-
sands of kilometers to only a few
meters. The variability in the flow has
been documented through observa-

tions of Lagrangian trajectories (tra-
jectories moving with the fluid
parcels) in the Labrador Sea. As
shown in Figure 1 (Krahmann and
Visbeck 2003), the Labrador Sea is
full of highly oscillatory Lagrangian
trajectories delineating the circulating
eddy activity at the “mesoscale” size
of tens of kilometers. Standard turbu-
lence models for ocean simulations
remove the fluctuating effects of all
the scales of motion smaller than
about 30 to 100 kilometers. Thus, the
energy and information from the
smaller scales are lost, and the result-
ing models ultimately are overdamped
and inaccurate to the extent that the
variability of their solutions depends
upon these smaller scales.
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Figure 1. Lagrangian
Fluid-Parcel
Trajectories in the
Labrador Sea
(a) Individual Lagrangian
trajectories traced using
floats delineate circulat-
ing eddies traveling with
the flow. (b) Many over-
lapping trajectories cap-
ture the tangle of motions present in the flow. (Permission granted by Gerd Krahmann,

Lamont-Doherty Earth Observatory of Columbia University.) 
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Opposite page: The sinews of turbu-
lence are illustrated by level surfaces of
vorticity calculated with the LANS-αα
model at a spatial resolution of 2563.
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Capturing the mean effects of the
smaller-scale circulations on the larger-
scale motions in turbulence is called
closure. In a novel approach, the
Lagrangian-Averaged Navier-Stokes
alpha (LANS-α) model we discuss
here provides closure by modifying the
nonlinearity in the Navier-Stokes equa-
tions to stop the cascading of turbu-
lence at scales smaller than a certain
length, but without introducing extra
dissipation. Statistically, the size alpha
in the LANS-α model is the typical
distance that a Lagrangian trajectory
fluctuates away from its time-mean tra-

jectory. Hence, by definition, alpha is
the smallest eddy scale still participat-
ing actively in the cascade. Eddies at
scales smaller than alpha are, in effect,
slaved to the mean motions of the larg-
er ones; that is, they fluctuate locally
as they are carried along in the frame
of motion of the larger scales. This
modification of the Navier-Stokes non-
linearity, derived by applying
Lagrangian averaging techniques,
allows the turbulence problem to
remain computable at the resolution
size of alpha, but to still retain the
mean circulation effects of the smaller

(subgrid) scales on the resolved solu-
tion. The LANS-α model is the first
turbulence closure model to use
Lagrangian averaging, from which it
derives its name. 

We shall briefly review the develop-
ment of the LANS-α model from 1992
to1997, catalog its key results from
1997 to 2004, and finally discuss the
open problems. The year 1997 was a
turning point because only then was it
realized that the ideas being developed
in the context of ocean modeling had
the potential to be used as a com-
putable turbulence model.
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The Lagrangian Eddy 

A fluid possesses circulation if the integral of the tangential component of its velocity around any closed loop moving with
the fluid is nonzero. A geometrical object such as a circulation loop embedded in, or traveling with, the fluid flow is an
example of a Lagrangian quantity. A theorem of vector calculus by Kelvin and Stokes links the fluid’s circulation with its
vorticity, defined as the curl of its velocity. Namely, the circulation integral around the Lagrangian loop moving with the
fluid is equal to the integral of the normal component of the fluid’s vorticity, taken over any surface which has the circula-
tion loop as its boundary. (This surface integral defines the “vorticity flux” through the surface whose boundary is the circu-
lation loop.) Thus, circulation loops enclose distributions of vorticity flux, which may be regarded as bundles of vortex lines
embedded in the fluid and wrapped by these Lagrangian circulation loops. These Lagrangian structures are known as
“eddies.” When the eddies stretch themselves into tubes, they are called “vortex tubes”.

Above: As a material loop initially at C is carried by the fluid
flow, it deforms to C1 at a later time in domain D.

Right: A vortex tube is a material surface S surrounding 
a bundle of vortex lines (that is, lines tangent to the vorticity).
The surface S is formed by a union of material loops C, each 
carried by the fluid flow. The divergence theorem implies that the
flux of vorticity is the same through any slice, all along the vortex
tube. Kelvin’s theorem implies this flux of vorticity along the tube is 
constant in time. Thus, vortex tubes are “coherent structures.”
(Redrawn from J. E. Marsden and T. S. Ratiu, Geometric Analysis Methods in Fluid Mechanics,

manuscript in preparation.)

                              



The Development of the
LANS-α Model

The origins of the LANS-α model
can be traced to a one-dimensional
model of nonlinear shallow-water
wave dynamics, written down in a
moment of inspiration on a blank
page, in a pocket calendar, during a
seminar in 1992 at the Center for
Nonlinear Studies. Researchers began
to take the equation seriously when it
was discovered to be a soliton equa-
tion. That is, its initial value problem
was found to possess exact nonlinear
(weak) solutions, playfully dubbed
“peakons” because of their sharp
peaks, whose motion and interactions
could be completely solved using
elastic collision rules (Camassa and
Holm, 1993). Subsequently, the equa-
tion was derived from Hamilton’s
principle of least action, which
allowed it to be generalized to higher
dimensions. The synergy between
variational principles for soliton math-
ematics and dynamical concepts for
turbulence modeling was developed
further in the context of geophysical
fluid dynamics, using a variety of
approaches, including dominant
asymptotics (Camassa et al. 1996,
1997). 

The dominant asympotics tech-
nique produces hierarchies of equa-
tions that, at each increasing order in
the asymptotic expansion, include
more physics. Between 1993 and
1996, an interesting relation was dis-
covered between standard dominant
asymptotics and asymptotics per-
formed on the Lagrangian in
Hamilton’s principle (HP). Namely,
applying asymptotics in HP (before
taking its variation) introduces terms
in the resulting equations of motion
that would ordinarily be dropped in
dominant asymptotics, but which
restore important fluid dynamical
properties. These properties include
conservation of both energy and
potential vorticity (which arise from

symmetries of the Lagrangian in HP)
in the absence of viscosity, and
preservation of Kelvin’s theorem,
which insures the proper nonlinear
dynamics of circulation. 

In 1996, Ivan Gjaja and Darryl
Holm took the HP asymptotics idea a
step further, while working on
wave–mean flow interaction (WMFI)
theory for ocean dynamics. WMFI
theory addresses, for example, how
surface waves can transfer momentum
into regions far from their source. By
applying Lagrangian averaging, as
well as HP asymptotics, to a Wentzel-
Kramer-Brillouin (WKB) wave packet
representation of the rapid fluctua-
tions, they derived the Gjaja-Holm
WMFI equations, an asymptotic hier-
archy of new equations for the
wave–mean flow interaction.
(Lagrangian averaging has a double
meaning here because Gjaja and
Holm averaged the Lagrangian in HP
over the rapid phases of the WKB cir-
culations at fixed Lagrangian coordi-
nates.) Remarkably, these equations
coincided with the result of applying
dominant asymptotics and Lagrangian
averaging to the exact Euler-
Boussinesq equations for rotating,
stratified, incompressible flows of an
ideal fluid. This meant that the con-
servation laws for the Gjaja-Holm
WMFI equations were programmed
into the Lie-group symmetries of an
averaged Lagrangian. 

The Gjaja-Holm WMFI equations
were developed in the context of the
Laboratory’s Climate Change
Prediction Program, led by Robert
Malone. They were intended to pro-
vide a turbulence model for rotating
stratified fluids such as the oceans and
the atmosphere. However, these
WMFI equations were quite different
from the usual turbulence models, and
they needed to be simplified consider-
ably before they could be recognized
as a turbulence model. The inviscid
part of the simplification was pro-
posed in 1997, in work by Darryl

Holm, Jerry Marsden, and Tudor
Ratiu (1998a, 1998b). In this work,
the Lagrangian-averaged Euler-alpha
(LAE-α) equations, a Lagrangian-
averaged closed form of the Euler
equations (Navier-Stokes without vis-
cous dissipation), were obtained. The
key step in obtaining these LAE-α
equations was the assumption of
Taylor’s “frozen-in” hypothesis,
namely, that the mean statistics of the
rapid fluctuations were carried along,
or frozen, into the Lagrangian mean
flow instead of propagating as wave
packets, as had been assumed in
deriving the Gjaja-Holm WMFI equa-
tions. Nonetheless, the parameter α2

in the LAE-α equations has the same
meaning as it does in the Gjaja-Holm
WMFI equations. That is, α2 is the
typical size (statistical correlation
length) of the excursions of a fluid
parcel trajectory away from its mean
(phase-averaged) trajectory, where the
phase average is taken at a fixed
Lagrangian coordinate along that tra-
jectory. The derivation of the LAE-α
equations using this form of Taylor’s
hypothesis is discussed in “Taylor’s
Hypothesis, Hamilton’s Principle, and
the LANS-α Model for Computing
Turbulence” on page 172.

Once the LAE-α equations were
derived, the stage was set for intro-
ducing viscosity and interpreting the
resulting equations as a turbulence
model. This last step in deriving the
LANS-α model was taken in the col-
laboration among Shiyi Chen,
Ciprian Foias, Darryl Holm, and
Edriss Titi (1997–1998), when Foias,
Titi, and their students Eric Olson
and Shannon Wynne were visiting
scholars at the Laboratory’s Center
for Nonlinear Studies (CNLS) and
Institute for Space and Planetary
Physics (IGPP). The introduction of
viscosity was made first on an ad hoc
basis, and then the LANS-α model
was interpreted and confirmed as a
turbulence model by comparing its
predictions with experiment and
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numerical simulations and by analyz-
ing its theoretical properties. 

How the LANS-αα Model
Differs from Others

As mentioned above, the key dif-
ference between the LANS-α model
and other models of turbulence arises
from the difference in the averaging
technique used to derive the nondissi-
pative LAE-α equations. In the
LANS-α model, the average effects of
the small scales on the large are mod-
eled in the Lagrangian frame, which
moves with the fluid parcels, instead
of being modeled in the Eulerian
frame, which is fixed in space. The
Lagrangian averaging procedure leads
to a new closure mechanism, a mech-
anism which reduces the number of
degrees of freedom in the turbulence
problem and approximates the effects
of the small scales on the large. That
new closure mechanism is based on
nonlinear transport. In contrast, the
more traditional Eulerian-averaging
procedure leads to closure through
linear or nonlinear diffusion.

Traditional Eulerian turbulence
models use the Reynolds decomposi-
tion to separate the fluid velocity u at
a point x into its mean and fluctuating
components as u = u– + u′, where u′– =
0 and the overbar denotes an Eulerian
mean (time average at a fixed point in
space). Mathematically, Eulerian aver-
aging commutes with the partial
derivatives in space and time, but it
does not commute with the advective,
or material, time derivative D/Dt =
∂/∂t + u ⋅ ∇∇. This lack of commutivity
between Eulerian averaging and the
material time derivative leads to the
unknown Reynolds stresses in the
motion equations for the Eulerian
mean velocity u– and, subsequently, to
the well-known closure problem (see
page 132 of the article “The
Turbulence Problem”). In contrast,
Lagrangian averaging commutes (by

definition) with the material time
derivative to produce the generalized
Lagrangian mean (GLM) equations.
These GLM equations, however, are
also not yet closed. Moreover,
Lagrangian averaging does not com-
mute with spatial gradients. As a
result, the Lagrangian-mean theory is
history dependent, preserving the
memory of its initial labeling along its
Lagrangian trajectories, and the statis-
tics of the Lagrangian-trajectory fluc-
tuations must be prescribed in order to
close the GLM equations. 

Figure 2 illustrates the paths taken
to derive three different sets of equa-
tions: the Euler equations for inviscid,
incompressible flow (black), the cor-
responding Eulerian-averaged equa-
tions for the mean motion (red), and
the inviscid LAE-α equations (blue).
To produce the exact Euler equations
of motion, first the Lagrangian in
Hamilton’s principle for fluids is

defined and then the variations of the
action (that is, the time integral of the
Lagrangian) are taken. In turbulence
models based on Eulerian averaging,
most of the modeling effort takes
place after Hamilton’s principle of
stationary variations of the action has
produced the equations of motion. For
Reynolds-averaged turbulence mod-
els, the velocity is then decomposed
into its (Eulerian) mean and fluctuat-
ing quantities, or for the large eddy
simulation (LES) framework, the
equations in the Eulerian frame are
spatially filtered. In contrast, for the
LAE-α framework, the modeling
occurs in averaging the Lagrangian in
Hamilton’s principle before the varia-
tions are taken, and the Lagrangian-
averaged equations result from taking
variations of Lagrangian-averaged
quantities using the Euler-Poincaré
theory of Holm et al. (1998a, 1998b).
(The averaged Lagrangian approach is
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Figure 2. Paths to Derive Three Different Equations of Motion for
Inviscid, Incompressible Fluid Flow
The blue path starts by decomposing the Lagrangian velocity into mean and fluctu-
ating parts and then taking variations with respect to the Lagrangian averaged
quantities to derive the LAE-αα equations for ideal (inviscid) fluids.
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much simpler and more transparent
than averaging the equations term by
term, and a theorem guarantees that
the same equations result in either
order. A concise description of this
process is given in the article
“Taylor’s Hypothesis, Hamilton’s
Principle, and the LANS-α Model for
Computing Turbulence”on page 172.)
The LAE-α equations (in terms of
Eulerian averaged quantities) are
given by Equations (1) and (2) in the
box above.

The two velocities u and v in the
LAE-α Equations (1) and (2) are
averaged quantities. However, the
transport velocity u is smoother than
the transported velocity v by inversion
of the Helmholtz operator, (1 – α2∆).

This inversion operation amounts to
obtaining velocity u by filtering
velocity v over the length scale α.
When α → 0, then v → u, and one
recovers the original Euler equations. 

According to the Euler-Poincaré
theory of Holm et al. (1998a, 1998b),
the transport velocity u in Equation (1)
is the average velocity at which the
fluid material moves. So, what is the
interpretation of the other average
velocity v in Equation (2)? The Euler-
Poincaré theory defines the velocity v
as the momentum per unit mass of the
Lagrangian averaged motion. This
momentum is obtained by taking the
variational derivative of the averaged
Lagrangian in Hamilton’s principle
with respect to the average velocity u.

The two velocities differ for the usual
reason, namely, that nonlinearity and
averaging do not commute. One may
understand the different roles of these
two velocities by considering the
LAE-α equation as a form of
Newton’s law for the time rate of
change of the momentum in the frame
of fluid motion. Namely, Equation (1)
is equivalent to Equation (3). Thus,
the second term in the modified non-
linearity of Equation (1) arises from
the rate of change of the line element
dx(t) in the frame of motion of the
fluid moving with velocity u. (Of
course, the first term in this nonlinear-
ity arises from the chain rule.)

After deriving these inviscid LAE-α
equations, we added viscosity and forc-
ing so that energy would decay and
momentum would diffuse, thereby
obtaining the LANS-α model
Equations (4) and (5). When α → 0,
then v → u and the LANS-α equations
revert to the original Navier-Stokes
equations. 

Remarkably, the LANS-α equa-
tions answered an outstanding mathe-
matical question going back to the
early efforts of Leray (1934) to regu-
larize the Navier-Stokes equations.
This question was emphasized by
Galovotti (1993), namely, “How does
one regularize the Navier-Stokes
equations without destroying their cir-
culation properties?” (Recall that the
LANS-α model was developed to deal
with average effects of turbulence in
ocean circulation.) The answer is
obtained by direct calculation, which
yields the Kelvin circulation theorem
for the LANS-α equations given by
Equation (6). Physically, this theorem
means the circulation of the velocity v
around a material loop c moving with
smoothed transport velocity u is creat-
ed by the integral around this loop c
of the sum of the viscous and external
forces. When α → 0, then v → u, and
one recovers the fundamental Kelvin
circulation theorem for the Navier-
Stokes equations, thereby regaining

The LANS-αα Model Equations

The LAE-α equations are

(1)

(2)

Rewriting Equation (1) as the time rate of change of momentum in the
frame of the moving fluid yields

(3)

Adding viscosity and forcing yields the LANS-α equations:

(4)

(5)

The Kelvin circulation theorem for the LANS-α model is

(6)

 

                                                                                                    



the picture of the sinews of turbulence
described earlier. The Kelvin circula-
tion theorem for the LANS-α equa-
tions above shows how this picture is
modified by Lagrangian averaging. We
will discuss later how the LANS-α
Equations (4) and (5) regularize the
Navier-Stokes equations in the sense
discussed by Leray (1934) and
Galovotti (1993).

Results from 1997 to 2004

In the next few sections, we present
a sampling of key results for the
LANS-α model from 1997 to 2004.
This is not meant to be an exhaustive
review of the entire body of the
LANS-α literature, but a sampling of
theoretical and numerical results to
give the reader a flavor for what is
known and what remains to be studied.

Through the rest of this article,
the word ‘modeling’ refers to the
mathematical description of unknown
quantities in terms of known quanti-
ties for the purpose of regularizing or
reducing the number of active
degrees of freedom in the Navier-
Stokes equations. 

“Benchmark” Tests of the
LANS-αα Model

Once we recognized that 
LANS-α might be interpreted as a
turbulence model, we tested this
hypothesis by using LANS-α to cal-
culate some of the classic turbulence
problems. These included turbulent
flow in a pipe, forced turbulence in
a periodic domain, and decay of tur-
bulence in a periodic domain. In all
three cases, the results were very
encouraging. 

LANS-αα Stationary Solutions for
Pipe Flow Compared with
Experimental Data. Figure 3 (Chen
et al. 1999a) shows a semilog plot of

the time-averaged velocity for turbu-
lent flow in a pipe vs distance from
the wall at three different Reynolds
numbers. The experimental data (solid
lines) were measured at the Princeton
“super pipe” and correspond to turbu-
lent flows with the highest values of
Reynolds number available in a pipe-
flow experiment (Zagarola 1996). The
dashed lines show the corresponding
stationary solutions of the LANS-α
model. All three solutions were
obtained using a single constant value
of alpha (equal to about one percent
of the pipe radius). This value of
alpha was obtained by matching the
first set of data at a Reynolds number
of 98,812. Then, alpha was held con-
stant for the other two comparisons.
The family of mean velocity profiles
φ(η) seems to possess a lower enve-
lope. This straight line in the semilog
plot satisfies the famous von Kármán
logarithmic law of the wall. However,
the LANS-α steady solutions match
the experimental data all the way
across the pipe flow domain, from a
few tens of wall units away from the
pipe boundary all the way to the pipe
center, where the peak of each curve
occurs. (These peaks are offset
because the wall unit η contains the
Reynolds number in its definition.)

Note that the LANS-α solution
matches the measured mean velocity
over many orders of magnitude in
wall units. That agreement is a good
sign because turbulence models must
describe a wide range of scales of
motion—from the scale of the forc-
ing down to the dissipation scale.
The faint, dotted lines show the
recent power law from Barenblatt-
Chorin (1997), which does not cap-
ture the peaks of the curves. The
excellent agreement with the experi-
mental mean velocity profiles (from
Chen et al. 1998, 1999a) provided
the first clue that the LANS-α equa-
tions for the Lagrangian mean veloci-
ty might be interpretable as a model
of turbulence. 

Navier-Stokes Equations: Forced
Turbulence in a Periodic Domain.
Next, we tested the LANS-α model
on the problem of forced turbulence
in a three-dimensional (3-D) periodic
domain where turbulence is approxi-
mately homogeneous and isotropic
so that Kolmogorov-like scaling laws
should obtain. We performed direct
numerical simulations of the
LANS-α model and examined the
effect of increasing alpha on the
energy spectrum E(k), where k is the
wave number. Results from Chen et
al. (1999) show that, in the spectral
region kα < 1 (that is, for spatial
scales larger than alpha), E(k) is pro-
portional to k–5/3, as expected for
homogenous, isotropic turbulence. In
other words, the energy spectrum at
these spatial scales is essentially
unaffected by the presence of the α-
modification (regularization).
However, in the spectral region with
kα > 1 (that is, for spatial scales
smaller than alpha), E(k) rolls off
faster as wave number increases. In
Chen et al. (1999b), we kept alpha
fixed at α = 1/8 of the domain size
and compared the energy spectrum
for a high-resolution mesh of 2563

cells and a low-resolution mesh of
643 cells. The energy spectra at the
large scales (in the inertial range)
were the same for both simulations,
which means that, for this problem
of forced turbulence, the large-scale
flow properties can be preserved
when the resolution is decreased by a
factor of 8. (The actual computation-
al savings is a factor of about 44 =
256 in computer time.) This result
implies that direct numerical simula-
tion of the LANS-α model allows a
significant computational savings
over the direct numerical simulation
of the Navier-Stokes equations.

Later, Foias et al. (2001) used
dimensional arguments to predict the
faster energy-spectrum rolloff for kα
> 1 that was seen in the computations.
These dimensional arguments predict-
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ed the rolloff to be k–5/3 → k–3 for the
LANS-α model. The rolloff k–5/3 →
k–3 is consistent with the Re2 scaling
behavior in computational work for a
fully resolved direct numerical simu-
lation of the LANS-α equations, in
comparison with the Re3 scaling
behavior in computational work for a
fully resolved direct numerical simu-
lation of the Navier-Stokes equations. 

The relative scaling of Re2 for
LANS-α vs Re3 for the Navier-Stokes
equations implies a two-thirds-power
scaling in the computational work
required in the direct numerical simula-
tion of the Lagrangian-averaged
LANS-α equations vs the exact Navier-
Stokes equations, provided the k–3 iner-
tial range for the LANS-α model is
resolved. At a large Reynolds number,
Re, this scaling can provide a substan-
tial savings in computational work.

Navier-Stokes Equations:
Turbulence Decay in Three-
Dimensions. A more stringent test of
the LANS-α model is the initial value
problem for 3-D incompressible tur-
bulence known as turbulence decay.
In this problem, one starts from a tur-
bulent initial condition that results
from forcing, and then one turns off
the forcing and lets the turbulence
decay away. In recent computations
(Holm and Kerr 2002; Geurts and
Holm 2002a, 2002b; Mohseni et al.
2000, 2001), numerical comparisons
between large-eddy simulation (LES)
methods and the LANS-α model were
made for the onset, development, and
decay of shear turbulence. All three of
these numerical studies compared the
predictions of the LANS-α model for
the case of shear turbulence decay in
three dimensions against the most

advanced LES models, which achieve
closure through modifying the energy
diffusion rather than the nonlinearity.
The standard of comparison for these
low-resolution model simulations
using the LANS-α model and several
standard LES approximate models
was a direct numerical simulation of
the full Navier-Stokes equations at a
much higher resolution. In these
investigations, Holm and Kerr started
from a Taylor-Green initial condition
specified by spectral data; Geurts and
Holm started from the classic physical
realization of the Kelvin-Helmhotz
instability, leading to the formation
and decay of turbulent shear layers;
and Mohseni et al. studied the decay
of turbulence in the standard Comte-
Bellot and Corrsin wind-tunnel con-
figuration. 

In all these benchmark problems,
the results of the Lagrangian-averag-
ing approach to modeling turbulence
were found to be comparable with the
best of the standard LES approximate
models.

Relation of LANS-αα Model to
Large-Eddy Simulations

LES models are often used in
numerical simulations of turbulence.
Because of their importance and their
formal similarity to LANS-α, consid-
erable work has been devoted to
understanding the connection between
LANS-α and LES. 

The basis for the LES approach is
spatial filtering of the Navier-Stokes
equations in the Eulerian frame, where-
as the theoretical basis for obtaining
the LANS-α equations is Lagrangian
averaging. Of course, both approaches
face difficulties with closure. Either
approach to closure introduces approx-
imations because the equations are
nonlinear, and neither the averaged nor
the filtered product of two factors
would be equal, in general, to the prod-
uct of the averaged, or filtered, factors.
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Figure 3. Mean Velocity Profiles for Pipe Flow
Comparison in this figure from Chen et al. (1998, 1999a) of mean flow profiles for 
turbulent flow in pipes given by experimental data shows reasonable agreement 
with the profile of the corresponding solution of the LANS-αα equations at the highest
experimentally available Reynolds numbers. Here, the mean-velocity profile in the
pipe for the LANS-αα equation (the red dashed line) is compared with the experimen-
tal data (the solid line) of Zagarola (1996). (Copyright 1998 by the American Physical Society.)

                                                                     



Formally, the Lagrangian-averaged
turbulence equations appear similar to
the LES turbulence equations
(Domaradzki and Holm 2001), but
there are significant differences in the
interpretations of their solutions.
These differences in interpretation
arise because the two models are
derived from different fundamental
principles. The similarity between
them arises because both approaches
yield expressions for conservation, or
balance, of momentum. The similarity
between them also arises through
interpreting the equations produced by
the Lagrangian-averaging approach as
embodying a “regularization princi-
ple,” which involves an explicit filter
and its inversion (Guerts and Holm
2003). Momentum conservation for

this regularization principle identifies
the stress tensor corresponding to the
implied subgrid model, which
resolves the closure problem. Thus,
the model equations resulting from
the Lagrangian-averaged turbulence
method convey a central and very
specific physical role to a filter: The
transport velocity is a filtered version
of the fluid momentum, including the
mean momentum of the fluctuations.
This role differs from that of the filter
in the foundations of the LES
approach. In the LES approach, the
difference between the filtered product
of velocities and the product of fil-
tered velocities is modeled as a sym-
metric tensor involving gradients of
the filtered velocity, whose divergence
introduces dissipation of energy. 

In terms of physical effects, the
dissipation introduced by LES filter-
ing smoothes and slows the fluid’s
momentum, so the LES results tend to
be sluggish compared to DNS and,
thus, LES often fails to capture the
true variability of turbulence. In con-
trast, the modification of the nonlin-
earity in the alpha model “enslaves”
the smaller scales to the larger ones,
and their circulation is not lost to heat.
This feature gives the LANS-α model
an advantage. For example, it pro-
duces sharper, more-pronounced
coherent structures and higher vari-
ability than even the best LES models
(the dynamic LES models) in comput-
ing turbulent shear mixing (see
Figure 4). 

Application of LANS-αα to
Specialized Problems

Thin-Layer Navier-Stokes
Equations: Self-Similarity. Steady
self-similar solutions (for the depend-
ence of mean downstream velocity U
in a two-dimensional (2-D) boundary
layer of the form U(x, y) = g(x)f(y/x))
of the thin-layer Navier-Stokes
(TLNS) equations were known for
laminar boundary-layer problems
since Paul Blasius in 1908. For turbu-
lent shear flows such as jets, wakes,
and plumes, the Kelvin-Helmholz
instability generates mixing near the
interface between the moving and sta-
tionary fluids, and the mixing region
spreads tranversely, as the unstable
entrainment interaction between the
fluids proceeds in time—see
Figure 5(a). Finding solutions to these
self-similar flows was plagued by clo-
sure problems until Ludwig Prandtl
(1925) invented the mixing-length
theory, which captures the drag effects
of turbulent eddies. Prandtl’s mixing
length is a macroscopic length scale
defining the mean distance between
eddy collisions; it was meant to be
analogous to the mean free path
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Figure 4. Comparing Results of LANS-αα and Leray-αα with Dynamic LES
for the Turbulent Mixing Layer
This figure from Geurts and Holm 2002 compares the momentum thickness as a
function of time for the turbulent mixing layer initiated by the Kelvin-Helmholtz
instability. Here αα = L/16 and three LES models are plotted: LANS-αα (solid), Leray-αα
(dashed), Dynamic LES (dash-dotted). The nearly grid independent DNS solution at
resolution is shown as solid circles. The momentum thickness for the mixing layer
begins with a strong convective surge, which the LANS-αα model follows well. The
Leray-αα model lacks the term that provides line-element stretching to complete
Kelvin’s circulation theorem, and apparently this term is important at an early time.
Dynamic LES apparently lags in the beginning and never catches up, perhaps
because it attempts to model nonlinear turbulent transport as diffusion.
(Reprinted with the permission of Springer-Verlag.)

                                                                      



between molecules in kinetic theory.
For most TLNS self-similar problems,
such as jets, wakes, and plumes, ana-
lytical results from Prandtl’s mixing
length theory match experimental
data reasonably well.

Except for that simple mixing-
length theory, self-similar solutions of
most turbulence models have not
been investigated. However, because
the LANS-α equations were derived
to have self-consistent dynamics,
such solutions seemed possible.
Indeed, thin-layer self-similar solu-
tions of the LANS-α model were
found for boundary layers, jets,
wakes, and plumes (Cheskidov 2002,
Holm et al. 2003, Putkaradze and
Weidman 2003). These solutions arise
by introducing both α (a statistical
property of Lagrangian averaging)
and a mixing length (a statistical
property of Eulerian averaging). Each
averaging mechanism seems to con-
trol a different aspect of the analytical
self-similar solutions. For example, in
the planar jet shown in Figure 5(a),
the thickness of the jet g(x) depends
only on x, the distance downstream
from the source, and that thickness is
determined entirely by mixing-length
theory. On the other hand, the profile
of the analytical solution for the mean
velocity U across the jet—see
Figure 5(b)—is a function of the simi-
larity variable, η = y/x, and the shape
of that profile is determined by α in
these calculations. Figure 5(b) also
shows a comparison of the alpha
model’s similarity solution with the
experiments of Effie Gutmark and
Israel Wygnanski (1976).

Understanding the interplay of 
diffusion (as in the mixing-length the-
ory) and transport (as in the LANS-α
model) is still an outstanding problem
in modeling these self-similar 
turbulent flows.

Geophysical Fluids. Geophysical
fluid dynamics offers a unique regime
in which to compare the LANS-α

model with other well-known models
because the energy does not cascade
to the small scales as it does in 3-D
incompressible Navier-Stokes turbu-
lence. Instead, these quasi-2-D flows
are characterized by an upscale trans-
fer of energy to lower wave numbers.
This transfer of energy creates the
large-scale vortices observed in
nature. As a consequence, coarse-res-
olution models have a good chance of
simulating the most important dynam-
ical features of these flows. Between
1997 and 2004, two important
regimes were studied: quasi-geostro-
phy, whose principal wave solutions
are slow-time-scale Rossby waves,
and the rotating shallow-water equa-
tions, whose solutions include both
Rossby waves and fast inertial waves.

Quasi-Geostrophy (QG).
Application of the LANS-α model to
slow, large-scale motions for rotating,
planetary-scale fluid dynamics has
yielded mixed results. Two sets of
simulations have been performed of
the problem of wind-forced circula-
tion in a closed ocean basin.Wind-
forced circulation results, ostensibly,
in two counter-circulating gyres. As
described in Greatbatch and Nadiga
(2000), the time-mean ocean basin
circulation predicted by the QG equa-

tions shows a four-gyre pattern,
although its instantaneous motion
generally shows only two gyres,
which fluctuate strongly and rapidly. 

In the low-resolution LANS-α sim-
ulations of Nadiga and Margolin
(2001), the four-gyre time-mean pat-
tern was recovered, but only after an
appropriate combination of alpha and
dissipation parameters were deter-
mined from a higher-resolution eddy-
resolving run (regarded as a direct
numerical simulation). Further, the
correspondence between the time
mean of the eddy-resolving run and
the α-parameterized run was less than
satisfactory and not fully understood.
This incompleteness left open ques-
tions that still need further study.

In Holm and Nadiga (2003), an
LES viewpoint was adopted, in which
low-resolution simulations of the
QG-α model and some of its close
variants were compared with time
means of direct numerical simulations
of QG for the full double-gyre prob-
lem. This approach led to significantly
improved results for the time-mean
circulation in the double-gyre prob-
lem, and it also captured reasonable
variability in the form of eddy kinetic
energy and eddy potential enstrophy.
Figure 6 shows contour plots of the
time-averaged stream function, in
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Figure 5. Self-Similar Solutions for a Planar Turbulent Jet
(a) A turbulent jet gushes out from a source. (b) The analytical solution of the
LANS-αα equations for a planar turbulent jet is compared with results from experi-
ments) by Gutmark and Wygnanski (1976).
(Reprinted with the permission of Cambridge University Press.) 

                                                 



which the four-gyre pattern clearly
emerges. 

The results in Figure 6 show that
the LANS-α model yields a decided
benefit in predicting the correct time-
mean variability for this problem.
However, the strength of the circula-
tion was slightly higher than in the
resolved simulation.

Rotating Shallow Water (RSW).
Because RSW produces fast waves,
the RSW equations are hard to solve
numerically. The maximum allowable
time step is ∆t ≤ C/N, where C is a
constant of order unity and N is the
number of mesh points in the domain.

Using the LANS-α model to simulate
these equations led to a slowing down
of the fastest waves (those with wave
lengths smaller than α). Consequently,
LANS-α simulations that used a much
larger time step, given by ∆t(α) ≤ Cα,
retained the high variability found in
the highest-resolution runs. This
means that refining the mesh with a
fixed α causes the LANS-α model’s
maximum allowable time step to go to
a constant, while the shallow-water
model requires its time step to go to
zero. 

These simulations also revealed
that the LANS-α model preserves the
time variability of the dynamics.

Figure 7 from Wingate (2004) shows
the time series spectra for the kinetic
and potential energy on two different
grids for the double-gyre problem (see
the caption for details).

Although the LANS-α model does
reproduce the time variability of shal-
low-water flow, these results raise
several questions. As shown in
Figure 7, increasing α may cause an
overprediction of variability, as dis-
covered in the study of the double
gyre in Nadiga and Holm (2003). This
overprediction of variability leads us
to ask, “How does one make an opti-
mal choice of α?” Also, for the same
viscosity, the alpha model typically
has a higher variability than coarse-
resolution simulations of the exact
equations. This increased variability
occurs because, in the LANS-α
model, the enstrophy-like energy (not
the translational kinetic energy) con-
trols dissipation at high wave num-
bers. This result brings up the
question, “Should the Reynolds num-
ber be defined differently in these
cases?” This issue will be addressed
in the section on open problems. 

Modeling Fluid Instability

The stability and instability of
flows in different parameter regimes
(such as Reynolds number Re, Rossby
number Ro, and Froude number Fr)
could be altered, in principle, by
introducing turbulence models. We
performed two studies of fluid insta-
bility in the LANS-α model. 

Elliptical Instability. The elliptical
instability converts 2-D fluid motions
into 3-D convection, so it provides a
fundamental mechanism at the onset
of turbulence. Motivated by the idea
that a turbulence simulation method
should not erroneously predict stability
in a flow that is actually unstable,
Fabijonas and Holm (2003) investigat-
ed the elliptical instability in the
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Figure 6. Quasi-Geostrophic Double-Gyre Problem
This figure from Holm and Nadiga (2003) shows time-averaged contour plots of the
stream function for the quasi-geostrophic double-gyre problem. (a) Shown here is a
963 high-resolution QG simulation. The Munk layer scale is 0.02L, and the grid reso-
lution is 0.01L. At this low level of viscosity, the time-mean stream function displays
a four-gyre structure even though the wind forcing is that for a double gyre. (b) This
simulation is run at a resolution that is 4 times coarser—a grid resolution of 0.04L.
With no modeling of the subgrid scales, we find that the outer pair of gyres is great-
ly weakened compared with the pair in (a). (c) This simulation is also run at a resolu-
tion that is 4 times coarser, but it uses the alpha model to account for subgrid scale
activity. Here, we find that the outer pair of gyres is restored. However, the strength
of the wind-driven and the eddy-driven mean circulation is slightly higher than the
resolved simulation shown in (a). We are currently studying the reasons for this
overprediction. (Permission granted by the American Meteorological Society.)

                                                                   



LANS-α model and showed that the
model preserves, but modifies, this
important instability. In particular, the
LANS-α model reduces the maximum
growth rate for higher wave numbers,
kα >> 1, but for slightly lower wave
numbers, kα > 1, the model increases
the maximum growth rate. This
enhancement allows the dynamics of
the small scales to affect the larger
scales. This work led to a sequence of
investigations: from early assessments
of the average effects of turbulence on
elliptic instability to later assessments
of the combined effects and interplay
of turbulence, rotation, and stratifica-
tion on elliptical instablility. 

Baroclinic Instability.
Investigations using global ocean
models or coupled ocean, atmosphere,

and ice models require the use of
coarse meshes. The meshes are often
so coarse that the Rossby deformation
radius is not resolved,1 and conse-
quently baroclinic instability is incor-
rectly predicted. Baroclinic instability
is initiated by vertical shear in a rotat-
ing, stratified flow and describes the
process of converting available poten-
tial energy to kinetic energy on scales
of the Rossby deformation radius.
This is one of the most important
dynamical phenomena in geofluid
dynamics and one that any turbulence
model must reproduce if it is to simu-
late the correct variability.

In Holm and Wingate (2004), neu-
tral curves for the onset of baroclinic
instability from the simplest LANS-α
model were compared with those
from the simplest eddy-viscosity
model (see Figure 8). Neutral curves
show the shear forcing required to ini-
tiate baroclinic instability versus wave
number. Figure 8(a) presents LANS-α
neutral curves for three values of
αkint, the length of α relative to the
Rossby deformation radius. As α, or
αkint, is increased, the critical wave
number (wave number at the mini-
mum of the neutral curve) shifts to
lower wave number while the value of
the minimum forcing required
remains the same. Thus, the onset of
baroclinic instability remains resolv-
able with fewer grid points.
Figure 8(b) shows neutral curves for
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Figure 7. Improved Variability for LANS-αα Shallow Water Simulations
(a) The kinetic energy is shown as a function of frequency; (b) the potential energy is shown as a function of frequency. In both
(a) and (b), the values are for shallow water simulations at different values of αα and different resolutions. The Rossby deforma-
tion radius for all cases is approximately 48 km. The high-resolution calculations (red) with αα = 0, an average grid spacing of
14 km that resolves the Rossyby radius, and a viscosity of 200 m2/s serve as our standard of energy variability. The other three
simulations were performed on a much coarser mesh with an average grid spacing of 28 km, a mesh size for which the Rossby
deformation radius is not well resolved. The pale blue curve shows the results of the simplest eddy viscosity model (αα = 0 and
just enough viscosity is added to prevent numerical instability). The flow is sluggish with almost an order of magnitude
decrease in the variability of the kinetic energy due to the increase in the dissipation of the total energy. The purple curve shows
the increased variability that results by introducing alpha at the value αα = 25 km. The dark blue curve shows that, by increasing
alpha to the size of the Rossby deformation radius, we recover the variability of the fine-grid case.

1 The Rossby deformation radius is the
distance at which the pressure force bal-
ances with the Coriolis force in the
motion equation.

                                                          



the eddy viscosity model for three
values of Ek3

int/β. As the viscosity E
increases, the critical wave number
again decreases, but the minimum
forcing for instability gets higher
rather than remaining constant. This
difference arises because the LANS-α
model uses dispersion to lower the
critical wave number, whereas the
eddy-viscosity model uses energy dis-
sipation.The eddy-viscosity model
thus requires higher forcing for the
onset of baroclinic instability, and
consequently some of the instability
that should be present in the flow is
lost as E is increased. In the LANS-α
model, the gradient of potential vor-
ticity, which drives the instability, is
preserved, and therefore baroclinic
instability occurs at the same forcing
values  as those predicted by the
exact Navier-Stokes equations. 

What remains unanswered is how
best to choose the parameter α and
how to combine both eddy-viscosity
models and Lagrangian averaging in
concert to achieve the most realistic
results in both global ocean models
and in coupled ocean, atmosphere,
and ice models. 

Theoretical Developments for
the LANS-αα Model

The Kármán-Howarth Theorem
for Dynamics of the LANS-αα
Model. The Kármán-Howarth theo-
rem for fluid turbulence (1938) given
by Equation 7 (see box) is an exact
analytical relation between the time
rate of change of the second-order
two-point velocity correlation func-
tion and the gradient of the third-order
two-point velocity correlation func-
tion derived from the Navier-Stokes
equation for homogeneous, isotropic
turbulence.

Equation (7) is the lowest-order
two-point statistical equation for 
turbulence dynamics and may be
understood as a relationship between
the rate of change of energy in 
scales of size r to the flux of energy
through scales of size r.

One can write the same equation
for velocity structure functions, which
are the moments of the longitudinal
velocity difference, δLu(x,t; r) = r̂ ⋅
δu(x,t; r), with δu(x,t; r) ≡ u(x+r, t)
– u(x,t). One example is the second-
order structure function 〈[δLu]2〉. See
the articles “The Turbulence Problem”
and “Direct Numerical Simulations of
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The Kármán-Howarth Theorem

where subscripts i, j denote components in a Cartesian coordinate system. The
gradient of the third-order two-point velocity correlation function 
(the second term) arises from the nonlinear term in the Navier-Stokes 
equations. 

Figure 8. Baroclinic Instability: LANS-αα vs Eulerian-Averaged Eddy Viscosity Models
Neutral curves show the onset of baroclinic instability (Holm and Wingate 2004). U2 is a measure of the strength of the shear, kint is
the wave number of the internal Rossby deformation wave, ββ = df/dy, where f is the coriolis parameter, and E is the eddy viscosity.
Both models lower the critical wave number for the onset of instability (the value of k at the minimum point of these neutral curves)
as the modeling parameter is increased. For LANS-αα, the onset occurs at the same value of the forcing irrespective of the value of αα
.. (b) For the eddy viscosity model, the onset requires higher forcing as E is increased because of the increase in dissipation.

(7)

                                                                                                                                



Turbulence” on pages 124 and 142,
respectively, for further discussion of
structure functions. Kolmogorov
(1941a, 1941b) used the structure
function form of the Kármán-Howarth
equation to show that, for homoge-
neous, isotropic, stationary turbulence
in the limit of vanishing kinematic
viscosity (ν → 0), the Navier-Stokes
equations predict an exact relationship
between the third-order structure
function and the energy dissipation
rate ε– that scales linearly in the sepa-
ration r namely, 

(8)

Kolmogorov’s main hypotheses in
deriving this relationship, which we
now know as the four-fifths law were
that (1) there exists an ‘inertial’ range
of scales that are insensitive to the
large flow-dependent scales and the
viscous small scales, and (2) there
exists a finite energy dissipation rate
ε– in the limit of zero viscosity. The
latter is known as the dissipation
anomaly for Navier-Stokes turbu-
lence. As noted in Uriel Frisch (1995,
p. 76), Kolmogorov’s four-fifths law
is “one of the most important results
in fully developed turbulence because
it is both exact and nontrivial. It thus
constitutes a kind of ‘boundary condi-
tion’ on theories of turbulence: such
theories, to be acceptable, must either
satisfy the four-fifths law, or explicitly
violate the assumptions made in
deriving it.”

Kolmogorov then assumed the
self-similarity of scales in the inertial
range and was able to deduce, in steps
that essentially amount to dimensional
analysis, that the second-order struc-
ture function must scale with r2/3 and
that, consequently, the energy spec-
trum (which is essentially the Fourier
transform of the second-order struc-
ture function) must scale as k–5/3.

The equivalent of the Kármán-
Howarth equation was derived for the
LANS-α model in Holm (2002c).

Since the model relates the Helmholtz
smoothed velocity u to the
unsmoothed velocity v, the appropri-
ate structure functions that emerge
involve the second- and third-order
two-point correlations between u and
v. Upon following Kolmogorov’s
analysis for isotropic inertial range
statistics, the corollary to the LANS-α
Kármán-Howarth equation is that
solutions of the LANS-α equations
possess two regimes of scaling,
depending on whether the separation
distance r is greater, or less, than the
size α. First, we find that the corre-
sponding four-fifths law for the
LANS-α model has the following
scaling behavior: For r > α, the third-
order structure function 〈[δu(r)]3〉
scales like r, thereby recovering
Navier-Stokes behavior. In contrast,
for r < α, the third-order structure
function scales like r3. If we then
assume self-similarity, we find that,
for r > α, the second-order structure
function scales like r2/3, again recov-
ering Navier-Stokes behavior.
However, for r < α, the second-order
structure function scales like r2.
Correspondingly, the power spectrum
E(k) for the smoothed velocity u has
two regimes, which transition from
k–5/3 for kα < 1 to k–3 for kα > 1.
Thus, the Kármán-Howarth theorem
for the LANS-α model is consistent
with the spectral scaling results found
for it in Foias et al. (2001) by dimen-
sional arguments.

The k–5/3 →→ k–3 Spectral Scaling
Transition and the LANS-αα
Dissipation Anomaly. The LANS-α
modification of Kolmogorov’s four-
fifths law at small separations (r < α)
results from assuming the constancy
of total LANS-α energy dissipation as
ν → 0. This assumption corresponds
to the energy dissipation anomaly for
the LANS-α model. A technical argu-
ment using embedding theorems for
Besov spaces2 implies that the LANS-
α total energy dissipation is indeed

constant as ν → 0 in three dimen-
sions, provided its power spectrum
E(k) for kinetic energy is not steeper
than k–4. The k–3 spectrum for kα > 1
is not too steep; therefore, the rolloff
k–5/3 → k–3 in the LANS-α power
spectrum is consistent with the neces-
sary condition for possessing such an
energy dissipation anomaly. Hence,
the k–3 behavior in the power spec-
trum of the LANS-α model for kα >1
and the corresponding modification
for separations r < α of Kolmogorov’s
four-fifths law derived in (Holm
2002c) are both consistent with the
assumption of constant dissipation of
total kinetic energy as the Reynolds
number tends to infinity. 

The k–5/3 →→ k–3 Spectral Scaling
Transition and Resolution
Requirements. The spectral scaling
roll-off behavior for kα > 1 has
important implications for the com-
putational performance of the
LANS-α model. It substantiates the
mathematical estimates of Re3/2 for
the number of degrees of freedom
required for the LANS-α model to
perform numerical simulations at a
given Reynolds number in a peri-
odic domain. According to this scal-
ing, in two decades of numerical
dynamic range, the LANS-α model
should be able to simulate what
would take three decades of 
numerical dynamic range for direct
numerical simulation using the
Navier-Stokes equations, provided
the dissipation is chosen to properly
balance the nonlinear transport at
high wave numbers, kα >> 1.

Implications for Smoothness of
LAE-αα Solutions. The r2 behavior of
the longitudinal velocity structure
functions for r < α in the limit of zero
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2 We are grateful to G. Eyink and E. S.
Titi for discussions of this argument. See
Constantin and Titi (1994) and Eyink
(2004) for detailed discussions.

                                                                                                                                                                                            



viscosity implies the LAE-α velocity
is Lipschitz continuous (Hölder index
h = 1). That is, the velocity gradients
exist almost everywhere for the
LAE-α model. In contrast, the veloc-
ity for the Navier-Stokes equations in
the limit of zero viscosity (the Euler
equations) has Hölder index h = 1/3,
which gives no assurance of the exis-
tence of velocity gradients for the
Euler equations. On the other hand,
the viscous scaling regime for the
Navier-Stokes equations has Hölder
index h = 1 and the associated r2 scal-
ing agrees with that found in the
inviscid LAE-α model. This agree-
ment in scaling implies that, theoreti-
cally, velocity gradients in the LAE-α
model are regularized to the same
degree as viscosity regularizes the
gradients in the Navier-Stokes equa-
tions. Corresponding results have
been verified by analytical estimates
in Marsden et al. (2000). The practical
implications of these theoretical
results would depend, of course, on
the particular numerical implementa-
tion and on other relevant parameters
of a computation.  

The Lagrangian-Averaged
Euler-Poincaré (LAEP) Theorem.
The LAEP theorem was proved by
Holm (2002a, 2002b). This theorem
automates the derivation of the
LANS-α model and explains its rela-
tion to the generalized Lagrangian
mean (GLM) theory. The GLM equa-
tions provide the exact nonlinear
dynamics of Lagrangian-averaged
motion, but as mentioned earlier,
they are not closed. Incorporating
Taylor’s classic hypothesis (1921) of
frozen-in Lagrangian turbulent fluc-
tuations into the GLM equations pro-
vides the closure and yields the LAE-
α model. The LANS-α model
description is then obtained by intro-
ducing dissipation in the form of
Navier-Stokes viscosity. 

This new derivation of the LANS-
α model from GLM theory and the

LAEP theorem clarifies its relation to
other models and shows how to
extend the LANS-α model to include
additional physical effects, such as
rotation, buoyancy, compressibility,
and magnetic fields. See Holm
(2002a, 2002b) for more details.

Open Problems 

Three issues have been raised in
the results outlined here and in recent
experience: How to understand and
choose the length scale α, how to
enhance our understanding of the
interplay of nonlinear transport and
eddy diffusion, and how to gain a
more fundamental understanding of
the implications of the Lagrangian-
averaged fluctuation statistics of the
trajectories by using data analysis.

The Length Scale αα. Four heuris-
tic interpretations for the length scale
α have been proposed: (1) The size α
is the length scale below which the
smaller fluid circulations are swept by
the larger ones and are not allowed to
affect their own advection. This is the
Taylor’s hypothesis interpretation. (2)
In the LES interpretation, the size α
can be considered as a natural filter
width, which defines the size of a
“large” eddy in LES. (3) In its numer-
ical interpretation, one practical rule
of thumb has often been to choose α
as some small integer multiple of the
minimum grid spacing. In choosing α
in this way, one maximizes the
dynamic range left unmodified by the
LANS-α model. (4) Because of its
effect in slowing growth rates of
instabilities at high wave numbers,
Wingate (2003, Holm and Wingate
2003) suggested one could also
choose the size α based on fluid
and/or numerical stability require-
ments for numerical simulations.

All these interpretations lend
heuristic insight into the physics of
the particular problems we have stud-
ied using the LANS-α model.

However, the length scale α is a pre-
cisely defined statistical quantity
obtained from first principles. The
context of Lagrangian averaging, in
which the length scale α is defined,
provides the basis for future develop-
ments of the LANS-α model.

Statistical Context for Future
Developments. The Lagrangian statis-
tics of the trajectory fluctuations are
related to the Eulerian velocity statis-
tics at a fixed point in space. First, the
equation for the fluctuation u′′ in
Eulerian velocity u(x,t; ω) = u– +
u′′(x,t; ω) for a random variable, ω,
expressed in terms of the fluctuation
ξ(x,t; ω) in the Lagrangian trajectory
away from its mean is given by
Equation (9) in the accompanying
box. This relation defines the deter-
ministic time derivative operator,
D/Dt, which does not depend on the
random variable ω. As a result, one
finds that the exact formula for the
Lagrangian dispersion tensor 〈ξkξ l〉 in
terms of the Eulerian velocity statis-
tics at a fixed point in space is given
by Equation (10), where 〈⋅〉 = ∫(⋅)dµ
now denotes average over the proba-
bility measure dµ of the random
process associated with ω. The trace
of this formula, given by
Equation (11) in the box, is Taylor’s
famous dispersion law (Taylor 1921)
linking the Lagrangian and Eulerian
statistics of turbulence at a fixed point
in space. More discussion of the role
played by Taylor’s contributions in
the development of the LANS-α
model is given in the article “Taylor’s
Hypothesis, Hamilton’s Principle and
the LANS-α Model” on page 172.
The anisotropic tensor version of this
formula has yet to be applied in mod-
eling turbulence using Lagrangian sta-
tistics, and it represents an open prob-
lem in turbulence modeling. 

The constant alpha case derives
from Equation (9) by substituting
Taylor’s hypothesis that the fluctuat-
ing circulations ξ are frozen into the
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Eulerian mean flow, with velocity u–,

(12) (12)

Hence, one finds

(13)

and, consequently,

(14)

The evolution of the symmetric
tensor 〈ξkξ l〉 in this formula is speci-
fied by assuming a “flow rule” for the
fluctuation statistics. This is the
required closure step for the
Lagrangian mean theories. For exam-
ple, the Taylor hypothesis—see
Equation (10)—of circulations being
frozen into the Eulerian mean flow
implies the flow rule for the symmet-
ric tensor, 

(15) 

which preserves the initial condition
that these Lagrangian statistics are
homogeneous and isotropic. That is,
this flow rule preserves 〈ξkξ l〉 =
α2δ kl, with a constant value of α. In
this case, the mean kinetic energy of
the turbulent circulations simplifies to
the LANS-α form, 

(16)

which relates the kinetic energy of the
Eulerian velocity fluctuations to the
Lagrangian statistics and the mean
shear. 

Other flow rules for these
Lagrangian statistics possessing more
sophisticated evolution equations for
〈ξkξ l〉 were catalogued in Holm
(1999). However, the results of these
anisotropic-tensor α equations and
their comparisons with the results for
the LANS-α equations in the constant
alpha case have yet to be systemati-
cally explored. 

Nonlinear Transport vs Diffusion
and Re Scaling. Most of the results
presented in this review depend on a

trade-off between viscosity and non-
linearity in modeling the average
effects of the small scales on the large
ones. Consider the energy dissipated
by the LANS-α equations,

(17)

Following the arguments of Foias
et al. (2001), the two types of energy in
Equation (17) become comparable at
wave number kα ≈ 1, and the scaling
of the kinetic energy spectrum rolls
over from E(k) ~ k–5/3 for kα < 1 to
E(k) ~ k–3 for kα > 1. This change of
scaling produces two different inertial
regimes for the LANS-α model,
depending on whether the circulations
are either larger or smaller than alpha.
Consequently, the modified nonlineari-
ty in the LANS-α model shortens the
inertial range relative to the inertial
range for the Navier-Stokes equations.
For a fixed α, the second, steeper, k–3

inertial range for LANS-α ends when
its nonlinear transport is balanced by
viscous dissipation at a wave number
κα. The LANS-α dissipation wave
number κα scales with the Reynolds
number as κα.~ Re1/2. This scaling is
to be compared with the scaling for the
Kolmogorov wave number κΚο ~
Re3/4, at which dissipation balances
nonlinearity for the Navier-Stokes
equations. Thus, the modified nonlin-
earity of the LANS-α model strikes a
balance with viscosity at a wave num-
ber that is lower than the wave number
for the Navier-Stokes equations. In
turn, the new balance of the LANS-α
model produces energy spectra that
agree well with the spectra produced
by the Navier-Stokes balance at low
wave numbers (kα < 1), but the
LANS-α spectra depart from the
Navier-Stokes spectra at high wave
numbers (kα >> 1), and thereby
enhance the model’s computability.
The scaling of dissipation wave num-
ber with Reynolds is Re1/2 for this new
balance vs Re3/4 for the Navier-Stokes
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Linking the Langrangian and Eulerian 
Statistics of Turbulence

The Eulerian velocity fluctuation u′(x,t; ω) in terms of the Lagrangian-tra-
jectory fluctuation ξ(x,t; ω) is

(9)

The total time derivative of the Lagrangian dispersion tensor is

(10)

where 〈⋅〉 = ∫ (⋅) dµ now denotes average over the probability measure dµ
of the random process associated with ω.

The trace of Equation (10) yields Taylor’s famous dispersions law linking
Lagrangian and Eulerian statistics:

(11)

                                                                                                                                          



balance. This difference in scaling is
the source of the improved computabil-
ity for the LANS-α model. 

Flow Rules for Lagrangian
Statistics. The LANS-α model is, by
definition, a mean field theory based
on Lagrangian averaging, and
Lagrangian averaging is still a young
field. For example, the corresponding
theory of large-deviation Lagrangian
statistics for nonequilibrium processes
has only recently begun to develop.
New experiments and direct numeri-
cal simulations have recently begun to
measure and investigate the funda-
mental tenets of Lagrangian trajecto-
ries in turbulence. One startling dis-
covery in both experiments and simu-
lations is that the Lagrangian trajecto-
ries tend to stay well localized along
their mean trajectories for a long peri-
od, of the order of 30 Kolmogorov
times (eddy turnover times at the dis-
sipation scale). During this period, the
Lagrangian trajectories tend to obey
Taylor’s hypothesis of frozen-in tur-
bulence. Then, suddenly, large scale
changes in the motion of those trajec-
tories may occur, which apparently
cause them to “forget” their previous
history and start over. These experi-
ments and simulations call for new
studies of stochastic effects in
Lagrangian turbulence that will take
Lagrangian turbulence beyond its cur-
rent status as a mean field theory.
Perhaps the LANS-α model will be
able to contribute as the mean field
basis for these studies, and, thus, it
may benefit from future achievements
in this currently very active area. One
potential benefit would be to include
into a new generation of Lagrangian
turbulence models the measured flow
rules for the Lagrangian statistics that
allow for the observed stochastic
shifts, or punctuations, thereby occa-
sionally and stochastically violating
Taylor’s deterministic hypothesis that
the turbulence statistics remain frozen
into the mean flow. One indication

that the LANS-α model may be able
to form the basis for such an interpre-
tation is the recent discovery
(Jonathan Graham, Darryl Holm,
Pablo Mininni, and Annick Pouquet,
private communication, November
2004) that, when magnetic fields are
included, this model possesses anom-
alous scaling, which is the hallmark of
intermittency. n
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