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On the Cover
Complex systems come in many forms. Those

on the cover were imaged through observation
and computer simulation. The scale-free network
filling the background shows the connections on
the Internet at an instant in time. The partially
ionized atoms (pink spheres) in a blue sea of free
electrons (left and center) represent a quantum
molecular dynamics simulation of the “warm”
dense matter found in giant planets. The periodic
box containing the cascading swirls of decaying
turbulence (middle right) shows results from one
of the largest simulations ever completed on the
Los Alamos Advanced Simulation and
Computing Q supercomputer. A single black-and-
white swirl (bottom left) in turbulent flow shows
velocity data acquired with high-power pulsed
lasers and computer-automated data acquisition
systems. Finally, an artist’s drawing suggests the
power and shape of a huge volcanic eruption
(center), not unlike those of a nuclear explosion. 

Attempts to predict the behaviors of such
diverse systems rest not just on the power of
modern supercomputers, but also on the inven-
tiveness of the human mind and the edifice of
mathematical and physical principles developed
over centuries. Representative for this volume is
the prolific mathematician Leonhard Euler
(1707–1783), pictured at lower left. Euler wrote
down the first fluid equations of motion and
invented the field of graph (or network) theory. 
Across from Euler is Reverend Thomas Bayes
(1702–1761), who was the first to use probability
for inductive reasoning. Bayes’ theorem for con-
ditional probabilities (actually written down in
present-day form by P. S. de Laplace) lays out
the fundamental rule of statistical inference for
determining the most likely behavior of com-
plex, many-component systems. Bayesian 
analysis was used to reach a dramatic reduction
in uncertainty for predicting nuclear fission-
related processes, as illustrated by the new and
old probability curves (sharply peaked and
broad, respectively, in the lower right corner) for
the nuclear criticality of Jezebel, a Los Alamos
nuclear assembly for integral experiments. 
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The topic of this volume, science-based prediction for complex systems, or ‘predictive
science’ for short, is often met with questions. Hasn’t science been predictive since
the time of Galileo? Haven’t we counted on Newton’s laws to put a man on the

moon and on Maxwell’s equations and the constancy of Earth’s gravitational field for the
fantastic accuracy of the Global Positioning System? So, what’s new here, and why has de-
velopment of predictive capability been named as a primary technical goal of Los Alamos
National Laboratory? 

Although not entirely new, the pairing of prediction with complex systems makes 
explicit a growing expectation for accurate predictions, be they about the weather, the
growth of foreign markets, or the next moves of terrorist groups. At Los Alamos, the goal
is implicit in many aspects of our major missions: from predicting the reliability of our
nuclear weapons without further testing to assessing the likely performance over the next
10,000 years of the proposed Yucca Mountain repository for nuclear waste and from 
developing strategies for detecting the smuggling of nuclear materials to inventing an 
optimal vaccine strategy for preventing a flu pandemic. The challenges derive not only
from the complexity of the problems, but also from the degree of confidence required of
the solutions and from the limited data and resources available for solving the problems. 

Complex systems, as defined here, involve some combination of nonlinearity, coupled
subsystems, and multiple length and time scales. These complexities invariably mean that a
system can traverse many different histories, and therefore reliable prediction and accurate
assessment of the uncertainties require a probabilistic approach. Also needed are the con-
scious coordination and integration of experiment, theory, and computer simulation. 

At Los Alamos, the major driver for predictive science is, of course, the nuclear weapons
program. Since the cessation of testing, the goal of the nuclear weapons program has been
to predict the performance of weapons in the stockpile through direct simulation in order to
anticipate problems that might arise and then develop efficient ways to fix those problems.
In a penetrating analysis that opens this volume, John Pedicini and Dwight Jaeger discuss
the new guidance from Washington and then outline the factors that will determine the fu-
ture nuclear deterrent. What is interesting from the perspective of this volume is the
emphasis on increasing predictability by creating a robust replacement for stockpile designs,
one with reduced sensitivity to manufacturing and performance variables. 

Whatever decisions are made on the future nuclear deterrent, methodologies are needed
to predict weapons performance through simulation and to quantify levels of uncertainty.
But how does one determine the uncertainties when the simulations contain a maze of errors
in input data, physics models, and solution methods? The first article on uncertainty quan-
tification introduces specific methodologies for analyzing simulation errors for multiphysics
codes such as those needed for weapons performance. It also applies the methodologies to
two real-world problems: estimating the errors in shock propagation problems and predict-
ing production from an oil reservoir. The results provide a compelling case for using error
models to estimate uncertainties and, in certain cases, improve the accuracy of the simula-
tions. Using error analysis in a different application, Los Alamos researchers report a
remarkable result: a factor of 10 reduction in the uncertainty in the nuclear fission cross sec-
tion. That reduction is expected to translate into more accurate predictions of weapons
performance and better interpretations of past nuclear tests. In the earth sciences, where data
are often relatively sparse, uncertainty quantification becomes much less precise. Results 
reported here on ocean current stability from different ocean models show the real difficul-
ties in predicting global climate change, and examples from volcanology illustrate the types
of approximation that feed into practical decision-making.

This volume interprets predictive science in a very inclusive way, by sampling the 
diverse systems and new approaches being investigated at Los Alamos. The article on net-
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works is a prime example, presenting a new paradigm for describing the interactions in
complex systems, whether they consist of people, computers, or the complex molecules of
life. The efficiency of information transport on a network seems to strongly influence the
network’s structural evolution, be it the Internet, the metabolic networks, or a network of
scientific collaboration. That idea has led to the solution of several problems, including the
design of a computer network for performing agent-based simulations in a scalable fashion.

The article on modeling the response of the retina to visual stimuli outlines another intel-
lectual frontier. Inspired in part by the program to develop a retinal prosthetic for the
visually impaired, modeling and experiment have uncovered a mechanism by which the
retina may preprocess information on incoming light stimuli. What seems to be a coordinat-
ed, context-related neuronal response may also be relevant for understanding the processing
that occurs deep within the brain. 

Two remarkable developments are reported here on predicting material behavior under
extreme conditions. One is predicting the static, dynamic, and optical properties of partially
ionized matter using the framework of quantum molecular dynamics. This methodology has
correctly predicted the equation of state of hydrogen and of a mixture of nitrogen and oxy-
gen in the shocked state, as well as the viscosity of plutonium. The second development is
the validation of material models that predict the deformation and fracture of metals under
extreme loading conditions. The extraordinary agreement between simulation and experi-
ment for the degree of strain localization during both tensile tests and explosively driven
conditions represents the state of the art in that field. 

The problem of predicting turbulence has been recalcitrant to solution for over 80 years.
This volume contains an introduction to the problem through the eyes of an experimentalist
followed by a discussion of exciting new developments. They include a calculation of the
entire turbulent velocity field in a periodic domain, done on the Los Alamos (Advanced
Simulation and Computing) Q machine. This calculation shows that the famous Kol-
mogorov scaling laws hold locally in time but also indicates departures. In fact, a related
article on field theory and statistical hydrodynamics reports the first analytical calculation of
anomalous scaling in passive scalar turbulence. Also presented is a new model for comput-
ing turbulence, known as the LANS-alpha model. Its derivation from Hamilton’s principle
of least action, the existence and properties of its solutions, its application to benchmark
problems, its preservation of properties such as the variability of the flow, and the open
problems for increasing its applicability are discussed. 

The volume closes with one of the most important efforts related to the accurate simula-
tion of nuclear weapons performance, that of developing numerical methods preserving the
most important aspects of the physics. This endeavor began more than 50 years ago, at the
inception of electronic digital computers. Here, in a presentation meant to be pedagogical,
one gets a glimpse of the creative effort involved in making radiation and hydrodynamic
simulations predictive.

All the articles reveal the impact of computational power on the progress toward predic-
tive capability. That power is almost taken for granted, and the center of attention has
shifted to what one can do with it, but it is interesting to recall that 30 years ago, when the
first Cray computers were delivered to Los Alamos, computing power was less than it is
today by a factor of 104. Most simulations were one dimensional; that is, they assumed
spherical symmetry, and none of the complexity being addressed today was imagined with-
in reach. We’ve come a long way.

v

About This Volume

 



About This Volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  iv

Weapons Outlook

The Evolving Deterrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Dwight Jaeger and John Pedicini

Uncertainty Quantification

Error Analysis and Simulations of Complex Phenomena  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Michael A. Christie, James Glimm, John W. Grove, David M. Higdon, 
David H. Sharp, and Merri M. Wood-Schultz

Reducing Uncertainty in Nuclear Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26   
Mark B. Chadwick, Patrick Talou, and Toshihiko Kawano

The Ocean Perspective—Uncertainties in Climate Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Rainer Bleck

Predicting Risks in the Earth Sciences—Volcanological Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56
Greg Valentine

Materials

Quantum Molecular Dynamics—Simulating Warm, Dense Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70
Lee A. Collins, Joel D. Kress, and Stephane F. Mazevet

Predicting Material Strength, Damage, and Fracture—The Synergy between 
Experiment and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

George T. (Rusty) Gray III, Paul J. Maudlin, Lawrence M. Hull, 
Q. Ken Zuo, and Shuh-Rong Chen

vi

Science-Based Prediction for Complex SystemsSc enceLos Alamos

                     



vii

Networks

Complex Networks—The Challenge of Interaction Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Zoltán Toroczkai 

Computational Biology

Models of the Retina with Application to the Design of a Visual Prosthesis . . . . . . . . . . . . . . . . . . . . . . . 110
Garrett T. Kenyon, John George, Bryan Travis, and Krastan Blagoev

Turbulence

The Turbulence Problem—An Experimentalist’s Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
Robert Ecke

Intermittency and Anomalous Scaling in Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Misha Chertkov

Direct Numerical Simulations of Turbulence—Data Generation and Statistical Analysis . . . . . . . . . . . . 142
Susan Kurien and Mark A. Taylor

The LANS-α Model for Computing Turbulence—Origins, Results, and Open Problems . . . . . . . . . . . . 152
Darryl D. Holm, Chris Jeffery, Susan Kurien, Daniel Livescu, 
Mark A. Taylor and Beth A. Wingate

Taylor’s Hypothesis, Hamilton’s Principle, and the LANS-α Model for Computing Turbulence. . . . . 172 
Darryl D. Holm

Field Theory and Statistical Hydrodynamics—The First Analytical  
Predictions of Anomalous Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Misha Chertkov

Numerical Methods

Physically Motivated Discretization Methods—A Strategy for Increased Predictiveness . . . . . . . . . . . . 188 
Dana Knoll, Jim Morel, Len Margolin, and Misha Shashkov 

Erratum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

Number 29  2005

                                 



2 Los Alamos Science Number 29  2005

The Evolving Deterrent

Nuclear deterrence provided the foundation
of our national security strategy for the second
half of the 20th century. The end of the Cold
War marked the beginning of a period of transi-
tion, during which the role of nuclear weapons
was uncertain. However, according to national
guidance that includes the 2001 Quadrennial
Defense Review, the 2002 Nuclear Posture
Review, and the 2002 National Security
Strategy, as well as the recommendations con-
tained in the 2004 Defense Science Board Task
Force report titled “Future Strategic Strike
Forces,” the direction for nuclear weapons is
becoming clearer.

The Evolving Deterrent
Dwight Jaeger and John Pedicini

Synthesis of a New Direction

The overall theme of the guidance documents mentioned above
is that nuclear weapons have an enduring role for a range of national
security objectives, including deterrence. However, the Cold War
stockpile needs to be modified to achieve U.S. defense policy goals
in the 21st century. The premise of deterrence is that our adver-
saries believe that, if they attack the United States or our allies 
with weapons of mass destruction, we have the capability and, 
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if required, the will to destroy what
they value most. To deter, we “hold at
risk” those assets that are most impor-
tant to an adversary. Much of the Cold
War arsenal was optimized to hold at
risk large nuclear forces, leadership
facilities, and other important targets in
large countries harboring many ready-
to-deliver weapons presumably aimed
at the United States. As potential
adversaries have changed and nonnu-
clear weapons have improved, the role
of nuclear deterrence has evolved
toward holding at risk a much smaller
number of specific targets that cannot
be confidently destroyed by conven-
tional munitions. The perceived
requirements of nuclear deterrence and
supporting capabilities for an unknown
future are the following: Nuclear test-
ing should not be required, collateral
damage should be minimized, deter-
rence plans should be sufficiently flexi-
ble to meet emerging or future
Department of Defense requirements,
the infrastructure should be flexible
and responsive if or when needed,
environmental problems related to
manufacturing must be minimized,
cost of manufacturing and operations
should be reduced, safety and security
in a post 9/11 world need to be
improved, and capable and well-
trained stewards are necessary to
ensure the continued viability of the
deterrent. In our judgment, the future
deterrent will likely consist of reduced
numbers of existing warheads (or func-
tional replacements for them) and the
capability to build a modest number of
special-capability weapons should that
become necessary.

Meeting these kinds of require-
ments drives the physics package
designers from Los Alamos and
Lawrence Livermore National
Laboratories and the underlying sci-
ence and technology toward two goals.
The first goal is to ensure that the
existing systems are sustainable.
Achieving this goal is currently based
on life extension programs (LEPs) for

most of the existing warheads. The
planned LEPs are consistent with the
Moscow Treaty and the recently
revised (June 2004) Nuclear Warhead
Stockpile Plan. Another option for
achieving this goal is to develop a reli-
ability replacement warhead (RRW)1

to facilitate replacement of stockpile
warheads and warhead components
within existing requirements of the

current systems. This option is now
being examined at Los Alamos. The
second goal is to ensure that the NNSA
can provide the capabilities that may
be needed to hold at risk other poten-
tial emerging types of targets, mainly
deeply buried command bunkers and
biological and chemical weapons,
should the need for such weapons be
determined by the U.S. government
sometime in the future.

Ensuring the Existing Capability
in the 21st Century. Whether to devel-
op additional weapons concepts is a
topic of continuing debate, but there is
general consensus about the need to
ensure that the existing weapon systems
are sustainable. To achieve this goal, we
need to rely on the underlying science
and capability to predict when problems
will arise. We then need the capability
to replicate the parts, components, and
systems in a configuration that is 

acceptably close to what was tested and
certified. Finally, we need capable and
trained people to make all this happen. 

To date, our Stockpile Stewardship
Program (SSP) has been quite success-
ful. We are currently executing LEPs
and considering additional LEPs for 
the remainder of the stockpile, perhaps
on a recurring basis. This program,
however, is proving to be more time-
consuming and expensive than 
originally envisioned. 

Several factors contribute to the
expense of the SSP. During the Cold
War, U.S. nuclear weapons were
designed to meet stringent safety and
security requirements while simultane-
ously meeting very demanding sets of
military requirements; these weapons
are thus highly optimized. Within a
given package, enduring stockpile war-
heads were designed to have maximum
nuclear yield (explosive power) given
the highly constrained weight and vol-
ume limits of the delivery systems.
These optimized, sophisticated designs
left little margin for uncertainties of per-
formance. In this context, margin is the
generic term that represents the differ-
ence between where a variable operates
and the upper limit capability of that
variable (for example, the difference
between the stress in a bridge beam at
full load compared with the ultimate
stress capability of the beam). Factors
providing extra performance margin
were secondary. Among them are the
weapons’ ability to perform “as
designed” in a variety of adverse cir-
cumstances (for example, extreme heat
or cold, radiation environments, and
others), to be insensitive to small design
flaws or deterioration from aging, and
to be straightforward to manufacture
and maintain. Considering the factors
that provide extra performance margin
as secondary in importance was accept-
able, in part, because underground
nuclear testing could be used to confirm
that high-performance designs with
moderate design margins would indeed
work. Further, because new or replace-

September 11, 2001

1 The RRW was recently approved for
FY05 funding by the 108th Congress.

       



ment weapons were constantly being
designed, built, and fielded to replace
older weapons, age was not a significant
consideration. At present, however, new
parts and components must be con-
structed with very tight tolerances on
geometry, materials, and manufacturing
processes to sustain these highly opti-
mized systems. 

Los Alamos is investigating an alter-
nate approach to ensure that the United
States can maintain the existing capabil-
ity through initial examination of the
feasibility of an RRW. This feasibility
study is concentrating on two major
questions: (1) Can we certify a replace-
ment design without nuclear testing? 
(2) Would such a design provide ade-
quate or more capability with fewer
resources? 

In answer to the first question, we
need to design replacements, bearing in
mind that we must certify without
nuclear testing. Such designs require
development of a different set of
requirements. General guidance and
constraints must be defined first. A war-
head must (1) be certifiable and safe,
(2) meet modern surety standards and
post 9/11 surety issues, (3) have larger
margins with known uncertainties for all
physics and engineering design vari-
ables (several standard deviations away
from known failures using a formal
methodology for quantification of mar-
gins and uncertainties), (4) be modular
and compatible with as many delivery
systems as possible, (5) have minimal
susceptibility to aging changes, (6) be
easier to manufacture than current war-
heads in the stockpile, (7) be produced
for less than typical cost, have fewer
parts, and be less complex, (8) whenev-
er possible, contain fewer materials that
would pose environmental risk, and 
(9) be field inspectable and maintain-
able. An RRW program would also
inherently create challenging real-world
environments for new stewards. 

Los Alamos is building the capability
to evaluate the relative costs of different
scenarios for stockpile evolution. One

can speculate that eight quite highly
optimized warhead types (current plan)
would cost more than three or four rela-
tively simple long-life systems designed
according to the criteria listed above.
However, it is important to validate
such assumptions before making major
investments.

A final issue we will have to address
before making a major commitment is
the value of stockpile diversity. It has
oftentimes been assumed that national
security might be better served by a
highly diverse stockpile. However, in a
fixed-budget, highly constrained envi-
ronment, the nation must make
informed decisions about the value of
many warhead types against the advan-
tage of having a better understanding of
fewer warhead types. This part of the
puzzle is arguably one of the more
important issues to be resolved and ulti-
mately may be one of the hardest to
address. 

Providing Capabilities to Meet
Future Threats. The Nuclear Posture
Review also calls for the examination of
nuclear weapon concepts that would be
capable of neutralizing weapons of
mass destruction (biological and chemi-
cal weapons) and holding at risk hard
and deeply buried targets (HDBTs) that
could be used to protect an enemy’s
leaders or key facilities.2 Because
nuclear weapons produce very high
temperatures and can produce large
amounts of radiation, they are lethal to
biological and chemical agents. For
example, some preliminary analysis
indicates that neutralizing weapons of
mass destruction with nuclear weapons
would likely cause substantially fewer
collateral casualties than might result
from dispersal of biological agents
under a conventional attack. However,
any final assessment of potential colla-

teral damage would require significant
research.

HDBTs present a different set of
challenges. A significant ground shock
is required to destroy many of these
types of targets. If a weapon can pene-
trate the ground, more of the energy is
coupled directly into the ground, pro-
ducing a shockwave. Typically, the
effect of an underground burst can be
from 20 to 50 times (depending on
depth of burial) more effective than an
equivalent surface burst. Stated another
way, one can lower the required explo-
sive power by the same factor. Current
conventional penetrating weapons,
holding less than 2000 pounds (or
1 ton) of high explosive, can hold at risk
many targets buried at shallow depths.
However, numerous critical targets are
too deep underground and are too hard
to be threatened by these systems. The
United States could, in principle, devel-
op a small number of conventional pen-
etrators that are roughly ten times larger
than current conventional bombs. These
larger systems, although difficult to
deliver in any numbers, could be effec-
tive at destroying some targets that are
not now held at risk by nonnuclear
weapons. However, adversaries could
easily outdig such a capability. On the
other hand, nuclear earth-penetrating
weapons could be designed with a range
of destructive power. This power could
be adjusted to minimize collateral dam-
age while still destroying the target.
Collateral damage can be reduced
through ground penetration but would
produce some air shockwaves (ground
shock requirements would be just high
enough to destroy the target), thermal
radiation, and residual dispersed radia-
tion. However, considerable analysis of
weapons’ effects is required before a
proposal for a warhead can be made.
Pursuing these concepts beyond the idea
stage is controversial, and recent legisla-
tion has removed funding for nuclear
earth penetrators or advanced nuclear
weapons concepts. n
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2 Any decision to actively pursue such
weapons must involve the development of
Department of Defense requirements and
the concurrence of Congress.
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Warhead disassembly and reassembly are 
routinely done to ensure that all systems in the
stockpile are reli-
able. The W88 war-
head at right has
its reentry body
wrapped in red
protective material
for a safer surveil-
lance process. Los
Alamos engineers
and personnel
from the Pantex
Plant in Amarillo,
Texas, improved
the design of the
assembly stand to
enhance worker safety.

Working with other National Nuclear Security
Administration and military organizations, Los
Alamos staff help conduct surveillance tests, in
which mockups of nuclear weapons are sub-
jected to realistic situations to demonstrate their
reliability. In this surveillance test, a B-61 look-
alike weapon is dropped from a B-2 bomber
(top), recovered (middle), and prepared for post-
test data interrogation and radiography (bottom).

Results from subcritical
experiments conducted at
the Nevada Test Site are
used in building predictive
capabilities for stockpile
certification.

For further information, contact 
Dwight L. Jaeger 505 665 3797
(jaeger@lanl.gov).
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Error Analysis and Simulations
of Complex Phenomena
Michael A. Christie, James Glimm, John W. Grove, David M. Higdon, 

David H. Sharp, and Merri M. Wood-Schultz

6

Large-scale computer-based simulations are being used increasingly to predict the behavior of
complex systems. Prime examples include the weather, global climate change, the performance 
of nuclear weapons, the flow through an oil reservoir, and the performance of advanced aircraft.
Simulations invariably involve theory, experimental data, and numerical modeling, all with their
attendant errors. It is thus natural to ask, “Are the simulations believable?” “How does one assess the
accuracy and reliability of the results?” This article lays out methodologies for analyzing and com-
bining the various types of errors that can occur and then gives three concrete examples of how error
models are constructed and used.

At the top of these two pages is a simulation of low-viscosity gas (purple) displacing 
higher-viscosity oil (red) in an oil recovery process. Error models can be used to improve
predictions of oil production from this process. Above, at left, is a component of such an
error model, and at right is a prediction of future oil production for a particular oil reser-
voir obtained from a simple empirical model in combination with the full error model.

     



Reliable Predictions of
Complex Phenomena

There is an increasing demand for
reliable predictions of complex phe-
nomena encompassing, where possi-
ble, accurate predictions of full-sys-
tem behavior. This requirement is
driven by the needs of science itself,
as in modeling of supernovae or pro-
tein interactions, and by the need for
scientifically informed assessments in
support of high-consequence decisions
affecting the environment, national
security, and health and safety. For
example, decisions must be made
about the amount by which green-
house gases released into the atmos-
phere should be reduced, whether and
for what conditions a nuclear weapon
can be certified (Sharp and Wood-
Schulz 2003), or whether develop-
ment of an oil field is economically
sound. Large-scale computer-based
simulations provide the only feasible
method of producing quantitative,
predictive information about such
matters, both now and for the foresee-
able future. However, the cost of a
mistake can be very high. It is there-
fore vitally important that simulation
results come with a high level of
confidence when used to guide high-
consequence decisions.

Confidence in expectations about
the behavior of real-world phenomena
is typically based on repeated experi-
ence covering a range of conditions.
But for the phenomena we consider
here, sufficient data for high confi-
dence is often not available for a vari-
ety of reasons. Thus, obtaining the

needed data may be too hazardous or
expensive, it may be forbidden as a
matter of policy, as in the case of
nuclear testing, or it just may not be
feasible. Confidence must then be
sought through understanding of the
scientific foundations on which the
predictions rest, including limitations
on the experimental and calculational
data and numerical methods used to
make the prediction. This understand-
ing must be sufficient to allow quanti-
tative estimates of the level of accura-
cy and limits of applicability of the
simulation, including evidence that
any factors that have been ignored in
making the predictions actually have a
small effect on the answer. If, as
sometimes happens, high-confidence
predictions cannot be made, this fact
must also be known, and a thorough
and accurate uncertainty analysis is
essential to identify measures that
could reduce uncertainties to a tolera-
ble level, or mitigate their impact.

Our goal in this paper is to provide
an overview of how the accuracy and
reliability of large-scale simulations of
complex phenomena are assessed, and
to highlight the role of what is known
as an error model in this process. 

Why Is It Hard to Make
Accurate Predictions of
Complex Phenomena?

We begin with a couple of examples
that illustrate some of the uncertainties
that can make accurate predictions dif-
ficult. In the oil industry, predictions of
fluid flow through oil reservoirs are

difficult to make with confidence
because, although the fluid properties
can be determined with reasonable
accuracy, the fluid flow is controlled
by the poorly known rock permeability
and porosity. The rock properties can
be measured by taking samples at
wells, but these samples represent only
a tiny fraction of the total reservoir
volume, leading to significant uncer-
tainties in fluid flow predictions. As an
analogy of the difficulties faced in pre-
dicting fluid flow in reservoirs, imag-
ine drawing a street map of London
and then predicting traffic flows based
on what you see from twelve street
corners in a thick fog! 

In nuclear weapons certification, a
different problem arises. The physical
processes in an operating nuclear
weapon are not all accessible to labo-
ratory experiments (O’Nions et al.
2002). Since underground testing is
excluded by the Comprehensive Test
Ban Treaty (CTBT), full system pre-
dictions can only be compared with
limited archived test data. 

The need for reliable predictions is
not confined to the two areas above.
Weather forecasting, global climate
modeling, and complex engineering
projects, such as aircraft design, all
generate requirements for reliable,
quantitative predictions—see, for
example, Palmer (2000) for a study of
predictability in weather and climate
simulations. These often depend on
features that are hard to model at the
required level of detail—especially if
many simulations are required in a
design-test-redesign cycle. 

More generally, because we are
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dealing with complex phenomena,
knowledge about the state of a system
and the governing physical processes
is often incomplete, inaccurate, or
both. Furthermore, the strongly non-
linear character of many physical
processes of interest can result in the
dramatic amplification of even small
uncertainties in the input so that they
produce large uncertainties in the sys-
tem behavior. The effects of this sen-
sitivity will be exacerbated if experi-
mental data are not available for
model selection and validation.
Another factor that makes prediction
of complex phenomena very difficult
is the need to integrate large amounts
of experimental, theoretical, and com-
putational information about a com-
plex problem into a coherent whole.
Finally, if the important physical
processes couple multiple scales of
length and time, very fast and very
high memory capacity computers and
sophisticated numerical methods are
required to produce a high-fidelity
simulation. The examples discussed in
this article exhibit many of these diffi-
culties, as well as the uncertainties in
prediction to which they lead. 

To account for such uncertainties,
models of complex systems and their
predictions are often formulated prob-
abilistically. But the accuracy of pre-
dictions of complex phenomena,
whether deterministic or probabilistic,
varies widely in practice. For example,
estimates of the amount of oil in a
reservoir that is at an early stage of
development are very uncertain. Large
capital investments are made on the
basis of probabilistic estimates of oil
in place, so that the oil industry is fun-
damentally a risk-based business. The
estimates are usually given at three
confidence levels: p90, p50, and p10,
meaning that there is a 90 percent,
50 percent, and 10 percent chance,
respectively, that the amount of oil in
place will be greater than the specified
reserve level. Figure 1 shows a
schematic plot (based on a real North

Sea example) of estimated reserves as
a function of time. The plot clearly
shows that, as more information about

the reservoir was acquired during the
course of field development, estimates
of the range of reserves changed out-
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Figure 1. Oil-in-Place Uncertainty Estimate Variation with Time
This figure shows estimates of p90, p50, and p10 probabilities that the amount of oil
in a reservoir is greater than the number shown. The estimated probabilities are
plotted as a function of time. The variations shown indicate the difficulties involved
in accurate probability estimations. [Photo courtesy of Terrington (York) Ltd.]

Figure 2. Calibration Curve for Weather Forecasts
This plot shows estimates of the probability of precipitation from simulation fore-
casts vs the observed frequency of precipitation for a large number of observa-
tions. Next to each data point is the number of observations for that forecast.

                



side the initial prediction. In other
words, the initial estimates of reserves,
although probabilistic, did not capture
the full range of uncertainty and were
thus unreliable. This situation was
obviously a cause for concern for a
company with billions of dollars in
investments on the line.

Probabilistic predictions are also
used in weather forecasting. If the
probabilistic forecast “20 percent
chance of rain” were correct, then on
average it would have rained on 1 in 5
days that received that forecast. Data
on whether or not it rained are easily
obtained. This rapid and repeated
feedback on weather predictions has
resulted in significantly improved reli-
ability of forecasts compared with pre-
dictions of uncertainty in oil reserves.
The comparison between the observed
frequency of precipitation and a proba-
bilistic forecast for a locality in the
United States shown in Figure 2 con-
firms the accuracy of the forecasts.

This accuracy did not come easily,
and so we next briefly describe two of
the principal methods currently used
to improve the accuracy of predictions
of complex phenomena: calibration
and data assimilation.

Calibration is a procedure whereby
a simulation is matched to a particular
set of experimental data by perform-
ing a number of runs in which uncer-
tain model parameters are varied to
obtain agreement with the selected
data set. This procedure is sometimes
called “tuning,” and in the oil industry
it is known as history matching.
Calibration is useful when codes are
to be used for interpolation, but it is
of limited help for extrapolation out-
side the data set that was used for tun-
ing. One reason for this lack of pre-
dictability is that calibration only
ensures that unknown errors from dif-
ferent sources, say inaccurate physics
and numerics, have been adjusted to
compensate one another, so that the
net error in some observable is small.
Because different physical processes

and numerical errors are unlikely to
scale in the same way, a calibrated
simulation is reliable only for the
regime for which it has been shown to
match experimental data.

In one variant of calibration, multi-
ple simultaneous simulations are per-
formed with different models. The
“best” prediction is defined as a
weighted average over the results
obtained with the different models. As
additional observations become avail-
able, the more successful models are
revealed, and their predictions are
weighted more heavily. If the models
used reflect the range of modeling
uncertainty, then the range of results
will indicate the variance of the pre-
diction due to those uncertainties.

Data assimilation, while basically a
form of calibration, has important dis-
tinctive features. One of the most
important is that it enables real-time
utilization of data to improve predic-
tions. The need for this capability
comes from the fact that, in opera-
tional weather forecasting, for exam-
ple, there is insufficient time to restart
a run from the beginning with new
data, so that this information must be
incorporated on the fly. In data assim-
ilation, one makes repeated correc-
tions to model parameters during a
single run, to bring the code output
into agreement with the latest data.
The corrections are typically deter-
mined using a time series analysis of
the discrepancies between the simula-
tion and the current observations.
Data assimilation is widely used in
weather forecasting. See Kao et al.
(2004) for a recent application to
shock-wave dynamics.

Sources of Error and How 
to Analyze Them

Introducing Error Models. The
role of a thorough error analysis in
establishing confidence in predictions
has been mentioned. But evaluating

the error in a prediction is often more
difficult than making the prediction in
the first place, and when confidence
in the answer is an issue, it is just as
important. 

A systematic approach for deter-
mining and managing error in simula-
tions is to try to represent the effects
of inaccurate models, neglected phe-
nomena, and limited solution accuracy
using an error model.

Unlike the calibration and data
assimilation methods discussed above,
an error model is not primarily a
method of increasing the accuracy of
a simulation. Error modeling aims to
provide an independent estimate of
the known inadequacies in the simula-
tion. An error model does not purport
to provide a complete and precise
explanation of observed discrepancies
between simulation and experiment
or, more generally, of the differences
between the simulation model and the
real world. In practice, an error model
helps one achieve a scientific under-
standing of the knowable sources of
error in the simulation and put quanti-
tative bounds on as much of the error
as possible. 

Simulation Errors. Computer
codes used for calculating complex
phenomena combine models for
diverse physical processes with algo-
rithms for solving the governing equa-
tions. Large databases containing
material properties such as cross sec-
tions or equations of state that tie the
simulation to a real-world system
must be integrated into the simulation
at the lowest level of aggregation.
These components and, significantly,
input from the user of the code must
be linked by a sophisticated computer
science infrastructure, with the result
that a simulation code for complex
phenomena is an exceedingly elabo-
rate piece of software. Such codes,
while elaborate, still provide only an
approximate representation of reality. 

Simulation errors come from three
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main sources: inaccurate input data,
inaccurate physics models, and limit-
ed accuracy of the solutions of the
governing equations. Clearly, each of
these generic sources of error is
potentially important. A perfect
physics model with perfect input data
will give wrong answers if the equa-
tions are solved poorly. Likewise, a
perfect solution of the wrong equa-
tions will also give incorrect answers.
The relative importance of errors from

each source is problem dependent, but
each source of error must be evaluat-
ed. Our discussion of error models
will reflect the above comments by
categorizing simulation inadequacies
as due to input, solution, and physics
errors.

Input errors refer to errors in data
used to specify the problem, and they
include errors in material properties,
the description of geometrical config-
urations, boundary and initial condi-

tions, and others. Solution error is the
difference between the exact mathe-
matical solution of the governing
equations for the model and the
approximate solution of the equations
obtained with the numerical algo-
rithms used in the simulation. Physics
error includes the effects of phenome-
na that are inadequately represented in
the simulation, for example, the
unknown details of subscale physics,
such as the microscopic details of
material that is treated macroscopical-
ly in the simulation. Evaluations of
the effects of these details are typical-
ly based on statistical descriptions.
The physics component of an error
model is thus based on knowledge of
aspects of the nominal model that
need or might need correction. 

Experimental Errors and
Solution Errors. Much of our under-
standing of how to analyze errors
comes from studies of experimental
error. We will also see below that
experimental and solution errors play
a similar role in an uncertainty analy-
sis. We therefore start by discussing
experimental errors.

Experimental errors play an impor-
tant role in building error models for
simulations. First, they can bias con-
clusions that are drawn when simula-
tion results are compared with meas-
ured data. Second, experimental errors
affect the accuracy of simulations
indirectly through their effects on
databases and input data used in a
simulation. Experimental errors are
classified as random or systematic.
Typically, both types of error are pres-
ent in any particular application. A
familiar example of a random error is
the statistical sampling error quoted
along with the results of opinion polls.
Another type of random error is the
result of variations in random physical
processes, such as the number of
radioactive decays in a sample per
unit time. The signals from measuring
instruments usually contain a compo-
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Figure 3. Uncertainties in Reported Measurements of the Speed of
Light (1870–1960)
This figure shows measured values of the speed of light along with estimates of the
uncertainties in the measured values up until 1960. The error bars correspond to the
estimated 90% confidence intervals. The currently accepted value lies outside the
error bars of more measurements than would be expected, indicating the difficulty
of truly assessing the uncertainty in an experimental measurement. Refer to the arti-
cle by Henrion and Fischoff on pp. 666–677 in Heuristics and Biases (2002) for more
details on this and other examples of uncertainties in physical constants.
(Photo courtesy of Department of Physics, Carnegie Mellon University.)

        



nent that either is or appears to be
random whether the process that is the
subject of the measurement is random
or not. This component is the ubiqui-
tous “noise” that arises from a wide
variety of unwanted or uncharacter-
ized processes occurring in the meas-
urement apparatus. The way in which
noise affects a measurement must be
taken into consideration to attain valid
conclusions based on that data. Noise
is typically treated probabilistically,
either separately or included with a
statistical treatment of other random
error. However, systematic error is
often both more important and more
difficult to deal with than random
error. It is also frequently overlooked,
or even ignored. 

To see how a systematic error can
occur, imagine that an opinion poll on
the importance of education was con-
ducted by questioning people on street
corners “at random”—not knowing
that many of them were coming and
going from a major library that hap-
pened to be located nearby. It is virtu-
ally certain that those questioned
would on average place a higher
importance on education than the pop-
ulation in general. Even if a very large
number of those individuals were
questioned, an activity that would
result in a small statistical sampling
error, conclusions about the impor-
tance of higher education drawn from
this data could be incorrect for the
population at large. This is why care-
fully conducted polls seek to avoid
systematic errors, or biases, by ensur-
ing that the population sampled is rep-
resentative. 

As a second example, suppose that
10 measurements of the distance from
the Earth to the Sun gave a mean
value of 95,000,000 miles due, say, to
flaws in an electric cable used in mak-
ing these measurements. How would
someone know that 95,000,000 miles
is the wrong answer? This error could
not be revealed by a statistical analy-
sis of only those 10 measurements.

Additional, independent measure-
ments made with independent measur-
ing equipment would suggest that
something was wrong if they were
inconsistent with these results.
However, the cause of the systematic
error could only be identified through
a physical understanding of how the
instruments work, including an analy-
sis of the experimental procedures and
the experimental environment. In this
example, the additional measurements
should show that the electrical charac-
teristics of the cable were not as
expected. To reiterate, the point of
both examples is that an understand-
ing of the systematic error in a meas-
ured quantity requires an analysis that
is independent of the instrument used
for the original measurement.

An example of how difficult it can
be to determine uncertainties correctly
is shown in Figure 3, a plot of esti-
mates of the speed of light vs the date
of the measurement. The dotted line
shows the accepted value, and the
published experimental uncertainties
are shown as error bars. The length of
the error bars—1.48 times the stan-
dard deviation—is the “90 percent
confidence interval” for a normally
distributed uncertainty for the experi-
mental error; that is, the experimental
error bars will include the correct
value 90 percent of the time if the
uncertainty were assessed correctly. It
is evident from the figure, however,
that many of the analyses were inade-
quate: The true value lies outside the
error bars far more often than 10 per-
cent of the time. This situation is not
uncommon, and it provides an exam-
ple of the degree of caution appropri-
ate when using experimental results. 

The analysis of experimental error
is often quite arduous, and the rigor
with which it is done varies in prac-
tice, depending on the importance of
the result, the accuracy required,
whether the measurement technique is
standard or novel, and whether the
result is controversial. Often, the best

way to judge the adequacy of an
analysis of uncertainty in a complex
experiment is to repeat the experiment
with an independent method and an
independent team.

Solution errors enter an analysis of
simulation error in several ways. In
addition to being a direct source of
error in predictions made with a given
model, solution errors can bias the con-
clusions one draws from comparing a
model to data in exactly the same way
that experimental errors do. Solution
errors also can affect a simulation
almost covertly: It is common for the
data or the code output to need further
processing before the two can be
directly compared. When this process-
ing requires modeling or simulation
with a different code, then the solution
error from that calculation can affect
the comparison. As with experimental
errors, solution errors must be deter-
mined independently of the simulations
that are being used for prediction.

Using Data to 
Constrain Models

The scientific method uses a cycle
of comparison of model results with
data, alternating with model modifica-
tion. A thorough and accurate error
analysis is necessary to validate
improvements. The availability of
data is a significant issue for complex
systems, and data limitations permeate
efforts to improve simulation-based
predictions. It is therefore important
to use all relevant data in spite of dif-
ferences in experiment design and
measurement technique. This means
that it is important to have a proce-
dure to combine data from diverse
sources and to understand the signifi-
cance of the various errors that are
responsible for limitations on pre-
dictability.

The way in which the various cate-
gories of error can affect comparison
with experimental data and the steps
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to be taken if the errors are too large
are discussed in the next section. The
comparison of model predictions with
experimental data is often called the
forward step in this cycle and is a key
component in uncertainty assessments
of a predicted result. The backward
step of the cycle for model improve-
ment, which is discussed next, is the
statistical inference of an improved
model from the experimental data.
The Bayesian framework provides a
systematic procedure for inference of
an improved model from observa-
tions; lastly, we describe the use of
hierarchical Bayesian models to inte-
grate data from many sources. 

Some discussion of the use of the
terms “uncertainty” and “error” is in
order.  In general, any physical quan-
tity, whether random or not, has a spe-
cific value—such as the number of
radioactive decays in a sample of triti-
ated paint in a given 5-minute period.
The difference between that actual
number and an estimate determined
from knowledge of the number of tri-
tium nuclei present and the tritium
lifetime is the error in that estimate. If
the experiment were repeated many
times, a distribution of errors would
arise, and the probability density func-
tion for those errors is the uncertainty
in the estimate.

Decomposition of Errors. Our
ability to predict any physical phe-
nomenon is determined by the accura-
cy of our input data and our modeling
approach. When the modeling input
data are obtained by analysis of
experiments, the experimental error
and modeling error (solution error
plus physics approximations) terms
control the accuracy of our estimation
of those data, and hence our ability to
predict. Because a full uncertainty-
quantification study is in itself a com-
plex process, it is important to ensure
that those errors whose size can be
controlled—either by experimental
technique or by modeling/simulation

choices—are small enough to ensure
that predictions of the phenomena of
interest can be made with sufficient
precision for the task at hand. This
means that simpler techniques are
often appropriate at the start of a
study to ensure that we are operating
with the required level of precision. 

The discrepancy between simula-
tion results and experimental data is
illustrated in Figure 4, which shows
the way in which this discrepancy can
be related to measurement errors and
solution errors. Note that the experi-
mental conditions are also subject to
uncertainties. This means that the
observed value may be associated

with a slightly different condition than
the one for which the experiment was
designed, as shown in Figure 4. 

The three steps below could serve
as an initial, deterministic assessment
of the discrepancy between simulation
and experiment. 

Step 1. Compare Simulated and
Experimental Results. The size of the
measurement error will obviously
affect the conclusions drawn from the
comparison. Those conclusions can
also be affected by the degree of
knowledge of the actual as opposed to
the designed experimental conditions.
For example, the as-built composition
of the physical parts of the system
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Figure 4. Comparing Experimental Measurements with Simulations 
The green line shows the true, unknown value of an observable over the range of
uncertainty in the experimental conditions, and the purple cross indicates the
uncertainty in the observation. The discrepancy measures the difference between
observation and simulation.

        



under investigation may differ slightly
from the original design. The effects
of both of these errors are typically
reported together, but they are explic-
itly separated here because error in
the experimental conditions affects
the simulated result, as well as the
measured result, as can be seen in
Figure 4.

Step 2. Evaluate Solution Errors. If
the error is a simple matter of numeri-
cal accuracy—for example, spatial or
temporal resolution—then the error is
a fixed, determinable number in prin-
ciple. In other cases—for example,
subgrid stochastic processes—the
error may be knowable in only a sta-
tistical sense.

Step 3. Determine Impact on
Predictability. If the discrepancy is
large compared with the solution error
and experimental uncertainty, then the
model must be improved. If not, the
model may be correct, but in either
case, the data can be used to define a
range of modeling parameters that is
consistent with the observations. If that
range leads to an uncertainty in predic-
tion that is too large for the decision
being taken, the experimental errors or
solution errors must be reduced.

A significant discrepancy in step 1
indicates the presence of errors in the
simulation and/or experiment, and
steps 2 and 3 are necessary, but not
sufficient, to pinpoint the source(s) of
error. However, these simple steps do
not capture the true complexity of
analyzing input or modeling errors. In
practice, the system must be subdivid-
ed into pieces for which the errors can
be isolated (see below) and independ-
ently determined. The different errors
must then be carefully recombined to
determine the uncertainties in integral
quantities, such as the yield of a
nuclear weapon or the production of
an oil well, that are measured in full
system tests. A potential drawback of
this paradigm is that experiments on
subsystems may not be able to probe
the entire parameter space encoun-

tered in full system operation.
Nevertheless, because the need to pre-
dict integral quantities motivates the
development and use of simulation, a
crucial test of the “correctness” of a
simulation is that it consistently and
accurately matches all available data. 

Statistical Prediction  

A major challenge of statistical
prediction is assessing the uncertainty
in a predicted result. Given a simula-
tion model, this problem reduces to
the propagation of errors from the
simulation input to the simulated
result. One major problem in examin-
ing the impact of uncertainties in
input data on simulation results is the
“curse of dimensionality.” If the prob-
lem is described by a large number of
input parameters and the response sur-
face is anything other than a smooth
quasilinear function of the input vari-
ables, computing the shape of the
response surface can be intractable
even with large parallel machines. For
example, if we have identified 8 criti-
cal parameters in a specific problem
and can afford to run 1 million simu-
lations, we can resolve the response
surface to an accuracy of fewer than
7 equally spaced points per axis.

Various methods exist to assess the
most important input parameters.
Sensitivities to partial derivatives can
be computed either numerically or
through adjoint methods. Adjoint
methods allow computation of sensi-
tivities in a reasonable time and are
widely used.

Experimental design techniques
can be used to improve efficiency.
Here, the response surface is assumed
to be a simple low-order polynomial
in the input variables, and then statis-
tical techniques are used to extract the
maximum amount of information for
a given number of runs. Principal
component analysis can also be used
to find combinations of parameters

that capture most of the variability.
The principle that underlies many

of these techniques is that, for a com-
plex engineering system to be reli-
able, it should not depend sensitively
on the values of, for example, 104 or
more parameters. This is as true for a
weapon system that is required to
operate reliably as it is for an oil field
that is developed with billions of dol-
lars of investment funds. 

Statistical Inference—The
Bayesian Framework. The Bayesian
framework for statistical inference
provides a systematic procedure for
updating current knowledge of a sys-
tem on the basis of new information.
In engineering and natural science
applications, we represent the system
by a simulation model m, which is
intended to be a complete specifica-
tion of all information needed to solve
a given problem. Thus m includes the
governing evolution equations (typi-
cally, partial differential equations) for
the physical model, initial and bound-
ary conditions, and various model
parameters, but it would not generally
include the parameters used to specify
the numerical solution procedure
itself. Any or all of the information in
m may be uncertain to some degree.
To represent the uncertainty that may
be present in the initial specification
of the system, we introduce an ensem-
ble of models M, with m ∈ M, and
define a probability distribution on
M. This is called the prior distribu-
tion and is denoted by p(m).

If additional information about the
system is supplied by an observation
O, one can determine an updated esti-
mate of the probability for m, called
the posterior distribution and denoted
by p(m|O), by using Bayes’ formula

(1)
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It is important to realize that the
Bayesian procedure does not deter-
mine the choice of p(m). Thus, in
using Bayesian analysis, one must
supply the prior from an independent
data source or a more fundamental
theory, or otherwise, one must use a
noninformative “flat” prior.

The factor p(O|m) in Equation (1)
is called the likelihood. The likeli-
hood is the (unnormalized) condi-
tional probability for the observation
O, given the model m. In the cases of
interest here, model predictions are
determined by solutions s(m) of the
governing equations. The simulated
observables are functionals O(s(m))
of s(m). If both the experimentally
measured observables O and the solu-
tion s(m), hence O(s(m)), are exact,
the likelihood p(O|m) is a delta func-
tion concentrated on the hypersurface
in M defined by the equation

(2)

Real-world observations and simula-
tions contain errors, of course, so that
a discrepancy will invariably be
observed between O and O(s(m)).
Because the likelihood is evaluated
subject to the hypothesis that the
model m ∈ M is correct, any such
discrepancy can be attributed to
errors either in the solution or in the

measurements. The likelihood is
defined by assigning probabilities to
solution and/or measurement errors
of different sizes. The required prob-
ability models for both types of
errors must be supplied by an inde-
pendent analysis.

This discussion shows that the role
of the likelihood in simulation-based
prediction is to assign a weight to a
model m based on a probabilistic
measure of the quality of the fit of the
model predictions to data. Probability
models for solution and measurement
errors play a similar role in determin-
ing the likelihood.

This point is so fundamental and
sufficiently removed from common
approaches to error analysis that we
repeat it for emphasis: Numerical
and observation errors are the lead-
ing terms in the determination of the
Bayesian likelihood. They supply
critical information needed for
uncertainty quantification.

Alternative approaches to infer-
ence include the use of interval
analysis, possibility theory, fuzzy
sets, theories of evidence, and others.
We do not survey these alternatives
here, but simply mention that they
are based on different assumptions
about what is known and what can be
concluded. For example, interval
analysis assumes that unknown
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Figure 5. Bayesian Framework for
Predicting System Performance
with Relevant Uncertainties
Multiple simulations are performed
using the full physical range of parame-
ters. The discrepancies between the
observation and the simulated values
are used in a statistical inference proce-
dure to update estimates of modeling
and input uncertainties. The update
involves computing the likelihood of the
model parameters by using Bayes’ theo-
rem. The likelihood is computed from a
probability model for the discrepancy,
taking into account the measurement
errors (shown schematically by the
green dotted lines) and the solution
errors (blue dotted lines). The updated
parameter values are then used to pre-
dict system performance, and a deci-
sion is taken on whether the accuracy
of the predictions is adequate.

                                                                    



parameters vary within an interval
(known exactly), but that the distri-
bution of possible values of the
parameter within the interval is not
known even in a probabilistic sense.
This method yields error bars but not
confidence intervals. 

An illustration of the Bayesian
framework we follow to compute the
impact of solution error and experi-
mental uncertainty is shown in
Figure 5. Multiple simulations are
performed with the full physical
range of parameters. The discrepan-
cies (between simulation and obser-
vation) are used in a statistical infer-
ence procedure to update estimates of
modeling and input uncertainties.
These updated values are then used
to predict system performance, and a
decision is taken on whether the
accuracy of the predictions is 
adequate.

Combining Information from
Diverse Sources

Bayesian inference can be extend-
ed to include multiple sources of
information about the details of a
physical process that is being simu-
lated (Gaver 1992). This information
may come from “off-line” experi-
ments on separate components of the
simulation model m, expert judg-
ment, measurements of the actual
physical process being simulated,
and measurements of a physical
process that is related, but not identi-
cal, to the process being simulated.
Such information can be incorporat-
ed into the inference process by
using Bayesian hierarchical models,
which can account for the nature and
strength of these various sources of
information. This capability is very
important since data directly bearing
on the process being modeled is
often in short supply and expensive
to acquire. Therefore, it is essential
to make full use of all possible

sources of information—even 
those that provide only indirect
information.

In principle, an analysis can uti-
lize any experimental data that can
be compared with some part of the
output of a simulation. To understand
this point, let us make the simple and
often useful assumption that the fam-
ily of possible models M can be
indexed by a set of parameters . In
this case, the somewhat abstract
specification of the prior as a proba-
bility distribution p(m) on models
can be thought of simply as a proba-
bility distribution p(θ) on the param-
eters θ. Depending on the applica-
tion, θ may include parameters that
describe the physical properties of a
system, such as its equation of state,
or that specify the initial and bound-
ary conditions for the system, to
mention just a few examples. In any
of these cases, uncertainty in θ
affects prediction uncertainty.
Typically, different data sources will
give information about different
parameters.

Multiple sources of experimental
data can be included in a Bayesian
analysis by generalizing the likeli-
hood term. If, for example, the
experimental observations O decom-
pose into three components (O1, O2,
O3), the likelihood can be written as 

if we assume that each component of
the data gives information about an
independent parameter θ. The sub-
scripts on the models are there to
remind us that, although the same
simulation model is used for each of
the likelihood components, different
subroutines within the simulation
code are likely to be used to simulate

the different components of the out-
put. This means that each of the like-
lihood terms will have its own solu-
tion error, as well as its own observa-
tion error. The relative sizes of these
errors greatly affect how these vari-
ous data sources constrain θ. For
example, if it is known that m2(θ )
does not reliably simulate O2, then
the likelihood should reflect this fact.
Note that a danger here is that a mis-
specification of a likelihood term
may give some data sources undue
influence in constraining possible
values of one of the parameters θ. 

In some cases, one (or more) com-
ponent (components) of the observed
data is (are) not from the actual
physical system of interest, but from
a related system. In such cases,
Bayesian hierarchical models can be
used to borrow strength from that
data by specifying a prior model that
incorporates information from the
different systems. See Johnson et al.
(2003) for an example.

Finally, expert judgment usually
plays a significant role in the formu-
lation and use of models of complex
phenomena—whether or not the
models are probabilistic. Sometimes,
expert judgment is exercised in an
indirect way, through selection of a
likelihood model or through the
choice of the data sources to be
included in an analysis. Expert judg-
ment is also used to help with the
choice of the probability distribution
for p(θ), or to constrain the range of
possible outcomes in an experiment,
and such information is often
invoked in applications for which
experimental or observational data
are scarce or nonexistent. However,
the use of expert judgment is fraught
with its own set of difficulties. For
example, the choice of a prior can
leave a strong “imprint” on results
inferred from subsequent experi-
ments. See Heuristics and Biases
(2002) for enlightening discussions
of this topic.
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Building Error Models—
Examples

Dropping Objects from a Tower.
Some of the basic ideas used in build-
ing error models are illustrated in
Figure 6. In this example, experimental
observations are combined with a sim-
ple physics model to predict how long
it takes an object to fall to the ground
when it is dropped from a tower. The
experimental data are drop times
recorded when the object is dropped
from each of six floors of the tower.
The actual drop time is measured with
an observation error, which we assume
for illustrative purposes to be Gaussian
(normal), with mean 0 and a standard
deviation of 0.2 second. The physics
model is based solely on the accelera-
tion due to gravity. We observe that the
predicted drop times are too short and
that this discrepancy apparently grows
with the height from which the object is
dropped.

Even though this model shows a
substantial error, which is apparent
from the discrepancy between the
experimental data and the model pre-
dictions (Figure 6(b)), it can still be
made useful for predicting drop times
from heights that are greater than the
height of the tower. As a first step, we
account for the discrepancy by includ-
ing an additional unknown correction
in the initial specification of the model,
namely, in the prior. This term repre-
sents the discrepancy as an unknown,
smooth function of drop height that is
estimated (with uncertainty) in the
analysis. The results are applied to give
predictions of drop times for heights
that would correspond to the seventh
through tenth floors of the tower. These
predictions have a fair amount of
uncertainty because the discrepancy
term has to be extrapolated to drop
heights that are beyond the range of the
experimental data. Note also that the
prediction uncertainty increases with
drop height (refer to Figure 6(c)). 

This strictly phenomenological

16 Los Alamos Science Number 29  2005

Error Analysis

Figure 6. Dropping an Object
from a Tower
(a) The time it takes an object to drop
from each of 6 floors of a tower is
recorded. There is an uncertainty in the
measured drop times of about ±0.2 s.
Predictions for times are desired for
drops from floors 7 through 10, but they
do not yet exist.

(b) A mathematical model is developed
to predict the drop times as a function
of drop height. The simulated drop
times (red line) are systematically too
low when compared with the experi-
mental data (triangles). The error bars
around the observed drop times show
the observation uncertainty.

(c) This systematic deviation between
the mathematical model and the experi-
mental data is accounted for in the like-
lihood model. A fitted correction term
adjusts the model-based predictions to
better match the data. The resulting 90%
prediction intervals for floors 7 through
10 are shown in this figure. Note that
the prediction intervals become wider
as the drop level moves away from the
floors with experimental data. The cyan
triangles corresponding to floors 7
through 10 show experimental observa-
tions taken later only for validation of
the predictions.

(d) An improved simulation model was
constructed that accounts for air resist-
ance. A parameter controlling the
strength of the resistance must be esti-
mated from the data, resulting in some
prediction uncertainty (90% prediction
intervals are shown for floors 7 through
10). The improved model captures more
of the physics, giving reduced predic-
tion uncertainty.

     



modeling of the error leads to results
that can be extrapolated over a very
limited range only, because predictions
of drop times from just a few floors
above the sixth have unacceptably large
uncertainties. But an improved physics
model can greatly extend the range
over which useful predictions can be
made. Thus, we next carry out an
analysis using a model that incorporates
a physically motivated term for air
resistance. This model requires estima-
tion of a single additional parameter
appearing as a coefficient in the air
resistance term. But when this parame-
ter is constrained by experimental data,
much better agreement with the meas-
ured drop times is obtained (see
Figure 6(d)). In fact, in this case, the
discrepancy is estimated to be nearly
zero. The remaining uncertainty in this
improved prediction results from uncer-
tainties in the measured data and in the
value of the air resistance parameter.

Using an Error Model to
Improve Predictions of Oil
Production. In most oil reservoirs,
the oil is recovered by injecting a
fluid to displace the oil toward the
production wells. The efficiency of
the oil recovery depends, in part, on
the physical properties of the displac-
ing fluid. The example in this section
concerns estimation of the viscosity
(typically poorly known) of an inject-
ed gas displacing oil in a porous
medium. We will show how an error
model for such estimates allows
improved estimates of the uncertainty
in future oil production using this
method of recovery.

Because the injected gas has lower
viscosity than the oil, the displace-
ment process is unstable and viscous
fingers develop (see Figure 7). The
phenomenon is similar to the
Rayleigh-Taylor instability of a dense
fluid on top of a less dense fluid. The
fingers have a reasonably predictable
average behavior, but there is some
randomness in their formation and

evolution associated with the lack of
knowledge of the initial conditions
and with unknown small-scale fluctu-
ations in rock properties. 

The oil industry has a simple
empirical model that accounts for the
effects of fingering. This model,
called the Todd and Longstaff model,
fits an expansion wave (rarefaction
fan) to the average behavior. Although
the model is good, it is not perfect,
and in particular, when applied to
cases with a correlated permeability
field, it tends to underestimate the
speed with which the leading edge of
the gas moves through the medium. 
If we compare results from the Todd
and Longstaff model with observed
data in order to estimate physical
parameters such as viscosity, we will
introduce errors into the parameter
estimates because of the errors in the
solution method. To compensate for
these errors, we create a statistical
model for the solution errors.1 

For this example, we assume that
the primary unknown in the Todd and
Longstaff model is the ratio of gas
viscosity to oil viscosity, which deter-
mines the rate at which instabilities
grow. This ratio will be determined by

comparing simulation and observation
(in practice, oil and gas viscosities
would be measured, although there
would still be uncertainties associated
with amounts of gas dissolved in the
oil). To construct a solution error
model for the average gas concentra-
tion in the reservoir, we run a number
of fine-grid simulations at discrete
values of the viscosity ratio, which we
refer to as calibration points. Then, for
each value of the viscosity ratio, we
compute the difference between the
Todd and Longstaff model and the
fine-grid simulations as a function of
scaled distance along the flow (x) and
dimensionless time (t) (time divided
by the time for gas to break through
in the absence of fingering). The
mean error computed in this way for
the viscosity ratio 10 is shown in
Figure 8 as a function of the similarity
variable x/t. We also compute the
standard deviation of the error at each
time, as well as the correlation
between errors at different times. This
information is represented as a
“covariance matrix.” 

We will show that the solution
error model (the mean error and the
covariance matrix), when used in con-
junction with predictions of the Todd
and Longstaff model at different vis-
cosity ratios, can yield good estimates
of the viscosity ratio for a given pro-
duction data set. Figure 9 shows the
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Figure 7. Viscous Fingering in a Realization of Porous Media Flow
Low-viscosity gas (purple) is injected into a reservoir to displace higher-viscosity
oil (red). The displacement is unstable and the gas fingers into the oil, reducing
recovery efficiency.

1 All the results cited in this section are
from Alannah O’Sullivan’s Ph.D. thesis
on error modeling (O’Sullivan 2004). We
are grateful to her for permission to use
these unpublished results in this article.

             



observed production data (black
curve) for which we wish to deter-
mine the unknown viscosity ratio. We
first run the Todd and Longstaff
model at different viscosity ratios
from a prior range of 5 to 25 and then
correct each prediction by adding to it
the mean error at that specific viscosi-
ty ratio. The mean error at each vis-
cosity ratio is calculated by interpolat-
ing between the mean error at the
known calibration points for each
value of the similarity variable x/t.
The blue curve in Figure 9 gives an
example of a Todd and Longstaff pre-
diction, and the red curve gives the
corrected curve obtained by adding
the mean error to the blue curve. To
apply the error model, we have con-
verted from the similarity variable x/t
to time using the known length of the
system.

After calculating the corrected pre-
dictions for each viscosity ratio, the
next step is to compare the corrected
prediction (an example is shown in
red) for each viscosity ratio with the
observed data (shown in black) and
compute the misfit M between the
simulation and the data. The misfit is
given by

(3)

where o is the observed value, s is the
simulated value, e– is the mean error,
and the covariance matrix is given by
C = σ2

dI + Csem. That is, for the
covariance matrix, we assume that the
data errors are Gaussian, independent,
and identically distributed and that
therefore they have a standard devia-
tion of σ2

d, and we estimate the solu-
tion error model covariance matrix
Csem from the fine-scale simulations
performed at the calibration points.
The red curve in Figure 10 shows the
misfits as a function of viscosity ratio
computed using the full error model as
in Equation (3). The other misfit statis-
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Figure 9. Observed Production Compared with Predictions
The mean error from the error model is added to the coarse-grid result (blue curve)
at each time to generate an improved estimate of the gas concentration produced
(red curve). The black curve is observed data (actually synthetic data calculated
using the fine-grid model with oil-gas viscosity ratio equal to 13).

Figure 8. Mean Error and Data to Compute Mean Error
The black curve is the mean error in the gas concentration for viscosity ratio 10. The
data to compute the mean error (gray curves) come from the differences between a
single coarse-grid or approximate solution (in this case, the Todd and Longstaff
model) and multiple fine-grid realizations, all computed at viscosity ratio 10. The
variability in the fine-grid realizations reflects random fluctuations in the permeabili-
ty field, which create different finger locations and growth paths. In this case, the
gas concentration averaged across the flow from the fine-grid solution is subtracted
from the coarse Todd and Longstaff prediction as a function of x (distance along the
flow) divided by t (time). In the example discussed in the text, we compute the mean
error and covariance matrix at viscosity ratios 5, 10, and 15, and interpolation is
used to predict the behavior in between these values.

                              



tics in Figure 10 were computed using

for the least-squares model and 

for least-squares plus mean-error
model. 

The likelihood function L for the
viscosity ratio is then given by
L = exp(–M). Notice that the exponen-
tial is a signal that the probabilities
are sensitive to the method used for
computing the misfit. The likelihoods
are converted to probability distribu-
tion functions by being normalized so
that they integrate to 1. 

To illustrate the improvement in
parameter estimation that results from
using an error model, we computed
estimates of the probability distribu-
tion function for the unknown viscosi-
ty ratio using the three different misfit
curves in Figure 10, which were cal-
culated with the three different meth-
ods: standard least squares, least
squares modified by the addition of a
mean error term, and least squares
with the inclusion of the mean error
plus the full covariance matrix. The
range of possible values for the vis-
cosity ratio and their posterior proba-
bilities are shown in Figure 11. 

The true value of the viscosity
ratio used to generate the “observed”
(synthetic) production data in
Figure 9 was 13, and one can see that
this value has been accurately identi-
fied by the full error model. The stan-
dard least-squares method has not
identified this value because of the
underlying bias in the Todd and
Longstaff model.

We sample from the estimated
probability distribution for the viscos-
ity ratio to generate a forecast of
uncertainty in future production.
Figure 12 is a plot of the maximum
likelihood prediction from the Todd
and Longstaff model, along with the
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Figure 10. Misfit Statistic vs Viscosity Ratio Calculated in Three Ways
This figure shows a plot of misfit as a function of the viscosity ratio. The misfit is
computed using a standard least-squares approach (black curve), least squares with
mean error added (blue curve), and the full error model. The misfit measures the
quality of the fit to the observed data with low misfits indicating a good fit.

Figure 11. Posterior Probability Distribution Functions for the Viscosity
Ratio Calculated in Three Ways
This figure shows the estimated posterior probability (assuming a uniform prior
probability in the range 5–25) of the viscosity ratio obtained from three different
methods for matching the Todd and Longstaff predictions to observed data. The
black curve is obtained from the Todd and Longstaff predictions and a standard
least-squares approach. The probability density rises to a maximum at the upper
end of the viscosity range specified in the prior model. The blue curve shows the
effect of adding the mean error to the predictions. The bias in the coarse model has
been removed, but the uncertainty is still large. The red curve shows the estimated
viscosity ratio from a full error model treatment—refer to Equation (3)—indicating
that it is possible to use a statistical model of solution error to get a good estimate
of a physical parameter. The true value of the viscosity ratio in this example was 13.

          



95 percent confidence limits obtained
by sampling for different values of
viscosity. In addition, 20 predictions
from fine-grid simulation are shown.
They use the exact viscosity ratio 13.
The uncertainty in the evolution of
the fingers gives rise to the uncertain-
ty in prediction shown by the multi-
ple light-gray curves. It is clear from
the figure that use of an error model
has allowed us to produce well-cali-
brated predictions.

Fluid Dynamics—Error Models
for Reverberating Shock Waves.
Compressible flow exhibits remark-
able phenomena, one of the most
striking being shock waves, which are
propagating disturbances character-
ized by sudden and often large jumps
in the flow variables across the wave
front (Courant and Friedrichs 1967).
In fact, for inviscid flows, these jumps
are represented as mathematical dis-

continuities. Shock waves play a
prominent role in explosions, super-
sonic aerodynamics, inertial confine-
ment fusion, and numerous other
problems. Most problems of practical
importance involve two- or three-
dimensional (2-D or 3-D) flows, com-
plex wave interactions, and other
complications, so that a quantitative
description of the flow can be
obtained only by solving the fluid-
flow equations numerically. The abili-
ty to numerically simulate complex
flows is a triumph of modern science,
but such simulations, like all numeri-
cal solutions, are only approximate.
The errors in the numerical solution
can be significant, especially when the
computations use moderate to coarse
computational grids as is often neces-
sary for real-world problems. In this
section, we sketch an approach to esti-
mating these errors. 

Our approach makes heavy use of

the fact that shock waves are persist-
ent, highly localized wave distur-
bances. In this case, “persistent”
means that shock waves propagate as
locally steady-state wave fronts that
can be modified only by interactions
with other waves or unsteady flows.
Generally, interactions consist of col-
lisions with other shock waves,
boundaries, or material interfaces. The
phrase “highly localized” refers to
shock fronts being sharp and their
interactions occurring in limited
regions of space and time and possi-
bly being characterized by the refrac-
tion of shock fronts into multiple
wave fronts of different families.
These properties are illustrated in
Figure 13, which shows a sequence of
wave interactions being initiated when
a shock incident from the left collides
with a contact located a short distance
from a reflecting wall at the right
boundary in the figure. Each collision
event produces three outgoing waves:
a transmitted shock, a contact discon-
tinuity, and a reflected shock or rar-
efaction wave. The buildup of a com-
plex space-time pattern due to the
multiple wave interactions is evident.

Generally, solution errors are deter-
mined by comparison to a fiducial
solution, that is, a solution that is
accepted, not necessarily as perfect,
but as “correct enough” for the prob-
lem being studied. But producing a
fiducial solution may not be easy. In
principle, one might obtain one using a
very highly resolved computation.
However, in real-world problems, this
is generally not feasible. If it were, one
would just do it and forget about solu-
tion errors. So, what do we do when
we cannot compute a fiducial solution?

The development of models for
error generation and propagation
offers an approach for dealing with
flows that are too complex for direct
computation of a fiducial solution. For
compressible flows, the key point is
that the equations are hyperbolic,
which implies that errors are largely
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Figure 12. Prediction of Future Oil Production Using Error Model
The solid red line shows the mean (maximum likelihood) prediction from the Todd
and Longstaff model and the full error model. The dashed red lines show the 95%
confidence interval, and the fine gray curves show the results from 20 fine-grid sim-
ulations using the exact viscosity ratio of 13.

      



advected through smooth-flow
regions and significant errors are
only created when wave fronts col-
lide. The flow shown in Figure 13
consists of a sequence of binary
wave interactions, each of which is
simple enough to be computed on an
ultrafine grid. The basic idea is to
determine the solution errors for an
elementary wave interaction and to
construct “composition laws” that
give the error at any given point in
terms of the error generated at each
of the elementary wave interactions
in its domain of influence.

A number of points need to be
made here. First, there are a limited
number of types of elementary wave
interactions. One-dimensional (1-D)
interactions occur as refractions of
pairs of parallel wave fronts, 2-D
interactions are refractions of two
oblique wave fronts, and 3-D inter-
actions correspond to triple points
produced by three interacting waves.
It is important to note that, in each
spatial dimension, the elementary
wave interactions occur at isolated
points. Most of the types of wave
interactions that can occur in 1-D
flow appear in Figure 13. The coher-
ent traveling wave interactions that
occur in 2-D flows have been charac-
terized (Glimm et al. 1985). However,
substantial limitations are left on the
refinement and thoroughness with
which 3-D elementary wave interac-
tions can be studied. 

Event 1 in Figure 13 is a typical
example of a 1-D wave interaction.
Here, the “incoming waves” consist of
an incident shock and a contact dis-
continuity, and the “outgoing state” is
described by a reflected shock, a
(moving) contact, and a transmitted
shock. The interaction can be
described as the solution to a
Riemann problem with data given by
the states behind the incoming wave
fronts. A Riemann problem is defined
as the initial value problem for a
hyperbolic system of conservation

laws with scale-invariant initial data.
Riemann problems and their solutions
are basic theoretical tools in the study
of shock dynamics, the development
of shock-capturing schemes to numer-
ically compute flows, and they also
play a key role in our study of solu-
tion errors. A key point in the use of
Riemann problem solutions in our
error model is that the solution of a
1-D Riemann problem for hydrody-
namics reduces to solving a single,
relatively simple algebraic equation. It
is thus possible to solve large numbers

of Riemann problems for a flow
analysis quickly and efficiently. This
observation is particularly important
because our error model requires the
solution of multiple Riemann prob-
lems whose data are drawn from sta-
tistical ensembles of initial data to
represent uncertainties in the incom-
ing waves.

A final point here is that a realistic
solution error model must include the
study of the size distribution of errors
over an ensemble of problems, in
which the variability of problem char-
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Figure 13. The Space-Time Interaction History of a Shock-Tube
Refraction
This figure shows the interaction history as reconstructed from the simulated solu-
tion data from a shock-tube refraction problem. A planar shock is incident from the
left on a contact discontinuity located near the middle of the test section of the
shock tube. A reflecting wall is located on the right side of the tube. Event 1 corre-
sponds to the initial refraction of the shock wave into reflected and transmitted
waves, event 2 occurs when the transmitted shock produced by interaction 1
reflects at the right wall, and the events numbered 3–10 correspond to subsequent
wave interactions between the various waves produced by earlier refractions or
reflections. Our error model is applied at each interaction location to estimate the
additional solution error produced by the interaction.
(This figure was supplied courtesy of Dr. Yan Yu, Stony Brook University.)

    



acteristics is described probabilistical-
ly. Of course, one will often want to
make as refined an error analysis as
possible within a given realization
from the ensemble (that is, a deter-
ministic error analysis), but there are
powerful reasons for a probabilistic
analysis to be needed as well. First,
you need probability to describe fea-
tures of a problem that are too com-
plex for feasible deterministic analy-
sis. Thus, fine details of error genera-
tion in complex flows are modeled as
random, just as are some details of the
operation of measuring instruments.
Second, a sensitivity analysis is need-
ed to determine the robustness of the
conclusions of a deterministic error
analysis to parameter variation. To get
an accurate picture, one needs to do
sensitivity analysis probabilistically,
to answer the question of how likely
the parameter variations are that lead
to computed changes in the errors.
Third, to be a useful tool, the error
model must be applicable to a reason-
able range of conditions and prob-
lems. The only way we are aware of
for achieving these goals is to base

the error model on a study of an
ensemble of problems that reflects the
degree of variability one expects to
encounter in practice. Of course, the
choice of such an ensemble reflects
scientific judgment and is an ongoing
part of our effort.

Now, let us return to the analysis
of solution errors in elementary wave
interactions. Our work was motivated
by a study of a shock-contact interac-
tion—refer to event 1 in Figure 13.
The basic setup is shown in Figure 14,
which illustrates a classic shock-tube
experiment. An ensemble of problems
was generated by sampling from uni-
form probability distributions
(±10 percent about nominal values)
for the initial shock strength and the
contact position. The solution errors
were analyzed by computing the dif-
ference between coarse to moderate
grid solutions and a very fine grid
solution (1000 cells). Error statistics
are shown in Figure 15 for a 100-cell
grid (moderate grid) solution. Two
facts about these solution errors are
apparent. First, the solution errors fol-
low the same pattern as the solution

(the shock waves) itself; they are con-
centrated along the wave fronts,
where steep gradients in the solution
occur. Second, errors are generated at
the location of wave interactions. The
error generated by the interaction
increments the error in the outgoing
waves, which is inherited from errors
in the incoming waves.

Comparable studies have been car-
ried out for each of the types of wave
interaction shown in Figure 13, as well
as corresponding wave interactions
that occur in spherical implosions or
explosions (Dutta et al. 2004). An
analysis of statistical ensembles of
such interactions has led us to suggest
the following scheme for estimating
the solution errors. The key steps are
(a) identification of the main wave
fronts in a flow, (b) determination of
the times and locations of wave inter-
actions, and (c) approximate evalua-
tion of the errors generated during the
interactions. Wave fronts are most
simply identified as regions of large
flow gradients, and the distribution of
the wave positions and velocities are
found by solving Riemann problems
whose data are taken from ensembles
of state information near the detected
wave fronts. The error generated dur-
ing an interaction is fit by a linear
expression in the uncertainties of the
incoming wave’s strength. The coeffi-
cients are computed using a least-
squares fit to the distribution of outgo-
ing wave strengths. This fitting proce-
dure can be thought of as defining an
input/output relation between errors in
incoming and outgoing waves. 

A linear relation of this kind,
which amounts to treating the errors
perturbatively, holds even for strong,
and hence nonlinear, wave interac-
tions. But there are limitations.
Linearity works if the errors in the
incoming waves are not too large, but
it may break down for larger errors.
In the latter case, higher order (for
example, bilinear or rational) terms 
in the expansion may be needed. See
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Figure 14. Initial Data for a 1-D Shock-Tube Refraction Problem 
This schematic diagram is for the initial data used to conduct an ensemble of simula-
tions of a 1-D shock tube refraction. Each simulation consisted of a shock wave inci-
dent from the left on a contact discontinuity between gases at the indicated pres-
sures and densities. Each realization from the ensemble is obtained by selecting a
shock strength consistent with a velocity v behind the incident shock taken from a
10% uniform distribution about the mean value v– = 1, and an initial contact location
C chosen from a 10% uniform distribution about the mean position C

–
= 1. In the dia-

gram, S is the shock position, Ms is the shock strength, and vs is the velocity of the
shock. The initial state behind the shock is set by using the Rankine-Hugoniot condi-
tions for the realization shock strength and the specified state ahead of the shock.

                  



Glimm et al. (2003) for details.
We can now explain how the com-

position law for solution errors actual-
ly works. The basic idea is that errors
are introduced into the problem by
two mechanisms: input errors that are
present in waves that initiate the
sequence of wave interactions—see
the incoming waves for event 1 in
Figure 13—and errors generated at
each interaction site. However they
are introduced, errors advect with the
flow and are transferred at each inter-
action site by computable relations. 

Generally, waves arrive at a given
space-time point by more than one
path. Referring again to Figure 13,
suppose you want to find the errors in
the output waves for event 3, where
the shock reflected off the wall
reshocks the contact. On path A, the
error propagates directly from the out-
put of interaction 1 along the path of
the contact, where it forms part of the
input error for event 3. On path B, the
output error in the transmitted shock
from event 1 follows the transmitted
shock to the wall, where it is reflected
and then re-crosses the contact. In this
way, the error coming into event 3 is
given as a sum of terms, with each
term labeled by a sequence of wave

interactions and of waves connecting
these interactions. Moreover, each
term can be computed on the basis of
elementary wave interactions and
does not require the full solution of
the numerical problem. The final step
in the process is to compute the errors
in the output waves at event 3, by
using the input/output relations devel-
oped for this type of wave interaction.

This procedure represents a sub-
stantial reduction in the difficulty of
the error analysis problem, and we
must ask whether it actually works.
Full validation requires use in practice,
of course. As a first validation step, we
compute the error in two ways. First,
we compute the error directly by com-
paring very fine and coarse-grid simu-
lations for an entire wave pattern.
Results are shown in Figure 15.
Second, we compute the error using
the composition law procedure shown
in Figure 13. Comparing the errors
computed in these two ways provides
the basis for validation. 

In Glimm et al. (2003) and Dutta et
al. (2004), we carried out such valida-
tion studies for planar and spherical
shock-wave reverberation problems.
As an example, for events 1 to 3 in
the planar problem in Figure 13, we

considered three grid levels, the finest
(5000 cells) defining the fiducial solu-
tion, and the other two representing
“resolved” (500 cells) and “under-
resolved” (100 cells) solutions for this
problem. We introduced a 10 percent
initial input uncertainty to define the
ensemble of problems to be examined.
The results can be summarized briefly
as follows. For the resolved case, the
composition law gave accurate results
for the errors (as determined by direct
fine-to-coarse grid comparisons) in all
cases: wave strength, wave width, and
wave position errors. This was not the
case for the under-resolved simula-
tion. Although the composition law
gave good results for wave strength
and wave width errors, it gave poor
results for wave position errors. The
nature of these results can be under-
stood in terms of a breakdown in
some of the modeling assumptions
used in the analysis.

An interesting point of contrast
emerged between the planar and
spherical cases. For the planar case,
the dominant source of error was from
initial uncertainty, while for the spher-
ical symmetry case, the dominant
source of error arose in the simulation
itself, and especially from shock
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Panel (a) shows the space-time 100-mesh-point density field for a
single realization from the flow ensemble.The space-time error
field for each realization is computed from the difference between
a 100-mesh-zone calculation and a fiducial solution computed 

using 1000 mesh zones. Panels (b) and (c) show the mean and
variance, respectively, over the ensemble as a function of
space and time. Note that most errors are generated at the
wave interactions and then move with the wave fronts.

Figure 15. Space-Time Error Statistics for Shock-Tube Refraction Problems  

    



reflections off the center of symmetry.
We come now to the “so what?”

question for error models. What are
they good for? Our analysis shows
that, with an error model, one can
determine the relative importance of
input and solution errors (thereby
allocating resources effectively to
their reduction), as well as the precise
source of the solution error (for the
same purpose), and, finally, one can
assess the error in a far more efficient
manner than by direct comparison
with a highly refined computation of
the full problem.

A significant limitation in our
results to date is that they pertain
mostly to 1-D flows, namely, to flows
having planar, cylindrical, or spheri-
cal symmetry. Two-dimensional prob-
lems are currently under study, while
full 3-D problems are to be solved in
the future. Furthermore, errors in
some important fluid flows lie outside
the framework we have developed,
and their analysis will require new
ideas. One such problem—fluid mix-
ing—was discussed in the previous
subsection.

Conclusions

This paper started from the prem-
ise that predictive simulations of com-
plex phenomena will increasingly be
called upon to support high-conse-
quence decisions, for which confi-
dence in the answer is essential. Many
factors limit the accuracy of simula-
tions of complex phenomena, one of
the most important being the sparsity
of relevant, high-quality data. Other
factors include incomplete or insuffi-
ciently accurate models, inaccurate
solutions of the governing equations
in the model, and the need to integrate
the diverse and numerous components
of a complex simulation into a coher-
ent whole. Error analysis by itself
does not circumvent these limitations.
It is a way to estimate the level of

confidence that can be placed in a
simulation-based prediction on the
basis of a careful analysis of the
source and size of errors affecting this
prediction. Thus, the metric of success
of an error analysis is the confidence
it gives that the errors are of a specific
size—not necessarily that they are
small (they might not be).

We have reviewed some of the
ideas and methods that are used in the
study of simulation errors and have
presented three examples illustrating
how these methods can be used. The
examples show how an improved
physics model can dramatically
reduce the size of errors, how an
improved error model can reduce
uncertainty in prediction of future oil
production, and how an error model
for a complex shock-wave problem
can be built up from an error analysis
of its components.

Similar to models of natural phe-
nomena, error models will never be
perfect. Estimates of errors and uncer-
tainties are always provisional
because the data supporting these esti-
mates are derived from a limited
range of experience. Certainty is not
in the picture. Nevertheless, confi-
dence in predictions can be derived
from the scope and power of the theo-
ry and solution methods that are being
used. Scope refers to the number and
variety of cases in which a theory has
been tested. Scope is important in
building confidence that one has iden-
tified the factors limiting the applica-
bility of the theory. Power is judged
by comparing what is put into the
simulation with what comes out. 

Error models contribute to confi-
dence by clarifying what we do and
do not understand. They also guide
efforts to improve our understanding
by focusing on factors that are the
leading sources of error. Thus, in pre-
dictions of complex phenomena, an
error analysis will form an indispensa-
ble part of the answer. n
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Good detective work, combined with theory,
experiments, and Bayesian analysis, has reduced
by an order of magnitude the uncertainties in the
evaluated rate of neutron-induced fission. That
reduction allows more accurate simulation of
weapon performance. Similarly, more accurate
determination of neutron reactions on radiochem-
ical neutron detectors has increased the capability
to evaluate the results of past nuclear tests. In
both instances, integral experiments with the crit-
ical assembly Jezebel are playing an invaluable
role. Jezebel and Godiva are the infamous
“unclad ladies” from the 1950s. Pictured at left,
Jezebel consists of three components of a pluto-
nium sphere that, when brought together, form a
critical mass. Unclad, or not encased in neutron
reflectors, Jezebel still can support a fast chain
reaction with a hard neutron spectrum, character-
istic of various nuclear devices.

Reducing
Uncertainty in
Nuclear Data

    



Weapons performance
depends directly on the
rates of nuclear reactions,

among which the neutron-induced fis-
sion chain reaction, shown schemati-
cally in the background on the
opposite page, is one of the most
important. The rates of neutron-
induced fission and other neutron-
induced nuclear reactions have been
measured in numerous experiments.
In this article, we describe a project to
assess and reduce uncertainties in
those basic reaction rates and thereby
increase confidence in the predictions
of Los Alamos weapons simulation
codes (see the box “Uncertainty
Quantification for Weapons
Certification”). The rate of a nuclear
reaction, or more precisely, the cross
section for an incident particle to col-
lide and interact with a nucleus1,
varies with the energy of the incident
particle. For that reason, cross sec-
tions are typically measured at spe-
cific incident energies, and the
measured values serve as input to the
simulation codes. Any uncertainties in
those energy-specific, or differential,
cross sections translate into uncertain-
ties in the prediction of the overall
yield (total energy released) of a
nuclear device and other “integral”
quantities, so called because they
result from the sum of repeated occur-
rences of the nuclear reaction over a
range of incident energies and, in
some cases, over the volume of the
nuclear material. We present work on
reducing uncertainties in two cross
sections, both describing neutron-
induced processes that are significant
for weapon certification: the pluto-
nium fission cross section (see
Figure 1), which determines neutron
multiplication in a plutonium fission
chain reaction, and the cross section

for iridium-193 to become the isomer
iridium-193m (a long-lived excited
state) through neutron inelastic scat-
tering.2 That process (193Ir + n →
193mIr + n′) has played an important
role in diagnosing weapons perform-
ance in past underground nuclear
tests.

Our work on reducing fission data
uncertainties for weapon certification
is having an impact on other nuclear
technologies. The GEN-IV nuclear
reactor program is one such example.
This program is exploring several
future reactor concepts: more com-
plete burnup of nuclear fuel, prolifera-
tion-resistant fuel cycles, and using
the reactor as a “waste burner” to
transmute long-lived radioactive
nuclei into short-lived ones. When the
long-time behavior of a GEN-IV reac-
tor was simulated taking into account
the best nuclear data available, the
known uncertainties in the fission
rates led to significant uncertainties in
some of the key performance quanti-
ties such as nuclear criticality and
transmutation rates. Both depend
heavily on the fission rates for ura-
nium, plutonium, and several minor
actinides (neptunium, americium, and
curium). On the basis of this finding,
the Advanced Fuel Cycle Initiative
Program at Los Alamos is supporting
experimental and theoretical research
to improve the highest-priority
nuclear cross sections—particularly
those of the minor actinides that are
not currently understood.

Fission cross sections also matter
to the nuclear-powered space mission
to study Jupiter’s moons. With the
Laboratory’s help, NASA is design-
ing a compact nuclear reactor that
will use highly enriched uranium

(HEU) to power the plasma thrust
engine. The energy output, criticality,
radiation environment, and other
important features of this reactor are
predicted with radiation transport
codes that simulate the production of
neutrons by the fission process and
their subsequent movement and par-
ticipation in fission and other nuclear
interactions. Even though the mission
to Jupiter would be unmanned, a safe
launch is most important; at the same
time, we must also be able to guaran-
tee that, if a crash were to occur, the
probability of a criticality accident
would be negligible. This project,
therefore, also needs estimates of fis-
sion cross-section uncertainties—in
this case, uranium-235 fission—to
guide design of the space reactor.

Both statistical analyses of data
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1 A nuclear collision cross section σ(E)
measures the probability for an incident
particle of energy E, say a neutron n, to
collide and interact with or scatter from a
nucleus N and produce some final state. 

Figure 1. Schematic of Neutron-
Induced Fission of Plutonium-239
This artist’s conception of the fission
process (as well as the simplified fission
chain reaction in the background on the
opposite page) shows an incoming neu-
tron (purple) being absorbed by a pluto-
nium-239 nucleus, which causes the
nucleus to split into two ‘fission’ frag-
ments (small green circles) and release
several neutrons (purple). In reality, the
nucleus first splits into two highly excited
fragments and then each fragment
releases one or more neutrons.The
resulting fission fragments are typically
radioactive nuclei and sometimes release
additional (‘delayed’) neutrons. Both the
‘prompt’ and delayed neutrons can
induce fission in nearby plutonium-239
nuclei, causing a fission chain reaction.

2 In inelastic neutron scattering, the inci-
dent neutron n transfers energy to the
nucleus N and leaves with less energy. That
process (N + n → N + n′) is denoted (n,n′),
where the left neutron is incoming, the
right neutron is outgoing, and the prime
indicates that the outgoing neutron has a
different energy than the incoming one.

                                     



from past differential measurements
and new state-of-the-art differential
measurements at the Los Alamos
Neutron Science Center (LANSCE)
play a crucial role in allowing us to
reduce cross-section uncertainties.
More surprising, perhaps, is that
small-scale integral experiments per-
formed at the Los Alamos Critical
Experiment Facility (LACEF) are
having a huge impact in the valida-
tion of nuclear data used in weapons
codes, as well as in reducing data
uncertainties (see Figure 2). In the
case of plutonium fission, for exam-
ple, these criticality experiments
have led to a factor of 10 reduction
in the predicted fission process
uncertainties,3 as is discussed in
more detail below. 

As the name implies, a criticality
experiment entails very careful assem-
bling of a radioactive target made
from special nuclear materials (pluto-
nium, uranium-235 and -238, and
other fissile materials) into a critical
mass, that is, one that creates a self-
sustaining fission chain reaction and a
flux of neutrons with energies typical
of fission. In fact, the energy spectra
of the neutrons within the various
assemblies at LACEF have been pre-
cisely determined through a combina-
tion of theory, simulation with
radiation transport codes, and experi-
ment. Thus, despite being integral
experiments involving a wide spec-
trum of neutron energies and very
large numbers of fission reactions
occurring over a short period, critical-

assembly experiments are well-char-
acterized static nuclear physics exper-
iments from which basic cross-section
data can be inferred. In contrast,
archival data from past Nevada under-
ground nuclear tests were obtained
from much more complicated inte-
grated experiments involving hydro-
dynamics and other phenomena, in
addition to nuclear physics. 

Over the last few decades, nuclear
criticality experiments have been used
not only to reduce uncertainties in
evaluated nuclear data libraries but
also to validate the radiation (neutron
and gamma-ray) transport methods
used in our particle transport codes
for static nuclear devices. One such
code is the widely used Monte Carlo
N-Particle Transport Code (MCNP).
Developed by the Diagnostic Methods
Group at Los Alamos, MCNP has
become the international standard
Monte Carlo code for simulating neu-
tron transport and criticality in reactor
applications and nuclear criticality
safety studies. Nuclear criticality
benchmark experiments developed at
LACEF produce neutrons with a wide
range of energy spectra: Some experi-
ments mimic the highly thermalized
systems of standard reactors, produc-
ing slow neutrons with an average
energy of 0.025 electron volt (or soft
neutron spectra); other experiments at
the opposite extreme produce fast
neutrons with an average energy of
1 to 2 million electron volts (MeV), or
hard neutron spectra. The fast critical
assemblies at LACEF are particularly
relevant for validating our cross-sec-
tion databases for weapons research
because they produce a fast chain
reaction (involving energetic neu-
trons). The Jezebel fast assembly is a
critical mass of plutonium with no
neutron reflectors, or cladding, the
Godiva assembly is another ‘unclad’
assembly containing a critical mass of
HEU, and the Flattop assemblies
include cores of plutonium or HEU
made critical with reflector materials. 

Los Alamos Science Number 29  2005

Reducing Uncertainty in Nuclear Data

28

Uncertainty Quantification for Weapons Certification

Since the end of nuclear testing, the Department of Energy has focused
on developing a set of weapons simulation codes that more accurately
model weapon explosions. This Advanced Simulation and Computing
(ASC) Program has several objectives: creating simulation codes that
implement more-accurate algorithms for solving the relevant hydrody-
namics and radiation transport equations, building some of the fastest
computers in the world on which to run these codes, and developing
improved materials and physics models and data for “high-fidelity”
weapons simulations. Such new simulation codes are needed to certify
the safety and reliability of the U.S. stockpile and to answer questions
about aging components in stockpiled weapons.

Quantification of the margins-and-uncertainties (QMU) concept has been
adopted as the framework within which certification is performed. At
each critical stage in the sequence of a weapon explosion, researchers in
the Applied Physics Division at the Laboratory assess margins for certain
physical quantities that enable the weapon to perform reliably. The QMU
process formalizes the considerations and assumptions that go into mod-
eling a weapon’s performance and assessing whether it will perform cor-
rectly. A component of QMU is uncertainty quantification, whereby we
determine how uncertainties in the underlying physics models and data
impact the accuracy of full simulation results for weapons. It is in this
context that we are assessing the accuracy of the plutonium fission 
cross-section data. 

3 So-called “evaluated” nuclear data result from analyzing all available experiments,
resolving discrepancies, and determining both the values and the uncertainties. They are
kept in libraries known as ENDF for evaluated nuclear data files.

       



The two examples discussed below
use fast critical-assembly measure-
ments in different ways. In the case of
plutonium, it is a precise measurement
of the plutonium critical mass that
allows us to accurately validate (and
reduce the uncertainties on) the pluto-
nium neutron-induced fission cross
section, in part because our radiation
transport methods in the MCNP code
are so accurate. In the case of iridium,
samples of iridium are placed at differ-
ent locations within the critical assem-
bly, and each is irradiated by a
different spectrum of neutrons charac-
teristic of its location within the assem-
bly. The neutrons at different locations
have not only different distributions of
energies but also different mean ener-
gies. Thus, measuring iridium reaction
rates within different parts of the
assembly provides an important valida-
tion of the iridium cross sections at dif-
ferent average neutron energies.

Neutron-Induced Fission
Cross Section of Plutonium 

The neutron-induced fission cross
section of plutonium-239 represents
the probability that, when a single
neutron hits a target nucleus of pluto-
nium-239, the composite system of
target plus neutron breaks apart, usu-
ally into two smaller nuclei fragments,
n + 239Pu → fission fragments. This
probability naturally depends on the
kinetic energy of the incident neutron
and is therefore represented as a two-
dimensional curve of cross section vs
neutron energy (see Figure 3). To con-
vert this probability into a rough esti-
mate of the number of plutonium-239
fissions occurring in a real applica-
tion—for example, in the core of a
nuclear reactor—over a given period
or in a critical assembly experiment,
this cross section averaged over the
neutron energies is multiplied by the
neutron fluence (the neutron flux inte-
grated over the relevant time). 

Statistical Analysis of Experimental
Data. The theory of nuclear fission
has advanced considerably over the
last fifty years, and especially within
the last decade as high-performance
computers made complex calculations
feasible (see references by Peter
Möller at the end of this article).
Nevertheless, theoretical predictions
of the neutron-induced fission cross
section remain too imprecise for prac-
tical calculations of real systems.
Experimental measurements of the
cross section must therefore be relied
on, and the cross section at most inci-
dent neutron energies is typically
known to about 2 percent accuracy.
Until now, however, the fission cross
section for incoming neutrons of ener-
gies just below 14 MeV was known to
only 4 percent accuracy. That defi-
ciency motivated a significant effort
to reanalyze the cross-section data
from numerous (sometimes dis-
crepant) experiments. We applied sta-
tistical methods to evaluate the cross-
section data, assessed the resulting
uncertainties, and were able to reduce
uncertainties considerably. 

An experiment typically yields a
numerical value of a physical observ-
able, which in turn is related either
directly or indirectly to the physical
quantity we are interested in. Of
course, no experiment is perfect, and
information on the uncertainties asso-
ciated with the measured value is
essential for judging the validity of
the result. Uncertainties come from
multiple sources but are commonly
classified into two categories: statisti-
cal and systematic. Statistical uncer-
tainties follow the simple 1/√N rule;
that is, if the same experiment is
repeated N times, the statistical uncer-
tainty of the measured value will be
proportional to 1/√N. In the limit of
an infinite number of identical experi-
ments, this uncertainty would be null.
Such uncertainties reflect inherent
fluctuations in the measurement itself,
and for a large number of repeated
experiments, the measurement fluctu-
ations average to zero.

Systematic uncertainties include all
uncertainties other than statistical ones
and, unlike the latter type, cannot be
indefinitely reduced by repetition of
the same experiment. Examples of
systematic uncertainties will be given
later for the plutonium-239 fission
cross section. From the point of view
of data analysis, systematic uncertain-
ties define a lower limit for the accu-
racy of a given experimental setup.
This fact alone justifies using different
experimental setups to measure the
same quantity. Because the sources of
systematic errors differ from one
experimental setup to another, differ-
ences in the results from different
setups provide a clue on ways to go
beyond the lower limits imposed by
each individual experiment. By per-
forming a statistical analysis on data
from not only one but several experi-
ments aimed at measuring or inferring
the same physical quantity, it is possi-
ble to quote a value with an uncertain-
ty smaller than the one of each indi-
vidual experimental result. 
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Figure 2. The Los Alamos Critical
Assembly Facility as Seen
through an Anasazi Cave

                  



In 1763, the work of Reverend
Thomas Bayes on inference logic was
published posthumously. Based on the
theory of conditional probabilities,
Bayes’ theorem provides a logical and
mathematically sound framework to
update knowledge in view of new evi-
dence. This concept is paramount in
many areas of science and even more
generally in any field of study that
involves learning algorithms. Simply
stated, Bayes’ theorem reads

P(H |D,I) ∝ P(D |H ) × P(H |I)
Posterior ∝ Likelihood × Prior  . 

The term P(H |I), or prior, answers
the question, “how probable is the
hypothesis H , given the information

known prior to the experiment?” In
other words, the prior represents the
state of our knowledge of (or belief
in) the hypothesis H before the new
information, in the form of the data
D, is included. The prior is multiplied
by P(D |H), the likelihood function,
which quantifies how important the
new data D are to our overall knowl-
edge of the hypothesis H. The likeli-
hood function answers the question,
“how probable is the observation of
data D if the hypothesis H were
actually true?” It provides the central
and fundamental link between our
prior knowledge and the posterior
function P(H|D,I), which answers
the question, how probable is H, now
that we know both D and I? In other

words, the posterior measures the
degree of confidence in H after the
new data are taken into account.

Because a Bayesian analysis
explicitly contains the concept of a
prior knowledge, concerns have been
raised about the subjectivity of such
an approach, as opposed to more tra-
ditional statistical-analysis techniques.
A Bayesian analysis is inherently a
recursive process, in which informa-
tion is integrated step by step. This
means that the first step relies on a
prior that is not based on any real
information. When data are scarce, the
result of the analysis can be distorted
according to the specific choice made
for the prior. This type of analysis
appears to be in stark contrast with
more traditional statistical analyses
that are based on only real data.
However, the contrast is only appar-
ent, and the supposed flaw in the
Bayesian approach seems to be only
semantic. In any case, this issue is not
relevant to our study: The number of
data sets on the neutron-induced fis-
sion cross section of plutonium-239 is
sufficiently large that the result of our
analysis is insensitive to the choice of
a particular prior.

The presence of this large data set
could also lead us to think that much
is known on this particular cross sec-
tion and that there is no need to inves-
tigate further. The truth is not quite
that simple. First, it is not uncommon
to find discrepant experimental
results, that is, results with error bars
that do not overlap. Experimental data
points for the plutonium-239 fission
cross section are shown in Figure 3,
illustrating how large the scattering in
experimental results can be. Second,
information on the uncertainties (and
their sources) associated with a given
data set is often only partially given,
and for some (mostly older) experi-
ments no information is available. As
a result, our evaluation is all the more
difficult. Finally, whereas most exper-
imental results will be accurate at a
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Figure 3. Reducing Uncertainties with Bayesian Statistical Analysis
The neutron-induced fission cross section of plutonium-239 has been measured
numerous times over the incident-neutron energy range plotted here. The black dots
represent the experimental data from many laboratories (including Los Alamos),
which originate either from a direct measurement of the cross section or from a
ratio measurement to the well-known neutron-induced fission cross section of ura-
nium-235. (For figure clarity, we did not display the experimental error bars.) The
spread of experimental data is a simple indicator of how well the cross section is
known. The result of our Bayesian analysis study is shown in red dots, along with
the resulting standard deviations. This figure explicitly demonstrates how a
Bayesian statistical analysis can help reduce the uncertainties on our knowledge of
this important cross section. At higher energies, the error bars tend to increase
because two discrepant data sets are present.

                                                                        



3 to 10 percent level, some important
applications that need the pluto-
nium-239 fission cross section require
an accuracy closer to 1 to 2 percent.
As mentioned earlier, a statistical
analysis, Bayesian or otherwise, can
help to more precisely determine the
fission cross section.

We used a standard Bayesian
approach to evaluate the pluto-
nium-239 fission cross section from
incident-neutron energies between 0.1
and 150 MeV. This energy range cor-
responds to a region where the cross
section is a fairly smooth function of
the incident energy (no resonances)
and where the fission channel is dom-
inant compared with other competing
neutron-induced processes such as
neutron capture, inelastic neutron
scattering, and (n,2n) reactions, in
which a nucleus absorbs the incoming
neutron and promptly emits two.

Although the mathematical toolbox
to evaluate the fission cross-section
data was in place, inherent in this task
was the need to reconstruct the uncer-
tainties and correlations of important
unpublished fission measurements
that were performed (often many
years ago) at numerous facilities
around the world. This need required
detective work.

In many cases, we were almost
completely dependent upon the
expertise of senior nuclear-data exper-
imentalists and theorists, many of
whom have retired or are close to
retirement. These experts have in-
depth knowledge of measurements
made decades ago and a good (some-
times intuitive!) understanding of
which experimentalists and facilities
are most reliable.

Sources of experimental uncertain-
ties are numerous and varied, depend-
ing on the particular experimental
facility, detectors, and measurement
and analysis techniques employed. In
addition, the measured observable is
often some function of the physical
quantity of interest rather than the

quantity itself. To determine the fis-
sion cross-section, for example, one
measures the number of fissions pro-
duced during neutron irradiation of
the target, which is proportional to fis-
sion cross section times the neutron
fluence (defined as the neutron flux
integrated over time). The neutron flu-
ence is quite difficult to measure pre-
cisely and therefore introduces a large
uncertainty into the results.
Consequently, many experiments do
not measure the plutonium fission
cross section directly. Instead, they
measure the ratio of the pluto-
nium-239 to the uranium-235 fission
cross section. By measuring that ratio,
they eliminate the dependence on the
neutron fluence and thus a large
source of uncertainty. But a ratio is
not a cross section. To come back to
the quantity of interest, the experi-
mental result needs to be multiplied
by an ‘evaluation’ of the uranium-235
fission cross section, that is, a care-
fully determined result along with the
uncertainties. Uncertainties on this
cross section will then act upon the
uncertainties on the plutonium-239
fission cross section in a highly corre-
lated manner. 

The neutron-induced fission cross
section of uranium-235 is denoted as
a standard cross section, one that
experimentalists can use with confi-
dence to renormalize their results (that
is, convert measured ratios into cross
sections) because it is a smooth func-
tion over a certain energy range and
known very accurately. However, our
knowledge of this cross section has
changed over the years, by up to
2 percent in some energy regions.
These differences are large enough
that we have had to renormalize,
according to current standard values,
all the older experimental results
obtained with standards known at the
time in order to make a direct com-
parison of experimental data. 

There are numerous other sources
of uncertainties that must be analyzed.

Over the years, different types of
detectors have been used to measure
or infer neutron-induced fission cross
sections: A fission chamber that
detects one (or sometimes the two)
fission fragment(s), a proton telescope
that uses the (n,p) reaction to estimate
the neutron fluence, a time-of-flight
(TOF) measure of the neutron incident
energy, and others. Depending on the
particular experimental setup, we have
attempted to estimate the uncertainties
associated with a given measured
result after the fact, even though the
experimentalist has recorded only par-
tial or no information regarding error
sources. In many cases, experimental-
ists have reported only statistical
errors although a correct estimation of
the systematic uncertainties is neces-
sary for obtaining a quality result.
Sometimes, we can fill in some of that
information. For example, if two
experiments have been performed in
the same institute, they often use the
same neutron source and target sam-
ples, in which case we include corre-
lations between the two results in our
analysis. In addition, documentation
of the experimental details in one case
can help us infer the values of uncer-
tainties in the other. 

Uncertainties may also exhibit an
energy dependence. For example, if a
detector efficiency is known to a cer-
tain accuracy within a given energy
range, that accuracy defines some cor-
relation among the results obtained
with that detector within the specific
energy range. 

All these nonstatistical uncertain-
ties cannot be described by simple
standard deviations, but by correla-
tions between fission cross sections at
different energies. Correlations in the
fission cross section are best repre-
sented by the so-called covariance
matrix, whose diagonal and off-diago-
nal elements represent the standard
deviations and the correlations,
respectively. The off-diagonal ele-
ments play a key role in our statistical
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analysis. Unfortunately, they are also
the most challenging quantities to
estimate. 

A fascinating example of the role
of correlations in statistical analysis is
Peelle’s Pertinent Puzzle, or PPP for
short (refer to Figure 4) named after
Robert Peelle, who confronted the
nuclear data community with a coun-
terintuitive example. Suppose that two
measurements of the same physical
quantity are made, and the results are
1.5 and 1.0 respectively. Each result
has a 10 percent uncertainty, and both
results share a 20 percent common
error. Standard statistical tools applied
to this case give a best-estimate value
of 0.882 for the physical quantity,
which falls below both measured val-
ues! This result may be correct
depending on the nature of the corre-
lated uncertainty, additive or multi-
plicative. Because in many instances
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Figure 5. Representation of a Covariance Matrix 
The role of a nuclear data evaluator includes constructing covariance matrices that
completely describe the experimental data sets and the associated uncertainties
and correlations for a given nuclear cross section. Each experimental set corre-
sponds to an ensemble of cross-section values for various incident neutron ener-
gies. Statistical uncertainties are commonly given, whereas sources (and
quantification) of systematic errors are only sometimes available. Correlations
between different data sets can also exist—for example, if the same experiment
facility, detector, or sample target is used in two distinct experiments. This picture
shows a schematic representation of a corner of the large covariance matrix that
results from the study of all the cross section data at all energies.

Figure 4. Peelle’s Pertinent Puzzle (PPP)
Robert Peelle introduced the puzzle that now bears his name to illustrate the importance of including systematic errors in
nuclear data evaluations. In his original example, there are two measurements of the same physical quantity, and the results are
1.5 and 1.0 respectively. Each result has a 10 percent uncertainty, and both results share a 20 percent common error. Standard
statistical tools applied to this case give a best-estimate value of 0.882 for the physical quantity, which falls below both meas-
ured values! In (a), the two-dimensional Gaussian probability distribution function for the two measurements pdf(x1,x2) is
shown; in (b), the projection of this distribution is shown on the x1 = x2 line, with the mean and maximum values equal to 0.882.
However, this value depends on an underlying assumption regarding the nature of the correlated uncertainty. In practice, this
knowledge is not often available.
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we do not know the origin of uncer-
tainties, PPP represents a real puzzle
for nuclear data evaluators, confronted
with older and not well-documented
experimental data.

The result of our comprehensive
statistical analysis is depicted in
Figure 3, along with the experimental
data sets. The representation of the
uncertainty with simple error bars on
individual points is only part of the
story. The covariance matrix for the
evaluated cross section is also quite
important. Figure 5 shows a schematic
view of a portion of a covariance

matrix that represents uncertainties
and correlations among all experimen-
tal data sets included in the statistical
analysis. The actual covariance matrix
for the evaluated fission cross section
is shown in Figure 6.

In summary, the correct estimation
of experimental uncertainties and cor-
relations is undoubtedly the most
important aspect of precisely evaluat-
ing the plutonium fission cross section
(and its uncertainties) in this kind of
statistical analysis. Our project has
benefited from extensive expertise by
scientists at many institutions—espe-

cially at Los Alamos, the National
Institute of Standards and Technology,
and at the International Atomic
Energy Agency—that have a long his-
tory of understanding and assessing
the uncertainties and correlations in
previous cross-section measurements.

Critical-Assembly Constraints on
Fission Cross-Section Data. We have
discussed how uncertainties on the
plutonium fission cross sections can
be determined from a Bayesian analy-
sis of the experimental cross-section
data. Next we show how integral

Number 29  2005  Los Alamos Science  33

Reducing Uncertainty in Nuclear Data

Figure 6. Evaluated Variance-
Covariance Matrix for the Pu-239
Fission Cross Section
In (a), the evaluated variances correspon-
ding to the evaluated Pu-239 fission
cross section (shown in Figure 3) are
given when only differential data are
used (red) and when integral data (blue)
from critical assembly experiments are
also included in the analysis. The corre-
sponding correlation matrices are shown
in (b) and (c), before and after inclusion
of integral data in the analysis, respec-
tively. The impact of adding integral infor-
mation into our statistical analysis is
clearly seen: It tends to reduce the stan-
dard deviations and generate negative
correlation values that strongly constrain
the fission cross section.

(b) (c)

       



measurements of the critical mass of
plutonium are allowing us to make
much larger reductions in uncertainty.
Our ability to accurately model a criti-
cal assembly of plutonium using the
MCNP transport code in conjunction
with our neutron cross section data
provides constraints on the uncertain-
ties on the underlying microscopic
plutonium fission cross-section data.

MCNP was developed at Los
Alamos over many decades and is the
world’s most widely used, sophisti-
cated, and well-tested code for simu-
lating the coupled transport of
neutrons and photons as they interact
with nuclei. The interactions of neu-
trons with individual nuclei are mod-
eled using nuclear cross sections from
the evaluated neutron data files
(ENDF) database developed at Los
Alamos and other national laborato-
ries. The accuracy of the transport cal-
culational methods is so high that
MCNP simulations of integral experi-
ments, such as the criticality of a
sphere of plutonium, provide a valid
test of the accuracy of the underlying
ENDF nuclear cross sections such as
neutron-induced fission. 

The calculated critical mass of plu-
tonium depends on cross sections for
a number of different neutron-pluto-
nium interactions. It depends on the
neutron-induced plutonium fission
cross section, the average number of
prompt neutrons (ν

_
) emitted from fis-

sion fragments after a plutonium
nucleus fissions, the cross sections for
inelastic scattering of neutrons by plu-
tonium nuclei; the angular distribu-
tions of neutrons that scatter
elastically from a plutonium nucleus;
and the cross section for a plutonium
nucleus to capture a neutron. Of these
quantities, it is the first two, and more
precisely the product of the fission
cross section and ν

_
, that most sensi-

tively influence the calculated critical
mass and the neutron multiplication
rate keff in the system, which equals
unity when the system is critical.

If we were to estimate the fission
cross section and ν

_
uncertainties

based on only the fundamental, meas-
ured differential cross-section data
discussed in the previous section, we
would obtain uncertainties in the
range of 1 to 2 percent for the fission
cross section and less than 1 percent
for ν

_
, for neutrons with energies in

the fission-spectrum energy range of 1
to 2 MeV. In an MCNP transport sim-
ulation of Jezebel, these numbers
would translate into calculated uncer-
tainties in the range of 1 to 2 percent
for calculated values of keff. 

However, Jezebel’s measured criti-
cality defines the keff uncertainty to
less than 0.2 percent—an order of
magnitude smaller than our previously
calculated results based on cross sec-
tion and ν– data uncertainties. We have
used those integral measurements
which are simple and highly accurate
to constrain the differential fission
cross sections by using the standard
Bayesian technique. With this method,
we were able to reduce uncertainties

in the fission cross section, and the
combined differential and integral
data now predict that the neutron mul-
tiplication due to fission (keff) is accu-
rate to about 0.2 percent, an order of
magnitude more precise.

The plots in Figure 6 illustrate the
uncertainty reductions. The uncertain-
ties (variance and covariance) associ-
ated with the statistical analysis of the
differential experimental data alone
are shown (red line) in Figure 6(a)
(the variance) and in Figure 6(b) (the
correlation matrix multiplied by
1000). Neutron transport calculations
were performed for the Jezebel criti-
cal assembly, and the sensitivity coef-
ficients of the cross sections to the
neutron multiplicity were obtained.
Then Jezebel data were used to adjust
the fission cross section through the
Bayesian inference method. The
resulting uncertainties in the fission
cross section are shown in Figure 6(a)
(blue line). The impact on the fission
cross section itself is very small.
However, the uncertainties become
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Figure 7. Probability Distribution Function for Jezebel’s Neutron
Multiplication Rate
We used our Bayesian uncertainty quantification code KALMAN to combine the
prior information on differential fissions cross section measurements with the inte-
gral information from the Jezebel critical assembly measurement. The analysis pro-
vides posterior fission cross sections for different neutron energies. The simulation
of Jezebel’s criticality using those posterior cross sections yielded a probability
distribution for keff (pink curve) that has a much smaller variance than that of our
initial result from differential data only (blue curve).

                        



smaller, and negative correlations
appear, as shown in Figure 6(c). 

These negative correlations con-
strain the fission cross sections in
order to keep the integral quantities
constant. If we generate randomly
sampled fission cross-section ensem-
bles in accordance with this covari-
ance matrix, the calculated values of
keff for Jezebel form a Gaussian distri-
bution of 0.2 percent uncertainty. This
result can be seen in Figure 7, where
the large reduction in the uncertainty
of the calculated criticality is evident
by comparison with the uncertainty
from methods that do not use integral
measurements.

Iridium Nuclear Cross Sections 

Nuclear weapons performance is
affected by the neutrons the weapons
produce. The neutrons induce nuclear
fission in the plutonium and uranium
components of the device, and a run-
away fission chain reaction occurs
that releases the massive amount of
energy driving the nuclear explosion.
Many of the variables that affect
weapons performance depend on the
energy distribution (spectrum) of the
neutrons. The neutron energy spec-
trum, for example, determines the rel-
ative rate at which fission occurs
versus other neutron-induced nuclear
reactions, and it also determines the
number of neutrons released per atom
during the fission process. 
Certain elements have been used
almost since the inception of the
nuclear age to gain spectral informa-
tion about the all-important neutrons.
Small amounts of these so-called
radiochemical (radchem) detector
materials were placed in specific loca-
tions within a nuclear weapon before
a test. During the explosion, the
intense neutron flux transmuted some
of the atoms of the detector material
into other, predominantly radioactive,
isotopes. After obtaining tiny amounts

of the postshot test debris, radio-
chemists would extract the detector
element from the samples and meas-
ure the relative amount of each
radioactive isotope. Provided the
nuclear cross sections for the produc-
tion and/or destruction of the stable
and radioactive isotopes were well
understood and measured accurately, a
weapons designer could relate the iso-
topic ratios to the neutron fluence4

that occurred within the device. 
During the era of nuclear weapon

testing, different radchem detectors
were used to measure the neutron flu-
ence in different energy ranges.
Certain nuclear reactions—for exam-
ple, the (n,2n) reaction, in which one
neutron impinges on a nucleus and
two neutrons are emitted—are known
as threshold reactions; they occur only
if the energy of the incident neutron is
above some threshold energy, typi-
cally a few million electron volts or
higher. Isotopes that are produced by
the (n,2n) reaction were used to meas-
ure the high-energy (about 14 MeV)
neutron fluence produced by fusion
reactions. Other reactions for produc-
ing new isotopes, notably the (n,γ)
neutron capture process (in which a
nucleus captures an incident neutron
and emits a gamma ray), have no
threshold. Neutron capture is more
likely to occur as the neutron energy
decreases and (n,γ) neutron capture
reactions dominate isotope production
when the neutron energy is below
1 MeV. 

The reaction that has been used as
a diagnostic for neutron energies
between these two extremes is the
(n,n′) inelastic neutron-scattering
reaction in which an iridium-193
nucleus absorbs some energy from the
incident neutron and transitions to a
long-lived nuclear excited state

known as the isomer iridium-193m.
This reaction is uniquely sensitive to
neutrons with energies in the few-mil-
lion-electron-volt range, which, in
turn, is the energy range of neutrons
produced in the fast chain reaction in
a weapon. Hence, determining the
production of the isomer iridium-
193m is an extremely important diag-
nostic for weapon performance.

Figure 8 indicates with arrows the
reaction pathways that can occur
when neutrons are incident on an irid-
ium target composed of the stable iso-
topes 191 and 193. By measuring the
production of radioactive iridium-189,
-190, -192, 193m, and –194 in such a
target, one can learn information
about all three energy-sensitive neu-
tron-induced reactions, (n,2n), (n,n′),
and (n,γ). Iridium, therefore, provides
a unique diagnostic capability of the
neutron fluence in multiple energy
regimes, including the few-million-
electron-volt fission neutron-energy
region.

Unfortunately, measuring the
amount of iridium-193m produced in
a nuclear test was also uniquely diffi-
cult. It must be done by measuring the
decay of the radioactive isomer, but
the decay proceeds through two com-
peting processes, gamma-ray emission
and internal conversion, and the latter
is very difficult to separate from the
background5. The problem was first
solved by some of the great figures
from the radchem past of Los Alamos,
such as Jim Gilmore, Don Barr, and
Moses Attrep. The experimental prob-
lem was so difficult that other labora-
tories, such as Lawrence Livermore
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4 Radiochemistry measures only time-
integrated quantities because its measure-
ments reveal the cumulative result of a
long, complex sequence of production-
destruction reactions on the nuclei.

5 Internal conversion is a nuclear decay
process in which the nucleus changes to a
lower energy level and maintains energy
conservation by emitting an electron from
an atomic shell. Because it is charged,
that electron tends to be stopped in the
sample, emitting x-rays as it slows down.
Often those x-rays can be very difficult to
separate from the background. In the
more usual decay process, the nucleus
emits a readily detected gamma ray as it
decays to a lower energy level.

                                      



National Laboratory (Lawrence
Livermore) and the Atomic Weapons
Establishment in Great Britain, relied
upon Los Alamos radiochemistry for
this task. 

Nuclear Cross Sections and
Uncertainty Quantification. As men-
tioned earlier, to accurately infer neu-
tron fluences from radiochemical
measurements of isotopes after a
nuclear test, it is not enough to deter-
mine the relative amounts of the vari-
ous isotopes. The nuclear cross
sections for producing those isotopes
must also be known accurately. This
has not been the case for iridium cross
sections. In particular, the (n, n′) neu-
tron-scattering cross section that
determines the production of the iso-
mer iridium-193m is extremely diffi-
cult to measure because there are
many different pathways leading to
isomer production and some of
them—for example, direct population
of the isomer state through neutron
scattering and internal conversion—
cannot be observed. Figure 9 shows a
diagram of the energy levels of the
iridium nucleus and the many path-
ways that lead to population of the
isomeric state. 

Until recently, the only experimen-
tal data on iridium isomer production
were obtained at incident neutron ener-
gies above 7.5 MeV by the Los
Alamos radchem group mentioned
(Bayhurst et al. 1975). Consequently,
the historic isomer production cross-
section data set used at Los Alamos for
the last two decades was based almost
exclusively on the nuclear-theory pre-
dictions of Ed Arthur of the Theoretical
(T) Division at Los Alamos.

In the last few years, a collabora-
tion between experimentalists at the
Los Alamos Nuclear Science Center
(LANSCE) and theoreticians in 
T-Division has determined and evalu-
ated new data for the isomer-produc-
tion cross section. LANSCE’s
GEANIE gamma-ray detector (see
Figure 10) was used to measure the
cascade of gamma rays that results
when the excited iridium-193 nucleus
loses energy on its way to populating
the metastable isomeric state. The
GEANIE measurements were under-
taken by a Los Alamos–Lawrence
Livermore collaboration involving
Ron Nelson, Nick Fotiadis, Matt
Devlin, John Becker, Paul Garrett,
and Lee Bernstein. But GEANIE
could not measure the contributions

to the isomer production from
processes that do not involve gamma
rays. Those contributions had to be
predicted from theory. Theory was
also needed to predict certain
gamma-ray feeding transitions that
could not be measured directly
because of experimental limitations.

The authors accomplished that task
by incorporating advanced nuclear-
reaction-theory models into the
GNASH code, which was developed
in T-Division for predicting nuclear
cross sections. Those advanced mod-
els describe compound nucleus,
pre-equilibrium, and direct mecha-
nisms for a nucleus to reach an iso-
meric state. In order to accurately
model isomer production, we had to
understand the following nuclear
properties: (1) optical potentials that
describe the motion of the incoming
and outgoing neutrons relative to the
target nuclei, (2) the nuclear structure
and decay properties of the low-lying
levels (obtained from experiment) and
highly excited levels (obtained from
statistical theories of excited nuclei),
and (3) the angular momentum trans-
fer processes associated with the
pre-equilibrium and compound
nucleus decay mechanisms. Our
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Figure 8. Reaction Pathways for Neutrons Hitting an Iridium Target
The different arrows correspond to neutron-induced reactions on iridium nuclei such as (n,), (n,n′′), (n,2n) and (n,3n), where the
left entry indicates the incident particle and the right entry indicates the outgoing particles. By measuring the various produc-
tion rates of the radioactive isotopes iridium-189, -190, 192, -193m, and -194 when exposed to a particular neutron fluence, one
can learn precious information on the cross sections for each reaction present in this reaction network. In particular, the inelas-
tic neutron scattering reaction cross section for iridium-193 (n,n′′) iridium-193m reaction cross section is most sensitive to neu-
trons in the few-million-electron-volt energy range and therefore can contribute to assessing the neutron fluence in this neutron
energy range.
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Figure 10. The GEANIE Detector
GEANIE (germanium array for neutron-
induced excitations) is a 4π high-reso-
lution γγ -ray spectrometer installed at
LANSCE’s Weapons Neutron Research
Facility. It can detect γγ -rays from about
20 keV up to 8 MeV. The neutrons hitting
the target samples cover the energy
range from below 1 MeV to more than
200 MeV. The time-of-flight technique is
used to determine precisely the energy
of the incident neutrons, with a 22-m
flight path. The GEANIE spectrometer
was used to study details of the γγ-ray
cascade following the inelastic neutron
scattering on iridium-193.

Figure 9. Pathways for Producing
the Isomer Iridium-193m
This nuclear energy-level diagram
shows the various pathways for produc-
ing the long-lived isomer state at an
energy of 80 keV above the ground
state. The GEANIE experiment clearly
resolved the four strongest γγ -ray transi-
tions (red lines) that feed the 80-keV
isomer. GNASH calculations were
benchmarked against the GEANIE data
for the strengths of those four transi-
tions and then were used to calculate
all other unaccounted for contributions
to the isomer production cross section.
The latter include the direct feeding of
the isomer by neutron inelastic scatter-
ing (without going through the γγ -ray
cascade) and the other γγ -ray transitions
(green lines) that either reach the iso-
mer or feed levels that reach the isomer.

                                    



research on these properties for irid-
ium, together with extensive experi-
ence we have built up in analyzing
similar data for other nuclei measured
at LANSCE, allowed us to predict the
various contributions to iridium iso-
mer production using our advanced
version of the GNASH code.

To test the accuracy of our calcula-
tional ability, we compared our
GNASH cross-section predictions for
the measured gamma-ray decay tran-
sitions with those determined from the
GEANIE measurements. After we val-
idated our predictive capability, we
could apply the theory to predicting

the unmeasured contributions with
confidence. We could then evaluate
the isomer-production cross section
and its uncertainty using both the
GEANIE and GNASH results. 

Figure 11 shows our newly evalu-
ated cross section for isomer produc-
tion. The new GEANIE-GNASH
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Figure 12. Hard and Soft Neutron
Spectra
Assemblies with the highest average
neutron energy are said to have the
“hardest” spectra, whereas those that
produce neutrons with a lower mean
energy are said to have “softer” spec-
tra. For example, the center of the
Jezebel assembly (a sphere of pluto-
nium) has one of the hardest spectra
available. The Big Ten assembly, which
has large amounts of uranium-238
and -235, has a much softer neutron
spectrum.

Figure 11. New Evaluated
Production Cross Section for
Iridium-193m
The new GEANIE/GNASH prediction for
the 80-keV isomer production cross
section in iridium-193 is shown here,
covering the incident neutron energy
range from the reaction threshold
(80 keV) up to 20 MeV. The 1-σ standard
deviations that come from uncertainties
in both GEANIE data and GNASH reac-
tion modeling are also plotted. This
new cross section is compared with the
historic one from T-Division (by Ed
Arthur and Robert Little) that has been
used until now in weapon physics work
at Los Alamos. Note that our new result
is in much better agreement with the
MacInnes ad hoc fix to the Arthur-Little
evaluation near threshold, which was
incorporated to improve the agreement
with data from critical assemblies.

      



results cover the whole energy range of
interest, from the threshold of the reac-
tion at 80 kilo-electron-volts (keV) to
above 20 MeV. Ed Arthur’s old theoret-
ical evaluation is also shown. Although
the two results are similar overall, they
also differ in subtle but important
ways. In particular, our new cross sec-
tion rises from threshold in a different
manner, with a steeper slope. This out-
come has important consequences, as
will be described in more detail below.
The uncertainties that we have derived
for this cross section are shown as 
1-σ error bars in Figure 11. The uncer-
tainties that we have deduced include
systematic and statistical errors, and
they are associated with both the meas-
ured data and the GNASH nuclear
model calculations.

Integral Data Testing at Critical
Assemblies. With our new cross sec-
tions in hand, we will undertake
weapon code simulations of specific
past underground nuclear tests in
which the nuclear devices were
loaded with iridium radchem detectors
and combine the calculated neutron
fluences and our new cross sections to
predict the iridium isotopic ratios pro-
duced in those tests. Because we have
determined cross section uncertainties
for the iridium reactions, we will also
be able to provide uncertainties on the
weapons code predictions of the irid-
ium isotopic ratios. We will then com-
pare the predicted ratios against actual
post-test radchem measurements from
those tests. Finally, we will work with
designers to incorporate the results of

those comparisons into the baseline
certification calculations. Clearly,
detailed aspects of this work will
remain classified. 

Interestingly, we have been able to
validate our new iridium cross sec-
tions against an old but fascinating
and unclassified set of iridium rad-
chem data. Those data, obtained from
fast critical-assembly experiments
conducted over several decades at
LACEF, provide a valuable integral
test of our iridium cross sections. The
fast critical assemblies at Los Alamos
involve macroscopic quantities of spe-
cial nuclear materials—plutonium and
uranium-235 and -238—often in
spherical configurations. When the
critical mass is assembled, a self-sus-
taining chain reaction occurs, creating
a neutron flux that has the energy
spectrum typical of a fast fission-
chain reaction. During the iridium
radchem experiments, the flux of neu-
trons irradiated iridium foils placed
inside the assembly, and the ratios of
various iridium isotopes produced
during irradiation were subsequently
measured. One such ratio was irid-
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Figure 13. Iridium-193m Production Cross Section
Experimental data obtained with critical assemblies at LACEF were used to validate
our new evaluation work. This figure represents the ratio of the iridium-193m produc-
tion cross section to the production of iridium-192 (mainly through the neutron 
capture cross section of iridium-191) as a function of the ratio of uranium-238 to 
uranium-235 neutron-induced fission cross sections. The latter ratio represents 
the “hardness” of the neutron spectrum. This quantity changes with the location of
the target in the critical assembly. Near the center, the neutron spectrum is quite
hard; at larger distances, it softens. The slope of the experimental curve in this figure
is therefore an indicator of the shape of isomer production cross-section, in particu-
lar near the threshold energy. Our new evaluation represents a net improvement over
the older existing evaluation.

Figure 14. Fission Cross
Sections for Uranium-235 and
Uranium-238 
Note the rapid increase of the
uranium-238 fission cross section
around an incident neutron energy of
about 1 MeV. This threshold behavior
causes the ratio of the uranium-238 to
uranium-235 cross sections in critical-
assembly experiments to increase with
spectral hardness.

        



ium-193m/iridium-192, in which the
isomer came from the iridium-193
(n,n′) reaction and the isotope, from
the iridium-191 (n,γ ) reaction.
(Contributions from the iridium-193
(n,2n) reaction are very small in a
critical assembly.)

Those old measured ratios can be
compared with new predictions for
these ratios obtained with our new
cross sections. To predict the isotopic
ratios, we must first predict the neu-
tron energy spectrum of the fast criti-
cal assembly experiments using an
MCNP radiation transport simulation
and then fold that spectrum together
with our iridium cross sections.

Clearly, fast critical assemblies
provide valuable integral experiments
to test our iridium cross sections
because the neutron energy spectrum
created in a fast critical assembly is
skewed toward neutron energies that
the iridium-193m diagnostic was
developed to detect, that is, energies
in the few-million-electron-volt
region. But we also wanted to validate
our cross sections over energies
extending down to the threshold for
isomer production, which is 80 keV.
Again, iridium radchem data from old
critical-assembly experiments have
been invaluable. The various assem-
blies provide neutron energy spectra
with varying average energies,
depending on the critical assembly
and the location within that assembly
(see Figure 12). Fortunately for our
iridium work, radiochemists had
already conducted experiments in
which iridium foils were loaded at
various radial locations throughout a
“traverse” of the Flattop assemblies (a
core of HEU or plutonium surrounded
by uranium-238). Those experiments
involved neutron spectra ranging from
“hard” (at the center of the assembly)
to “soft” (at maximum distance from
the center).

Figure 13 shows the radiochemical
results obtained with the Flattop
assembly for the isotopic ratio of irid-

ium-193m to iridium-192 as a func-
tion of the hardness of the critical-
assembly neutron spectra, where the
spectral hardness is represented by the
ratio of uranium-238 to uranium-235
fission cross sections. That fission
cross-section ratio is used for two rea-
sons: It increases with spectral hard-
ness, or average neutron energy (see
Figure 14), and it can be measured
within the assembly, at the very spot
where the iridium foils have been
placed. Figure 13 also shows our cal-
culated results for the iridium isotopic
ratios, as well as results from Ed
Arthur’s old evaluation. The good
agreement between measured data and
our new calculated results validates
our iridium-193m (n,n′) cross section
in the few-million-electron-volt
region. Moreover, our reproduction of
the shape of the experimental curve
derived from the Flattop integral
experiments validates the shape of the
new GEANIE/GNASH microscopic
cross section in Figure 11 as it rises
from threshold. 

The validation of the new isomer
production cross section near threshold
represents a breakthrough. Several
years ago, Mike MacInnes of Los
Alamos first undertook calculations of
the Flattop critical assembly data in
Figure 13 with the historic Ed Arthur’s
iridium-193 (n,n′) isomer cross section
used at Los Alamos at the time. He
noted that the calculated shape did not
agree well with the measured shape.
This observation led him to make a
change to the shape of the historic
cross section near threshold. Our new
result for this same cross section,
based on independent LANSCE data
and nuclear model calculations, has
confirmed MacInnes’ intuition.

Conclusions

Our ability to predict important
nuclear cross sections and quantify
uncertainties in those predictions has

advanced considerably in the last
decade. The rates of neutron-induced
fission reactions are crucial to the per-
formance of weapons. That is why
reducing the uncertainty in those rates
leads to more confident predictions
using the Los Alamos weapons simu-
lation codes. In addition, increased
accuracy of neutron-scattering results
obtained with radchem tracers has
contributed to better assessments of
past nuclear tests. n
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The Ocean Perspective
Uncertainties in Climate Prediction

Rainer Bleck

The ocean is but a thin coating on our planet. Ocean circulation, therefore, appears 
predominantly two-dimensional; however, ocean depth, the third dimension, cannot be 
neglected in ocean models. Surprising as it may be, the premier numerical challenge posed
for ocean models used for climate prediction is keeping the warm poleward-flowing sur-
face water thermally insulated from the cold abyssal return flow—as insulated as it is in
nature. Los Alamos supports several approaches to ocean simulations, whose results give 
a hint about the uncertainties involved in climate prediction. The model designed to come
closest to preserving the warm poleward and cold return flows of the ocean “conveyor”
is the layer model, which pictures the ocean as a stack of immiscible layers. Compared
with other models, the layer model also produces more stable oceanic circulation in the
face of climate changes. Yet the jury is still out on whether “more stable” is the same
as “more realistic.”

     



Is it preposterous to predict Earth’s
climate 50 or 100 years ahead if
we cannot reliably forecast the

weather two or three days into the
future? Fortunately, the situation is
not as hopeless as one may think.
There are fundamental differences
between the two tasks.

Mathematicians classify weather
prediction as an “initial value” prob-
lem because the accuracy of a weather
forecast depends crucially on how
well the initial state of the atmosphere
is known. Climate prediction, on the
other hand, is primarily a “boundary
value” problem. In this case, the main
task is to reproduce the time-averaged
flow of solar energy through the
nooks and crannies of the land-ocean-
atmosphere system. To do so well,
one needs to know those nooks and
crannies, and one needs to know how
much energy arrives at the top of the
atmosphere as a function of latitude
and time of year. But the exact loca-
tions of the transient disturbances that
determine the oceanic and atmos-
pheric “weather” need not be known,
either initially or at a later time. In
essence, when we predict future cli-
mates, we try to assess whether modi-
fying certain parameters, such as the
ellipticity of the earth’s orbit or the
chemical composition of the atmos-
phere, will change the way energy
flows through the earth system. This
task does not critically depend upon
our ability to predict tomorrow’s
weather or the onset of the next El
Niño—even though a forecast model
that does well in these respects will
increase our confidence in the correct-
ness of the climate forecast. 

Simulating systems that are as
complex as Earth’s climate is hard.
Two types of errors may affect the
simulation: errors in the physics of the
model and errors in the mathematical
approximations needed to simulate
climate processes on a computer.
Being able to distinguish between
these two error types may help us

develop more-accurate climate mod-
els. But to separate errors, scientists
need tools, and model diversity is
among the few available ones. In the
realm of ocean modeling, Los Alamos
has been supporting model diversity
for over a decade. Several ocean-cir-
culation models have been brought to
or developed at the Laboratory, and
they are designed to solve the same
physical problem while being numeri-
cally dissimilar. By comparing their
results, scientists get a feel for the size
of the uncertainties. This article will
use three examples related to Elf
Niño, the heat-carrying ocean con-
veyor, and oceanic carbon sequestra-
tion to illustrate this approach.

Modes of Poleward 
Heat Transport

Our planet absorbs solar energy at
low latitudes and radiates energy back
into space at high latitudes. This is so
because the earth is a sphere and its
axis of rotation is more or less per-
pendicular to its orbital plane around
the sun. For this system to remain in a
steady state, heat on earth must con-

tinually flow poleward in both hemi-
spheres. Transporting this heat is the
job of the atmosphere and ocean
because, in contrast to the solid earth,
they can move heat efficiently by set-
ting up warm currents flowing pole-
ward and cold ones flowing back to
the equator.

From here on things get compli-
cated. The earth’s rotation greatly
inhibits meridional displacement of
water or air because a northward- or
southward-moving fluid parcel away
from the equator also changes its dis-
tance from the earth’s axis. In fact, the
angular-momentum balance con-
straints resulting from the earth’s rota-
tion are so severe that the atmosphere
can maintain a meridional overturning
circulation (a closed loop consisting
of air rising at low latitudes and sink-
ing at high latitudes) only near the
equator in the so-called Hadley cell
(Figure 1). At mid-to-high latitudes,
the earth’s rotation forces the atmos-
phere to resort to a different mode of
heat transport, namely, transient
eddies, popularly known as highs and
lows, which intermittently push warm
air poleward and cold air equatorward
over distances too small for the angu-
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Figure 1. Heat Transport in the Atmosphere 
This schematic view shows two atmospheric circulation modes important for pole-
ward heat transport. A vertical-meridional overturning circulation (Hadley cell) domi-
nates near the equator. Horizontally rotating eddies (the highs and lows on weather
maps) dominate at mid to high latitudes.

      



lar momentum constraint to kick in.1

The two modes of heat transport in
the atmosphere and their respective
geographic domains are depicted
schematically in Figure 1.

In the ocean, in contrast to the
atmosphere, steady meridional
motion can be sustained over long
distances when a current can “rub”
against a continental margin and
thereby shed momentum. This is
why meridional ocean currents, such

as the Gulf Stream, must always
flow along the edge of an ocean
basin, never in the middle.
(Emphasis here is on the word
“meridional.” East-west currents can
cross ocean basins in an unrestricted
manner. Otherwise, the warm waters
of the Gulf Stream would not be able
to reach Europe.) Eddies, analogous
to those in the atmosphere, do exist
in the ocean, but their contribution
to heat transport tends to be over-
shadowed by the contribution of the
boundary currents. The Southern
Ocean, being devoid of meridional
land barriers, is the obvious excep-
tion; there, as in the atmosphere,
ocean eddies play a primary role in
heat transport.

The ability of the ocean to main-
tain steady meridional motion over
considerable distances actually
allows the ocean to develop two
types of heat transport mechanisms
not found in the atmosphere: a
Hadley cell–like meridional over-
turning circulation extending all the
way to the subpolar seas—dubbed
the ocean conveyor (Broecker
1991)—and a basin-spanning hori-
zontal gyrating motion. The former,
depicted schematically in Figure 2,
is primarily maintained by differen-
tial heating and cooling; the 
latter, by the torque exerted on the
ocean by the prevailing pattern of
tropical easterlies and extratropical
westerlies.
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Figure 2. Heat Transport in the Ocean 
The thermally forced ocean circulation spans ocean basins,
as shown in this figure. Vertical and horizontal details are
simplified but less so than in Broecker (1991). Wind-driven
currents are omitted except for the Antarctic Circumpolar
Current. Circled numbers represent transport in sverdrups
(1 Sv = 106 m3 s–1, corresponding to roughly the volume 
transport of five Amazon Rivers). The schematic does not 

reflect the fact that downwelling takes place in geographi-
cally confined regions (Greenland/Norwegian Sea, Weddell
Sea, and Ross Sea) while upwelling is a much more wide-
spread process. Thus, not all the water entering the Indo-
Pacific basins from the south up-wells in the specific
locations indicated in the drawing. (Adapted from Sun and Bleck

2001a and Schmitz 1996).

1 Even though extratropical eddies are as
flat as pancakes, their flow field is not
entirely two dimensional; in fact, they
draw their energy from the rise/descent of
warm/cold air masses. Their residual
effect, if analyzed in a proper entropy-ori-
ented framework, therefore, is to extend
the Hadley cell to higher latitudes.

     



Implications for Ocean and
Climate Modeling

To faithfully replicate the relevant
heat-transport mechanisms on our
planet, a climate model must be able
to reproduce the action of atmospheric
lows and highs without which there
would be hardly any heat transport in
the atmospheric submodel. In other
words, the atmospheric submodel
must be what ocean modelers refer to
as “eddy resolving.” In the oceanic
submodel, on the other hand, the first
order of business is to correctly simu-
late the major current systems, both
those associated with the wind-driven
horizontal gyre circulation and those
associated with the thermally driven
meridional overturning circulation.

This is not to say that the effect of
ocean eddies can safely be neglected.
Wherever they are in the ocean (and
they are almost everywhere), eddies
will transport some heat. However, in
most oceans, except the Southern
Ocean, the contribution of the eddies
is overshadowed by the contribution
of meridional current systems. As a
result, the penalty for “parameteriz-
ing” the eddies’ role, instead of
explicitly resolving the eddies, is
minor. Turning this argument around,
one should expect the Southern Ocean
to emerge as a major Achilles’ heel in
noneddy-resolving ocean modeling.

Eddy resolution in the ocean is a
major problem. According to hydro-
dynamic instability theory, tailored to
fluid motion on a rotating sphere,
eddy size depends on the vertical
density contrast in the fluid. Because
this contrast is much smaller in the
ocean than in the atmosphere, ocean
eddies turn out to be roughly 10 times
smaller in diameter (that is, 100 times
smaller in area) than their atmos-
pheric counterparts. Hence, the num-
ber of eddies to be tracked by an
eddy-resolving ocean model through
their individual life cycles exceeds by
two orders of magnitude the number

of eddies in a global weather model.
Furthermore, in the context of cli-
mate, individual eddies would have to
be simulated not only for the duration
of a 5- or 10-day weather forecast,
but also for decades or possibly cen-
turies. This task is beyond the capa-
bilities of even our biggest and fastest
computers.

Contrary to common perception,
the ocean is quite shallow, a thin coat-
ing on our planet, and oceanic circula-
tion appears, therefore, predominantly
two-dimensional. However, the pres-
ence of meridional overturning circu-
lations and the concomitant reversal
of current direction with depth mean
that the third (vertical) dimension can-
not totally be neglected when model-
ing the ocean. Surprising as it may
sound, the premier numerical chal-
lenge posed by the third dimension in
ocean models used for climate predic-
tion is to keep the warm poleward-
flowing surface water thermally
insulated from the cold abyssal return
flow—as insulated as it is in nature.
Given the long time scales involved
(decades to centuries) and the relative
proximity of the two circulation
branches (a few kilometers), this is
indeed a major challenge. It has moti-
vated the development of a class of
ocean models that, instead of carrying
ocean state variables on a rigid, crys-
tal-like lattice, picture the ocean as a
stack of immiscible layers whose
thicknesses are allowed to evolve
freely in space and time. By allowing
grid cell interfaces (and the state vari-
ables riding on them) to bob up and
down with the vertical component of
motion, these so-called layer models
control vertical mixing processes
much better than models based on a
rigid spatial grid. (The dispersive
effect of an oscillating vertical motion
field on such properties as tempera-
ture in a fixed-grid ocean model is
illustrated in Figure 3). As a result,
warm surface currents in a layer
model are less likely to lose heat

through contact with the cold return
flow than those in a traditional fixed-
grid (“level”) model. In theory, at
least, this difference translates into a
more robust heat-delivery system and
a more accurately simulated climate.

Potential density, defined as den-
sity corrected for compressibility
effects, is a proxy for entropy in sea-
water and hence is conserved in the
absence of heat-transferring, or dia-
batic, processes. Because oceanic
flow below the surface layer generally
comes close to being adiabatic, the
layers in a layer ocean model are typi-
cally chosen to coincide with constant
potential-density, or isopycnic, layers.
The resulting impermeability of layer
interfaces under adiabatic flow condi-
tions allows vertical property
exchange by diabatic mixing, to the
extent that it occurs, to be modeled
explicitly before a background of zero
numerical mixing. 

Replacing the traditional Eulerian
vertical coordinate by a Lagrangian
one, tied to the oceanic potential den-
sity field, sounds easier than it is.
Given the small but persistent back-
ground mixing in the ocean, mainte-
nance of a steady climate state
requires that each parcel of seawater
communicate with the atmosphere at
least intermittently to replenish its
temperature and salinity—the two
ingredients that set the density of sea-
water. This is to say that each layer in
a layer model must be allowed to
“outcrop,” or rise to the surface.
Picturing the world ocean as a lens of
light, warm water centered on the
equator and floating on a body of
dense, cold water, one readily sees
that the densest layers outcrop closest
to the poles, layers of intermediate
density outcrop at mid-latitudes, and
so forth (refer to Figure 4). To avoid
having to deal with time-dependent
lateral boundaries for individual coor-
dinate layers, today’s isopycnic mod-
els extend ocean layers, regardless of
the actual extent of the water, over the
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whole model domain as empty or
massless layers. All these conditions
translate into tricky numerical issues,
making layer models inherently more
complex than traditional level models.

Because of these tradeoffs, neither
model class can be regarded as supe-
rior in every respect in simulating the
global ocean circulation. However,
two models that start from the same
physics—including the “closure”
model that approximates the effect of

turbulent exchange processes at the
small, unresolved scales—but express
that physics in different mathematical
form provide important insight into
the inevitable degradation inherent in
solving differential equations by com-
puter. This comparative approach,
therefore, affords some measure of 
the overall uncertainties in climate
prediction.

It is important to note that the two
ocean-model classes differ not only in

their numerical representation of a
given set of differential equations but
also in the differential equations them-
selves. This begs the question, “how
can there be two sets of equations for
a single, uniquely defined physical
problem?” The answer is that the
underlying physical principles
(Newton’s law, conservation of mass,
and others) can be cast in different
forms, depending on which variables
in the set consisting of depth, temper-
ature, salinity, density, and velocity
are treated as dependent variables. In
level models, depth is an independent
variable, whereas water density is a
dependent variable, stepped forward
in time as one solves prognostic equa-
tions for temperature and salinity. The
equations governing layer models, on
the other hand, treat density as an
independent variable and, in the spirit
of maintaining consistency between
the number of unknowns and equa-
tions, they treat depth (in the form of
layer thickness) as a dependent vari-
able. It is this switch, rather than vari-
ations in the way differential
equations are translated into algebraic
ones, that gives different properties to
the solutions obtained from level and
layer models. 

Los Alamos Contributions

In the early 1990s, the Department
of Energy (DOE) Office of Science
joined other federal agencies in fund-
ing the development of layer ocean
models for climate prediction. The
main reason was the perceived need
to enrich the ocean model “gene
pool,” which at that time was rather
sparse and showed signs of model
inbreeding. Today, both level and
layer models are firmly established at
Los Alamos. The level model class is
represented by the Los Alamos–devel-
oped Parallel Ocean Program (POP).
For a detailed account of ocean-mod-
eling advances achieved through
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Figure 3. Anomalous Vertical Mixing in Fixed-Grid Models 
(a) This schematic illustrates numerical dispersion in a water column, resulting from
oscillatory vertical motion typically associated with passing gravity waves. Time
increases from left to right. Shown is a vertical stack of three grid cells. The initial
state, T = 0, is chosen to coincide with the wave trough, at which time the center grid
cell is assumed to be filled with a tracer of concentration 100. In the advection step
at T = 1, the approaching wave crest causes the water in all three cells to rise by a
distance corresponding to one-fifth of the vertical cell size. The clock is stopped
momentarily to allow the tracer to be reapportioned, or rezoned, among the original
grid cells, which in contrast to the water column, stay fixed in a level ocean model.
Because of rezoning, the tracer is split between two cells (T = 1). Next, the clock is
running again. The approaching next wave trough causes the water column to return
to its initial position during advection, at T = 2. With the clock stopped again, the
tracer is being rezoned a second time. Tracer concentration in the center cell is now
down to 68, with the remainder spread over the two adjacent cells. Note that this is
an extreme example. Dispersion can be reduced by use of more sophisticated rezon-
ing schemes. Also, gravity waves, while ubiquitous, usually have smaller amplitude
than assumed here. (b) It is important to note that layer models skip the rezoning
steps and thereby maintain a concentration of 100 in the center cell.

              



development of POP, refer to Malone
et al. (1993, 2003). The layer model
class is represented by the Miami
Isopycnic Coordinate Ocean Model
(MICOM) by Bleck et al. (1992) and
its hybrid-coordinate offshoot
HYCOM by Bleck (2002). 

Hybrid-coordinate models are
designed to combine the advantages
of layer and level models. Starting at
the surface, one assigns progressively
larger “target” potential-density values
to coordinate layers in hybrid models.
Each coordinate layer is expected to
track its assigned isopycnic layer in
the model domain in space and time
but may deviate from it to form a con-
ventional constant-depth layer if (and
only if) the target density is too low to
exist in a given water column. Layers
assigned to relatively warm, or low-
density, water, which in traditional
isopycnic models would only exist at
low latitudes, thereby are allowed to
molt into constant-depth layers pole-
ward of their outcrop latitude. These
redefined layers provide a framework
for solving the model equations in
subpolar oceans, where the lack of
vertical density contrast makes it hard
to represent vertical structure in terms
of density classes. 

Judging from the willingness of
such federal agencies as the Naval
Research Laboratory and the National
Weather Service to adopt HYCOM
(see, for example,
http://www7320.nrlssc.navy.mil/ATLh
ycom1-12/skill.html), the hybrid
model concept is widely being
regarded as a significant step toward
creating a flexible, multipurpose,
next-generation ocean model. The
COSIM (for Climate, Ocean, and Sea
Ice Modeling) group at Los Alamos is
under contract with the DOE Office of
Science to produce a hybrid-coordi-
nate version of POP as well.

The algorithm in HYCOM that
determines whether a given coordi-
nate layer can retain its isopycnic
character at a given location or

whether it must be assigned a constant
thickness and be “frozen” in space has
elements in common with the
Los Alamos–developed arbitrary
Lagrangian-Eulerian (ALE) technique
(Hirt et al. 1974). However, whereas
traditional ALE applications focus on
maintaining a nonzero mesh size, the
HYCOM algorithm addresses the
more vexing problem of moving coor-
dinate layers through the fluid to
realign them with their respective tar-
get isopycnals after they have become
separated. An illustration of how
hybrid-coordinate models work in
practice is given in Figure 5. 

Examples of Multimodel
Climate Sensitivity

Experiments

The vagaries of weather forecasts
are the butt of jokes. Yet the meteoro-
logical community has rather precise
information about the “skill” of
numerical models used in daily fore-
casting and about the associated uncer-
tainties. This information is precise
because weather models are intended
to duplicate the behavior of a readily
observable system and because gather-
ing statistical information about model

skill is made easy by the large and
ever-growing ensemble size.

The situation is quite different in
decadal to centennial climate predic-
tion because of the lack of verification
data, the sheer number of natural
processes contributing to the steadi-
ness of climate (or its change, as the
case may be), and the need to either
treat in cursory fashion (parameterize)
or totally omit from the model those
processes that are deemed less central
to the climate problem than others.
Uncertainty quantification in long-
range climate prediction, therefore, is
a science that arguably is not even in
its infancy.

Not much needs to be said about
the lack of verification data. Important
climate-relevant aspects of the earth
system, such as atmospheric green-
house-gas concentrations and the
oceanic abyssal circulation, have been
observed only in the last half century
in sufficient detail to validate three-
dimensional climate models. This
observational record is vitally impor-
tant as it provides a glimpse at the
performance strengths and limitations
of today’s climate models, but it can-
not serve as a database for rigorously
assessing model skill. Stated differ-
ently, the 50-year observational record
allows us to check the appropriateness
of certain parameterizations (also
referred to as physical closure
assumptions) in climate models, but
as an “ensemble” of one, it is insuffi-
cient for quantitatively evaluating pre-
diction uncertainty.

At present, the focus in the climate
research community is on the number
(and ranking) of climate-contributing
natural processes and on the need to
parameterize. One can argue that,
given the complexity of the climate
problem and the finite nature of com-
puting resources, there is not a single
process that is not, in one way or
another, parameterized in a climate
model. The omission of possibly rele-
vant detail begins with the transfor-
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Figure 4. The Ocean as a 
Lens of Light Water Floating on 
Dense Water
As their densities increase, ocean 
layers outcrop progressively closer to
the poles. Coordinate layers in MICOM
follow the same general pattern.

      



mation of the differential equations
that govern the behavior of the natural
system into computer-solvable alge-
braic equations. The truncation of the
spectrum of scales at a chosen mesh
size immediately divides processes
into spatially resolved and unresolved
ones, the latter requiring a physical
closure assumption. A good example
of a closure scheme for processes tak-
ing place on spatial scales too small to
be resolved by a climate model is the
wind-induced turbulent mixing below
the sea surface. Since this turbulence
stirs up water from depths of tens or
even hundreds of meters, it strongly
affects sea surface temperature.
Disregarding or poorly parameterizing
it, therefore, has dire consequences on
the representation of air-sea exchange

processes in our models.
Errors associated with the

inevitably imperfect physical closure
of unresolved processes are com-
pounded by errors introduced by solv-
ing algebraic instead of differential
equations; these so-called truncation
or discretization errors mainly affect
the resolved scales. Hence, climate
forecasts are fraught with a mixture of
physical closure errors and numerical
truncation errors.

Notwithstanding efforts by groups
such as the Program for Climate
Model Diagnosis and Intercomparison
(PCMDI) at Lawrence Livermore
National Laboratory
(http://www.pcmdi.llnl.gov), the cli-
mate community is still largely unable
to separate the effects of physical and

numerical errors on a climate forecast.
One of the few tools at our disposal,
as already mentioned, is developing
multiple climate models that employ
identical physical-closure schemes but
are based on different numerics. This
approach leads to the need for what
was earlier referred to as genetic
diversity in climate models. The dif-
ferences between level and layer mod-
els arguably provide such diversity
and hence open the door to experi-
mentation aimed at separating physi-
cal from numerical model errors. A
few examples of such experimentation
are given below. 

El Niño-like Variability in
Climate Models. Much of the discus-
sion about global warming focuses on
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This is a sample vertical section through a HYCOM solution
extending south from Montevideo into the eddy-rich conflu-
ence region of the Brazil and Falkland currents. The red num-
bers from 1 to 9 are the hybrid layers. The South American
continent is shown at left. The latitude (°) is marked as nega-
tive numbers along the bottom. The heavy red lines represent
HYCOM’s coordinate surfaces; the shaded contours, outlined
by light black lines, represent potential density in kilograms
per cubic meter. Tick marks along the abscissa indicate grid 

resolution (approximately 15 km). The ordinate shows depth in
meters. Note that coordinate surfaces follow isopycnals at
depth but turn horizontal near the surface whereas the asso-
ciated isopycnals outcrop. Density undulations indicate the
presence of “cold-core” and “warm-core” eddies (which in
the southern hemisphere spin clockwise and counterclock-
wise, respectively). Crowded isopycnals on the continental
shelf indicate the presence of low-salinity Rio de la Plata
water.

Figure 5. Ocean Density and Hybrid Coordinates Near the Falkland Islands

      



the question of whether the currently
observed global temperature rise can
be attributed to the inherent natural
variability of the ocean-atmosphere
system or whether it is a consequence
of increased greenhouse gas concen-
trations. In order to clarify this ques-
tion through numerical simulation,
one obviously needs a climate model
with a proven ability to simulate the
multitude of ocean-atmosphere feed-
back mechanisms giving rise to natu-
ral variability.

The biggest observed climate vari-
ability on interannual time scales is
associated with the so-called
El Niño–Southern Oscillation (ENSO)
phenomenon. The ocean-atmosphere
system in the tropics is known to
switch back and forth between two
states, one of which (La Niña) is char-
acterized by strong trade winds and
strong upwelling of cold subsurface
water in the equatorial eastern Pacific,
whereas the other (El Niño) is charac-
terized by weak trade winds and weak
upwelling. Both states appear to be
self-sustaining in the sense that
strong/weak upwelling caused by
strong/weak trade winds tends to sup-
port the underlying wind anomaly. A
particular signal telling the coupled
system to initiate the switch from one
state to the other has not yet been
identified. Efforts to predict that
switch, therefore, have not advanced
beyond the stage of what may
euphemistically be described as early
detection.

The ENSO coupled mode is often
used as a yardstick for how well a cli-
mate model handles internal variabil-
ity. Most coupled models are actually
capable of producing an ENSO-like
variability mode (AchutaRao and
Sperber 2002), but a fair amount of
parameter tuning is usually required
before those models come close to
simulating the observed amplitude,
frequency, and spatial anomaly pattern
of the genuine ENSO. Tuning
attempts usually focus on the turbu-

lence closure scheme for the oceanic
and atmospheric boundary layers, but
changing the scale selectivity of the
model by modifying the computa-
tional mesh can also have a surpris-
ingly strong effect.

The point just made is illustrated in

Figure 6, in which an observed tem-
perature time series from the equato-
rial Pacific highlighting ENSO
variability is compared with corre-
sponding time series obtained from
three climate models that have the
oceanic component HYCOM in com-
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Figure 6. El Niño Variability in Climate Models
An observed 30-year time series of El Niño–related sea-surface temperature vari-
ability shown in (a) (Niño3 index, °C) is compared with corresponding time series
obtained from three atmospheric circulation models, all of which have the oceanic
component HYCOM in common: (b) model from the Goddard Institute for Space
Studies (GISS) at NASA; (c) model from Florida State University (FSU); and (d)
model from the Hadley Centre in the United Kingdom. Two curves within a panel
indicate two runs based on different parameter choices: number of layers in (b) and
different turbulence surface mixing in (d). The large model-to-model variation in
Niño3 amplitude is largely unexplained and the subject of intense research.
(Graphs (b) and (d) are courtesy of Shan Sun from NASA/GISS and Alex Megann from the Southampton

Oceanography Centre.)

    



mon. As expected, the amplitude of
the ENSO mode depends on which
atmospheric-model component the
ocean is coupled to. But the large dif-
ference in the two GISS/HYCOM
results (b) is mainly caused by chang-
ing the target densities and vertical
mesh spacing in HYCOM. A grid con-
figuration that minimizes the vertical
extent of the depth-coordinate subdo-
main in the eastern Pacific, thereby
allowing the isopycnic subdomain to
rise close to the surface, seems to
favor large-amplitude El Niño vari-
ability in the model. It is tempting to
attribute this phenomenon once again
to the superior thermal insulation
properties of the isopycnic vertical
coordinate.

As stressed in the introduction, a
model may well be able to satisfacto-
rily predict long-term global change
caused by extraneous factors such as
increased greenhouse gas concentra-
tions even if it does a less-than-per-
fect job in simulating ENSO.

Atlantic Overturning during
Global Warming. Changes in ocean
circulation, particularly in the strength
of the meridional overturning circula-
tion (MOC) in individual basins, are
considered plausible triggers of rapid
climate change (Broecker 2003).
What began as a highly technical dis-
cussion of this issue has recently
seeped into more popular publications
(Fortune, February 26, 2004; The
Observer, February 22, 2004). Given
the pivotal role played by the Atlantic
in moving heat to high northern lati-
tudes (as highlighted in Figure 2), cli-
mate researchers are keenly interested
in processes that have led to a peri-
odic weakening or outright shutdown
of the Atlantic MOC since the last ice
age. Foremost among the processes
that can trigger such effects is the
buildup of a freshwater cap in the
subpolar Atlantic by melting land and
sea ice. Since seawater density at
near-freezing temperatures depends
almost entirely on salinity, accelerated
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Figure 7. Effects of Global
Warming in the Atlantic
Overturning Rate
The curves in this plot represent
changes in the Atlantic overturning rate
(1 Sv = 106 m3 s–1) from the gradual
doubling of atmospheric CO2 in nine
coupled climate models. Overturning
rates are plotted relative to each
model’s average over the period from
1960 to 1990. A reduction by 15 to 20 Sv
amounts to a total shutdown of the
overturning. Whereas the eight level
models show a decreasing overturning
rate, the isopycnic, or layer, model
ECHAM4/OPYC3 does not indicate a
slowdown of that rate under the condi-
tions described above. (Reproduced courtesy

of IPCC 2001.)

          



ice melt during global warming could
conceivably create a strong enough
vertical density contrast in the subpo-
lar Atlantic to inhibit the sinking of
surface water to the bottom, thereby
suppressing the MOC.

Such a shutdown can easily be
simulated in an ocean model by
imposing an appropriate high-latitude
freshwater source. The question is,
“how robust a feature is the Atlantic
MOC in a climate model?” In other
words, is the threshold for an MOC
shutdown by ice melt in the model the
same as the threshold in the real
ocean? Figure 7, taken from the 2001
climate assessment report by the
Intergovernmental Panel on Climate
Change, indicates that there are vast
differences among models in predict-
ing the rate at which the Atlantic
MOC will slow down during global
warming. Interestingly, from among
nine climate models, only an isopyc-
nic coordinate, or layer, model does
not indicate a slowdown of the MOC
during gradual doubling of atmos-
pheric carbon dioxide (CO2). This
observation suggests that the type of
vertical coordinate in an ocean model
can greatly influence the outcome of a
climate forecast—for reasons touched
upon earlier in this article. Further
support for the still tentative notion
that layer models predict a more sta-
ble behavior of the Atlantic MOC dur-
ing global warming than the eight
level models shown in Figure 7 can
be found in Sun and Bleck (2001b).
Note, however, that the jury is still out
on whether “more stable” is synony-
mous with “more realistic.”

Transport of Sequestered CO2
in the Ocean. A standard question
asked of a climate prediction model
is whether its “equilibrium” climate,
obtained by running the model for a
long time (several centuries) with a
time-invariant mixture of atmos-
pheric greenhouse gases and constant
solar-energy output (that is, with

fixed boundary conditions), resem-
bles the observed climate. Given a
century or two, an energy imbalance
of a few watts per meter squared,
less than 1 percent of the standard
solar energy input, will gradually
melt the polar ice caps or bring on an
ice age in the model. Since the heat
capacity of the atmosphere is negligi-
ble compared with that of the ocean,
radiative imbalances are primarily
accumulated in the ocean (including
its frozen component). There they
create long-term trends in the thermal
structure, which sooner or later will
disrupt the overturning circulation
and the associated poleward heat
transport. Interestingly, the drift in
global surface temperature accompa-
nying these changes may be as small
as a fraction of a degree. (That is
why sea surface temperature maps,
often presented as an indicator of the
performance of an ocean model, are
of limited usefulness.)

Much time is being invested at the

Laboratory and elsewhere into study-
ing the sensitivity of the modeled
MOC to changes in the boundary con-
ditions (“forcing”) at the sea surface.
In many of these studies, for the sake
of computational economy and to
avoid contaminating the ocean simu-
lation with atmospheric model errors,
the ocean is driven by observed val-
ues of temperature, precipitation,
wind, or other factors rather than by
an atmospheric model that properly
reacts to the evolving surface condi-
tions in the ocean model. However,
replacing an interacting atmospheric
model with prescribed surface fields
elicits unforeseen responses in the
ocean model. Efforts at Los Alamos to
compare the performance of layer and
level models in ocean-only experi-
ments have been frustrated by the
realization that ocean models show
different degrees of tolerance to phys-
ically imperfect surface forcing.

Nevertheless, enough progress has
been made over the years in formulat-
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Figure 8. Comparing Carbon Sequestration Results
The two plots show the gradual accumulation of tracer material representing CO2
(arbitrary mass units) in the top 10 m of the world ocean in (a) POP and (b)
HYCOM. The conditions were continuous tracer release at two near-bottom points
next to the North American continental shelf off Delaware and California. The
tracer injected off Delaware is represented by the solid line; the one injected off
California by the dashed line. The source strength at both sites is 1 mass unit per
day (36,000 units per century). The discrepancies between the POP and HYCOM
results are a manifestation of the uncertainty attributable to numerical approxi-
mations in ocean circulation models.

      



ing internally consistent surface
boundary conditions to produce rea-
sonably steady and realistic equilib-
rium circulation states in ocean-only
experiments. These circulation states
can be used for a variety of practical
applications, among them studies of
the efficacy of CO2 sequestration in
the world ocean.

Among options currently under
discussion for slowing down green-
house gas-induced global warming is
pumping liquefied CO2 into the
abyssal ocean. Regardless of the
potential ecologic side effects or the

economic feasibility of this
approach—not to be discussed in this
article—oceanic carbon sequestration
presents an interesting test case for
studies aimed at comparing ocean
models.

One question that can be
addressed through numerical simula-
tion is how much time it would take
for CO2 injected into the deep ocean
to come back to the surface. Figure 8
shows the results of such a simula-
tion in which an inert tracer repre-
senting CO2 is continually being
released close to the sea floor at two

points located at 37°N near the conti-
nental shelf off the American East
and West Coasts. The curves show
the globally averaged near-surface
buildup of that tracer as it gradually
works its way through the global
ocean. This buildup provides a semi-
quantitative measure of how soon the
sequestered CO2 is likely to re-enter
the atmosphere through transport and
diffusion alone.

The experimental details can only
be sketched here. The simulation is
performed with both POP and
HYCOM configured on the same
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Figure 9. The Downwelling Limb
of the Atlantic Overturning
Circulation in POP and HYCOM 
These isopycnic-coordinate views of the
thermally forced Atlantic circulation
were obtained with two coarse-mesh
models: (a) POP and (b) HYCOM. Each
view shows North America at left and
Europe and Africa at right. Greenland
(grossly deformed by the map projec-
tion) is seen at the top. Color contours
represent the time-averaged rate
(meters per year, positive downward) at
which water crosses an isopycnic sur-
face near the interface between the
warm and cold limbs of the Atlantic
overturning circulation. Numbers over-
laying the patches of upwelling and
downwelling indicate the total diapycnal
mass flux (in units of 0.1 Sv, positive
down) associated with each patch. Also
shown are sea-surface height contours
(at 20-cm intervals), a proxy for stream-
lines of surface currents. The figure
illustrates that numerically dissimilar
ocean models will disagree on the
strength and geographic distribution of
the downwelling limb of the overturning
circulation even when subjected to
identical surface boundary conditions.

(a) POP

     



noneddy-resolving horizontal grid and
subjected to identical seasonally vary-
ing atmospheric forcing. POP uses
25 levels in the vertical direction,
whereas HYCOM uses 16 layers. The
tracer is transported “offline” using
the two models’ seasonally varying
circulation states averaged over con-
secutive 3-month intervals. The
offline approach is chosen for compu-
tational economy. The time step in
most fluid models is set by the time it
takes for the fastest signal supported
by the model equations to propagate
from one grid point to the next. In the

ocean model, the fastest signals
(gravity waves) travel in excess of
200 meters per second (ms–1), but
advection by currents is at least
100 times slower. Hence, offline
tracer advection, in which gravity
waves are not an issue, can be done
with a 100 times longer time step,
and hence 100 times faster than in the

full ocean model itself.2

In preparation for tracer transport,
horizontal mass fluxes from both
models are transformed into isopycnic
fluxes (fluxes along isopycnic sur-
faces) from which the missing diapyc-
nal component is deduced by mass
continuity. This transformation is per-
formed to ensure that global ocean-
ventilation processes, whose action is
modeled most coherently in isopycnic
coordinates, act similarly in both
models. Plots of diapycnal mass flux
fields (Figure 9) indeed indicate that
both models maintain an Atlantic
overturning circulation that is in fair
agreement with the available observa-
tional evidence (refer to Figure 2).

The vertical flux fields in Figure 9
are a study in model-to-model vari-
ability in their own right. Both models
clearly depict the ocean basins sur-
rounding southern Greenland as the
region anchoring the downwelling
limb of the Atlantic overturning circu-
lation, but differences in local detail
are obvious. Note that vertical motion
is analyzed here in potential-density
space; hence, it depicts areas where
individual seawater parcels get either
lighter or denser with time.
Consequently, upwelling and down-
welling patches in Figure 9 coincide
with regions where the ocean
exchanges heat with the atmosphere.
Given that atmospheric cyclones
thrive on surface heating (the notori-
ous Cape Hatteras storms are a good
example), the different MOC down-
welling patterns indicated in Figure 9
are likely to result in large differences
in regional weather. Storminess in the
Irminger Sea, east of Greenland, for
example, would be affected by the
surface heat-flux differences indicated
in Figure 9(a).
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2 Ongoing efforts at Los Alamos and elsewhere try to lengthen the time step in ocean
models by filtering out gravity waves, but the ensuing mathematical complexities are
daunting. Gravity waves do serve a purpose, both in reality and in the model: They
repair deviations from “geostrophic” equilibrium, a particular balance between velocity
and pressure field, on which fluids on a rotating planet rely to counteract the deflecting
effect of the Coriolis force.

(b) HYCOM

    



Overall, the Atlantic MOC appears
to be stronger in HYCOM than in
POP, consistent with the earlier dis-
cussion about differences in vertical
diffusion control in level and layer
models. Reduced momentum mixing
in the vertical direction, that is, lower
drag on the wind-driven surface flow,
may also be the cause for the some-
what stronger surface circulation in
HYCOM. This difference is indicated
in Figure 9 by the tighter spacing of
sea-surface height contours in the
right panel compared with those in the
left panel. In geostrophically balanced
flow, sea-surface height contours are a
proxy for streamlines, like isobars on
a weather map.

The salient result from Figure 8 is
that, after 500 years, POP has
brought 1.5 times more material
sequestered off California back to the
surface than HYCOM. Model-to-
model differences are much smaller
for the material sequestered off
Delaware. Since the circulation off
the U.S. East Coast is dominated by
strong opposing boundary currents
representing the cold and warm limbs
of the Atlantic MOC, a feature not
found off the West Coast, large dif-
ferences in dispersion from the
Pacific and Atlantic release sites are
to be expected. HYCOM accentuates
those differences more than POP.

These results, which represent
ongoing work and remain to be con-
firmed by additional experiments, are
tendered here as a first attempt at
quantifying the circulation-related
uncertainties in simulating the feasi-
bility of abyssal sequestration of
CO2. These uncertainties are com-
pounded, of course, by uncertainties
about the chemical behavior of CO2
at great depths. 

Concluding Remarks

This article has presented some of
the tools used by the research commu-
nity to assess the uncertainty in
decadal to century-scale climate pre-
diction. For the discussion, climate
prediction has been cast as a bound-
ary-value problem in which the
boundary values of interest (forcings)
are assumed to be known. In other
words, forcing uncertainties, which
are a major point of debate in their
own right, have not been considered.
Instead, the focus in this article is on
error sources within climate models.
Limiting the number of climate-rele-
vant natural processes, as well as
parameterizing processes that are
deemed important but take place on
scales too small to be resolved by the
model’s space-time mesh, creates one
type of errors: type 1, or physical-clo-
sure, errors. The conversion of the
underlying differential equations into
computer-solvable algebraic equa-
tions, which mainly affect processes
the model is designed to resolve
explicitly, results in another type of
errors: type 2, or numerical, errors.

To guide future model develop-
ment, the effects of these two error
types on the performance of a climate
model need to be separated. At least
in principle, one can separate those
effects either by manipulating type-1
errors (by, for example, adding/sub-
tracting earth system processes or
refining certain physical closure
schemes) or by quantifying type-2
errors through solving the same physi-
cal problem with numerically dissimi-
lar models. Unfortunately,
experimenting with different mesh
sizes in a climate model—the
approach usually taken to establish
the proximity of a numerical to a
“true” solution—typically does little
to disentangle the two error types
because physical closure assumptions
often are tailored to a particular mesh
size and are not expected a priori to

work well if the resolution is changed. 
Los Alamos is making important

contributions in this area by support-
ing the development and use of multi-
ple ocean models in climate
simulation. The numerical diversity in
the Laboratory’s model ensemble is
achieved by support of both level and
layer ocean models. The former dis-
cretize the underlying differential
equations on a Cartesian grid whereas
the latter use a material, or
Lagrangian, vertical coordinate tied to
the oceanic potential-density field, a
proxy for entropy. Vertical dispersion
of physical properties is handled very
differently in these two types of mod-
els. Because subsurface oceanic
processes are adiabatic (except for
mixing) and hence are governed by
the entropy conservation law on cen-
tennial time scales and beyond,
numerically different approaches to
satisfying the second law of thermo-
dynamics can lead to profoundly dif-
ferent equilibrium circulation states in
long-term ocean simulations. In fact,
the sensitivity of the model solution to
discretization (type-2) errors in the
thermodynamic and dynamic equa-
tions often overshadows the sensitiv-
ity to the physical-closure
assumptions (type-1 errors). 

Shortcomings of layer models hav-
ing to do with the difficulty of defin-
ing constant-density surfaces in
unstratified regions (regions in which
water density does not vary with
depth) have led to the development of
so-called hybrid-coordinate models,
which also are included in the ocean
model mix at Los Alamos. n
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Volcanological Examples

Greg Valentine 

Where can nuclear waste be safely placed? How can humans better manage natural
resources? How can humans prevent manmade disasters and prepare for natural ones?
Sound decisions require knowledge of the subsystems in each problem and a reliable
decision-making framework. Over the last several decades, earth scientists 
at Los Alamos have integrated experiment, observation, and modeling
of subsystems into a consistent knowledge base and then used
that base to predict the risk involved in decisions regard-
ing earth, environmental, and atmospheric systems. 
One recent application of this predictive framework 
is to assess the radioactive dose that might result
from a small volcanic eruption through the 
proposed Yucca Mountain nuclear waste 
repository. Another is to study the effects 
of nuclear weapons on deeply 
buried targets.

Predicting Risks 
in the Earth Sciences

     



Prediction is at the heart of
applying earth science to issues
of importance to society. A

common application of predictive
earth sciences is weather forecasting,
which is particularly important to mit-
igating the consequences of severe
weather. Other applications include
global climate change, availability and
quantities of natural resources, natural
disaster planning and mitigation, per-
formance of geologic repositories, and
nuclear weapon effects. Each of these
applications involves systems that are
composed of many subsystems; for
example, global climate change
depends on cloud physics, mass and
energy transport between the bios-
phere and atmosphere, ocean dynam-
ics, and anthropogenic processes, to
name only a few. These subsystems
may be coupled to each other through
nonlinear processes and across a wide
range of time and space scales. Data
on the subsystems are collected at
varying resolutions, and none of the
subsystems is fully characterized; in
addition, many of the predictions we
are interested in often involve extreme
rather than normal conditions for the
systems or subsystems. All these
aspects contribute to an inherent
uncertainty in predictions. Finally, the
only information we have on the
behavior of fully coupled systems,
such as climate, is historical; we can-
not do controlled experiments on the
full systems. Significantly, all the fea-
tures mentioned above, namely, non-
linearly coupled subsystems, multiple
scales, uncertainty, extreme condi-
tions, and an inability to experiment
on full systems (except for analyzing
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Figure 1. Framework for Predictive Earth Sciences
(a) The framework for predictive earth sciences illustrates the foundation in funda-
mental experimental, observational, and theoretical and/or computational research on
the basis of which decisions are made. (b) Illustrated at right is a specific example for
predicting dose from potentially contaminated ground water at Yucca Mountain,
showing some components of the multiple-barrier repository system that have been
studied in detail by combined experimental and theoretical approaches. For example,
the engineered part of the system includes, among other things, the walls of tunnels
(or drifts) in the mountain that will experience heating (due to the radioactive decay
of the waste) and resulting mass transfer processes. These have been studied with
the VTOUGH code coupled with observations from a full-scale test (drift-scale heater
test), whereby mock waste packages were emplaced in a tunnel and heated, while the
temperature and mass transport were monitored in the tunnel walls. The next barriers
that leaking radionuclides would encounter is the thick zone of unsaturated (pore
spaces are not completely filled with water) rocks above the water table and then by
the saturated zone below the water table, which provides a pathway to a hypothetical
future population some 18 km away. Tests such as the Busted Butte transport test, in
which surrogates for radionuclides were injected into unsaturated rocks and their
migration was monitored, are coupled with codes (for example, the Los Alamos
FEHM code) that simulate the detailed physics of flow and transport through rocks.
Finally, studies have been conducted to determine the potential radioactive dose a
human might receive from any radionuclides that might have migrated sufficiently far.
Those studies combined the dose code ERMYN with analog information (for example,
studies of dose from atmospheric nuclear testing fallout). The results and uncertain-
ties of these subsystem studies and detailed predictions are then abstracted and
integrated with a simulation package (Goldsim) produced by the GoldSim Technology
Group, LLC, to produce a prediction of dose as a function of time.

(Left to right) First three photos are courtesy of J. Hughes, J. Franklin, and R. McGimsey, respectively. The last photo is courtesy of the U.S. Geological Survey.

    



historical data) are similar to the core
features that make predicting the reli-
ability of our nuclear weapons stock-
pile a challenging process
(Valentine 2003).

Predictive earth sciences involve
the integration of experiment, obser-
vation, and modeling to form the basis
for decisions involving earth, environ-
mental, and atmospheric systems.
Figure 1(a) illustrates the main ele-
ments of predictive earth sciences in
the form of a pyramid. The foundation
for predictions is built upon funda-
mental experimental (including obser-
vations), theoretical, and computational
research into the behavior of individual
subsystems and, as appropriate, the
coupling between them. For some
subsystems, the necessary information
can be obtained from experimental
data, but most of the complex subsys-
tems that we work with involve an
iterative approach among experiment,
observation, theory, and computation.
Once we have an adequate under-
standing of the important subsystems,
we synthesize and simplify that infor-
mation, accounting for uncertainties,
and build it into a system model. The
system model accounts for all the
couplings between subsystems and
their uncertainties, and produces a
probabilistic prediction of system
behavior that can be used for deci-
sion-making. 

Figure 1(b) illustrates this frame-
work with a specific example from
predicting the performance of a high-
level radioactive waste repository at
Yucca Mountain, Nevada. Nuclear
Regulatory Commission regulations
define repository performance in
terms of radiation dose to a human
population at a location 18 kilometers
south of the repository over a period
of 10,000 years. In the absence of an
unusual, disruptive event, a dose can
be received only if radionuclides
escape through a series of engineered
and natural barriers. Among the engi-
neered barriers are glass or ceramic

pellets embedded with radioactive
spent fuel, cladding that covers the
waste, and storage canisters contain-
ing spent fuel rods laden with highly
radioactive fission products. Water
may eventually seep through the
repository, corrode the canisters or
cladding, dissolve the radionuclides,
and carry them into the surrounding
rocks. At that point, Mother Nature
will have to help contain the waste.
Three key natural features make
Yucca Mountain desirable as a burial
site for nuclear waste: its dry climate,
deep water table, and thick water-
unsaturated rocks above the water
table. The first minimizes water that
could seep through the repository and
eventually corrode the waste canis-
ters. The second enables building a
repository that is deep underground

(300 meters) yet still well above the
water table, which is another 240 to
300 meters lower. The third natural
feature is a thick zone (several hun-
dred meters thick) of water-unsaturat-
ed rocks containing clays, zeolites,
and other minerals that adsorb numer-
ous radionuclides and thus effectively
slow down leakage of radionuclides
into the water table. 

If, in spite of these features,
radionuclides were to be transported
by ground water to the control popula-
tion, the contaminated water might
then be pumped and used for drinking
or irrigation of crops, which are path-
ways for human dose. Within the pre-
dictive-earth-sciences framework, each
of these barriers or steps in the move-
ment of radionuclides is a subsystem,
some of which are shown in Figure 1.
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Figure 2. Predicting Volcanic Risk to Buildings
The predictive earth-science framework shows some of the important components
used for predicting risk to buildings from explosive volcanic eruptions.
Among these components are the dynamics of flow up the volcanic conduit (red),
which determines the initial and boundary conditions for an eruption, the rise and
collapse of an eruption jet or volcanic plume and the resulting pyroclastic density
current (gray), and the response of building structures to the conditions produced
by the currents. Predictions of these individual components, combined with the
probability of a volcanic event and with other components that are not discussed
here, must ultimately be integrated to produce a probabilistic prediction of damage
thresholds that might be exceeded in developed areas around a volcano.
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Each of these subsystems has been
studied through a closely integrated
series of experiments and/or analog
observations and through numerical
modeling. For example, processes
associated with coupled heat (from
radioactive decay), which occur in the
engineered part of the system fluid
flow, in porous and fractured rocks,
and in reactive chemical transport
within those fluids, have been
approached with an experimental pro-
gram known as the Drift-Scale Heater
Test and with the computer code
VTOUGH. The test is a full-scale
mockup of a heated waste package
placed in a tunnel, where instruments
measure mass and energy fluxes in the
surrounding rocks; the computer code
was written at Lawrence Berkeley
National Laboratory and was modified
by researchers at Lawrence Livermore
National Laboratory to simulate the
engineered barrier system. 

Ground-water flow and radionu-
clide transport within the unsaturated
zone beneath the repository have been
studied from results of field-scale
experiments such as the Busted Butte
transport test and with the finite ele-
ment heat and mass (FEHM) transport
code (Eckhardt et al. 2000). The latter
has also been used to study the satu-
rated zone. Actual conversion of the
transported radionuclides into human
dose has been constrained with analog
data and the ERMYN code (BSC
2004). In the simplest sense, the pre-
dictions of each of these subsystems
are cast into probability distributions
of the parameters of interest—for
example, the rate of radionuclides
released from the engineered system,
the rate of radionuclide transport by
ground water to the human popula-
tion, and the fraction of radionuclides
from that ground water that is taken in
by humans as dose. The probabilistic
approach allows us to incorporate the
uncertainties inherent in each subsys-
tem. These distributions are then sam-
pled with a Monte Carlo software

engine (for example, GoldSim, which
was developed by the GoldSim
Technology Group) to produce a sim-
ple plot of dose to humans as a func-
tion of time, as shown at the top of
the diagram. If the predicted dose
(which might be the mean value of a
large number of realizations, repre-
senting uncertainties) crosses over
the regulatory limit (represented by
the yellow box), the repository is not
feasible. Thus, a large amount of
complex science on the behavior of
numerous subsystems is boiled down
into a simple answer, which is direct-
ly used by decision makers. The
framework shown in Figure 1 is iter-
ative between the apex and the
base—in other words, the framework
can be reversed to decide which sub-
systems produce the greatest sensi-
tivity in the final result and therefore
might need further research to reduce
uncertainties. 

The predictive-earth-sciences
framework is also being applied to
assessing risk from explosive volcanic
eruptions. The main body of this arti-
cle will cover a few of the important
components of the volcanic risk prob-
lem (see Figure 2). Ultimately, risk is
determined by the probability of an
event occurring, combined with the
probability of damaging effects on
humans, buildings, or other infrastruc-
ture (Perry et al. 2000; Valentine 1998
and 2003). A chain of events, or sub-
systems, determines the damaging
effects, such as flow of magma up a
conduit in the earth’s crust, eruption
into the air as a jet of gas and parti-
cles or clots of magma, and subse-
quent flow of that mixture across the
landscape as a density current. The
next few sections will describe mod-
els of the three subsystems. Although
they are work in progress, our models
demonstrate the synergy that must
exist among theory, experiment,
observation, and computation when
predicting complex systems. The last
section will also show results of an

integrated volcanic-risk assessment
that follows the predictive-earth-sci-
ence framework but with simpler sub-
system models than the ones referred
to above. This assessment combines
both probability of occurrence and the
consequences of a potential volcanic
event at the proposed Yucca Mountain,
Nevada, high-level radioactive waste
repository. Finally, the article will dis-
cuss how the predictive-earth-science
framework can be applied to other
problems of importance for both mili-
tary application of nuclear weapons
and energy security.

Conduit Flow Models 
and Quantification through

Field Studies

Eruption processes are determined
by the velocity, pressure, temperature,
and gas content of material exiting a
volcanic vent; these, in turn, are deter-
mined by processes in the subsurface.
At some depth beneath a volcano
(typically between 5 and 30 kilome-
ters), magma accumulates in what is
typically referred to as a magma
chamber. The magma, which is a mix-
ture primarily of silicate melt, crys-
tals, and bubbles, will contain several
dissolved gases, or volatiles, of which
water (H2O) is the most abundant in
most cases. As magma rises through a
conduit toward the earth’s surface, it
experiences successively lower pres-
sures with decreasing rock overbur-
den. Because the solubility of
volatiles in the magma decreases with
decreasing pressure, volatiles that
were dissolved at magma chamber
depth will come out of solution to
form bubbles of gas. As the magma
continues to rise and decompress, it
releases more volatiles into bubbles,
and the bubbles expand. In order to
conserve mass, the expanding mixture
must accelerate. This acceleration is
also determined by the conduit dimen-
sions. The expansion of the magma

     



mixture and the conduit dimensions
are ultimately coupled because the
walls of the conduit might be eroded
by the magma as it accelerates.

Using a multifield approach for
modeling the upward flow of magma,
whereby gas and melt are treated as
overlapping continua that are coupled
by mass, momentum, and energy
exchange, Macedonio et al. (1994)
developed a system of governing
equations to describe conduit flow, the
first component for predicting vol-
canic risk illustrated in Figure 2. The
equations (see box at right) include
several simplifying assumptions: one-
dimensional, steady flow; constant
conduit geometry (which assumes that
wall-rock materials introduced into
the flow are not in sufficient quanti-
ties to change the shape of the conduit
appreciably); and isothermal flow
(thus the lack of an energy conserva-
tion equation). However, the equations
do account for the rise of separate gas
and droplet/particle (incompressible)
phases, frictional coupling between
those phases, and the introduction of
wall-rock debris into the mass and
momentum balances. The term Cw, the
mass erosion rate of wall rock per
meter into the flow, accounts for the
interaction between the flow and the
conduit walls. Because the flow is
considered to be one-dimensional,
steady, and in a constant-geometry
conduit, it is implied that the mass
erosion rate is small. In reality, there
might be more erosion that sufficiently
changes the conduit shape to negate
the simplifying assumptions in these
equations. The current treatment
should be regarded only as a first step
toward addressing the difficult prob-
lem of fully coupled flow and solid
walls. 

Given the wide range of conditions
within volcanic conduits and the even
wider range of potential wall-rock
properties, Cw is difficult to constrain
theoretically. For that reason, we
designed a series of field studies to

provide quantitative values for Cw at
extinct volcanoes in the southwestern
United States. Field sites were select-
ed according to criteria that allow
quantification of the amount of wall-
rock debris as a function of depth
below the volcanoes: (1) The volca-
noes must be old enough that many
of their deposits are exposed by ero-
sion, or the deposits might be
exposed by quarry operations; (2) the
sequence of rocks below the volca-
noes must be well constrained in
terms of the thickness of individual
layers; (3) fragments of those layers
should be easily identifiable in the
volcanic deposits recording the erup-
tions; and (4) the different styles of
eruption processes must be easily
interpreted from the volcanic
deposits. At sites that meet these cri-
teria, it is then possible to measure
the volume fraction of fragments
from each layer of wall rock within
volcanic deposits; dividing that value

by the thickness of the layer results
in an average volume fraction per
meter. 

Several volcanoes in two regions,
the Lucero Volcanic Field of west-
central New Mexico and the San
Francisco Volcanic Field of northern
Arizona, meet these criteria. Wall-
rock erosion data from the Lucero
Volcanic Field, in particular, illustrate
the variations in wall-rock erosion for
eruption mechanisms that range from
relatively passive eruption of lava to
Hawaiian-style lava fountains and
from those to very violent eruptions
involving explosive interaction of
magma (at about 1100°C) with ground
water. Figure 3 shows the volume
fraction per meter (erosion rate) for
the latter type of eruption (left side)
and for more passive types (right
side), corresponding to the layers of
wall rocks beneath the volcanoes.
Erosion rates vary over factors of
1000 to 10,000, depending upon the
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eruption mechanism and the types of
wall rock. These rates can be used to
constrain Cw for the conduit fluid
model equations. For more details on
these field studies, refer to Valentine
and Groves (1996). The main point
here is to show that combining theo-
retical and/or computational modeling
with field studies will yield quantita-
tive estimates for volcanic conduit
flow, one component of volcanic risk
prediction. More data are being col-
lected and implementation of the
field-derived Cw values into the
numerical solution of the conduit fluid
model is a future goal.

Plume and Density 
Current Models

The next process illustrated in
Figure 2 is the prediction of volcanic
plumes and pyroclastic density cur-
rents (PDCs) (the word “pyroclastic,”
from the Greek roots for fire and bro-
ken, refers to the fragments of
quenched magma, such as pumice and
smaller fragments misleadingly called
ash, as well as fragments of wall
rocks that are ejected during explosive
eruptions). The volcanic plumes of
interest consist of gas (mainly steam
that has exsolved from the melt dur-
ing conduit ascent) mixed with parti-
cles or clots of magma. The tempera-
tures of these plumes when they exit
the volcano are typically about
1000°C, but the plumes are denser
than the atmosphere because particles
are present. Flow speeds at the vent
are a few hundred meters per second,
and the flows are highly turbulent.
Despite being denser than the sur-
rounding air, the plume will rise
because of its initial momentum. As it
rises, it will decelerate and simultane-
ously mix with and heat ambient air
such that the overall mixture density
decreases. Sustained volcanic plumes
exhibit two end members of behavior
that depend upon the flow conditions

as the flow exits the conduit (these
conditions are calculated with a model
such as the one discussed in the pre-
ceding section). In one end member,
the plume is able to mix with suffi-
cient air that, by the time it reaches
the height at which its initial momen-
tum has been lost, the plume is less
dense than the surrounding atmos-
phere and continues to rise until it
reaches a neutral buoyancy level
(which might range from several kilo-
meters to as much as 50 kilometers
above the vent, depending on the
eruption energy and on atmospheric
conditions). The second end member
occurs when the plume is still denser
than the atmosphere at the time that it
reaches the height determined by its

initial momentum. The plume then
collapses and forms a fountain of hot
gas and particles, which in turn feeds
density currents that flow out across
the countryside. The conditions within
these PDCs can be extremely damag-
ing, particularly in heavily urbanized
regions.

Based on field evidence (character-
istics of deposits left behind), we can
make several inferences about PDCs.
(1) These mixtures of hot gas and par-
ticles can flow at a range of speeds
from a few meters per second (m/s) to
more than 300 m/s. This means that
the flows cover a wide range of
incompressible to compressible
regimes in terms of the Mach number
(note that the sound speed of typical
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Figure 3. Data on Wall Rock Erosion from Violent and Passive Eruptions
These data on wall rock erosion are from field measurements and are expressed in
terms of volume fraction per meter down the conduit for different wall-rock formations
(Chinle, San Andres, and Glorieta formations) beneath volcanoes in the Lucero
Volcanic Field. (The plots are adapted from Valentine and Groves 1996. Entrainment of Country Rock During

Basaltic Eruptions of the Lucero Volcanic Field, New Mexico. J. Geol. 104 (1): 71, published by the University of

Chicago.)

              



gas-particle mixtures in PDCs can be
significantly lower than in the sur-
rounding atmosphere). (2) PDCs
range in particle concentration from
very dilute, essentially like sand
storms (volume fractions less than
10–3), to dense granular dispersions
with particle volume fractions as high
as approximately 0.5. At low particle
concentrations, the particle and
momentum transport mechanisms
might be dominated by turbulence
although mixture density gradients
and basal traction zones can compli-
cate the transport mechanisms. At
high particle concentrations, the basal
portions of the flows might have par-
ticle and momentum transport domi-
nated by particle–particle collisions.
The range of particle sizes (microme-
ters to meters) and densities—from
about 500 to 3000 kilograms per
cubic meter (kg/m3)—combined with
the depth scales of the flows, places
the mixtures in a region that is some-

where between the applicability of
simple, effective continuum approach-
es and discrete particle approaches.
(3) PDCs can be variably affected by
the topography over which they flow,
sometimes channeling strongly into
topographic lows and sometimes
seeming to blanket highs and lows
nearly equally. (4) Temperatures of
PDCs can range up to approximately
1000°C. (5) The flows can be quite
destructive (see Figure 4) and can
travel more than 100 kilometers from
their source volcanoes in some
instances. All these factors make the
prediction of PDCs very difficult and,
potentially, extremely intensive com-
putationally, depending upon the theo-
retical approach one takes. 

Connecting PDCs to Nuclear
Weapon Phenomenology. As a side
note, there is a strong connection
between our understanding of PDCs
and nuclear weapons phenomenology.

One of the founders of modern vol-
canology, the late Richard V. Fisher of
the University of California at Santa
Barbara, was assigned to Los Alamos
just after World War II as a young
member of the military. Later he was
present at Bikini Atoll and witnessed
the shallow-submarine Baker test. As
the explosion column from Baker rose
out of the water, a collar of water
droplets mixed with steam and air col-
lapsed back to the surface and moved
outwards across the sea in a phenome-
non that came to be known as the
base surge. Twenty years later, Fisher,
by then a professor and well-known
interpreter of volcanic deposits, real-
ized that some pyroclastic deposits
around explosive volcanoes are pro-
duced by a base surge-like process as
he had seen at Bikini. This connection
revolutionized our understanding of
volcanic processes and hazards in the
1960s. Indeed, for many years, the
volcanic process was referred to as
base surge or pyroclastic surge, fol-
lowing the nuclear weapons terminol-
ogy. Recognition of a range of com-
plications in the volcanic processes
has eventually led us to the term pyro-
clastic density current. An interesting
description of the evolution of these
concepts and the nuclear weapons
connection can be found in Fisher’s
autobiography (Fisher 1999).

Multiphase Eruption Modeling.
In recent years, an important thrust in
the volcanological community has
been the application of multiphase
flow theory to predict the behavior of
eruption plumes and PDCs. This
approach originated at Los Alamos in
the 1970s (Sandford et al. 1975) and
was further developed at the
Laboratory during the 1980s (Wohletz
et al. 1984; Horn 1989) and 1990s, as
summarized by Valentine (1998).
Ongoing development by Italian vol-
canologists (Neri et al. 2003; Todesco
et al 2002; Ongaro et al. 2002) and
others applies multiphase theory to
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Figure 4. The Destructive Power of Pyroclastic Density Currents (PDCs)
This picture is of the landscape north of Mt. St. Helens after the devastating blast
on May 18, 1980. The kinetic energy released during that volcanic event was equiva-
lent to 7 Mt, and the thermal energy was equivalent to 24 Mt of explosive TNT equiv-
alent. The field of view extends more than 10 km into the distance, over terrain with
relief of hundreds of meters. Before the blast, the landscape was covered by a
dense forest of large conifers. Their notable absence after the eruption attests to the
destructive power of PDCs. The volcano in the background is Mt. Rainier.
(Photo is courtesy of J. Franklin, Mount St. Helens National Volcanic Monument photo library.)

          



predict hazards to urban areas such as
Naples, Italy, and to better understand
the transport and deposition processes
of PDCs. As in the conduit fluid
model, the multiphase modeling of
eruption plumes and PDCs computes
the motion of a continuous, compress-
ible gas phase (a mixture of erupted
volatiles and entrained air) and one or
more particle fields, as if they are
interpenetrating fluids. In other words,
the gas and particles are each treated
as a fluid field, occupying the same
volume according to their individual
volume fractions (which must sum to
unity). Each of these fields has an
accompanying set of mass, momen-
tum, and energy conservation equa-
tions. The fields can be coupled
together by mass exchange, drag
(momentum exchange), and heat
exchange along with heat generated
by drag. This multifield approach is

valid only for problems in which the
control volume (or representative ele-
mentary volume) is sufficiently large
for particle behavior to be described
as a field, rather than by each parti-
cle’s dynamics. Valentine (1994) pre-
sented a multifield framework for a
wide range of volcanic processes,
including plumes and PDCs. 

Figure 5 illustrates the results of a
two-dimensional, time-dependent
multiphase calculation (Valentine et
al. 1992). This calculation, which
would now be considered a first-gen-
eration multiphase volcano calcula-
tion, was axisymmetric (the symmetry
axis is in the center of the snap-
shots—in reality, only a half-space
calculation was done, and the results
were “reflected” for the purposes of
illustration). It accounts for one parti-
cle size and one gas species, and it
has a regular, uniform grid (100 × 100

meters). A mixture of hot
(1200 kelvins) gas and particles with
an initial velocity of 290 m/s and gas
pressure of 0.1 megapascal (equal to
ambient) is injected into the atmos-
phere. The mass fraction of gas (water
vapor) at the “vent” is 1.7%. Colors in
the figure indicate particle volume
fraction ranging from a high of about
10–3 (red) through black and white to
a low of 10–9 (blue—relatively
“clean” ambient atmosphere). The jet
rises to an initial height of approxi-
mately 4 kilometers, at which point
its initial momentum or kinetic ener-
gy is spent. Because the mixture is
denser than the surrounding air at
that point, the bulk of the material
collapses to form a fountain while a
dilute plume continues to rise above
the eruption. At the spot where the
collapsing mixture impacts the
ground, it flows both outward and
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Figure 5. Eruption Plume, Fountain, and PDCs
(a) The computational domain and boundary conditions for two-dimensional, axisym-
metric multiphase eruption simulations are illustrated, and the results of the simula-
tion are shown in (b). The snapshots in (b) are a simulation of a volcanic eruption
plume that collapses to form a fountain and PDCs. Colors represent particle volume
fraction ranging from approximately 10–3 (red) to approximately 10–8 (white). Light
blue represents “clean” ambient atmosphere. Vertical and horizontal scales are each
7 km. (Figure is adapted from Valentine et al. 1992 courtesy of the Geological Society of America.)

(a) (b)

       



ventward as a PDC. The ventward-
flowing material is recycled into the
eruptive jet, reducing the jet’s verti-
cal momentum and causing the foun-
tain to decrease in altitude. The out-
ward flowing material moves at
velocities of several tens of meters
per second, in a manner that varies
with time as the overall dynamics
evolve.

While the general fluid dynamics
of these eruptions are of interest from
a research perspective, in this section,
we focus on parameters that relate to
potential damage to structures on the
ground. These parameters are flow
temperature, velocity, and particle
concentration. Flow velocity and par-
ticle concentration (through its effect
on flow density) determine the

dynamic pressure, Pdyn (Pdyn =
1/2ρu2, where ρ is the density of the
mixture and u is the horizontal com-
ponent of velocity), experienced by
any object in the flow path. As an
example, Figure 6 shows these param-
eters along the ground for three differ-
ent times in a calculation similar to
that discussed above. Figure 6(a) indi-
cates that, as the PDC flows away
from the point where the fountain
impacts the ground (near the point
where flow speeds cross from nega-
tive, or ventward-flowing, velocities to
positive, or outward-flowing, veloci-
ties), it initially attains peak values
approaching 150 m/s. As the flow field
evolves, the peak PDC velocities
decrease to about 70 m/s, and the radi-
al distribution of velocity changes.

Dynamic pressure—refer to Figure
6(b)—evolves through time as well,
with values ranging from 5 to 10 kilo-
pascals, spreading outward radially as
the flow evolves. Temperatures on the
ground—see Figure 6(c)—evolve
toward a radially decreasing pattern,
reflecting progressive heat transfer
from particles and mixing with cooler
atmosphere. The volume fraction of
particles along the ground—shown in
Figure 6(d)—stabilizes at about 1 – 2
× 10–4 during this simulation.  Results
such as those illustrated in Figure 6
can be combined with information on
the response of buildings to elevated
temperature and dynamic pressure, for
example, to predict damage from an
eruption. 

There have been a number of
important advances in multifield
modeling approaches for explosive
eruptions over the past decade, most
of which are described in Neri et al.
(2003), Dartevelle (2004) and
Dartevelle et al. (2004). Among them
are the following: variable meshes
that provide much better resolution
for dynamics adjacent to boundaries
such as the ground surface, where
particle settling can produce steep
gradients in flow properties and ter-
rain can be represented; large-eddy
simulation turbulence model; consti-
tutive models that account for
momentum transfer by particle colli-
sion whenever solid volume fraction
is sufficiently high; capability for n
particle classes (determined, for
example, by size and/or material den-
sity), each represented by a set of
mass, momentum, and energy field
equations; and multiple gas species
(for example, steam, air, or carbon
dioxide). Using these new capabili-
ties, Todesco et al. (2002) and Ongaro
et al. (2002) are predicting values of
damage-producing parameters for
potential eruptions of the Vesuvius
volcano in Italy that could endanger
the heavily urbanized surroundings.
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Figure 6. Damage-Causing Parameters Resulting from PDCs
Plots of radial (a) velocity, (b) dynamic pressure, (c) particle temperature, and (d) parti-
cle volume fraction are “measured” along the ground in a two-phase eruption simula-
tion. These parameters are important for predicting hazards (for example, to buildings
or people) in the area affected by PDCs. (Figure is adapted from Valentine and Wohletz 1989.)

                   



Structural Damage

The next step in predicting risk
from explosive eruptions is to quanti-
fy the effects on people, buildings,
and other infrastructure; here, we will
focus on buildings. When exposed to
a PDC, buildings can be damaged by
thermal effects, high static pressures,
dynamic pressure, projectiles (for
example, large rocks or debris from
upstream buildings), and potential
burial by depositing particles.
Thermal effects depend on the tem-
perature conditions within the PDC,
ignition conditions, and availability of
oxygen for combustion. Data on the
effects of projectiles on buildings are
being compiled. Sources used are
observations from recent eruptions as
well as damage caused by debris from
tornadoes and hurricanes. 

Dynamic pressure from a passing
PDC produces a lateral load on a
building. Simple estimates of dynamic
pressures produced by PDCs indicate
that Pdyn could range from as high as
approximately 10 megapascals (for a
PDC with velocity of 300 m/s and
particle volume concentration of 0.5)
to approximately 1 kilopascal for a
dilute, relatively slow current (veloci-
ties of a few tens of meters per sec-
ond, particle volume concentrations of
about 10–4). Most buildings will expe-
rience severe damage with lateral
loads of about 8 to 40 kilopascals—1
to 5 pounds per square inch—depend-
ing upon the type of construction (see,
for example, Glasstone and
Dolan 1977). Clearly, based on the
reasonable range of Pdyn given above,
many PDCs will totally destroy any
buildings in their paths, and there is
no point in understanding the details
of structural response in regimes
above approximately100 kilopascals,
except for extremely strong monu-
mental buildings. Nevertheless, many
PDCs may result in lateral loads that
would be expected to produce partial
damage; however, even for the most
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Figure 7. Comparing Volcanic Eruptions and Low-Altitude Nuclear
Explosions
(a) An explosive volcanic eruption may generate an air shock because of the decompres-
sion of volcanic gases and the impulse of material flowing into the atmosphere. As the
explosion grows, shock waves may drive a surge of particle-laden gas along the ground.
Finally, as the eruption continues, the particle gas mixture may behave like a fountain, with
PDCs flowing along the ground and a buoyant plume rising above the vent from which
particles deposit by fallout. (b) A low-altitude nuclear explosion generates an air shock
from the rapidly expanding fireball. An outward-moving Mach stem shock forms at the
intersection of the incident and reflected air shock. As the fireball continues to expand, it
also begins to rise; entrainment of ground debris into the rising fireball produces the char-
acteristic fireball. Blast damage on the ground is caused by the Mach stem shock, which
produces short-lived lateral forces on any structure in its path. (Adapted from Journal of

Volcanology and Geothermal Research, 87, G. A. Valentine 1998, pp. 117–140 with permission from Elsevier.)

           



damaging PDCs, there will be zones
around their margins, where condi-
tions are not so severe. Understanding
these factors is important for emer-
gency mitigation and response plan-
ning in regions that are vulnerable 
to PDCs.

Interestingly, similar issues faced
civil defense planners in the early
years of the Cold War, but they were
related to damage caused by nuclear
weapons (eventually, with the adop-
tion of the strategy of mutually
assured destruction and large-yield
fusion weapons, the details of damage

to cities for civil protection became
more or less moot). During those
years, full-scale tests were conducted,
whereby real buildings were exposed
to nuclear blast loading; it is possible
to use the structural response informa-
tion from those tests as rough analogs
for conditions in PDCs. Figure 7 illus-
trates the phenomena associated with
an explosive eruption and a low-alti-
tude nuclear burst. In a volcanic erup-
tion, initial decompression of the
erupting gas-particle mixture into the
atmosphere can drive a shock wave
that expands outward into the air. This

might be followed by a blast-driven
surge and, eventually, by full-scale
PDCs that are of interest here. In a
low-altitude nuclear burst, the expand-
ing fireball pushes a strong air shock
that expands spherically until it inter-
sects the ground. The shock is then
reflected upward from the ground, and
a vertically oriented “Mach stem”
shock forms at the intersection
between the reflected and the incident
shocks as the Mach stem continues to
move outward. As it passes over a
structure, the Mach stem creates a lat-
eral load by two processes: (1) “dif-
fraction” loading, which occurs as the
shock is passing over the structure
and the upstream side of the structure
experiences a high pressure while the
downstream side is still at ambient
pressure; and (2) dynamic pressure
loading, after the shock has passed
and the building is subjected to a
strong outward wind. All of this takes
place in a very short time (seconds) in
a nuclear case. In the volcanic case of
PDCs, lateral loading is almost entire-
ly due to dynamic pressure from the
particle-laden flow, and that might be
sustained for much longer times than
in the nuclear case. In the absence of
detailed data on damage from PDCs,
however, it is reasonable to use
nuclear effects data as a starting point.

Figure 8 shows the range of
dynamic pressure as a function of
PDC speed for several values of parti-
cle loading (volume fractions ranging
from 10–5 to 0.5). Superimposed on
these curves are boxes that represent
the range of possible conditions as
inferred from comparisons of nuclear
effects data with observations of dam-
age from four historical PDCs: the
1951 eruption of Mt. Lamington in
Papua, New Guinea (Taylor 1958);
the 1902 eruption of Mt. Pelee in
Martinique (Lacroix 1904); and two
PDCs that damaged the town of
Herculaneum during the 79 AD erup-
tion of Mt. Vesuvius. The height of
each box represents our best estimate
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Figure 8. Dynamic Pressure as a Function of Velocity for Different
Particle Volume Fractions
This plot shows dynamic pressure from PDCs as a function of velocity for different
particle volume fractions. The colored boxes represent regimes for four historical
eruptions. A combination of data was used, including structural damage and dam-
age criteria from nuclear tests, as a proxy for PDC-induced damage. Although the
quality of information on damage produced by historical eruptions is imprecise, the
range of PDC speeds and particle concentrations that can be estimated from the
damage includes consistent values that are suggested by, for example, evidence
from sediment transport theory. (Adapted from Journal of Volcanology and Geothermal Research, 87,

G. A. Valentine 1998, pp. 117–140, with permission from Elsevier.)

      



of the possible range of dynamic
pressures that could account for
observed damage. The length of each
box represents the range of PDC
velocities as constrained by observa-
tions (or, in the case of Herculaneum,
inferred from the characteristics of
the deposits). Indirect information on
the possible range of particle concen-
trations in these PDCs is consistent
with the conditions indicated by the
boxes.

The work described above served
as a useful starting point for deter-
mining how structures respond to
PDCs. In the past few years, there
have been important new advances in
observational data (mainly from the
island of Montserrat, where PDCs
that flowed out over residential areas
were observed and the resulting dam-
age was carefully documented—
Baxter et al. (in press) and theoretical
studies (Nunziante 2003). As a result,
our understanding of PDC-induced
damage is growing rapidly. This
recent work indicates that the nuclear
effects data, as applied by Valentine
(1998), underestimates the damage
caused by real PDCs for a given
dynamic pressure. This greater dam-
age results from several factors, such
as shadowing or channeling effects by
nearby structures, PDCs lasting longer
than nuclear blasts, projectiles in the
flows (particularly those derived from
buildings just upstream), and heat. It
is interesting to note that these results
might, in turn, be used in studies of
nuclear effects because there is now a
great deal of interest in effects of low-
yield devices in densely developed
urban areas (for example, a terrorist
device in a major city). 

Examples of Applications

The predictive-earth-sciences
framework plays an important role in
addressing many problems of national
importance: repository science neces-

sary for closing the loop on current
and future nuclear-fuel cycles; water
resources research aimed at predicting
the impacts of climate change and
water usage on resource availability;
sequestration of excess CO2 into
underground reservoirs to counter
global warming due to use of fossil
fuels; homeland security issues that
involve interaction between terrorist
events, the environment, humans, and
infrastructure; and nuclear weapons
effects from targeting, military vulner-
ability, and homeland vulnerability
perspectives.

Predicting Volcanic Risk at
Yucca Mountain. The research dis-
cussed above is guided by and fit
together through the ultimate need to
produce integrated predictions of the
risk to humans who live around
explosive volcanoes. One application

of volcanology, in which the predic-
tive-earth-sciences framework has
played an especially strong role, is
predicting the radioactive dose that
might result if a small volcano were
to erupt through the proposed Yucca
Mountain repository. Figure 9 (U.S.
Department of Energy 2001) shows
the rolled-up results of those models
that account for a probability distribu-
tion for occurrence of a volcanic
event, subsurface interaction between
rising magma and the repository, and
subsequent eruption of nuclear waste
onto the surface. The results of these
simple models were cast in terms of
probability distributions and then
sampled by a Monte Carlo approach
to produce a large number of runs,
sampling all the modeled processes,
and represented by the gray curves in
Figure 9. This figure shows the pre-
dicted dose as a function of time into
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Figure 9. Predictions of Radiation Dose for Yucca Mountain
Predictions of radiation dose from a volcanic eruption are for a population located
18 km south of the proposed Yucca Mountain, Nevada, radioactive waste repository.
The predictions are weighted by the probability of such an eruption, and they
include processes such as waste entrainment into eruptive conduits, dispersion
into the atmosphere and subsequent fallout, and contamination of ground water by
damaged waste packages that remain in the underground environment. Gray curves
indicate individual realizations of the integrated models. These predictions were for
the Site Recommendation in 2001 (U.S. Department of Energy 2001) and are being
updated for the December 2004 license application.

        



the future, the primary criterion for
determining whether the repository
will perform as specified by regula-
tions. At early times (the first
1000 years), the mean value is domi-
nated by dose produced by eruption of
waste and direct fallout onto a hypo-
thetical population. At later times, the
mean value is dominated by contami-
nation of ground water because of
magma-induced damage to waste
packages. The predictions represented
by Figure 9 are being superseded by

new calculations that incorporate
more detailed models of
magma–repository interactions that
will form part of the basis for a
license application in December 2004.

Defeating Underground Targets.
The predictive-earth-science frame-
work can also be used to study the
effects of nuclear weapons as applied
to defeating underground targets (see
Figure 10). Several processes are
involved in defeating a deeply buried

target with a nuclear weapon: delivery
of the weapon to the target, penetra-
tion into the ground if it is an earth
penetrator, performance of the nuclear
physics package, coupling and propa-
gation of energy as groundshock to
the underground target, and response
of the target itself. Each of these
processes requires a physics-based
understanding in order to capture the
inherent uncertainties. Probability dis-
tributions of each process are then
rolled up in a Monte Carlo approach
such as NEPPS (for Nuclear Earth
Penetrator Planning System, devel-
oped in the Systems Engineering and
Integration Group at Los Alamos), to
produce a high-level prediction that
might take the form of a probability
of target defeat (or some other combi-
nation of parameters).

Concluding Remarks

Finally, a focus on predictive earth
sciences provides a driver for several
classes of underpinning basic
research. These include upscaling,
coupling across chemical and physical
regimes (for example, coupling global
climate predictions to regional scales
for water resources studies), stochastic
processes, extreme events (such as
weapon effects or natural disasters),
and the effects of having humans in
the loop in environmental processes.
In general, as with the Stockpile
Stewardship Program, predictive earth
sciences involve predicting the per-
formance of coupled, nonlinear, multi-
scale processes that involve materials
whose properties are heterogeneous
and imperfectly characterized, where
much of the data on the full-system
performance are historical. n

      

68 Los Alamos Science Number 29  2005

Predicting Risks in the Earth Sciences

Figure 10. Predicting the Defeat of Deeply Buried Targets 
This example of the predictive-earth-sciences framework is used for predicting the
defeat of deeply buried targets by nuclear earth-penetrator weapons. Some of the
components of the overall predictive system that need to be understood are the fol-
lowing: (1) the weapon outputs (neutrons, gamma rays, and x rays), which are pre-
dicted by a design code in conjunction with test data (either from historical under-
ground nuclear tests or from other tests); (2) the depth of warhead penetration into
the ground, which determines the amount of energy transmitted into the ground
and is generally predicted on the basis of solid mechanics codes coupled with drop
test and other data; and (3) propagation of that energy as a shock through hetero-
geneous rock types to produce shock loading at the underground facility.
Predictions of ground shock propagation integrate continuum mechanics codes
from a package such as an ASC code package with data from underground explo-
sives tests. Other components that are not illustrated include the accuracy of the
weapon regarding the intended detonation point, the response of the underground
target itself to shock loading, and potential collateral effects such as air blast and
fallout. All these can be integrated, accounting for uncertainty in each component,
through a simulation tool such as NEPPS (developed in the Systems Engineering
and Integration Group at Los Alamos), to produce, for example, a prediction of the
probability of rendering the target ineffective as a function of weapon yield.
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Simulating Warm, Dense Matter
Lee A. Collins, Joel D. Kress, and Stephane F. Mazevet

At the core of Saturn,
there is warm, dense matter,

ranging between 5000 and 
6000 kelvins in temperature.

Regions of warm, dense matter abound—from the interiors of giant gaseous  
planets, such as Saturn, and the atmospheres of white dwarf stars to labora-
tory plasmas in high-energy density generators and inertial confinement
fusion capsules. Warm, dense matter, a sizzling “soup” of atoms, molecules,
ions, and free electrons, is difficult to describe by standard techniques because
it harbors multiple species and processes simultaneously—from ionization
and recombination to molecular dissociation and association. Recently, 
quantum molecular dynamics (QMD), which can predict static, dynamical,
and optical properties from a single, first principles framework, has been 
used to accurately predict properties of hydrogen, oxygen-nitrogen mixtures,
and plutonium in the warm, dense state. 



Warm, dense matter (WDM)
appears in a wide variety of
celestial and terrestrial

environments—from the interiors of
gaseous planets and atmospheres to
the plasmas generated by high-energy-
density machines and lasers. Other
examples include shock-compressed
cryogenically cooled materials, ultra-
cold plasmas, and various stages in
primary and secondary nuclear
weapons. In general, these systems
span temperatures from hundreds to
tens of millions of kelvins and densi-
ties from about 1/100 to 100 times the
density of a solid. The medium in
each system resembles a “soup” of
various species—including atoms,
molecules, ions, and electrons—that
exhibits distinctly nonclassical behav-
ior in the interaction of all the parti-
cles. This material state is now
generally referred to as warm, dense
matter.

To model such systems, we have
applied quantum molecular dynamics
(QMD) simulation methods that treat
the rapidly moving electrons quantum
mechanically and the sluggish nuclei
classically. In order to provide a
diverse and systematic representation
of the quantum mechanical effects, we
have treated the electrons at various
levels of sophistication—from a sim-
ple semi-empirical tight-binding
model to a state-of-the-art finite-
temperature density functional theory
(DFT) approach. Because these tech-
niques begin with only the most basic
assumptions on the nature of the
microscopic particle interactions from
which all the macroscopic properties
derive, they are designated as ab ini-
tio, or “from first principles.” Through
the QMD prescription, we can repre-
sent very complex structural and
dynamical quantum processes that
dominate these media. These methods
currently allow for the treatment of a
few hundred particles; however, scal-
ing tests for massively parallel com-
puters indicate that simulations with

thousands of atoms will shortly
become routine. An additional advan-
tage of the QMD methods comes from
their integrated nature. Because the
QMD framework describes the ele-
mental particle interactions, all the
static, dynamical, and optical proper-
ties can be derived from an internally
consistent set of principles, whereas in
many models of dense media, the rep-
resentations of these processes arise
from different approaches at different
levels of approximation. 

The representation of a warm,
dense system as an evolving sample of
particles interacting through quantum
mechanical forces has become possi-
ble only within the last two decades
with the development of supercomput-
ing capabilities. Los Alamos has pio-
neered this endeavor. As early as
1985, prototypical models, based on a
semi-empirical determination of the
quantum forces in representative snap-
shots of atomic configurations derived
from classical molecular dynamics
(MD) simulations, indicated the
potential of such integrated
approaches. By the mid 1990s, density
functional methods had matured to the
extent of effectively treating atomic
samples of about 100 particles, a
threshold for obtaining statistically
significant macroscopic properties.
This development initiated a renewed
effort to employ these techniques
together with semi-empirical
approaches to model warm, dense sys-
tems. The ensuing years have wit-
nessed the steady improvement of the
basic quantum mechanical methods,
efficient algorithms, and computa-
tional power, providing great accuracy
in the characterization of these media. 

Quantum Molecular
Dynamics

A three-dimensional reference cell,
containing N atoms (nuclei) at posi-
tions R[ = {R1…RN}] and instanta-
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This ultracold neutral plasma of
electrons (green dots) and protons
(pink dots) was created by heating
microkelvin matter with a laser
pulse. Surprisingly, this strongly
coupled plasma has many features
in common with warm, dense 
matter.

During the implosion of an iner-
tial confinement fusion capsule,
the deuterium-tritium atoms it
contains become warm, dense
matter.

               



neous momenta P[ = {P1…PN}] and
Ne electrons at r[ = {r1…rNe}], deter-
mines the basic working unit in QMD
calculations. In order to represent the
extended nature of the medium, we
periodically replicate this cell
throughout space and treat particle
interactions both within the reference
cell and with the repeated cells. The
system evolves temporally according
to a repeated two-step prescription.
First, for fixed nuclear positions R(t)
at a time t, we perform a sophisticated
quantum mechanical calculation for
the electrons. From the resulting elec-
tronic wave function Ψ[r,R], which
depends only parametrically on the
nuclear positions R, we determine a
force on each atom. Second, using
this quantal force, we advance the
nuclei over a short time δt by the clas-
sical equations of motion, yielding a
new set of positions R(t + δt) and
momenta P(t + δt) for the nuclei. This
two-step process for temporally
evolving a collection of particles
forms the core of most MD approach-
es; the “Q” in QMD arises from the
use of quantum mechanics to describe
the electronic component.

We calculate the electronic many-
body wave function Ψ [r,R] by solv-
ing the Schrödinger equation:

HΨ[r,R] = EΨ[r,R]  ,

where the Hamiltonian operator H has
the form

H = Te + Vee + VeN + VNN  .

Te represents the kinetic energy of the
electrons (e), and Vab gives the inter-
action between the electrons (ee), the
electrons and the nuclei (eN), and the
nuclei (NN).

Numerous methods exist for solv-
ing the Schrödinger equation; how-
ever, the two most popular either
construct the multicoordinate state
function Ψ directly or employ the
electron density n(ri), determined by

integrating the probability density
|Ψ|2 over all but one spatial variable.
This density depends on only a single
point in space and forms the basis of
density functional theory (DFT). Both
approaches usually invoke decompo-
sition into single-electron orbitals,
which in turn are expanded in a basis
of simple functions such as Gaussians
or plane waves. This reduction trans-
forms the Schrödinger equation into a
matrix eigenvalue problem for which
powerful iterative techniques can
effectively produce solutions.

We employ the wave function
approach to generate an efficient,
approximate procedure for solving the
Schrödinger equation and rapidly
advancing the molecule dynamics
equations. In this tight-binding tech-
nique, we replace the matrix elements
of H with semi-empirical forms fit to
experimental data and specific theo-
retical results. The method still con-
tains all the important processes afoot
in the WDM regime: molecular disso-
ciation and association, ionization and
recombination, as well as electron col-
lision and attachment. 

In DFT, we use a very accurate
form of these matrix elements that
includes all the basic electrostatic and
quantum effects (exchange and corre-
lation). Although more expensive to
calculate, this formulation yields a
very accurate representation of a
many-electron system. We typically
use an extended form of DFT that
includes finite temperature effects and
some nonlocality (generalized gradi-
ent approximation). Most simulations
evolve in local thermodynamical equi-
librium with the electronic and
nuclear kinetic temperatures set equal. 

As indicated, for each MD time
step, we obtain a set of positions and
momenta {R (t),P(t)} for the nuclei
and the quantum mechanical state
function Ψ[r,R] for the electrons.
From this information, we can deter-
mine static properties, such as pres-
sure and internal energies, and thus

the equation of state (EOS), as well as
dynamical properties such as diffu-
sion, viscosity, order parameters, and
thermal conductivities. On the other
hand, the state function for the elec-
trons yields optical properties such as
electrical conductivity, reflectivity,
dielectric functions, and opacities.
The derivation of these properties
from an internally consistent set of
basic quantities [R,P,Ψ ] highlights 
a critical advantage of the QMD 
formulation. 

The large variety of systems and
environments explored by the QMD
approaches attests to their great flexi-
bility and applicability. Such applica-
tions include the following: isotopic
plasma mixtures of dense hydrogen,
nitrogen, and oxygen; highly com-
pressed rare-gas solids, alkali metals
near melt and along the vapor-liquid
coexistence boundary, impurity atoms
in dense hydrogen plasmas,
shock-compressed liquids of atoms
and hydrocarbons, and disorder in
semiconductors. 

For some of these cases, detailed
experimental data exist. The generally
good agreement obtained with the
results of QMD simulations provides
an effective validation of the tech-
nique across an extensive range of
conditions and media. This validation
proves particularly critical for the
deployment of QMD into regimes of
matter under extreme conditions,
totally inaccessible to current experi-
ments but vitally important to many
national missions.

As a demonstration of the efficacy
of these methods, we consider several
representative examples.

Static Properties: 
Equation of State

The EOS of a material gives pres-
sure and internal energy as a func-
tion of density and temperature and
forms a basic component of any
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model of a macroscopic system. The
shock Hugoniot experiment provides
the principal means of probing equa-
tions of state. In this case, a well-
characterized shock is driven
through a medium by the impact of a
flier plate (from either a gas gun or
a high-energy density device) or of a
high-intensity laser pulse. The shock
pressures (P), densities (ρ), and spe-
cific internal energies are deter-
mined by the Rankine-Hugoniot
jump conditions across the thin
shock front. These equations relate
flow velocities and thermodynamical
variables in the shocked state to
those in the initial state. Therefore,
knowing the initial conditions and
the EOS, we can determine the value
of the pressure—for example, at the
final conditions—and compare with
experimental observations.

As a first example, we focus on
hydrogen, both for its deceptive
simplicity and for the considerable
controversy that has raged over its
EOS. From an atomic physics stand-
point, hydrogen, having but one
proton and one electron, is the sim-
plest element known. Surprisingly,
its phase diagram displays consider-
able complexity. For a temperature
range between 104 and 105 kelvins
and a density range between 0.1 and
1.0 gram per cubic centimeter
(g/cm3), hydrogen exists as a dense
diatomic fluid. As the temperature
and density increase, the fluid
undergoes continuous dissociation
and ionization to become a fully
ionized plasma consisting solely of
free electrons and protons. For this
regime, the challenge in obtaining a
meaningful EOS lies in accurately
describing the evolution of the deli-
cate balance of atomic, molecular,
and ionized species constituting the
fluid. This complicated nature of
hydrogen becomes evident in
Figure 1, which displays the elec-
tronic probability density around the
nuclei for a snapshot within a QMD

simulation. 
The EOS of hydrogen and its iso-

tope deuterium has received new
attention because of recent laser
experiments that seemed to call into
question older models. Figure 2 dis-
plays the current status and depicts
the pressure as a function of density
for the shock compression (or the
Hugoniot) of a molecular deuterium
sample that was, at first, cryogeni-
cally cooled. Until the laser experi-
ments, the established Hugoniot
came from a chemical model in the
SESAME equation of state tables
compiled at Los Alamos in the
1970s, which yielded a maximum
compression η = 4, given by the
ratio of the density ρ to the initial
density of the sample ρ0.
Experiments at the NOVA laser

facility of the Lawrence Livermore
National Laboratory (Lawrence
Livermore) indicated a far more com-
pressible medium with η = 6. This
difference has profound ramifications
for such diverse fields as planetary
interiors (refer to Saumon and Guilot
2004) and nuclear weapons. 

To gain insight into this experi-
mental disagreement, we performed
QMD calculations using the simple
semi-empirical, tight-binding MD
method and the very sophisticated
density function approach (DFT-
MD). Our QMD values agreed
much better with the SESAME
results and with subsequent, similar
ab initio calculations—for example,
the Path Integral Monte Carlo
(PIMC). This agreement between
the QMD and PIMC results has an
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Figure 1. QMD Simulation of Hydrogen Electronic Density 
A three-dimensional snapshot of a representative cubic sample of 128 highly com-
pressed hydrogen atoms (1 g/cm3 at 29,000 K) at a particular time within the QMD
simulation shows the probability of finding an electron at a particular location.
Magenta indicates the highest probability; blue, the lowest. The electron density
indicates the  presence of molecular systems (magenta ellipsoidal structures),
atomic systems (magenta spheres), and free electrons in the intervening space.

                   



additional poignancy in that the
PIMC treats the electronic and
nuclear interactions by an approach
completely independent of DFT. In
2000, a new set of experiments at
the Sandia National Laboratories
(Sandia), employing a flier plate
accelerated by a pulse-power
machine (Z-machine), produced
results in close accord with the ab
initio methods. Finally, within the
last two years, Russian experiments
(conducted at Sarov) with explo-
sively generated converging shock
waves supported the Sandia find-
ings. The final verdict on the EOS
of hydrogen awaits further experi-
mental trials; however, the good
agreement between the ab initio
MD simulations and the experi-
ments at the Z-machine and in
Russia gives a strong penchant for
the stiffer compressibility of 
hydrogen. 

As a second example of the broad
applicability of these approaches,
we present comparisons of QMD
simulations for compressed molecu-
lar nitrogen, oxygen, and nitrogen
oxide (NO), which are similar to
hydrogen in some respects: They all
have molecular liquid states at very
low temperatures, large dissociation
energies, and moderate ionization
potentials. For these three species
though, several gas-gun experiments
have probed a larger span of the
Hugoniot than for hydrogen.
Figure 3 displays the excellent
agreement obtained between the
QMD simulations and the experi-
ments for the three species along the
principal Hugoniot. This agreement
indicates that the QMD approach
can accurately characterize the
progress of a very complex medium
through many different stages. For
example, the kink seen to varying

degrees in all three Hugoniots indi-
cates the transition from a molecular
to an atomic fluid. 

Experiments rarely follow the
full evolution of a system but 
usually provide only final conditions
based on prescribed starting values.
On the other hand, QMD simula-
tions can continuously monitor the
state of the medium, yielding such
valuable information as its constitu-
tion. To obtain better insight into the
temporal development of a stressed
medium, we examined, as a repre-
sentative system, NO during com-
pression from a cryogenic molecular
liquid to a warm, dense fluid. The
pair correlation function gαβ(r),
which gives the probability of find-
ing particles of type β a given dis-
tance r from a reference particle of
type α, serves as an effective tool
for tracing the change in the con-
stituents. Figure 4(a) shows the 
conditions near the start of the com-
pression in which the system 
consists mainly of NO molecules, 
as evidenced by the large peak in
gNO(r) at the average internuclear
separation Req(NO) for the molecu-
lar species. As both the density and
temperature increase, the NO disso-
ciates, and the freed nitrogen atoms
combine into nitrogen molecules,
but the oxygen remains in an atomic
state. Figure 4(b) clearly depicts this
behavior by the large peak in gNN(r)
near Req(N2) and the very weak
peak around Req(O2). This finding
challenges the present assumptions
on modeling NO in overdriven
shocks and has significant ramifica-
tions for explosives and high-pres-
sure reactive chemistry.

Optical Properties

From the wave function that char-
acterizes the electrons, we can also
generate optical properties for the
medium, including absorption coeffi-
cients, dielectric functions, reflectiv-
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Figure 2. The Principal Hugoniot of Deuterium
The curves in this plot represent theoretical results from QMD simulations (DFT-MD)
and from two free-energy minimization models, one used in the SESAME tables and
the other based on linear mixing (LM). The experimental results are from the NOVA
laser at Lawrence Livermore and the Z-machine at Sandia in New Mexico.
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Figure 3. QMD vs Experiment for
the Principal Hugoniot of N2, O2,
and NO
Pressure is shown as a function of com-
pression (η = ρ//ρ0) along the principal
Hugoniot for nitrogen (a), oxygen (b),
and NO (c). Each panel compares QMD
theoretical results (GGA-MD, red
squares) with gas gun and Z-pinch
experiments. In (c) reshock results are
also shown. The excellent agreement
between theory and experiment is note-
worthy.

Figure 4. Pair Correlation
Function for a NO Fluid under
Shock Compression 
The g(r) pair correlation function gives
the probability of finding an atom of a
particular type a distance r from a refer-
ence atom. It therefore yields informa-
tion about the composition of the fluid.
The panels depict two sets of condi-
tions: (a) density = 1.9 g/cm3 and tem-
perature = 3000 K, and (b) density = 
2.6 g/cm3 and temperature = 6000 K.
The fluid begins as a pure system of NO
molecules. As the temperature and den-
sity increase under compression, the
NO dissociates and nitrogen molecules
form. Oxygen remains almost entirely
atomic.

(a) (b) (c)

                    



ities, indices of refraction, and opac-
ity. Opacity, a measure of the
absorption of radiation in matter, is
an important quantity in modeling
diverse phenomena in astrophysics
and in designing weapons. Many of
the opacity libraries commonly used
for standard macroscopic modeling
programs (for example, in hydrody-
namics) employ physical models that
have not seen significant revision in
decades. During this time, develop-
ments in a wide variety of fields,
including weapons, inertial confine-
ment fusion, high-energy density,
and astrophysics, have required
extensions of these libraries into new
and complex regimes. Such an
extension requires careful validation,
either from experiments or from
more-sophisticated theoretical meth-
ods, of the physical models that pro-
duce the opacity data. Since
experiments have proved difficult
within these new realms, as wit-
nessed by the controversy over the
EOS of compressed deuterium, ab
initio simulation techniques, such as
QMD, provide the best venue for
making meaningful critiques of these
models. 

As indicated, these ab initio
approaches produce a consistent set
of material and optical properties
from the same simulation. In con-
trast, the opacity libraries consist of
a collection of approximate models.
Therefore, an understanding of the
differences in the opacities between
the libraries and ab initio approaches
requires a detailed examination of
the underlying material properties,
such as the EOS, and optical proper-
ties (absorption coefficient). To this
end, we have performed large-scale
QMD simulations of hydrogen and
of aluminum and compared repre-
sentative properties with the results
from standard opacity libraries, in
particular, the Light Element
Detailed Configuration Opacity
(LEDCOP) Code from Los Alamos.
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Figure 5. QMD Results for the Aluminum Absorption Coefficient 
(a) From highest to lowest, the curves in this plot represent densities from 
2.0 g/cm3 to 0.025 g/cm3 and show the trend in optical properties as the system
moves from a solid to a gas. The absorption coefficient at the lowest density
exhibits a distinct spectral line around 5 eV, originating from the 3s to 3p atomic
transition. As the density increases, this feature broadens and melds with the con-
tinuous background. At the highest density, the profile resembles that of a dense
metallic fluid. (b) The lower panel presents the same information but with a separate
density axis.

(a)

(b)

     



The absorption coefficient α(ν),
which gives the attenuation of radia-
tion as a function of frequency ν
(photon energy) at a given density ρ
and temperature T, is the fundamen-
tal physical quantity determined by
both the QMD and LEDCOP. This
quantity has a direct relationship to
the frequency-dependent electrical
conductivity σ(ν) and index of
refraction n(ν) of the medium [α(ν)
= 4πσ(ν)/n(ν)]. For zero frequency,
σ(ν) yields the more familiar direct-
current (dc) electrical conductivity
σdc[= σ(0)], which determines the
degree of current flow in a sub-
stance. Materials with σdc above
10,000 per ohm centimeter (Ω cm)
are considered good conductors or
metals; those with σdc below 1000
(Ω cm)–1, quasi-metals, or near insu-
lators. Finally, the inverse of α(ν),
integrated in frequency over the
derivative of the normalized Planck
function, yields the ubiquitous
Rosseland mean opacity κR.

Figures 5(a) and 5(b) portray,
from different perspectives, the
absorption coefficient as a function

of photon energy at a given tempera-
ture (10,000 kelvins) for aluminum,
as the metal passes between two
very different physical states: from a
warm fluid at solid density 
(2.0 g/cm3) to a gas (0.025 g/cm3).
The finite value of α(ν) at low 
frequencies implies a conducting
medium of varying degrees. At high
densities, the associated σdc of about
30,000 (Ω cm)–1 indicates a metallic
fluid, whereas the small values—
<1000 (Ω cm)–1—in the gas phase
signify an almost insulating medium.
For the gas, we also note the appear-
ance of structure in the absorption
coefficient. The peak around 5 elec-
tron volts corresponds to the atomic
line of neutral aluminum for the
transition from 3s to 3p. This transi-
tion again identifies the low-density
state as a collection of neutral atoms
with a few free electrons. The bar at
an energy corresponding to 4kBT
represents the regime with maximum
contribution to the mean opacity. 

In Figure 6, we compare QMD
and LEDCOP calculations of the
Rosseland mean opacity κR at a

fixed temperature as a function of
density for both hydrogen and alu-
minum. As the density decreases, the
two approaches show better agree-
ment. This agreement follows from
the nature of the LEDCOP model, in
which density effects enter only per-
turbatively upon an isolated atom.
For higher densities, the strong over-
lap among the wave functions on
different atomic centers obviates this
perturbative view and needs a more
democratic treatment of all the sys-
tem electrons. This comparison
demonstrates the ability of QMD
simulations to validate and improve
current opacity libraries as they are
extended into new regimes.

Dynamical Properties

Plutonium may very well be the
most complex of elements. At
atmospheric pressure, the phase dia-
gram shows six equilibrium solid
phases as well as a liquid phase. 
A study of plutonium introduces
another level of complexity because
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Figure 6. QMD- and LEDCOP-Derived Rosseland Mean Opacities for Hydrogen and Aluminum 
We used QMD and LEDCOP to obtain Rosseland mean opacities as a function of density for hydrogen (a) and aluminum 
(b) at fixed temperatures of 48,000 K and 10,000 K, respectively. LEDCOP is based on an isolated atom perturbed by the sur-
rounding medium; QMD considers all the atoms in the reference cell on an equal footing. “LEDCOP using n(ν)” is based on the
isolated atom absorption coefficient and the QMD index of refraction. At low densities in the gas phase, LEDCOP and QMD
agree well. As the density increases, the effects of the medium become pronounced, and the perturbative treatment fails.

(a) (b)

                                                                               



electron spin (magnetic behavior)
must also be considered. Although
the spin-DFT calculations for the
face-centered-cubic (fcc) lattice
structure (δ-plutonium) predict an
antiferromagnetic (AF) state (in dis-
agreement with the observations of
a nonmagnetic state), the predicted
structure is quite good, with an
atomic volume (V) about 9 percent
less than experiment. (An AF state
has a net zero magnetic moment,
with spin directions alternating up
and down at each atomic site on the
lattice.) We proceeded to study 
liquid plutonium with QMD in
order to explore whether the 
quantum-derived forces provide a
better description than does the
interatomic potential of the classical
Modified Embedded Atom Method
(MEAM). We worked under the
hypothesis that the predicted spin-

DFT structural behavior will domi-
nate over the predicted magnetic
behavior, especially because the lat-
ter should be diminished by the 
disorder introduced in the liquid
structure. An AF-like solution was
found for the spin-DFT calculation
(net zero magnetic moment with
spins allowed to fluctuate on each
atom during the MD trajectory).
Radial distribution functions were
calculated and self-diffusion coeffi-
cients (D) were derived from the
mean-squared displacement of the
atoms determined from the MD tra-
jectory. In Figure 7, we compare
QMD and classical MD (employing
the MEAM potential) calculations
of the viscosity of liquid plutonium
with experimental data. In the clas-
sical MD calculations (performed
by Los Alamos scientists Frank
Cherne of the Materials Dynamics
Group, Michael Baskes of the
Structure/Property Relations Group,
and Brad Holian of the Theoretical
Chemistry and Molecular Physics
Group), a 1024-atom simulation cell
and nonequilibrium driven-slab
boundary conditions were employed
to compute the viscosity directly. In
the QMD simulations, we calculated
D from the mean-squared displace-
ment of the atoms determined from
an equilibrium MD trajectory and a
54-atom cell. The viscosity (η) was
then calculated from a Stokes-
Einstein relationship, namely, 
(Dη b)/(kbT) = c, where b = V1/3

and kb = Boltzmann constant. The
dimensionless constant c = 0.18 
(± 0.02) is based on an analysis of
experimental data for 21 different
liquid metals (this work was con-
ducted by Eric Chisolm and Duane
Wallace of the Mechanics of
Materials and Equation-of-State
Group at Los Alamos). (A value of
c = 0.154 ± 0.0123 was determined
from the classical MD simulations.)
The MEAM potential was devel-
oped to describe the solid phases of

plutonium; therefore, the results
from the liquid simulations are a
prediction. In this light, the MEAM
values in Figure 7 are in fair agree-
ment with experiment (within a fac-
tor of 5). The preliminary QMD
results agree reasonably well with
experiment, although we note that a
54-atom simulation is probably too
small to provide a definitive
answer.

Preliminary simulations at 
1300 kelvins for (a) 54 atoms with
the net zero magnetic moment
relaxed and for (b) 108 atoms
(requiring at least 32 Pentium
processors in parallel) are yielding
viscosities consistent with those
illustrated in Figure 7. The relaxed
magnetic moment result illustrates
that the magnetic state apparently
has little influence on the structure
and dynamics of the liquid. With
more computational horsepower,
our goal is to calculate viscosity
directly with QMD using nonequi-
librium MD boundary conditions
and 1024 atoms.

In summary, QMD simulations
have proved an effective, versatile
theoretical and computational
approach to treating a large variety
of warm, dense systems of particu-
lar interest to a broad number of
Laboratory programs by providing
systematic, integrated techniques
for probing matter under extreme
conditions. n
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Figure 7. Temperature
Dependence of Plutonium
Viscosity
Molecular dynamics simulations are
compared with a quantum mechanical
(QMD) approach (red and blue squares)
and a classical-potential (MEAM)
approach (green line). QMD results 
are for samples of 32 atoms (red
squares) and 54 atoms (blue squares).
Experimental points are indicated by
open squares. Quantum-derived 
forces appear important in determining
the dynamic properties of this heavy
system.
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The Synergy between Experiment and Modeling
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A metal will stretch
when pulled and then return

to its original shape. Elasticity allows
bridges and skyscrapers to survive hurricanes,

earthquakes, or even moderate explosions. But
beyond a certain elongation, the metal will deform perma-

nently, and under very high impact, it will shatter like glass into many
small pieces. The ability to predict the results of ballistic impact depends on

having a validated material-response model that describes the dynamic behavior of
materials when stressed beyond their elastic limit. At Los Alamos, such a state-of-the-art

capability has emerged through the interplay of new theory, advanced simulation, and high-precision
measurements. The new predictive models incorporate the results of strength experiments and modern

theories of crystal defect interactions and strain localizations. The models are being validated by comparisons
between advanced simulations and dynamic experiments that have matching initial and boundary conditions.

Predictions of metal behavior—from strain hardening to fracture—show excellent agreement with the results of
small-scale impact tests, tensile tests, and explosively driven fracture of metal shells. 

     



From the first time one sharp
object was used to shape
another or cause another to

fracture, the mechanical properties
of materials—strength, ductility, and
susceptibility to fracture—have
shaped human history. Materials
influence human life so profoundly
that some have become synonymous
with different eras—the Stone Age,
the Bronze Age, the Iron Age, and
the Nuclear Age. It is very possible
that the current era, marked by peo-
ple’s growing dependency on elec-
tronics, may soon be dubbed the
Silicon Age. 

During the past eras, materials
were selected almost exclusively on
the basis of hands-on experience—
one material shows favorable prop-
erties over another for a given
application. But a new capability is
now emerging—that of predicting
material behavior and designing and
engineering custom materials with
predetermined characteristics. This
trend could, in principle, lead to the
age of “predictive materials technol-
ogy,” but only time will tell. What
we demonstrate in this article is an
emerging capability to predict and
engineer the behavior of metals—
their mechanical response under
extreme loading conditions.

Engineering the response of metals
and alloys to loading is an age-old
trade, extending from the famous fifth
century steels of Damascus to the alu-
minum alloys that enabled the modern
era of civilian aviation. Manufacturing
recipes were typically developed
through trial and error, but during the
years leading up to World War I, scien-
tists and engineers conducted the first
systematic studies and began to under-

stand how the relationship between the
applied stress, or force over area, and
the resulting strain, or change in
length, varied with temperature, strain
rate, and stress state. That knowledge
was quickly applied to critical wartime
needs: high-speed manufacturing of
metal parts (including high-speed wire
drawing and cold-rolling of metal
parts) and advances in ballistics,
armor, and detonation physics.
Spinoffs from those early studies led to
increasingly sophisticated materials of
relevance to defense, transportation,
and communications. 

In the last four decades, defense-
oriented research has pushed the fron-
tier of knowledge beyond standard
stress-strain relationships to the com-
plex mechanisms that occur under
impact, namely, deformation, damage
evolution, and fracture of metals and
alloys. The basic mechanisms control-
ling those processes began to be
understood, and the resulting models
were used to estimate material
response during high-speed impact, or
high strain-rate, situations both natural
and man-made. Familiar examples
include automotive crash-worthiness;
aerospace impacts, including foreign-
object damage, such as that caused
when a jet engine accidentally ingests
a bird or a meteorite impacts a satel-
lite; structural accelerations such as
those occurring during an earthquake;
high-rate manufacturing processes
such as high-rate forging and machin-
ing; and conventional ordinance
behavior and armor/antiarmor interac-
tions. Within the past two decades, as
computer power has grown and mate-
rials models have become more pre-
dictive, the R&D community has
used, wherever possible, large-scale

three-dimensional (3-D) computer
simulations of these complex dynamic
events in place of direct experimenta-
tion. The reasons are twofold: Either
an experiment would be prohibitively
expensive (a full-scale bird-ingestion
test on a commercial jet engine con-
ducted for the Federal Aviation
Agency, for example, costs millions
of dollars to field), or the system is
too difficult to evaluate accurately
through experiment (for example, the
impact of a meteorite on the space
station). In turn, the growing reliance
on 3-D simulations of complex engi-
neering systems has led to a growing
demand for robust predictive material-
response models. 

We are developing predictive
models for mechanical behavior
through the interplay between sys-
tematic experiments and theory. In
this article, we focus most heavily
on the role of experiments in devel-
oping and validating mechanical
response models. First, we present
state-of-the-art experiments to meas-
ure very accurately the basic stress-
strain relationships of metals and
alloys under varying temperatures
and strain rates. Second, we discuss
the ways in which we measure and
model specific damage evolution
mechanisms that progress from the
loss of load-carrying capacity to
fracture. Finally, we present special-
ized experimental methods, measure-
ments, and models describing the
dynamic deformation and failure
induced by explosive deformation.
Although further experimental
research and engineering work
remain, the efforts described here
demonstrate significant progress in
quantifying the dynamic mechanical
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response of materials and applying
those insights to the development 
of predictive material models of 
relevance to the defense mission 
of Los Alamos.

Mechanical Strength Models:
Development and Validation 

Standard mechanical strength mod-
els for metallic materials spell out the

relationship between stress (load per
unit area of material) and the resulting
strain (change in length, area, or vol-
ume relative to the original dimen-
sion) during elastic and stable plastic
deformation (see the positive-slope
side of the stress-strain curve in
Figure 1). However, at some back-
ground strain, metals will transition
from uniform, or homogeneous,
deformation to heterogeneous, or
localized, unstable behavior (occur-

ring usually on the negative-slope side
of the stress-strain curve). In fact,
when an as-received material is
pulled at a constant velocity at the
boundaries, it follows a stress-strain
curve comparable to that in Figure 1.
This stress-strain path has four dis-
tinct stages: (1) uniform, or homoge-
neous, deformation and accumulation
of background strain, (2) material
instability or bifurcation (a condition
that indicates loss of load-bearing
capacity), (3) transition to heteroge-
neous, or localized, deformation (in a
normal and/or shear mode), and (4)
accumulation of damage (small
cracks and voids) that ultimately coa-
lesces into a fracture surface. In the
description of the experiments and
modeling provided in the sections
below, both homogeneous and local-
ized deformations are investigated
and modeled at macroscopic scales.
To be predictive, those models must
capture the fundamental relationships
connecting the independent variables
of stress, strain rate, strain, and tem-
perature to specific bulk material
responses such as yield stress or flow
stress, strain hardening, texture evolu-
tion, evolution of global damage, sub-
sequent heterogeneous damage, such
as strain localization and cracking,
and finally, material failure.
Moreover, for the applications of
interest, we need to predict those
responses accurately for such extreme
conditions as large deformation and
high strain rates, pressures, and tem-
peratures. Our materials models must
therefore be based on quantifiable
physical mechanisms, characterized
with inexpensive direct experiments,
and validated through comparisons
with results of small-scale and 
integral tests. 

Standard Measurements of
Strength. One develops a strength
model for a particular material by
measuring its mechanical properties.
The samples of interest are loaded in

82 Los Alamos Science Number 29  2005

Predicting Material Strength, Damage, and Fracture

Figure 1. Tensile Stress-Strain Curve
The tensile test is the most common test used to measure mechanical properties.
Round-bar or sheet samples are gripped at their ends and pulled at constant veloc-
ity (nominally, at constant strain rate) until they fail. Load and displacement of the
sample are measured and plotted as stress σσ (load/cross-sectional area) vs strain εε
(sample elongation/original length). The elastic region, represented by Hooke’s law
(σσ = Eεε, where E is an elastic constant known as Young’s modulus), is linear and
reversible. The point of deviation from linearity is called the elastic limit and marks
the onset of permanent deformation, or plastic strain. Because the onset of devia-
tion is often very gradual, the “yield strength” of a metal is defined as the stress at
0.2% permanent (or plastic) strain. Continued plastic flow beyond the elastic limit
produces increasing stress levels, a process called work hardening. During this
stage, the sample deforms uniformly, elongating and thinning while the volume
remains constant, until work hardening can no longer keep up with the continuing
increase in stress caused by the reduction in the sample’s cross-sectional area. At
this point, the stress goes through a maximum, called the ultimate tensile strength,
and the sample begins to deform nonuniformly, or neck, before it fractures in a duc-
tile manner. Necking can reflect either “normal” or shear localization preceding frac-
ture. In soft, annealed fcc metals, the typical total plastic (or permanent) strain
immediately before fracture is 20% to 50%.

                               



compression, tension, or torsion over
a range of loading rates and tempera-
tures germane to the application of
interest. Various mechanical testing
frames are available that achieve
nominally constant loading rates for
limited plastic strains and, thereby, a
constant strain rate. The standard
screw-driven or servo-hydraulic test-
ing machines achieve strain rates of
up to 5 per second. Specially designed
testing machines, typically equipped
with high-capacity servo-hydraulic
valves and high-speed control and
data acquisition instrumentation, can
achieve strain rates as high as 200 per
second during compression loading.
To go even higher, we must employ
projectile-driven impacts that induce
stress-wave propagation in the sample
materials. Chief among these dynamic
loading techniques is the split-
Hopkinson pressure bar (SHPB)
(Gray 2000), which can achieve the
highest uniform uniaxial compressive
stress loading of a specimen at a nom-
inally constant strain rate of about 103

per second. In fact, we readily reach
strain rates of up to 2 × 104 per sec-
ond and true strains of 0.3 in a single
test by using the SHPB. At these
stresses and strain rates, however, the
uniformity of stress loading and con-
stancy of strain rate are not guaran-
teed, so care must be exercised.

Developing a Strength Model for
Tantalum. As shown in Figure 2, we
used several of the testing techniques
just mentioned to measure the stress-
strain response of unalloyed tantalum
metal over a wide range of strain rates
and temperatures. We then determined
the unknown parameters in our
strength model by fitting the model to
the experimental data. In general, this
model predicts flow stress (level of
stress needed to produce dislocations
in the crystal lattice as a function of
strain, strain rate, and temperature),
and the mathematical form used is
known as the Mechanical Threshold
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Figure 2. Compressive Stress-Strain Curves of Unalloyed Tantalum 
Under lower applied stress, the material deforms more readily as the temperature is
increased; conversely, the stress required to deform the material increases as the
strain rate (rate of applying stress) is increased.

Figure 3. Mechanical Behavior of Stress-Strain Curves for Unalloyed
Tantalum: Experiment vs Calculation
The experimental mechanical behavior of the stress-strain curves (red lines) of
unalloyed tantalum measured for a range of temperatures and loading rates are
compared with the fit to the MTS model. Experiment and calculation agree very well.

        



Strength (MTS) Model (Chen and
Gray 1996). Figure 3 gives an exam-
ple of the characterization of the
model parameters for unalloyed tanta-
lum data that show the model accu-
rately capturing the dependence of
yielding and strain hardening as strain
rate and temperature are varied. 

A key feature of the MTS model is
an internal state-structure variable that
describes the physical property of
work hardening that occurs as a
metallic specimen deforms plastically.
This hardening variable evolves in the
context of the model as mobile dislo-
cations (lattice defects), created dur-
ing the deformation process, interact
with other stored-dislocation struc-
tures. Those in turn evolve via the
dynamic microscale processes of
mobile-dislocation storage and stored-
dislocation annihilation, both con-
trolled by the independent variables
mentioned above. This scalar repre-
sentation of dislocation behavior by
the MTS model is fairly accurate for a
large number of metals used in predic-
tive engineering simulation. The
model is also easily extended if one
uses the concepts of plastic potential
and yield surfaces, physically based
on micromechanics of polycrystal
plasticity, to describe directional
(anisotropic) plastic deformation
(Maudlin et al. 1999). This extension
of the model is illustrated below.

The problem is that many engi-
neering problems, such as foreign-
object damage and ballistic impact,
involve strain rates of 104 to 105 per
second, values that are well beyond
the range accessible for direct meas-
urement. Is our strength model valid
at those higher strain rates? Since we
cannot test the model directly, we use
it to predict the results of a simple
validation test such as the Taylor
cylinder impact test. This readily con-
ducted axisymmetric test realizes
strain rates as high as 105 per second
and deformations in excess of
100 percent. The MTS model is used

as part of the constitutive module in a
3-D finite-element continuum
mechanics code for simulating the
Taylor test, and the results are then
compared with post-test geometries
(for example, the cylinder side pro-
files) for several impact velocities.

The Taylor Impact Test 
for Validating the 
Strength Model

The Taylor cylinder impact test
shown in Figure 4 was developed dur-
ing World War II by G. I. Taylor
(1948) to screen materials for use in
ballistic applications. It entails firing a
small solid cylinder rod of some
material of interest, typically 7.5 to
12.5 millimeters in diameter by 25 to
40 millimeters in length, at high
velocity against a massive and plasti-
cally rigid target. As indicated

schematically in the inset to Figure 4,
the impact plastically deforms and
thereby shortens the Taylor rod by
causing material at the impact surface
to flow radially outward relative to
the rod axis. By assuming simple one-
dimensional plastic flow, Taylor related
the fractional change in the rod length
(difference between the final length Lf
and the initial length L0) to the flow
stress, one point on the stress-strain
curve in Figure 1. 

The Taylor impact test represents an
escalation of complexity relative to
tests made with the split-Hopkinson
pressure bar. Rather than measuring the
stress-strain response at a uniform
stress state and strain rate, a Taylor test
involves gradients of stress, strain, and
strain rate integrated over time to pro-
duce a final strain distribution. In fact,
the Taylor test is most often used to
intentionally probe the deformation
responses of metals and alloys in the
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Figure 4. The Los Alamos Taylor Impact Test Facility 
The photograph shows the apparatus used to fire a small cylindrical test sample at
high velocity against a massive, rigid target, and the inset shows the initial and final
states of a cylindrical sample.

            



presence of large gradients of stress,
strain, and strain rate. Nevertheless,
3-D finite-element simulations of this
integrated test have proved to be highly
sensitive to the accuracy of material
strength models used in the numerical
codes. From a comparison of the cylin-
der profile of the post-test Taylor sam-

ple with the profile predicted by the
finite-element code simulations, we
have determined how well the material
model and the code implementation
describe the spatial gradients of defor-
mation stress and the strain rates that
ultimately lead to the final strain dis-
tribution seen at the end of the test.

The spatial stress and strain gradients
and the strain rates, in turn, are direct
measures of the stress-strain tensor
described in the strength model.
Moreover, based on tests conducted on
copper, tantalum, aluminum, tungsten-
nickel-iron alloy, and steels over a
range of impact velocities, we have
seen that the final strain distribution is
sensitive not only to strain hardening,
strain rate, and temperature, but also to
crystallographic texture.

Figure 5 compares experimental
and finite-element simulation results
for a Taylor test specimen (Maudlin et
al. 1999) of unalloyed tantalum that
has a moderately strong crystallo-
graphic texture (that is, a directional
dependency of its flow stress due to
material processing). The cylinder had
been initially cut from a rolled tanta-
lum plate with a preferred texture
(crystal orientations) associated with
the rolling process. In this particular
process, the {111} planes (that is, the
major diagonal planes) of individual
cubic crystals were most often stacked
with the normals to the {111} planes
aligned with the through-thickness
direction of the plate, which repre-
sents a strong direction in this particu-
lar stock of tantalum. Because the
Taylor cylinder was cut with its axis
perpendicular to the through-thickness
direction of the plate, the material
strong direction is aligned perpendicu-
lar to the loading axis of the impact;
thus, one transverse direction of the
initially round Taylor rod is stronger
than the other. Consequently, the
impact and subsequent plastic defor-
mation during the Taylor test pro-
duced an anisotropic mechanical
response illustrated by the elliptical
footprint and the side profile shown in
Figures 5(a) and 5(b). After testing,
we used an optical comparator to gen-
erate a digitized footprint of the cross-
sectional area at the impact interface
and digitized side profiles—see the
red dots in Figures 5(c) and 5(d). We
simulated the Taylor impact test with
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Figure 5. Post-Test Geometry of Taylor Specimen and Simulation
Results 
Photographs of the post-test geometry for a tantalum Taylor specimen show 
(a) the footprint and (b) the side profile. The colored patterns in (c) and (d) repre-
sent the plastic strain distribution predicted by the EPIC 3-D code simulation for
the footprint and major side profile, respectively, of the Taylor sample. The red
dots are the digitized experimental profiles.

    



the explicit, Lagrangian, finite-ele-
ment code EPIC in a 3-D mode by
using the MTS model for tantalum.
The cylinder was spatially modeled
using 4185 nodes and 17,280 single-
integration-point tetrahedral ele-
ments. Because in the experiment
both the anvil and cylinder base had
mirror-like finishes and were care-
fully aligned for orthogonal impact,
interfacial friction at impact at the
cylinder-anvil interface was negligi-
ble and could be ignored in the sim-
ulation. Similarly, the vanishing
hardness of the Taylor cylinder rela-
tive to that of the anvil precluded
any measurable plastic compliance
within the anvil, and so that too
could be ignored. We simulated the
impact event for 90 microseconds of
problem time, after which plastic
deformation reached quiescence, as
it had in the experiment.
Calculational results of an impact-
interface footprint and a late-time
cylindrical major profile are shown
in Figures 5(c) and 5(d). These
results are compared with the experi-
mental shapes indicated by red dots.
The calculated elliptical footprint
shown in Figure 5(c) has an eccen-
tricity (ratio of major to minor diam-
eters) of about 1.20 that compares
well with the experimental foot-
prints. If the sample were to have
been isotropic, in which case the
individual crystals would have been
randomly oriented, it would have
produced a round footprint with an
eccentricity of 1. The major side
profile compared with experimental
data (red dots) in Figure 5(d) indi-
cate that the final length agrees well
with the experimental length and
that the axial distribution of plastic
strain also tracks very well with the 
experimental profile. 

The MTS model was used together
with an anisotropic yield surface
whose tensor implementation of tex-
ture allows the modeling of crys-
talline texture. The combination pro-

duced very good agreement between
the calculated and experimental plas-
tic deformation field for the tantalum
cylinder, including the anisotropic
shape of the final cylinder. This
example demonstrates the state of
the art of 3-D mechanical modeling
of yield anisotropy for a material
subjected to a fairly complicated
impact test, in which spatial varia-
tions in stress, strain, and strain rate
occur simultaneously. Further work
on materials demonstrating increas-
ingly complicated deformation mech-
anisms as part of their mechanical
stress-strain behavior will determine
the direction of future mechanical-
behavior model development. 

Validating Strain-Localization
and Fracture Models

The Taylor test is a good example
of bulk deformation in which spatial
gradients of permanent plastic strain

extend over the entire sample—from
100 percent strain at the impact inter-
face to near-zero strain at the oppo-
site end of the cylinder. Under more
extreme loading conditions, however,
material instabilities can set in, caus-
ing plastic deformation to localize
into planes that extend through the
metal. Those localized regions of
strain often appear as bands in the
post-test specimen sections. Such
material instability and plastic local-
ization lead to the loss of load-carry-
ing capacity and to damage evolution
and fracture, as depicted on the right
side (negative-slope region) of the
stress-strain curve in Figure 1. In a
typical tensile experiment, a material
is pulled at constant strain rate, and
its load-carrying capacity first
increases (strain hardening). At some
point, however, the load-carrying
capacity reaches a maximum, and if
the applied load remains constant or
increases while the load-carrying
capacity begins to decrease, a run-
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Figure 6. Uniaxial Stress Compression Measurements
The curves are of experimental stress vs strain for a stainless steel (SS316L) rolled-
plate stock material. Shown are room temperature, quasistatic, and uniaxial-stress
compression results as measured for the three SS316L conditions.

      



away or unstable situation will occur
with increasing strain. In many mate-
rials, this unstable motion results in
localized deformation.

We have used a number of small-
scale experiments, including pulling
simple flat-plate samples, to study
localized-strain and damage evolu-
tion as a function of the “starting
state” of a material. The starting state
could be a prerolled or preshocked
process with an amount of flow
stress hardening (slope of Figure 1)

that depends on the magnitude and
direction of strain applied during pre-
processing. In these experiments,
small, uniaxial, square flat-plate ten-
sile specimens (12.7 millimeters on
one side and 1.0 millimeter in thick-
ness) are cut from a stainless steel
(SS316L) rolled-plate stock, either as
received or preprocessed, and the
specimens are then pulled to failure
and insipient failure (about 40 per-
cent longitudinal true strain).

Before the flat-plate testing, we

measured the mechanical properties
of the starting material by cutting
cylindrical samples from the same
preprocessed stock and subjecting
them to uniaxial compression test-
ing. Figure 6 compares flow stress
curves from these tests for three
material starting conditions: an as-
received fairly ductile material, the
same as-received material but pre-
rolled by a 20 percent strain before
testing, and the same as-received
material but preshocked by a high-
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Figure 7. Stainless Steel Flat-Plate Shear Specimens
(a) The photograph is of a flat-plate SS316L sample of uniform-thickness rolled
stock before the tensile test. The initial specimen geometry includes a small
defect (hole) in the center of the sample. (b) The photographs are of two speci-
mens after having been stretched quasistatically at room temperature to a 20%
strain. The initial material states were as received (top) and prerolled (bottom).

Figure 8. Strain Distributions for
Flat-Plate Shear Specimens 
Results of a 3-D finite-element simulation
are shown in terms of the Lagrangian strain
Ezz at 100 µs into the deformation.
Simulations use the MTS model for the
stainless steel sample with an initial hole
defect. Shown in (a) is the final strain state
in the as-received material; in (b), deforma-
tion localizes into a shear band doublet in
preshocked material.

      



explosive (PBX-9501) plane detona-
tion wave loading. The preshocked
material has a higher flow stress and
a lower slope than the as-received
material. It is therefore less stable or
closer to the point at which material
instability initiates a transition from
homogeneous to localized deforma-
tion. This reduction of stability in
preshocked material is often relevant
to defense applications. Figure 6 also
shows that the prerolled material has
even higher flow stress and lower
slope, and therefore less stability,
than the preshocked material. 

The photographs in Figure 7(a)

show the geometry of the flat-plate
tensile test, including the handles
used to pull the sample. All the flat-
plate test specimens have a small
initial mechanical defect (hole) that
has been machined into the center of
the sample. Figure 7(b) shows mag-
nified photographs of the as-received
and the prerolled specimens after
having been pulled to about 20 per-
cent strain. These specimens exhibit
post-yield (the strain exceeds the
elastic limit) shear bands. In particu-
lar, each exhibits a strain localization
doublet centered on the hole. The
prerolled material is obviously much

more unstable. Compared with the
as-received specimen, it exhibits a
very prominent strain localization
doublet. This higher susceptibility to
instability and strain localization can
be anticipated from the stress-strain
results of Figure 6, in which the flow
stress during plastic deformation is
higher in magnitude and lower in
slope for the prerolled specimen.
The orientation of the localization
doublet in the prerolled sample
measured relative to a transverse
specimen direction (a horizontal
axis) is β =∼ 30° ± 1°. 

In 1975, Rudnicki and Rice
achieved a theoretical breakthrough by
formulating a mathematical descrip-
tion of strain localization that treats
the jump in material strain as a sta-
tionary wave discontinuity, formally
analogous to the description of a
shock wave as a traveling wave dis-
continuity. In many dynamic applica-
tions, localizations of strain lead to
material damage (voids and cracks)
and final failure of system compo-
nents. The localization description
developed by Rudnicki and Rice is a
cornerstone in the material instability
or bifurcation literature. The theory,
which becomes applicable when the
strength of a material becomes saturat-
ed (the stress reaches a maximum, and
the slope of the stress-strain curve is
zero or negative), predicts three items
of interest: the onset of material insta-
bility, the orientation of the localiza-
tion planes, and the direction of the
straining jump in the localization
band. Figure 8 shows our finite-ele-
ment predictions for the SS316L as-
received and preshocked samples. The
simulations validate the fundamentals
of the Rudnicki and Rice derivation,
predict the background strain before
the onset of localization, and predict
the orientation of the localization
planes. Deformation appears as mostly
uniform, or homogeneous, in the as-
received specimen—Figure 8(a)—in
contrast with the preshocked speci-
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Figure 9. SS316L Flat-Plate Shear Specimen—Late Deformation and
Fracture Stages
Dynamic photographs of an SS316L flat-plate shear specimen show it during the 
late stages of deformation and fracture. This test was conducted quasi-statically at
room temperature for the initial, prerolled, hardened material condition. The initial
specimen geometry has a small defect (hole) in the center of the gauge section.
Time progresses from (a) to (f).

        



men—Figure 8(b)—where it localizes
into a doublet of shear bands. These
simulations are then compared with
experiments to validate the models.
The predicted localization orientations
are in good agreement with the test
results. Despite the shear doublet
apparent in the prerolled test specimen
shown in Figure 7, all specimens in all
three starting material conditions, with
or without an initial defect, failed in a
normal mode; that is, they fractured
transversely across the specimen. The
dynamic sequence of photos in
Figure 9 shows the development of
this horizontal fracture and reveals
geometric specimen necking just
before fracture. The latter implies a
value of stress triaxiality (that is, ratio
of pressure to flow stress) larger in
magnitude than the uniaxial value of
1/3. As confirmed by additional bifur-
cation analyses with the Rudnicki and
Rice theory, this transition from uniax-
ial to higher-stress triaxiality, which
causes more lateral restraint, is
responsible for rotating the strain-
localization planes and producing the
appearance of a horizontal fracture;
the photos show a fracture edge in the
observation plane, where a macro
crack runs in the horizontal direction
across the section intersecting the
hole. This localization and fracture
phenomenology manifests itself in the
context of explosive loading problems
involving more complex states of
stress, as will be discussed in the 
next section. 

Validating Models for
Explosively Driven 

Dynamic Deformation

Many defense applications at Los
Alamos involve explosively driven
systems in which the materials are
subjected to extreme conditions of
temperature and strain rate. Our ulti-
mate goal for modeling and simula-
tion is to develop the ability to predict

the onset of strain localization in
shells of arbitrary geometry, the coa-
lescence of those localizations into a
network of cracks as a precursor of
fracture, the fracture of the shell into
individual fragments, and the size,
velocity, and spatial distribution of
those fragments. We must be able to
model and simulate the correct
physics for a broad variety of materi-
als that are manufactured into a shell
geometry and tested under various
loading configurations. In this section,

we describe small-scale integrated
tests involving high explosives that
are exploited as another source of val-
idation data (albeit, more complicated
and challenging than, for example, the
flat-plate tensile specimens above) for
modeling and simulation. One such
test is the explosively driven hemi-
spherical shell. In the simulation of
this experiment, a hemispherical metal
shell filled with explosive is initiated
at the spherical center. Radial propa-
gation of the spherical detonation
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Figure 10. Solid Model of the Filled-Hemishell Experimental Hardware 
The experiment conducted with this hardware was designed to reproduce as closely as
possible a spherical detonation inside a metal hemishell.

      



wave results in the simultaneous
arrival of the wave at the explosive-
metal interface. 

Experimental Design. A hemi-
sphere is filled with high explosive
(PBX-9501) whose density is
1.833 grams per cubic centimeter
(g/cm3). Both the explosive and metal
are highly characterized in terms of
mechanical properties and process
control. Also, no effort was spared to
make the fielded design as close to
the idealized geometric configuration
as possible and to facilitate a clear
view of the fracture process (see
Figure 10). For example, the high-
explosive slapper system for initiating
the detonation was designed to
approximate as closely as possible the
mathematical idealization of a detona-
tion initiated at a single point. The
booster pellet is embedded in the
main charge so that the initiation sys-
tem should not perturb the explosive
drive at the pole. There is also no
metal case around the booster, and the
slapper itself is a thin copper/plastic
laminate system that generates a mini-
mal amount of debris that could con-
taminate the optical view of the frac-
ture process. The fixture that holds the

hemishell configuration in space is a
thin (0.75-millimeter) “Elizabethan
collar” made from spun aluminum.
The collar provides a lightweight but
robust symmetrical mount for the
shot. A 5-millimeter-thick disk of
explosive holds the initiation assem-
bly in place, and a polycarbonate
ring holds the explosive, collar, and
metal shell in place. As the shell
expands, the explosive interacts with
the collar and pushes it out of the
region of interest. The collar also dis-
perses the debris from the slapper
initiator and increases the late push
on the hemishell’s equator. These
design elements cause the motion of
the shell to approximate more closely
a spherical expansion.

The filled-hemishell design is
more attractive for modeling and sim-
ulation validation activities than the
classic design of end-detonated filled-
cylinder devices. The filled hemishell
prevents the seeding of strain local-
izations that occur in filled cylinders
when the detonation wave sweeps
from one end to the other along the
explosive/metal interface. The spheri-
cal symmetry of the detonation in the
filled hemishell thus allows direct
observation of strain localization,
controlled by the material instability
and bifurcation concepts discussed
above. The resulting nearly spherical
expansion of the shell causes predom-
inantly biaxial stress, resulting in
fragments with aspect ratios near
unity, and maintains axis symmetry
so that the 3-D effects observed in the
shell fragmentation process can be
linked to the fracture process itself.
Finally, because the test configuration
is small, various diagnostics, includ-
ing proton radiography, become quite
feasible for this integrated test.

Simulation Results for a U6Nb
Hemishell. Three-dimensional
finite-element simulations of the filled
hemispherical shell of uranium alloyed
with 6 percent niobium were conduct-

ed with the material modeling
described above. U6Nb is a good test
of our modeling capability because
tensile tests, such as the flat-plate ten-
sile tests described above, have shown
preshocked U6Nb to be more unstable
with a strong propensity to strain-
localize when compared with most
metals. Figure 11 shows predictions of
the plastic strain distribution in a cen-
terline section of the U6Nb shell for a
stable, as-received material condition,
showing fairly uniform deformation
(plastic strain ranging from 0.5 to
0.75); these results correspond to a
time of 5 microseconds after the deto-
nation wave loads the shell. The com-
putations were performed with the
EPIC finite-element code with the goal
of predicting the onset of material
instability in the U6Nb material. The
3-D shell shown in Figure 12 shows
pronounced strain localization (the
plastic strain reaches 1.0 in several
cells, whereas most of the hemishell
has a strain of about 0.6), resulting
from the unstable material character of
shock-processed U6Nb. The shell
expands axisymmetrically at small
times, while the material is still stable,
but quickly loses this symmetry and
exhibits 3-D effects as strain localiza-
tions develop. 

The simulation results are consis-
tent with our understanding of materi-
al instability and strain localization;
the critical strain at which the materi-
al loses stability increases as the hard-
ening modulus (the slope on the
stress-strain curve of Figure 1)
increases, and it decreases as the
magnitude of the flow stress increas-
es. The main effects of preshock on
U6Nb are to raise the initial flow
stress and to significantly reduce the
hardening modulus. Consequently, the
shock-hardened U6Nb becomes
unstable shortly after the detonation
wave loads the shell, and subsequent-
ly the strain localizes, and the shell
expands nonuniformly.
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Figure 11. Predicted Strain
Distribution of the Filled
Hemishell 
This calculation used as-received mate-
rial strength properties. The plastic
strain is the plotted field variable. The
results show fairly uniform deformation.

        



Experimental vs Simulation
Results. The EPIC predictions were
compared with the experimental
results from the corresponding filled-
hemishell test. Both proton radi-
ographs taken during shell expansion
and the fragments recovered follow-
ing the shots yield experimental
information on the onset of strain
localization. Figure 13 presents pro-
ton radiographs viewed normal to the
pole of the hemishell at different
times. Localized thinning is apparent
at an early time (8.2 microseconds)—
Figure 13(b). At a later time, these
localizations coalesce into an ultimate
fragmentation pattern—Figure 13(c).
Supporting fragment recovery experi-
ments that use a water medium have
yielded significant information on the
failure of the filled hemishell. In these
recovery experiments, the shell is ini-
tially immersed into water so that there
is no metal/water impact that could
induce additional material damage.
The recovered fragments represent an
approximation to the conditions at the
time at which fragmentation is com-
plete (the fragments are fully separated
from each other, as shown in the
16.8-microsecond radiograph of
Figure 13).
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Figure 12. Predicted Strain Distribution of the Preshocked Filled
Hemishell 
For this calculation, we used shocked material strength properties. Plastic strain is
the field variable indicated as color contours. Development of pronounced strain
localization is apparent.

Figure 13. Unstable Expansion of a Filled Hemishell Shown by Proton Radiographs
The proton radiographs taken during shell expansion yield experimental information on the onset of strain localization.
Localized thinning is apparent, which then develops into a fragmentation pattern at 16.8 µs.

(a) t = 0 (b) t = 8.2 µs (c) t = 16.8 µs

                  



A surface photograph of a recovered
fragment (Figure 14) reveals a free sur-
face sculptured by many strain-localized
features. Evidently, some strain localiza-
tions dominate and coalesce to form the
fragments, while the growth of others is
arrested as a natural consequence of the
competition among localizations to
accommodate the loading and boundary
conditions. Figure 15 shows a micro-
scopic side view of the fragment,
obtained by a cut on a plane normal to
the free surface. In regions distant
from localizations, the background
strains are relatively large at about
60 percent. Interestingly, the defects

(for example, grain boundaries, nio-
bium concentration bands, and car-
bide inclusions) that one might expect
to influence the strain localization dis-
tribution appear not to be responsible
for the initiation, or nucleation, of the
localization phenomenology.

The experimental data support the
computations qualitatively and, to
some degree, quantitatively. At
8 microseconds, strain localization is
evident in the experiment as thinning
occurs in small areas. The recovered
fragments show background strains of
about 60 percent, and this value com-
pares well with the predicted back-
ground strain at 8 microseconds, pro-
vided we assume that, when localiza-
tion begins, the background strain
ceases to increase and all the subse-
quent strain is concentrated in the
localizations. The validity of this
assumption remains to be checked.
Also, since the physical basis for the
nucleation of strain localization has
not been identified in the simulations,
we only expect the predicted distribu-
tion to roughly match the experimen-
tally determined spatial distribution of
thinned areas. 

In summary, the shell experiments
have validated our modeling and sim-
ulation capability to predict when a
metal will bifurcate into localized
strain, provided we have an accurate
mechanical representation at the rele-
vant conditions.

Conclusions

The Taylor cylinder impact test, the
plane-strain tensile test, and explosive-
ly driven hemisphere test represent
readily conducted experiments that
probe the deformation, damage evolu-
tion, and fracture behavior of materi-
als. Because these tests are very sensi-
tive to large gradients of stress, strain,
strain rate, and shock loading, we are
using them to evaluate and validate the
correctness of our mechanical models

that are implemented and destined to
be implemented into large-scale 3-D
simulation codes.

Robust models that capture the
physics of high-rate material response
are required for developing predictive
capability for highly dynamic events.
The increased effort to link experi-
ments and modeling within the compu-
tational mechanics community and the
increased emphasis on code verifica-
tion and validation within the Los
Alamos National Laboratory defense
programs are accelerating this develop-
ment. These efforts are already receiv-
ing recognition through the recent
establishment of verification and vali-
dation committees within various
technical societies. nn 
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Figure 15. Edge Micrograph of a
U6Nb Fragment 
This is a microscopic side view of the
fragment shown in Figure 14.

Figure 14. Photograph of a U6Nb
Fragment 
This photograph of a fragment recov-
ered with a water medium reveals a
free surface with many strain-localized
features.
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For further information, 
contact George T. Gray III (505) 667 5452
(rusty@lanl.gov).
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Complex Networks
The Challenge of Interaction Topology

Zoltán Toroczkai 

The roadways of Portland, Oregon.

Networks have recently become a paradigmatic way of representing complex 
systems in which the pattern of interactions between a system’s constituent parts
is itself complex and is evolving together with the system’s dynamics. Transport 
is the main function of these dynamic networks. It is therefore crucial that we
understand the coupling between the network structure and the efficiency and
robustness of the transport processes on the structure. Such understanding will
have a huge impact, allowing us to control signaling processes in the cell and to
design robust information and energy-transmission infrastructures, such as the
Internet or the power grid. However, achieving this type of understanding is rather 
challenging, because of the discrete and random nature of network topology. 
This article reports on some of our results that connect network dynamics and
transport efficiency. It also illustrates the power behind the ability to control the
topology of the interactions in the design of scalable computer networks.

      



Systems of many interacting par-
ticles typically exhibit complex
behavior. In most well-known

complex systems, the topology of the
interactions between particles can be
described by simple structures, such
as regular crystalline lattices or a con-
tinuum, and the complex behavior
arises from nonlinearity and nonlocal-
ity, which describe the nature of the
interactions themselves. There is,
however, a large class of systems
called complex networks, in which the
interactions are mediated not by a
continuum (or a simple regular struc-
ture) but by a complex graph, whose
structure may evolve as part of the
dynamics of the interactions.

Familiar systems in almost every
area of life form such complex net-
works. Here are a few examples:
transport and transportation infrastruc-
tures (electric power grids, water-
ways, natural gas pipelines, roadways,

airlines, and others) social interactions
(acquaintance networks, scientific col-
laboration networks, terrorist net-
works, sex webs, and others), commu-
nications networks (the World Wide
Web, the Internet, microwave back-
bone, and telephone networks), bio-
logical networks (metabolic networks,
gene regulatory networks, protein
interaction networks), and networks in
ecology (food webs). Although these
systems have been known for a while,
their complexity has been explored
only recently because the large data-
bases and the immense computational
power required to analyze network
data were almost nonexistent two
decades ago.

Even a cursory “look” at the struc-
ture of real-world networks creates a
breathtaking impression: These are
large objects containing thousands, or
sometimes, even hundreds of mil-
lions, of nodes with an intricate mesh

of connections among them. For the
last decade, the science of complex
networks has focused on describing
the structural complexity of real-
world network topologies. By looking
at the three images on these opening
pages, one can easily surmise, that
statistical and probabilistic methods
are essential to that description.
Today, the focus has expanded
beyond network structure to an
understanding of the relationship
between structure and dynamics and
the implications of that relationship
for network design. The first half of
this article traces the main ideas in
graph theory over the past two cen-
turies, which are at the basis of the
mathematical approach to networks,
and the second half is devoted to
some very recent developments: 
computer network design and the
connection between network 
dynamics and structure.
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The metabolic pathway. (Gerhard Michal:
Biochemical Pathways,1999 © Elsevier GmbH,
Spektrum Akademischer Verlag, Heidelberg.)

Macroscopic snapshot of Internet
connectivity (skitter data) with
selected backbone Internet service
providers. (This photo is courtesy of the
Lumeta Corporation.)

    



The Problem of the 
Königsberg Bridges

Network images can be quite strik-
ing. But one might question whether
thinking about complex systems in
terms of networks leads to more than
pretty pictures. Ironically, the funda-
mentals of the theory of network
structures were introduced by a blind
mathematician.

It all began with the puzzle of
seven bridges, an entertaining brain-
teaser for people who strolled through
Königsberg, the Prussian city at the
Baltic Sea, in the 18th century. The
river Pregel divides the city into four
land areas connected by seven
bridges. The burghers of Königsberg
wondered if one could visit all the
four areas by crossing each bridge
exactly once (see Figure 1).

The puzzle was solved in 1736 by
Leonhard Euler, who at the time, was
a mathematics professor in St.
Petersburg. The power of Euler’s
solution lies not in the answer itself
(which is negative) but in the way it
was derived. Euler’s revolutionary
idea was to represent the pieces of
land separated by bridges as the nodes
(dots) A, B, C, and D and to represent
the bridges as the edges (line seg-
ments) a, b, c, d, e, f, and g, connect-
ing the nodes (see Figure 2). The
structure formed by the set of nodes
and edges, called a graph, is a simpli-
fied representation of the puzzle,
encoding the relationships between
the pieces of land and the paths of
access between them (see Figure 2
inset). In this representation, the prob-
lem translates into the following one:
Find a path that visits all nodes but
passes through all edges exactly once.
Obviously, the intermediate nodes
must have an even number of incident
edges (if one visits an intermediate
node, one must also leave it).

Because the Königsberg puzzle has
4 (>2) nodes, all with an odd number
of edges, there can be no such path.
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Figure 1. The Königsberg Puzzle
This woodcut shows the ancient Prussian city of Königsberg (now known as
Kaliningrad) with its seven bridges across the river Pregel. The possibility of
strolling across the city by crossing each bridge once only became the object of a
famous brainteaser.

Figure 2. Euler’s Solution to the Königsberg Puzzle
A simple representation of the problem by a graph helps realize that there is no
such path that visits all nodes and passes through all seven edges exactly once.

                           



Euler’s representation of the relation-
ships between a discrete set of entities
as a graph led to the development of a
particular type of mathematical
nomenclature and ultimately to a new
field of discrete mathematics called
graph theory.

A Hard Problem: The
Ramsey Numbers

For nearly 200 years, graph theory
was concerned with topological
and/or geometrical properties of small
structures, or regular structures (such
as a lattice). Then, the 1951 seminal
paper by Ron Solomonoff and Anatol
Rapoport (1951) and the 1959–1960
series of papers by Pál Erdo″s and
Alfréd Rényi caused the rebirth of
graph theory. These papers introduced
the notion of a random graph and,
more important, that of graph ensem-
bles, which are sets of graphs that
share a given property Q. To under-
stand this notion, let us look briefly at
the famous Party Problem and the
Ramsey numbers. This problem,
inspired from social interactions, is
stated very simply:

What is the minimum number of
guests, R, one should invite to a party
that would surely have k people who
all know each other or k who do not
know each other (at all)?

For k = 3, it is easy to prove that
R(3) = 6. We will use Euler’s method:
Let us denote the six people by the
nodes A, B, C, D, E, and F. Let us
represent the fact that two people
know each other by drawing a red
link (or edge) between them and use a
blue edge to link two people who do
not know each other. Since pairs of
people either know each other or do
not, the graph obtained is complete,
which means that all possible edges
are drawn—see Figure 3(a).
Specifically, a complete graph with n
nodes, denoted here by Kn, always has
n(n – 1)/2 edges. The graph theoretic

version of the Party Problem is thus to
determine the minimum number of
nodes n, such that a complete graph
with n nodes and with edges of two
color always has at least one complete
subgraph of k nodes with all edges of
the same color. For k = 3, a complete
subgraph is a monochromatic triangle.

If there are n = 5 people present, one
can easily color a complete graph
with no such triangle present, ruling
out n = 5 by inspection.

For n = 6, however, there is always
at least one such triangle. To prove
this statement, let us assume the oppo-
site, namely, that there can be no such
triangles. Since for every node there
are n – 1 = 5 incident edges but only
two colors, there must be 3 edges of
the same color incident on the node.
For example, consider the edges AC,
AD, and AE in Figure 3(b) to be the
same color, for example, blue. Since
the triangles ACE, ACD, and ADE
cannot have all three of their edges of
the same color, CE, CD, and DE must
be red. Then CDE is a triangle all
with the same color edges (red), a
contradiction. Hence, R(3) = 6.

For k = 4, the answer is R(4) = 18,
which is hard to prove. For k = 5 and
higher, the answers are not known;
only some bounds exist. Although we
have no proof for k = 5, one might
think that we would surely be able to
use today’s supercomputers to find the
value of R(5). However, as Bollobás,
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Leonhard Euler
Leonhard Euler, the most prolific mathe-
matician of all times, was born in
Switzerland in 1707 and spent his life in
Berlin and St. Petersburg. Opera Omnia
is an incomplete collection of his works
that has 73 volumes, each over 600
pages in length.

Figure 3. The Party Problem for k = 3
Six is the minimum number of people that always contains a group of three, all of
whom either know each other (red links) or do not know each other (blue links). (a)
A complete graph for six people is shown. Note that it contains the complete sub-
graph CDE. (b) This figure demonstrates that there is no way to draw a complete
graph without constructing a complete single-color three-node subgraph within it.
Suppose that blue links indicate that A does not know C, D, or E. In that case, CD,
DE, and EC must be red links so that a complete blue subgraph should not be
formed. But then, as shown in (b), those three red links form a complete subgraph,
which means that C, D, and E know each other.

                                                                                      



an eminent graph theoretician, has
stated (1998) “…a head-on attack by
computers for R(5) is doomed to fail-
ure . . . .” This failure is largely due to
the combinatorial explosion in the
number of ways we can draw a com-
plete graph with n nodes using two
colors for the edges: On the face of it,
a computer would have to search a
total of 2n(n–1)/2 such graphs for com-
plete subgraphs with k nodes. For k =
3, when n = R(3) = 6, there are 215 =
32,768 complete graphs, for k = 4, the
analytic solution gives n = 18, which
means that there are 2153, or approxi-
mately 1.46 × 1046 graphs. For k = 5,
the best known bounds are 43 ≤ R(5)
≤ 49, which would mean approxi-
mately 2903 to 21176 graphs (or on the
order of 10301 graphs). For k = 5 and
n = 43, the “ultimate laptop” of Seth
Lloyd (2000), which operates at the
physical limit of computation (as
determined by the speed of light, the
Planck constant, and the gravitational
constant), performing f = 5.4258 ×
1050 operations per second, would
have to work for at least 2.693 ×
10213 years, a mighty long time (the
age of the universe is estimated to
be between 1.1 × 109 and 2 × 109

years).
So, can we hope ever to solve the

Party Problem? The key idea is to
understand how different colorings of
Kn relate to one another via transfor-
mations, which would allow us to par-
tition the set of two colorings of Kn
into a smaller number of classes and,
in the absence of a full mathematical
theory, to program the computer to
search for the monochromatic com-
plete subgraphs on the set of classes
instead of the full set. Although still
unsolved, intense activity in this area
led to a number of generalizations of
this problem and to the development
of a huge branch of mathematics, the
Ramsey theory (Graham et al. 1990).
That theory has a number of very
deep results that go well beyond
graph theory, affecting set theory in

the form of partition calculus, combi-
natorics, ergodic theory, logic, analy-
sis, algebra, geometry and computer
science. 

Ultimately, the Party Problem sug-
gests that, if we partition a set into a
fixed number of classes, order must
emerge for large enough sets. This
principle is also illustrated by van der
Waerden’s theorem (Bollobás 1998),
which states that, for a given k and p,
if we partition the first w integers into
k classes, we will always find a class
that contains an arithmetic progres-
sion with p terms for large enough w.
Problems like the Party Problem lead
to a simple conclusion: In order to
understand properties of graphs, one
has to think in terms of ensembles of
graphs that share a certain property, Q.

A Revolutionary Idea

The Hungarian mathematician Pál
Erdo″s was one of the main pioneers of
the ensemble approach. His complete
disregard for the notion of possession

and ownership and his habit of living
out of a suitcase and visiting one
mathematician friend after the next
were symptoms, perhaps, of his total
dedication to mathematics. Erdo″s is
considered by many to be the second
most productive mathematician of all
times, after Euler. Possibly the great-
est contribution of Erdo″s is his intro-
duction of the probabilistic method
in discrete mathematics. For graph
theory, this means that, instead of
asking for detailed properties of all
graphs in an ensemble, we are asking
for average properties, or the proba-
bility that a graph from an ensemble
has the property Q. The probabilistic
method was definitely not new when
Erdo″s introduced it to discrete math-
ematics: By the end of the 19th cen-
tury, Boltzmann, Gibbs, and others
had laid down the foundations of
equilibrium statistical mechanics,
which is based on applying the prob-
abilistic method to ensembles of
microstates and characterizing
macroscopic properties of the system
by the properties of the “typical”
microstates. This natural connection
between statistical mechanics and
graph theory is currently being
exploited by some research groups
worldwide, including the Statistical
Physics of Infrastructure Networks
team at Los Alamos. Besides the
combinatorial explosion in the num-
ber of possible graphs (or states),
there is a second strong reason that
calls for the use of the probabilistic
method: incomplete information.
Real-world networks, as we will see
from the following sections, are in
many cases very dynamic, with new
edges and nodes appearing and old
ones disappearing as a result of sto-
chastic processes. In addition, in
some cases, it is hard, or even impos-
sible, to identify precisely the graph
structure at a given moment. Again, a
good example is supplied by a prob-
lem related to social networks, name-
ly, the Gossip Problem:
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having produced over 1500 publications
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Suppose that person A in a set of N
people has a very interesting piece of
information or gossip. On average,
how many acquaintances must every
person in N have such that the gossip
becomes known to all?

Since we do not know who knows
whom, we determine the answer by
considering all graphs of N people
with the nodes representing the indi-
viduals and the edges representing the
acquaintanceships, or social links, for
transmitting gossip. In other words, if
persons A and B are linked and one of
them knows the gossip, we can
assume the other knows it too. The
answer to the Gossip Problem must
be probabilistic in nature: It is the
class of graphs having nodes with a
certain average number of links and
characterized by the property that
everyone knows the gossip in the
end. Erdo″s and Rényi came up with a
rather surprising solution: Once a
node has on average one link, the
gossip becomes known to all! In the
jargon of social scientists, the set of
people represented by that graph
forms a society. The class of graphs
that Erdo″s and Rényi introduced and
that helped give the answer is called
random graphs, a subject with a huge
mathematical literature. For a review,
see the book by Bollobás (2001).

The Binomial Random Graph.
Because we need it for later discussion,
we introduce the binomial random
graph G(N,p) and present some of its
properties. G(N,p) is a class of graphs
with N vertices, whose edges are
drawn at random and independently,
according to a uniform distribution
with probability p. Therefore, the
average number of links incident on a
node is λ = p(N – 1), or for large
graphs, it is approximately λ = pN.
Thus, according to the answer for the
Gossip Problem, when λ = 1, or the
probability for a node to have an edge
is p = pc = 1/N, a giant cluster, or
giant component, emerges that con-

tains most of the nodes, and the prob-
ability for a node not to belong to this
cluster decreases exponentially fast for
p > pc. Physicists call this phenome-
non percolation. Passing through pc
(by the process of increasing the aver-
age number of incident edges), the
network suffers a drastic change,
which is called a phase transition in
the language of physics.

We now introduce one of the most
important characteristics of random
graphs, namely, their degree distribu-
tion. The degree of a node x is the
number k(x) of incident edges on that
node. The degree distribution of the
binomial random graph G(N,p) is the
probability that the number of nodes
Xk with degree k is y. In a G(N,p), the
probability of a node being connected
to k specific other nodes and not con-
nected to the rest of N – 1 – k nodes is
pk(1 – p)N–1–k. Because the number of
ways to connect those k nodes is
equal to the binomial coefficient 

the probability of a node having
exactly k incident edges in G(N,p)
becomes

(1)

Note that, as edges are drawn inci-
dent to a node, that node will influ-
ence the number of edges around the
other nodes, and thus, in principle, the
distribution of Xk will not be exactly
the same as if all the nodes were inde-
pendent, and the calculation of the
exact form of the degree distribution
becomes a hard task. It was Bollobás
(2001) who showed that, for large
enough N, the nodes can be treated as
if they were independent, and thus,
with good approximation, the degree
distribution of G(N,p) is described by

the binomial distribution in Equation
(1). In the limit of N → ∞ and p → 0
such that λ = pN = constant, the bino-
mial goes into the Poisson distribu-
tion:

(2)

Figure 4 shows a comparison
between the formula in (2) and the
measured degree distribution for a
binomial graph of N = 20,000 nodes
and a link probability p = 20/N =
0.001. It shows that, indeed, the
approximation is good. The Poisson
distribution P(k) has a “bell curve”
shape, with a peak at λ = pN, and fast
decaying tails. The degree of a node
characterizes how a node “sees” its
immediate neighborhood in the net-
work. According to the formula in (2),
if we keep λ = pN a constant, while
increasing the size of the network, 
the distribution of edges in the 
immediate neighborhood of a node
becomes independent of N for large N.
However, keeping λ = pN a constant,
means scaling the link probability p
with N – 1. The average node degree is

and the standard deviation of the dis-
tribution around the average is

This result shows that the binomial
graph has a characteristic scale
defined by λ.

Real-World Networks

The latest revolution in networks
science happened toward the end of
the 1990s, when powerful computers
made it possible to gather and analyze
data for systems containing a large
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number of components: from the
World Wide Web and the Internet,
phone call networks, networks of
movie actors, large-company boards of
directors, scientific collaboration net-
works, language networks, crime
webs, epidemic networks, and the sex
web to biological networks such as the
metabolic network, protein interaction
networks, cell-signaling, and food
webs. The first important observation
is that most of these networks are very
different from the random graphs of
Erdo″s and Rényi. In hindsight, this
departure is not unexpected: In the
random graphs of Erdo″s and Rényi,
the edges are assumed to exist com-
pletely independently from each other,
whereas in real-world networks, the
existence of edges is typically condi-
tioned by nonindependent processes,
or constraints, such as spatial embed-
ding and interaction range depend-
ency. The real surprise is that, in spite
of their diversity, real-world networks
can be classified into a small number
of different classes of graphs, each
characterized by certain structural
properties of the interaction topology

in these systems. The most useful
properties for this purpose are degree
distributions, clustering, assortativity,
and shortest paths.
Instead of listing the classes of these
networks and enumerating their prop-
erties, we will discuss one ubiquitous
class, the so-called scale-free 
networks, originally introduced by
Albert-László Barabási. These net-
works have power-law degree distri-
butions (see Figure 5), as opposed to
the Gaussian or Poisson degree distri-
butions of random graphs (for exam-
ple, Figure 4). These real-world,
scale-free networks include the net-
work of movie actors, scientific col-
laboration networks, the sex web, the
metabolic network in the cell (on all
three levels of life—archaea, bacteria,
and eukaryotes), the protein interac-
tions network, the language network
defined by synonyms (in which case,
the nodes are the words, and the edges
connect the synonyms), and virtually
all large-scale information networks:
the Internet (router and also
autonomous domain level), the World
Wide Web, some e-mail networks and

phone call networks. Why do these
real-world networks have similar
degree distributions? Is there a univer-
sal mechanism that generates these
structures? The first crucial observa-
tion is that, in most cases, these struc-
tures result from dynamic processes
with a strong stochastic component,
just like the random graph model of
Erdo″s and Rényi. However, to deviate
from the random graph model, the
network evolution process must
include stochastic dependency and
bias. The question is then, “What sto-
chastic processes will generate scale-
free networks?” 

Most current models generating
scale-free networks identify a mecha-
nism for network growth and evolu-
tion. Among the notable ones are the
preferential attachment model of
Albert and Barabási (2002), in which
a newly arriving node connects to a
node in the existing network with
probability proportional to the current
degree of the node in the network; the
fitness-based network growth model
of Caldarelli et al. (2002); the Chung-
Lu model of power-law random
graphs (2002); the model of the World
Wide Web by Menczer (2002); the
initial attractiveness model of
Dorogovtsev et al. (2000); and others.
Although these models produce
graphs that have power-law degree
distributions, they either have been
built for a specific type of network
(for example, the model by Menczer)
or are mathematical abstractions in
which the stochastic network-growth
process has little to do with the actual,
often quite complicated, evolution
mechanism of the real-world network.
The stochastic dynamics for the
appearance and disappearance of
Internet routers, which has many
unknown factors, is another example.
Most real-world networks are also
strongly coupled to other networks or
other large-scale complex systems,
and thus, in order to identify the net-
work evolution mechanism, one can-
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Figure 4. The Degree Distribution of the Binomial Random Graph
The red circles show the degree distribution, or Xk/N, the fraction of nodes with k
links vs k, for a single instance of the binomial random graph G(N,p) with the num-
ber of nodes N = 2 ×× 104 and the probability for a link to exist between two nodes
being p = 10–3. The continuous black line is a plot of the Poisson distribution P(k) in
formula (2) with λλ = pN = 20. Note the similarity between the two distributions.

                                            



not study these networks in isolation.
To add to the complexity of the prob-
lem, the evolution of the network
structure can depend on the dynamics
or flow on the network. Most studies
of complex networks have been static
and structural as they try to identify
their graph-theoretic properties. It has
become clear, however, that, to solve
even this problem, we must look at
the full dynamics of the complex net-
work, that is, at the flow on these

structures and the coupling of the
flow to the structural evolution.

The Problem of Epidemics.
Before presenting some recent results
that take into account the coupling
between structure and dynamics, I
will briefly mention an interesting and
important real-world problem that is
complex in the sense mentioned
above. I am referring to epidemics, or
disease propagation in living popula-

tions, a topic heavily studied at Los
Alamos in the past decade. The usual,
classic approach to epidemics imposes
a number of assumptions that make
analytic and numerical treatment rela-
tively straightforward; however, at
least in some cases, that approach
may cause a departure from reality.
One such assumption is uniform mix-
ing, whereby the individuals of a pop-
ulation are assumed to come in con-
tact with equal probability, independ-
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Figure 5. Degree Distribution of Various Scale-Free Networks
(a) Shown here is the cumulative degree distribution for citation networks (after Redner 1998); (b) the sex web (after Liljeros et
al. 2001); (c) the Internet at the router level (after Faloutsos et al. 1999); (d) the in-link and (e) out-link degree distributions for the
World Wide Web (after Albert et al. 1999); and (f) the metabolic networks for three species (after Jeong et al. 2000). [Plot (a) is courtesy

of the European Physical Journal B. Plot (c) is courtesy of Computer Communication Review, ACM Publications 1999. Plots (b), (d), (e), (f), (g), and (h) are courtesy of Nature.]
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ent of their locations. In order to relax
this assumption, we observe that con-
tact processes, such as disease trans-
mission, are well localized in space
and require that the two or more indi-
viduals be no farther apart than some
typical distance characteristic of the
disease transmission process. In heav-
ily populated urban areas, disease is
usually transmitted within such loca-
tions as buildings and mass transit
areas (waiting areas and mass transit
cars). Using census data and mobility
diaries that specify the times of
entrance and exit to and from a loca-
tion for all locations that a specific
person visited during the day, one
obtains a graph that has the desired
detailed resolution for contact patterns
between people moving around in an
urban area. This movement is largely
constrained by the roadway network
and the traffic on it. Since the road-
way network is itself a complex net-
work, the disease transmission prob-
lem is that of coupled complex
dynamic networks (see Figure 6).

In this network, there are two
types of nodes: people and locations,
and an edge is drawn between a per-

son and a location if that person vis-
ited that location during the day. The
edge has a weight associated with it,
called “timestamp,” which is the
union of time intervals during which
the person was at that location. What
can we learn, analyzing such a net-
work, pertinent to disease outbreaks
in a city? How can knowledge about
this network be exploited to design
effective vaccination and quarantine
strategies? Conclusions for the spe-
cific case of Portland, Oregon, with
approximately 1.6 million people and
181,000 locations can be found in
Eubank et al. (2004).

Scale-Free Networks:
Coincidence or Universality?

This section presents a different
approach to understanding the emer-
gence of the scale-free property for
real-world networks. As mentioned
previously, so far no one has found an
obvious universal mechanism leading
to power-law degree distributions for
real-world networks. We actually sug-
gest that, for a large class of networks

(to be specified below), there is no
universal evolutionary mechanism.
Instead, the network structure evolves
according to a selection principle that
promotes the global efficiency of
transport and flow processing through
these structures (Toroczkai and
Bassler 2004). In other words, regard-
less of the specific evolutionary
mechanism, that mechanism works
within the constraints of the selection
principle. And the operation of the
selection principle on evolution often
results in scale-free networks.

Most real-world networks (except
those that are defined by artificial
associations) serve as transport sub-
strates for various entities such as
information, energy, material, and
forces. Some networks have evolved
spontaneously (without global
design), and it makes sense to enquire
whether their dynamics obey a selec-
tion principle toward some kind of
optimal or efficient behavior. Such a
principle would be analogous to the
one of natural selection that shapes
both the biological networks at the
cellular level and the food web.

Looking at the Internet, we note
that, if a router receives too much
traffic and causes constant congestion
of the packets, engineers will fix the
problem locally by bringing up more
routers or modifying the routing algo-
rithm. Similarly, in social networks, if
an acquaintance does not satisfy our
expectations about some set of social
norms, that link will “naturally” be
dropped from our own social network.

To explore this trend toward effi-
ciency more formally, we first need to
define a flow process on the network.
Among the most ubiquitous flow
processes in Nature are those generat-
ed by local variations, or gradients, of
scalar quantities. Particle concentra-
tion, temperature, electric or gravita-
tional potential, and pressure are just a
few examples. The gradient-induced
flow processes include granular flow,
fluid flow, electric current, diffusion
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Figure 6. The Roadways of Portland, Oregon 
The roadway network of Portland forms the substrate for a coupled complex dynam-
ic network to simulate movements and disease transmission in this highly populat-
ed urban area. (This image is courtesy of the TRANSIMS Project at Los Alamos.)

      



processes, heat flow, and so on.
Naturally, the same local-gradient
mechanism will generate flows in
complex networks. Two less obvious
local-gradient examples are diffusive
load balancing schemes used in dis-
tributed computation (Rabani et al.
1998), which are also employed in
packet routing on the Internet, and the
reinforcement learning mechanism in
social networks with competitive
dynamics (Anghel et al. 2004).  In the
first example, a computer (or a router)
will ask its neighbors on the network
for their current job load (or packet
load), and the router will balance its
load with the neighbor that has the
minimum number of jobs to run (or
packets to route). In this case, the
scalar is the negative of the number of
jobs, or packets, at nodes, and the
flow will be along the direction of the
gradient of this scalar in the node’s
network neighborhood. In the second
example, a number of agents/players
in the social network play an interac-
tive competition game with limited
information. At every step of the
game, each agent has to decide whose
advice to follow before taking an
action (such as placing a bet), in its
circle of acquaintances (network
neighborhood). Typically, an agent
will try to follow the advice of that
neighbor who in the past proved to be
the most successful in predicting the
game. That neighbor is recognized by
using a scoring mechanism, which is
the simplest form of reinforcement
learning: Every agent has a success
score that changes in time, coupled to
the game’s evolution. An agent will
follow the advice of that agent who
has the highest score in its network
neighborhood at that moment (Anghel
et al. 2004). In this case, the scalar is
the past success score of the agents,
and an agent will act based on the
information received along the link
that is in the direction of the gradient
of this scalar.

To construct a simple and general

model of a transport process, we
assume that there are N nodes and
that the transport takes place on a
fixed substrate network S(V, E),
where V is the node set and E is the
edge set that describes the intercon-
nections of the nodes. Associated
with each node i, there is a scalar hi
that describes the “potential” of the
node. Then a gradient network G can
be constructed as the collection of
directed links that point from each
node to the nearest neighbor on the
substrate network S that has the high-
est potential (see Figure 7). Thus,
only one directed link points away
from each node in G, and G consists
of N directed links. Note that, if the
potential of a node is higher than the
potential of all its nearest neighbor
nodes, the gradient link of that node
is a loop that points back to itself
(“self-loop”). In general, the potential
for each point can evolve in time, and
as a result, the gradient network G

will be time dependent. If we further-
more assume that all links have the
same conductance, or transport prop-
erties, the gradient network will
describe the instantaneous substruc-
ture carrying the maximum flow.
Consequently, we can hope to use
gradient networks as a tool to analyze
the flow efficiency or susceptibility to
jamming on the corresponding sub-
strate networks.

Note that, if there are two or more
nodes in the network neighborhood
of a node i that share the maximum
value, the gradient in i is called
degenerate. If each neighborhood
has only one maximum, it is called
nondegenerate, and is easier to ana-
lyze. In the discussions below, we
will restrict ourselves to the nonde-
generate condition, which is easily
realized if, for example, the scalars
are continuous random variables.
Since every node has exactly one
gradient direction from it (even f it
is a self-loop), G has exactly N
nodes and N edges (and there is at
least one self-loop, corresponding to
maxi{hi}). A simple but very impor-
tant property of nondegenerate gra-
dient networks is that they form
forests, that is, each gradient net-
work is a collection of tree graphs
containing no loops (except for self-
loops). We can therefore hope to
analyze network flow processes
using the techniques of statistical
mechanics that have been well
developed for treelike structures.

Gradient Networks on Random
vs Scale-free Networks. Let us first
consider a gradient network for a ran-
dom graph substrate S. In particular,
we choose for S the binomial random
graph, G(N,p) consisting of N nodes,
each pair of nodes being linked with
probability p. We next assume that the
scalar potentials of the various nodes
are independent random variables
identically distributed according to a
distribution η(h). The distribution of
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Figure 7. Definition of a Gradient
Edge
The gradient edge is a directed link
from node i to that neighbor on the sub-
strate graph that has the largest value
of the scalar in the neighborhood of i. If
i has the largest value, then the gradient
edge is a self-loop.

                                                                        



the number of links l pointing to each
node, the so-called in-degree distribu-
tion R(l) of the gradient network G,
can be exactly calculated, and it yields
the following expression:

(3)

Thus, this in-degree distribution is
independent of the particular form of
the distribution for the scalar poten-
tials η(h). It is possible to show that
in the limit N → ∞ and p → 0 such
that Np = λ = constant >> 1, the
expression in Equation (3) becomes
the power law R(l) ≈ 1/(λl), with a
finite-size cutoff at lc = z; refer to
Figure 8(a). Therefore, in this limit,
gradient networks are scale-free
graphs (up to their cutoff)! This
power-law degree distribution for the
gradient network is a rather surprising
result because, in the same limit, the
substrate graph S is a binomial ran-
dom graph having a Poisson degree
distribution with a well-defined aver-
age degree λ (setting the scale of the
substrate graph), as well as rapidly
decaying tails.1

If, instead, the substrate network S
is a scale-free graph, the gradient
graph will still have a power-law
degree distribution. Figure 8(b) com-
pares degree distributions P(k) for
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1A similar finding was reported by
Lakhina et al. (2003), who repeated on
binomial random graphs the trace-route
measurements used to sample the struc-
ture of the Internet. Lakhina and col-
leagues found that the spanning trees
obtained in this way have a degree distri-
bution that obeys the 1/k law. Later,
Clauset and Moore (2003) have presented
an analytical approach to derive the 1/k
law. This approach suggests the possibil-
ity of mapping between graphs generated
by trace-route sampling and gradient net-
works. Although it is not an exact map-
ping, a close connection can indeed be
made by interpreting trace-route trees as
suitably constructed gradient networks.

Figure 8. Gradient-Graph Degree Distributions for Random and 
Scale-Free Substrate Networks
(a) The in-degree distribution is shown for the substrate binomial random graph
G(N,p), where N = 1000, and p = 0.1 (z = 100). The numerical values are obtained
after averaging over 104 sample runs. (b) The in-degree and degree P(k) distribu-
tions are for the substrate Barabási-Albert scale-free graph with parameter m (m =
1, 3). In this case N = 105, and the average is performed over 103 samples.

                                                                         



scale-free substrate networks, which
we generated by the Barabási-Albert
network with parameter m (minimum
degree, see Albert and Barabási 2002)
with the in-degree distributions for the
corresponding gradient networks. One
immediate conclusion is that the gra-
dient network is the same type of
structure as the substrate. In this case,
it is a scale-free (power-law) graph
with the same exponent.

Flow Properties on Random vs
Scale-Free Networks. Using the
properties of gradient networks, we
can define a transport characteristic
related to congestion or jamming in
the substrate network. In particular,
we compare the average number of
nodes with in-links with the average
number of nodes with out-links. If
Nl

(in) denotes the number of nodes
with l in-links, the total number of
nodes receiving gradient flow will be

The total number of gradient out-links
is simply Nsend = N because every
node has exactly one out-link.
Naturally, the ratio Nreceive/Nsend will
be related to the instantaneous global
congestion in the network. The small-
er the number of nodes receiving the
flow (given the same number of
senders), the more congestion is in the
substrate network at that instant. If the
flow received by a node requires a
nonzero processing time (such as
routing of a packet by the router), a
small ratio of Nreceive/Nsend translates
into large delay times and thus ineffi-
cient flow processing. Let us define
the congestion (or jamming) factor as
follows:

(4)

where 〈 〉n means averaging over the
disorder in the network structure and 
〈 〉h means averaging over the ran-
domness in the scalar field. The value
of J is always between 0 and 1, with J
= 1 corresponding to maximal conges-
tion and J = 0 corresponding to no
congestion. Note that J is a congestion
pressure characteristic generated by
gradients rather than an actual
throughput characteristic. For a bino-
mial random substrate network
G(N,p), we use Equations (3) and (4)
to obtain the corresponding jamming
factor:

(5)

In the scaling limit N → ∞ and p =
constant, the jamming factor assumes
the asymptotic behavior

That is, the random graph becomes
maximally congested. It is easy to
show that, in the other limit, when 
z = Np >> 1 is kept constant while 
N → ∞,

Once again, the random graph asymp-
tomatically becomes maximally con-
gested, or jammed.

For scale-free networks, however,
the conclusion about jamming is
entirely different. We find that the
jamming coefficient J becomes inde-
pendent of N, and it is always a 

constant less than unity for large 
networks. In other words, scale-free
networks are not prone to maximal
congestion. (This is true for all
power-law networks for which the
average degree does not grow with
N.) Figure 9 shows the congestion
factors as a function of network size
for random and scale-free substrate
networks. Many real-world networks
evolve more or less spontaneously
(for example, the Internet or the
World Wide Web), and they can reach
sizes of about 108 nodes. At such
large N, the scaling limit studied
above applies, and random networks
have maximal congestion. Thus, such
substrates are very inefficient for
flow processing. Scale-free networks,
on the other hand, have congestion
that stays bounded away from unity
as the number of nodes grows very
large, and they are therefore much
more efficient substrates for transport
and flow processing. Thus, it appears
that the scale-free property of many
real-world networks is not accidental.
Topology may develop quite naturally
from a selection rule that tends to
maximize the global efficiency of the
flow along the network.

Small-World Magic:
Synchronized Computing

Networks

We have seen that many real-world
interactions are mediated across com-
plex network topologies and that the
structure and dynamics of those com-
plex networks are becoming better
understood. It is therefore natural to
wonder whether network concepts can
be put to practical use. For example,
can those concepts help us design 
systems that exhibit certain desired
properties? In this last section of the
article, I will show how complex net-
work concepts were used to solve a
problem in distributed, or parallel,
computation.
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We consider the class of systems
made of a large number of interacting
elements or individuals, each having a
finite number of attributes, or local
state variables, that can assume a
countable number (typically finite) of
values. The dynamics of the local
state variables are discrete events
occurring in continuous time, and the
interactions between individuals, or
elements, have a finite range. There
are many examples of such systems:
magnetic systems, epidemics, some
financial markets, wireless communi-
cations, queuing systems, and so on.
Virtually all agent-based systems can
be considered to belong to this class
of discrete-event complex systems.
Often, the dynamics of such systems
is inherently stochastic and asynchro-

nous. Simulating the systems is 
nontrivial, and in most cases, the
complexity of the problem requires
the use of distributed computer archi-
tectures. These problems define the
field of parallel discrete-event simu-
lations (PDES). 

Conceptually, the computational
task is divided among N processing
elements (PEs), each of which evolves
the dynamics of the allocated piece of
the system. Because of the interac-
tions among the individual elements
of the real system (spins, atoms, pack-
ets, calls, and so on), the PEs must
coordinate with a subset of other PEs
during the simulation.

At present, large parallel comput-
ers for performing PDES have thou-
sands of nodes and soon will have

tens of thousands: the Nippon Electric
Company’s 5120-node Earth simula-
tor producing 35.86 teraflops, the
8192-node Q-machine at Los Alamos
with 13.88 teraflops, Virginia Tech’s
X machine, which is a 2200-node
apple G5 cluster with 10.28 teraflops,
and so on. IBM is currently building
the Blue Gene/L parallel computer
with 360 teraflops and 65,000 nodes.
Blue Gene/P, the next-generation
computer, is expected to surpass the
petaflop barrier in 2006.

The design of efficient, scalable
update schemes for performing PDES
on these large parallel computers is a
rather challenging problem because
the simulation scheme itself becomes
a complex system whose properties
are hard to deduce using classical
methods of algorithm analysis.
Korniss et al. (2003) introduced a less
conventional approach to analyzing
the efficiency and scalability of paral-
lel discrete-event simulation schemes.
The authors constructed an exact
mapping between the parallel compu-
tational process itself and a nonequi-
librium surface growth model. As a
result, questions about efficiency and
scalability can be mapped into certain
topological properties of this nonequi-
librium surface. Then, using methods
from statistical mechanics, we can
solve the scalability problem of the
computation PDES schemes. We now
briefly sketch the scalability problem
and its solution.

In order to simulate the dynamics
of the underlying system, the PDES
scheme must track the physical-time
variable of the complex system. In
case of asynchronous dynamics on
distributed architectures, each PE gen-
erates its own physical (also called
virtual) time τ, which is the physical
time variable of the particular compu-
tational domain handled by that PE.
Because of the varying complexity of
the computation at different PEs, at a
given wall-clock instant, the simulat-
ed, or virtual, times of the PEs can
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Figure 9. Congestion Factors for Random and Scale-Free Substrate
Networks 
Congestion factors are shown as a function of size for random graphs and scale-
free networks. For random binomial graph substrates, the jamming coefficient tends
to unity with increasing network size, indicating that these networks will become
extremely congested in this limit. For scale-free substrates, however, the congestion
factor becomes independent on the network size, and thus arbitrarily large networks
can be considered without increasing their congestion level.

        



differ, a phenomenon called “time
horizon roughening.” Let us denote
the virtual time at PEi measured at
wall-clock time t by τi(t). The set of
virtual times {τi(t)}

N
i=1 forms the vir-

tual time horizon of the PDES scheme
after t parallel updates. In conserva-
tive PDES schemes, a PE will per-
form its next update only if it can
obtain the correct information from its
neighbors to evolve the local configu-
ration (local state) of the underlying
physical system it simulates without
violating causality. Otherwise, it idles.
Specifically, the PEi can only update
(become “active”) at wall-clock
instant t if

(6)

That is, the PE’s virtual time is a local
minimum among the virtual times of
its neighboring PEs (specified as the
set <i>). Once the PE at site i can
update, it will advance its local simu-

lated time to the new value τi(t + 1),
and the process is repeated for all
active sites, generating the dynamics
of the virtual time horizon {τi(t)}

N
i=1.

The average of the time horizon after
t parallel steps is obviously

Thus, the rate of progress of the time
horizon average, or the average uti-
lization of the PEs 〈u(t)〉 = 〈τ

_
(t + 1)〉

– 〈τ
_

(t)〉 is proportional to the number
of nonidling, or active, PEs. The aver-
age 〈·〉 is taken over the stochastic
event dynamics. The PDES scheme is
computationally scalable if there is a
constant c > 0, such that

(7)

That is, the average rate of progress of
the time horizon does not vanish even

after very long times, as the simulated
system size and, therefore, the number
of PEs are taken to infinity.

We solved this computational scal-
ability problem by drawing an analogy
with the statistical mechanics of non-
equilibrium surface-growth processes.
Thin films are grown on solid sub-
strates by deposition of atoms or mol-
ecules from surrounding vapors.
Because the vapors are fairly hot, the
atoms reaching the solid surface fol-
low a stochastic path until they are
incorporated into the surface, typically
in an irregular fashion. The resulting
thin film has mounds and valleys that
can be described by the fluctuations of
the local height variable h(x,t) of the
film measured from the surface of the
substrate. Using an approach based on
the Langevin equation, physicists have
developed extended theoretical
machinery to describe the statistics of
the fluctuations of the variable h(x,t).
The simulated time variable τi(t) in
the computational scalability problem
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Figure 10. A Fully Scalable Small-World PDES Scheme
The small-world PDES scheme is fully scalable. By introducing more shortcuts into the communication network (increasing p),
the algorithm becomes measurement scalable (a), and it stays computationally scalable (b).

                                                                                      



behaves much like the surface height
variable h(x,t) in that τi(t) evolves
according to the stochastic update
dynamics of the PDES scheme with
the index i of the PE corresponding to
x in the height variable. In many large
complex systems, the dynamics of the
stochastic events can be characterized
by a Poisson distributed stream. This
means that, when simulating such sys-
tems, the updates at individual PEs
correspond to adding height incre-
ments that follow a Poisson distribu-
tion. Using statistical mechanics
methods to analyze the resulting 
surface-growth model, one can show
that the fluctuations of the virtual
time horizon in the continuum limit
can be described by the so-called
Kardar-Parisi-Zhang (KPZ) equation
of surface growth:

(8)

where τ̂ is a coarse-grained form of
the virtual-time variable and η is a
white noise term.2 We then use the
KPZ equation to verify that the uti-
lization of the PEs satisfies Equation
(7). The existence of a constant c > 0,
as in (7), is the result of the slope-
slope correlations of the surface being
short ranged and not scaling with N.
Our numerical evaluation of this con-
stant yields c = 0.2461 ± (7 × 10–6),
which shows that the basic conserva-
tive PDES scheme is indeed computa-
tionally scalable. 

There is, however, a fundamental
problem with the basic PDES update
scheme. The KPZ equation for the
time horizon fluctuations predicts that
the average spread of those fluctua-
tions, w2(N,t), diverges with an
increasing number of processing 

elements N in the long time limit 
(t → ∞). Therefore, if we try to meas-
ure a global property of simulated
system at a given simulated time τ
and wait until all processors have sim-
ulated their local state corresponding
to that time, the waiting period in
wall-clock time would diverge with
the number of processing elements! 
In other words, even though a parallel
computer with infinitely many pro-
cessing elements can simulate the
dynamics of an infinitely large system
at nonzero speed (computational scal-
ability), the basic PDES scheme could
not produce a single measurement of
the global state of the system! The
basic conservative scheme is compu-
tationally scalable but measurement
nonscalable.

How can we surmount this prob-
lem? Can the PDES scheme be modi-
fied such that the new update scheme
is also measurement scalable? The
answer is affirmative, and the key to
the solution is the notion of the small-
world property of complex networks
(Korniss et al 2003).

In order to decorrelate the fluctua-
tions in the time horizon, we modify
the update topology in the following
way: for every node i, we assign a
randomly chosen communication link,
r(i). According to its definition, the
resulting communication topology (a
regular lattice plus random links)
forms a small-world 
network. When a node is allowed to
update—its virtual time satisfies the
condition in (6)—it will make, with
probability p, an extra check for the
condition τi(t) ≤ τr(i)(t) and update if
that condition is satisfied. With proba-
bility 1 – p, it will make this extra
check and thus behave as the basic
PDES scheme. Here p has the role of
a tuning parameter: For p = 0, we
have the basic PDES scheme, whereas
p = 1 corresponds to the fully scalable
small-world PDES scheme. Note that
these extra checks do not affect the
correctness of the simulation, and

causality is preserved in just the same
way. These checks only synchronize
the PEs. Using the same coarse-grain-
ing methods as for the basic PDES
scheme, we now find that the time
horizon fluctuations are described by

(9)

with γ(0) = 0 and γ(p) > 0 for
0 < p ≤ 1. This equation differs from
Equation (8) in the strong damping
term, –γ(p)τ̂ , which is ultimately
responsible for the nondivergence of
the average spread, and thus the new
update scheme is measurement scala-
ble as shown in Figure 10.

Concluding Remarks

The list of problems, challenges, and
applications that I presented above is
rather biased toward my particular
research interests, and it is not, by far,
exhaustive of this area. My goal was to
give the reader a feeling for the type of
complexity one encounters when deal-
ing with networks. I also wanted to
show that this is a novel area with many
interesting and potentially powerful
applications awaiting discovery. n
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Models of the Retina with Application
to the Design of a Visual Prosthesis

Garrett T. Kenyon, John George, Bryan Travis, and Krastan Blagoev

The retina, the neuronal layer at the back of the eyeball, is one of the
most studied parts of the central nervous system, yet many

aspects of its function remain a mystery. Does the retina
extensively process incoming light signals before

sending them to the brain, or does it serve
primarily as a passive conduit?
Experiments measuring retinal

responses and subsequent detailed com-
puter modeling have led to a novel con-

jecture, which may be significant in
designing a sophisticated retinal prosthesis.

Clinical studies are under way to
test the first primitive visual pros-
thetics. Prototype devices consist of
microelectrodes implanted in the retina
and stimulated by a video system embedded
in a special pair of glasses. The prosthetic
stimulates the array of ganglion cells on the
inner surface of the retina either directly or by
activating their synaptic inputs, thereby causing them to fire
action potentials that propagate along the optic nerve to processing 
centers in the brain. Creating firing patterns that match those produced 
in the healthy retina by natural visual stimuli is the foremost challenge 
confronting the development of a retinal prosthesis.

Rods and cones
destroyed by
disease

Video camera in
frame of glasses

Video camera 

Ganglion 
cells



Some forms of adult-onset blind-
ness are characterized by a mas-
sive loss of photoreceptors but a

relative sparing of fibers in the optic
nerve. Recent clinical studies suggest
that patients suffering from such visu-
al impairments could benefit from a
prosthetic device capable of stimulat-
ing the remaining retinal neurons and
thereby mimicking the function of the
missing rods and cones. A retinal
prosthesis is illustrated conceptually
on the opening page of this article.
The light transduction role of the
damaged or missing photoreceptors is
performed by a video camera attached
to a pair of specially configured eye-
glasses worn by the patient. The video
image is processed and then transmit-
ted, through a cable or some form of
wireless telemetry, to a multielectrode
array attached to the inside surface of
the retina. Stimulating the multielec-
trode array in an approximately one-
to-one spatial correspondence with the
video image will hopefully produce
patterns of neural activity in the optic
nerve similar to those produced by an
undamaged retina during normal
vision. Preliminary studies, in which a
crude prototype of the above design
was used, yielded encouraging results
(Humayun et al. 2003). Other strate-
gies for a retinal prosthesis—particu-
larly the insertion of a standalone
photodiode array between the retina
and the back of the eye—are being
investigated as well. For a recent

review, see Margalit et al. (2002).
A consortium of DOE laboratories

is working on a number of difficult
technical problems that must be
solved before a functional retinal pros-
thesis becomes widely available. Here,
we describe computer modeling stud-
ies that have two goals regarding the
optimal design of a retinal prosthesis:
(1) to discover how visual information
is processed and encoded by retinal
circuitry, discussed in the main article,
and (2) to improve our understanding
of how retinal components, at the
level of individual cells and across
interconnected circuits, are activated
by specific spatiotemporal patterns of
electrical stimulation, discussed in the
box, “Modeling Stimulation by a
Retinal Prosthesis” on page 122.
Understanding how the retina encodes
visual information and how surviving
elements in the diseased retina react to
external stimulation is critical to
achieving maximal therapeutic benefit
from a prosthetic device.

Attempts to develop computer
models of the retina benefit greatly
from a large existing knowledge base.
The anatomy and physiology of the
retina have been extensively studied,
especially in comparison with many
other parts of the central nervous sys-
tem. Moreover, the inputs and outputs
of the retina have been well character-
ized. Because it receives no major
feedback from the brain, the retina
can be studied as a standalone circuit.
Thus, we use experimental data to
constrain our computer simulations of
the retina to an extent not possible
when modeling more central brain
areas. Nevertheless, our studies may
provide valuable insights into the
design of neural prosthetics for other,
less-accessible brain regions and may
suggest new image-processing strate-
gies for computer-vision systems.

The Retina

The retina consists of several lay-
ers of cells at the back of the eye that
collectively are responsible for the
transduction and preprocessing of
visual signals (Figure 1). In photomi-
crographs of retinal cross-sections,
several processing layers can be dis-
tinguished. In patients with certain
forms of adult-onset blindness, the
outermost photoreceptor layer is near-
ly or completely degenerated, whereas
some fraction of neurons in the inner
retina, particularly the ganglion cells
whose axons make up the optic nerve,
are spared to some extent. Such
patients are potential candidates for a
retinal prosthesis. However, before a
prosthetic device can be optimally
used, it is vital to understand how
visual information is encoded in the
pattern of electrical impulses traveling
down the optic nerve.

The output of the retina, and
indeed of most neurons in the central
nervous system, cannot be classified
in conventional electrical engineering
terms as either analog or digital;
rather, neuronal output consists of a
temporal sequence of impulses, or
spikes (see Figure 2). It is therefore
vital to understand how visual infor-
mation is encoded in spike trains trav-
eling down the optic nerve. In the
absence of stimulation, most ganglion
cells fire spikes randomly at a back-
ground rate much lower than their
maximum firing frequency. The con-
ceptual diagram in Figure 2 depicts
the spike trains from two clusters of
neighboring ganglion cells. Clusters
are indicated rather than single gan-
glion cells both to justify the high sig-
nal-to-noise ratio illustrated in the fig-
ure and to take into account the spa-
tial convergence of optic-nerve fibers
onto target neurons deep within the
brain. When a cluster is stimulated by
a small spot roughly equal in size to
the excitatory portion of the receptive
field (the local region of the visual
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space to which the indicated group of
cells best respond), the firing rate, that
is, the average number of spikes per
time interval, increases markedly in
proportion to the contrast between the
spot’s intensity and the light intensity
immediately surrounding the spot.
Regardless of the stimulus intensity,
however, the timing of the individual
spikes in response to a small spot
remains more-or-less randomly dis-
tributed such that the spikes elicited
by two small spots will typically be
entirely uncorrelated. The observation
that the mean firing rate is proportion-
al to the stimulus intensity while the
spikes themselves are distributed ran-
domly in time is the basis for the rate-
code hypothesis, which posits that
information is transmitted only by 
the mean number of spikes per time
interval irrespective of their precise
timing.

There is evidence, however, that
the rate-code hypothesis is incom-
plete. As the size of the two spots
increases, the total number of spikes
per time interval is reduced somewhat

by lateral inhibition, but the most
striking effect is the appearance of an
oscillation in the firing rate, causing
spikes to occur in relatively narrow
clusters, or bursts. The phase of the
underlying oscillation drifts randomly
over time, so that the bursts evoked
by separate spots will rapidly become
uncorrelated even if both sets of neu-
rons are modulated at a similar fre-
quency. Remarkably, when the two
groups of neurons are stimulated by a
single large spot, the groups’ underly-
ing oscillations become strongly
phase-locked, suggesting that the rela-
tive timing of spikes in the optic
nerve can convey information about
the spatial connections of features in
the visual field. Such information is
not conveyed by the local firing rate.
To better illustrate the above encoding
principles, it is useful to examine real
physiological data. Figure 3 shows an
intracellular recording from a retinal
ganglion cell in response to a sinu-
soidally varying light intensity. In
Figure 3(a), the intensity of the light
is shown as a function of time.

Conceptually, the recorded trace in
Figure 3(b) can be divided into two
parts: a subthreshold membrane
potential, exhibiting an approximately
sinusoidal modulation, and action
potentials, or spikes, which are the
large impulses riding on top of the
subthreshold membrane potential.
This potential is not available to the
brain because it represents the analog
component of the response that is
most directly proportional to the inci-
dent light intensity. Only the spikes
riding on top of this potential are
transmitted through the optic nerve to
relay nuclei within the brain. Because
each spike is, to a first approximation,
identical to every other spike, infor-
mation can be conveyed only by the
temporal sequence of the spikes. To
reveal the information embedded in
experimentally recorded spike trains,
neuroscientists typically average over
many stimulus trials. The response
histogram, obtained by combining
spike trains from many stimulus trials,
shows that the average firing rate of
the recorded ganglion cell is roughly
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Figure 1. The Retina
(a) Located at the back of the eyeball, the retina consists of many types of neurons arranged in a layered structure. The light-
sensitive cells (photoreceptors—rods and cones) are in the outermost layer, farthest from the incoming light. In front of the pho-
toreceptors are neurons that perform specialized processing. At the innermost layer are ganglion cells whose axons make up
the optic nerve. (b) A photomicrograph of a cross section of the retina reveals those distinct processing layers.
(Courtesy of Webvision http://webvision.med.utah.edu/ at the Moran Eye Center.)

    



proportional to the applied light inten-
sity, except for an approximately 90°
phase advance, which reflects the fact
that the cell is sensitive to the rate of
change of the light intensity, and a
negative cutoff due to the fact that the
firing rate cannot drop below zero—
see Figure 3(c). According to the
rate-code hypothesis, the multitrial
rate histogram fully characterizes the
information conveyed by neural spike
trains. (Of course, the brain cannot
perform a multitrial average, but it is
assumed that the brain can extract
similar information in real time by
combining low-pass filtering and
information from many cells.)

About 10 years ago, Wolf Singer’s
laboratory in Germany reported that
retinal neurons also use the relative
timing of spikes to encode informa-
tion about visual stimuli that is not
conveyed by their local firing rates
(Neuenschwander and Singer 1996,
Neuenschwander et al. 1999). Unlike
the previous example, which involved
an intracellular recording from a sin-
gle cell, the data from Singer’s labora-
tory consists of spike trains from two
retinal neurons recorded simultane-
ously in response to a sustained light
stimulus, either two separate short
bars or a single long bar (Figure 4). In
both cases, the edges of the bar stim-
uli were positioned over the receptive
centers of the recorded cells so that,
locally, the stimulation was approxi-
mately the same regardless of whether
the stimulus consisted of one or two
bars. Another difference from the pre-
vious example is that the spike trains
in the Singer experiment were record-
ed with extracellular electrodes, which
do not permit examination of the cor-
responding membrane potentials.
However, spike trains recorded imme-
diately outside the cell can be ana-
lyzed for temporal structure both indi-
vidually and by pairs.

Correlation functions constructed
from the individual spike trains
revealed that the outputs of both reti-

nal neurons were modulated by peri-
odic oscillations—see the small
boxes in Figures 4(a) and 4(b). The
oscillations elicited by separate light

bars were not phase-locked, as indi-
cated by the relative absence of cor-
relations between the two spike trains
when stimulated by separate bars—
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(a)  No Stimulus

(b)  Two Small Spots

(c)  Two Large Spots

(d)  One Large Spot

Figure 2. Retinal Responses to Light Stimuli
The gray boxes show two groups of retinal photoreceptors (black dots) exposed to
spots of light during four experiments. At right are the outputs of the two groups of
ganglion cells activated by the two groups of photoreceptors. (a) With no light stim-
ulus, the outputs are random spikes. (b) When each group of photoreceptors is
exposed to a small spot of light, the average firing rate of the overlying ganglion
cells increases in proportion to the ratio of the intensity of the spot to the intensity
of the region immediately surrounding the spot, but the spikes still occur more or
less randomly. (c) As the spot size increases, the firing rate decreases somewhat,
and the spikes bunch up. However, the bunches are not synchronized. (d) When the
spot size is large enough to cover both groups of photoreceptors, the bunches
become synchronized.
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Figure 3. Responses of a Single
Retinal Ganglion Cell 
A motion-sensitive ganglion cell from
a mammalian retina was stimulated by
a spot of light whose intensity varied
sinusoidally in time. (a) The intensity
of the light spot is shown as a func-
tion of time. (b) The subthreshold
membrane potential recorded at the
soma (cell body) consists of action
potentials, or spikes, riding on top of
an approximately sinusoidal modula-
tion. Only the spikes are transmitted
to relay nuclei in the brain. (c) A
response histogram is constructed
from spikes accumulated over many
identical stimulus trials, showing that
the average firing rate is approximate-
ly proportional to the applied stimulus
intensity except for a phase shift and
a lower cutoff at 0 Hz. (Dacey and Lee 1994.

Reprinted with permission from Nature.)

Figure 4. Responses of Two Retinal Ganglion Cells
Two cat-retina ganglion cells separated by 6 degrees are monitored by electrodes Re1 and Re2, respectively. Spike trains gener-
ated in response to rectangular light stimuli were recorded simultaneously from each electrode, and autocorrelation and cross-
correlation histograms were computed. (a) When two distinct rectangular light stimuli are used, strong oscillations are present
in the autocorrelation histogram of each ganglion cell, but the cross-correlation histogram between the two ganglion cells is
essentially flat. The sharp peaks in the autocorrelation histograms correspond to the spike bunching in Figures 2(c) and 2(d).
(b) When a single rectangular stimulus that connects the region between the cells is used, the oscillations in firing rate of the
two ganglion cells become strongly phase locked, generating a strong oscillation in the cross-correlation histogram. The cross-
correlation oscillation corresponds to the synchronization of the spike bunches in Figure 2(d). (Neuenschwander 1996. This figure was

redrawn courtesy of Nature.)
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see the large box in Figure 4(a). On
the other hand, the evoked oscilla-
tions were tightly phase-locked when
activated by a single bar, as indicated
by the strong periodic modulations in
the corresponding correlation func-
tion illustrated in the large box in
Figure 4(b). Thus, the timing of reti-
nal ganglion-cell spikes, especially
with respect to the phase differences
between the oscillatory responses of
separate groups of ganglion cells, can
convey information relevant to the
spatial separation or spatial binding
of visual features.

A Computer Model

We constructed a computer model
of the retina (Figure 5) to study how
temporal codes in the retina might be
generated and what types of visual
information such codes might con-
vey. Very few circuits in the central
nervous system have been complete-
ly characterized, and the circuits of
the retina are no exception. However,
enough is known about retinal anato-
my and physiology to allow the con-
struction of a model that accounts for
many aspects of experimentally
recorded light responses in a manner
consistent with general patterns of
neuronal connectivity found in most
vertebrate species. Moreover, by
requiring the model to account for a
wide range of experimental data, we
were able to infer some aspects of
the unknown anatomy and physiolo-
gy. In particular, by increasing the
range of observed phenomena
explained by the model, we were
able to eliminate alternative imple-
mentations that were inconsistent
with published recordings. 

The model consisted of five dis-
tinct cell types illustrated in Figure
5(a): bipolar cells, three classes of
amacrine cells, corresponding to the
small, large, and polyaxonal subtypes,
and ganglion cells. Bipolar cells are
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Figure 5. Computer Model of the Retina
(a) Our computer model consisted of five cell types: bipolar (BP) cells, small (SA),
large (LA), and polyaxonal (PA) amacrine cells, and alpha ganglion (GC) cells,
arranged in a 32 ×× 32 square mosaic with wrap-around boundary conditions.
Although this side view of one of the mosaic’s units shows only two BPs, there
were actually four BPs. Light stimuli were simulated by injecting currents directly
into the BPs. (Photoreceptors were not included in the model.) The inhibitory con-
nections can be organized into three categories: Feedforward and feedback inhibi-
tion. Excitatory synapses from BPs were balanced by a combination of reciprocal
synapses and direct inhibition of the GCs, mediated by the nonspiking amacrine-
cell types. Serial inhibition. The three amacrine-cell types regulated each other
through negative feedback loops. Resonance circuit. The PAs were excited locally
through electrical synapses with GCs, and their axons gave rise to widely distrib-
uted inhibition that contacted all cell types, but most strongly the GCs and other
PAs. Not all connections present in the model are shown. (b) A simplified schematic
diagram of the computer model shows how a combination of local excitation (trian-
gles) carried by gap junctions (resistors) and long-range inhibition (empty circles)
carried through axon-bearing amacrine cells (orange dotted lines and filled black
circles) produced physiologically realistic oscillations dependent on stimulus size.
(Reprinted with the permission of Cambridge University Press.) 

(a)

(b)

                  



relay neurons that receive synaptic
input from photoreceptors (not
shown) and provide the principal
excitatory drive to the other neuron
types. The bipolar cells are therefore
critical elements in the “vertical”
pathway representing the main direc-
tion of information flow from the
photoreceptors to the optic nerve. On
the other hand, amacrine cells medi-
ate lateral interactions that are essen-
tial for processing and encoding visu-
al signals. Indeed, without amacrine-
cell interactions, corresponding to the
“horizontal” pathway, the output of
the retina would simply replicate the
activity across the photoreceptor
array. Nearly 30 different kinds of

amacrine cells have been described,
and it would not have been possible
to include them all in the model.
Instead, we included only the mini-
mum number of amacrine-cell types
necessary to account for the basic
features of retinal light responses, as
well as for the synchronous oscilla-
tions evoked by large stimuli.

While the circuitry incorporated
into the model is somewhat compli-
cated, the connections can be
grouped into three major categories: 

Excitation. The bipolar cells,
which relayed visual signals from 
the photoreceptors to all the other
cell types, were the only source of
excitation in the model. 

Local inhibition. The model
amacrine cells made feedforward
inhibitory synapses onto the gan-
glion cells and feedback inhibitory
synapses onto the bipolar cells and
serially inhibited each other. These
local inhibitory synapses acted to
increase the dynamical range of the
model retina, by negative feedback,
and further contributed to shaping
light-evoked activity so as to amplify
the responses to both spatial and
temporal contrast. 

Long-range axon-mediated feed-
back. The polyaxonal amacrine cells
received local excitation from gan-
glion cells by electrical synapses or
gap junctions and, in turn, made
long-range inhibitory connections
onto all cell types. This delayed neg-
ative feedback circuit accounted for
the generation of oscillatory respons-
es in the model retina and has been
redrawn in Figure 5(b) to emphasize
the circuit’s essential components
and their interconnections. Further
details of the model, particularly its
ability to account for experimental
data as well as its numerical stability
and robustness to parameter varia-
tion, are available elsewhere
(Kenyon et al. 2004a, Kenyon et al.
2004b, Kenyon et al. 2003a, Kenyon
et al. 2003b).

Oscillations

To assess the stimulus-evoked
oscillations in the retinal model, cor-
relations were computed between the
spike trains arising from all pairs of
ganglion cells activated by a large
spot, and the results were combined
into an averaged correlation meas-
ure—refer to Figure 6(a). The ampli-
tude, frequency, and persistence of the
periodic modulations in the averaged
correlation function obtained from the
retinal model were qualitatively simi-
lar to those observed experimentally
in recordings of cat ganglion cells
responding to large, high-contrast
spots, as illustrated in Figure 6(b).
For both the cat retina and the retinal
model, the correlation amplitude falls
off with increasing delay, eventually
returning to approximately baseline
levels after several cycles of the
underlying oscillation. In both sets of
data, the phases of the underlying
oscillations drift randomly over time,
so that firing activity becomes uncor-
related over sufficiently long delays.
This time drift is a fundamentally
nonlinear phenomenon arising from
the threshold nature of spike genera-
tion. In contrast, the phase of a linear
harmonic oscillator is always fixed
relative to the stimulus onset. The
retinal model thus captures an essen-
tial nonlinear property of the biologi-
cal circuitry. Moreover, the good qual-
itative agreement between theory and
experiment implies that the free
parameters in the model, particularly
those involving the axon-mediated
feedback circuit, were likely to be rea-
sonably close to their true physiologi-
cal values. Other comparisons with
physiological data were used to verify
additional aspects of the model.

The retinal model was also able to
account for the experimentally
observed size dependence of retinal
oscillations (Figure 7). Specifically,
the oscillations evoked by stimuli of
various sizes in our retinal model
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Time (ms)

Figure 6. Light-Evoked
Oscillations in the Retinal Model
(a) The average correlation function of
the retinal model’s output for pairs of
ganglion cells exhibits an oscillation
whose amplitude, frequency, and dura-
tion are similar to those of (b), the cor-
relation function for experimentally
recorded spike trains from cat retina
cells in response to an analogous
stimulus.

            



were similar to those measured from
the cat retina. In both sets of data,
small stimuli evoked little or no oscil-
latory response, whereas large stimuli
evoked oscillations with very large
amplitudes. Because the axon-mediat-
ed feedback was spread out over a
wide retinal area, only large stimuli
could evoke strong oscillatory respons-
es. The notion that oscillations are
associated with large stimuli led us to
put forward a novel hypothesis about
the types of visual signals encoded in
the periodic temporal structure of reti-
nal spike trains. We discuss this
hypothesis in more detail below. 

The model also accounted for a
high-frequency resonance observed in
the responses of certain retinal neurons
to temporally modulated stimuli
(Figure 8). The temporal modulation
transfer function (tMTF) measures

how strongly the output of a system is
modulated as a function of the fre-
quency of a sinusoidal input.
Harmonic or oscillatory systems typi-
cally exhibit a resonance frequency, at
which the output of the system can be
driven to relatively large amplitudes.
The presence of high-frequency oscil-
lations in retinal light responses sug-
gests that there will be a corresponding
resonance in the tMTF, given by the
amplitude of the sinusoidal modulation
in the ganglion-cell firing rate when
plotted as a function of the frequency
of the applied stimulus. As expected,
both the cat and model retinas exhibit
sharp resonance peaks in their tMTFs
at frequencies above 60 hertz, at
which frequency value oscillatory
responses are also observed.
Moreover, the model accounted not
only for the resonance itself but also

for the associated kink in the phase-
response curve, which plots how much
the phase of the output modulation is
retarded or advanced relative to the
sinusoidal input. Such kinks are not
present in the phase-response curves
of simple harmonic oscillators. Using
our computer model, we were able to
show that the kink in the phase-
response curve obtained from retinal
ganglion cells was due to entrainment.
When driven at relatively low modula-
tion frequencies, the oscillations pro-
duced by retinal circuitry, whose phase
drifts randomly over time, quickly
become independent of the phase of
the driving stimulus. As the frequency
of the driving stimulus approaches the
resonance frequency, however, the two
oscillations become entrained, causing
an abrupt advance in the phase-
response curve. Such resonances may
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Figure 7. Stimulus-Size Dependence of Retinal Oscillations
(a) The correlation function computed between experimentally recorded spike trains from cat retina cells exhibits a strong
increase in oscillatory activity with increasing stimulus size. (b) The correlation function computed for the oscillations produced
by our retinal model exhibits a similar size dependence. (Experimental data from Neuenschwander (1996). Redrawn courtesy of Nature.)
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Figure 9. Stimulus-Selective
Oscillations
(a) Two bar-shaped light stimuli are
shown in relation to the receptive field
centers of four simultaneously recorded
ganglion cells. Cross-correlation his-
tograms were computed during the
plateau portion of the responses for
pairs of ganglion cells at opposite ends
of the same bar or at opposing tips of
separate bars. All ganglion cell pairs
were separated by 7 diameters. The
cross-correlation histograms were com-
puted for pair 1,2 from the upper bar (b),
pair 2,3 from the two separate bars (c),
and pair 3,4 from the lower bar (d). The
histograms exhibit significant oscilla-
tions only for pairs stimulated by the
same bar.
(Courtesy of Wolf Singer and colleagues.)

Figure 8. Temporal Modulation
Transfer Functions (tMTFs)
(a) The tMTF recorded from cat-retina
ganglion cells is obtained by plotting
the magnitude of the fundamental
Fourier component in the response his-
togram as a function of the temporal
modulation frequency of the applied
stimulus. The maximum response
occurs at a broad low-frequency reso-
nance, between 10 Hz and 20 Hz, but
there is also a prominent high-frequen-
cy resonance at around 70 Hz. (b) The
phase-response curve corresponding to
the data shown in (a) is plotted as a
function of temporal modulation fre-
quency. The phase-response curve
exhibits a prominent kink at frequen-
cies near the rising phase of the reso-
nance peak. (c) A similar resonance is
present in the tMTF recorded from gan-
glion cells in the retinal model in
response to a temporally modulated
spot. (d) Likewise, the phase-response
curve of the model ganglion cells also
exhibits a kink near the onset of the
resonance peak. The kink is caused by
entrainment of the retinal oscillations
by the applied stimulus.
(Reproduced from the Journal of General Physiology,

1987, Vol. 89, pp. 599–628, by copyright permission of

The Rockefeller University Press.)

      



also be relevant to the effective opera-
tion of a retinal prosthesis by
enabling strategies for selectively
activating certain types of retinal neu-
rons at the characteristic frequencies
of stimulation.

Finally, the retinal model was able
to reproduce the stimulus selectivity
of retinal oscillations first reported by
Wolf Singer’s laboratory, as outlined
above. By examining the relative tim-
ing of spikes produced by retinal gan-
glion cells responding to either the
same or to different objects, we were
able to show that model elements
activated by the same large object
were strongly correlated, or phase
locked, by a common underlying
oscillation at a frequency of approxi-
mately 100 hertz (see Figure 9). Pairs
of model retinal neurons activated by
different objects, however, were not
correlated; that is, the phases of their
underlying oscillations varied ran-
domly with respect to each other.
Thus, our retinal model captures the
interesting property of biological neu-
rons that their evoked oscillations in
responses to large visual features are
stimulus specific and are only phase
locked for cells responding to the
same contiguous object. The above
results illustrate how the retinal
model was able to account for many
of the main experimentally observed
aspects of oscillatory phenomena.

What Do Oscillations
Encode?

Having established the biological
plausibility of the retinal model, we
then used computer simulations to
explore what information stimulus-
specific oscillations might convey to
the brain. Because our model is con-
sistent with the known anatomy and
physiology of the cat retina, the model
can provide a useful tool for investi-
gating how information can be encod-
ed in the temporal structure of spike

trains propagating down the optic
nerve. Based on the stimulus selectivi-
ty of retinal oscillations, as well as
their observed size dependence, a col-
lection of disconnected spots will elic-
it only weak periodic modulations in
optic-nerve fibers, whereas a single
large stimulus will elicit strong period
modulations. To test this idea, we
exposed our computer-model array of
32 × 32 ganglion cells to two different
light stimuli. The first stimulus was a
large, square spot covering 25 con-
tiguous clusters of cells—refer to
Figure 10(a). Each cluster consisted
of 2 × 2 cells. For this stimulus, the
power spectrum of the spike trains
from a single cluster exhibited a large,
sharp peak at around 100 hertz.
However, when the array was exposed
to 25 small, isolated spots, each of
which covered exactly one cluster but
otherwise elicited approximately the

same total number of spikes per time
interval, there was only a small hump
in the power spectrum, as shown in
Figure 10(b). These results suggest
that the periodic temporal structure in
the spike trains obtained from small
clusters of neighboring neurons
encodes the overall size of the object
to which the clusters respond.

To investigate the above hypothe-
sis, we were guided by two princi-
ples: (1) Because it takes us only a
fraction of a second to form a visual
impression, the information con-
veyed by stimulus-specific oscilla-
tions must be available on short,
physiologically meaningful time
scales—roughly a few hundred mil-
liseconds. (2) Because the spatial
convergence of retinal neurons onto
target cells in the brain is rather low,
with each target cell receiving input
from only a few retinal neurons, the
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Figure 10. See Globally, Spike Locally
We exposed 25 clusters of ganglion cells in our computer-model array of 32 ×× 32
cells to two different high-contrast light stimuli and computed the power spectrum
from the output of a single cluster (shown in red) for each exposure condition. Each
cluster consisted of 2 ×× 2 neighboring ganglion cells. The power spectra (left) were
normalized by the total average firing rate for each exposure condition (right). (a)
For a cluster that was part of a large illuminated area, the power spectrum peaked
sharply between 60 Hz and 120 Hz. (b) For a cluster illuminated in isolation, the
power spectrum exhibited only a small hump.

                    



information conveyed by stimulus-
specific oscillations must be avail-
able locally in the firing activity of a
similar number of neighboring cells.
We therefore used the retinal model
to quantify the information conveyed
about the global properties of a stimu-
lus, in this case the total size of the
object, by a 2 × 2 neighborhood of
retinal output neurons in a few hun-
dred milliseconds. At the same time,
having received data from Wolf
Singer’s laboratory recorded from
output neurons in the cat retina under
analogous experimental conditions,
we were able to test directly the pre-
dictions of our retinal model.

One of our studies tested our ability
to determine if a group of neighboring
cells was responding to a small or a
large object from the group’s local fir-
ing activity alone. In Figure 11, we
plot the results of this study in terms
of the “accuracy of size discrimina-
tion,” which was equal to the fraction
of trials in which the total size of the

stimulus could be correctly inferred
from the local firing activity. Random
events were added to the model spike
trains to ensure that the firing rate did
not change as a function of stimulus
size. The only cue available from the
local firing activity regarding the total
size of the stimulus was therefore the
amplitude of the synchronous oscilla-
tions. Our results showed that, in
model spike trains 300 milliseconds
long, using as few as four spike trains
from a small neighborhood (2 × 2
cells), nearly perfect accuracy can be
achieved. The accuracy for the experi-
mentally recorded spike trains was
slightly lower, possibly reflecting to
some extent the suboptimal recording
conditions in which several different
ganglion cell types contributed to the
multiunit response. Overall, our mod-
eling results imply that there is a
tradeoff between the number of cells
included in the analysis and the total
time allowed for accomplishing the
size-discrimination task. Specifically,

as more cells were included in the
analysis, shorter periods were required
to achieve the same accuracy.

Why would it be important for reti-
nal neurons to convey information
about stimulus size in their local fir-
ing activity? Studies of a frog’s retina
may provide the answer. Tachibanna’s
laboratory in Japan has shown that the
frog retina has specialized neurons,
called dimming detectors, that exhibit
strong synchronous oscillations when
activated by a large dimming object
but do not exhibit such oscillations
when activated by a small dimming
object (Ishikane et al. 1999). To a
frog, a small dimming spot could be a
fly or other food source, but a large
dimming spot is more likely to be a
bird or other dangerous predator. In
this situation, one can easily appreci-
ate why size matters. n
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Figure 11. Size Discrimination
A Bayes discriminator was used to classify light spots as either “smaller” or “larg-
er” from the single-trial oscillatory activity of (a) cat retina ganglia or (b) the ganglia
in our retinal computer model. For the multiunit spike trains recorded from cat reti-
na ganglia, the percentage of correctly classified trials ranged from ~73% to ~87%
as the length of the multiunit spike train segment increased from 50 to 300 ms. The
percentage of correctly classified trials using multiunit spike trains from the retinal
model improved with longer analysis windows and as more ganglion cells were
included in the spike record.
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We have begun developing a three-
dimensional (3-D) model of the retinal
extracellular space. Existing software,
originally developed for modeling the
flow of ground water through porous
material [(Unsworth et al. 1989),
(Travis and Chave 1989)], has been
adapted to calculate the potential gra-
dients produced by an arbitrary distri-
bution of stimulating electrodes. The
flow of water in porous media (that is,
sedimentary rock) and the flow of cur-
rent through the extracellular space are
mathematically identical problems,
allowing powerful software tools
developed in one context to be applied
to the other. Our basic strategy is to
avoid the fully interacting problem
that requires solving for the intercellu-
lar and extracellular potentials simulta-
neously. Instead, we take advantage of
the fact that the ephaptic, or incidental
coupling between retinal neurons via
the extracellular space is small and
that any significant extracellular
potential gradients will be due almost
entirely to external stimulation.
Prosthetic stimulation can therefore be
modeled in two distinct steps: (1) cal-
culate the extracellular potentials pro-
duced by the applied currents and (2)
compute how the resulting gradients
act upon dendritic and axonal
processes within the retina. In princi-
ple, the same technology could be
used in reverse; the normal light-
evoked responses of retinal neurons
could be calculated before hand and
the resulting membrane currents could
be used as sources to estimate local
field potentials. Such technology could
eventually be useful for connecting
realistic simulations of retinal circuits
to clinical measures such as the elec-
troretinogram. 

As preliminary data, we have
developed a simplified model of the
retina and associated structures in
which the various anatomical ele-

ments, consisting of the vitreous,
retina and retina pigment epithelium
(RPE)/choroid, as well as the multi-
electrode array itself, were represented
as rectangular blocks (Figure A). The
bulk conductivity of each element was
based on published values (Geddes
and Baker 1967), with the bulk con-
ductivity of the multielectrode array
set to zero. The computer model was
used to calculate the extracellular
potential gradients produced by a
1 microampere anodic current pulse
passed through a single stimulating
electrode, 10 microns in diameter,
located on the vitreous surface. The
return electrode was placed in the vit-
reous cavity 400 microns away along
a line perpendicular to the retinal sur-
face. It is well established that

cathodic current pulses are much more
effective for stimulating retinal neu-
rons, but for modeling the spatial dis-
tribution of extracellular currents, the
overall sign is irrelevant. 

In the absence of an insulating bar-
rier above the retina, transverse bipo-
lar stimulation produced a dipole field
that was nearly mirror symmetric, with
the slight deviations arising from the
conductivity differences of the various
tissue components—Figure A(1). The
spatial profiles of the extracellular
potentials parallel to the retinal surface
were examined as a function of depth
from the stimulating electrode—
Figure A(2). At a depth of 50 microns,
the maximum value of the extracellu-
lar potential directly underneath the
electrode was just under 6 millivolts,

Figure A. The Influence of Both Anatomical and Non-Anatomical
Structures of the Distribution of Extracellular Currents
(1) This contour plot is of extracellular potentials due to dipole stimulation of the
retina and associated structures (see labels). (2) Profiles of extracellular potentials
are shown at three different depths, 50, 100, and 150 µ. Panels (3) and (4) show the
same organization as (1) and (2) with the addition of an insulating block represent-
ing the prosthetic multielectrode array itself.

Modeling Stimulation by a Retinal Prosthesis
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and fell off laterally with a length con-
stant on the order of 100 microns.
Deeper in the retina, the extracellular
potential fell off more gradually as the
radial component away from the elec-
trode became smaller in the lateral
direction.

A prosthetic device would not con-
sist of a single pair of electrodes,
however, but of a multielectrode
array contained in an insulating pack-
age. We therefore used the computer
model to examine how a large insula-
tor affixed to the vitreous surface
would affect current flow within the
retina—Figures A(3) and A(4). Our
results show that by forcing more of
the current into the retina, a large
non-conducting barrier can substan-
tially enhance the effects of prosthetic
stimulation. Inserting a representation
of the prosthetic device into the 3-D
model approximately doubled the
extracellular potential gradients pro-
duced by the same 1microampere
current pulse applied previously.
These results illustrate the general
principle of how the 3-D geometry of
the retina and associated structures,
as well design of the prosthetic
device itself, can have a large impact
on the spatial distribution of exter-
nally applied currents.

Computer models can also be used
to investigate how cellular properties,
such as dendritic morphology and ori-
entation, influence responses to pros-
thetic stimulation. As a preliminary
step, we examined the changes in
membrane potential produced by a
1-microampere cathodic current as a
function of orientation, either verti-
cal or horizontal—Figure B. A 50-
micron passive segment, representing
a bipolar cell axon or ganglion cell
dendrite, was centered 75 microns
from the vitreous surface directly
underneath the stimulating electrode.
When the passive cable segment was
oriented vertically, as would likely be
the case for bipolar cell axons, there
was approximately a 1 millivolt depo-

larization at the proximal tip closest
to the electrode. On the other hand,
when the same passive segment was
oriented horizontally, as would be
predominantly the case for ON gan-
glion cell dendrites, there was virtu-
ally no change in the membrane
potential. 

The strong influence of orientation
is a direct consequence of the fact that
neural processes are activated by gra-
dients in the extracellular potential and
are insensitive to the average magni-
tude, or constant offset. For transverse
stimulation in which the dipole axis is
perpendicular to the retinal surface,
vertically oriented processes lay across

equipotential contour lines and thus
along the maximum gradient.
Horizontally oriented processes, on
the other hand, lie mostly parallel to
equipotential contour lines and thus
experience minimal gradients along
their length. The dendrites of ON gan-
glion cells tend to be oriented laterally
and are therefore likely to have higher
activation thresholds than vertically
oriented processes. Ganglion cell
axons are also oriented in a predomi-
nantly lateral direction and thus are
less strongly activated by transverse
currents, but this effect is potentially
countered by their closer proximity to
the electrode array. 

Finally, if an anodic current pulse
had been applied instead, the proximal
tip of the vertically oriented segment
would have been hyperpolarized
rather than depolarized. It has been
reported that bipolar cell activation
thresholds are lower for transverse
cathodic currents than for equivalent
anodic currents (Jensen et al. 2003).
Our simulations provide insight into
this phenomenon. The passive cable
segments used in our preliminary
study were electronically short and
thus can be treated as approximately
isopotential. The extracellular poten-
tial, on the other hand, grows more
negative in the direction of the cath-
ode, here assumed to be on the vitre-
ous surface. At the proximal tip of a
vertically oriented process, the extra-
cellular potential will be most negative
and thus closest to the intracellular
potential (assumed to be uniform),
causing the membrane potential at that
point to be depolarized from the rest-
ing potential. At the distal tip, on the
other hand, the difference between the
intracellular and extracellular potential
is maximal, and the corresponding
membrane potential is hyperpolarized.
This example shows how the stimula-
tion protocol must be designed in tan-
dem with information about cellular
morphology.

Figure B. Effects of Orientation 
Shown here is the change in membrane
potential along a 50-µ passive cable in
response to a 1-µA current. A vertically
oriented segment experiences a maxi-
mum depolarization of nearly 1 mV at
its proximal tip, while a horizontally ori-
ented segment is virtually unaffected by
the stimulus. Cable centers were 75 µ
from the electrode.
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Turbulent fluid flow is a complex, nonlinear multiscale phenomenon, which poses some 
of the most difficult and fundamental problems in classical physics. It is also of tremendous
practical importance in making predictions—for example, about heat transfer in nuclear
reactors, drag in oil pipelines, the weather, and the circulation of the atmosphere and the
oceans. But what is turbulence? Why is it so difficult to understand, to model, or even to
approximate with confidence? And what kinds of solutions can we expect to obtain? This
brief survey starts with a short history and then introduces both the modern search for uni-
versal statistical properties and the new engineering models for computing turbulent flows.
It highlights the application of modern supercomputers in simulating the multiscale velocity
field of turbulence and the use of computerized data acquisition systems to follow the 
trajectories of individual fluid parcels in a turbulent flow. Finally, it suggests that these 
tools, combined with a resurgence in theoretical research, may lead to a “solution” of the
turbulence problem.

Robert Ecke

Leonardo da Vinci’s 
illustration of the swirling
flow of turbulence.
(The Royal Collection  2004,
Her Majesty Queen Elizabeth II)

           



Many generations of scientists
have struggled valiantly to understand
both the physical essence and the
mathematical structure of turbulent
fluid motion (McComb 1990, Frisch
1995, Lesieur 1997). Leonardo da
Vinci (refer to Richter 1970), who in
1507 named the phenomenon he
observed in swirling flow “la tur-
bolenza” (see the drawing on the
opening page), described the follow-
ing picture: “Observe the motion of
the surface of the water, which resem-
bles that of hair, which has two
motions, of which one is caused by
the weight of the hair, the other by the
direction of the curls; thus the water
has eddying motions, one part of
which is due to the principal current,
the other to the random and reverse
motion.” 

Two aspects of da Vinci’s observa-
tions remain with us today. First, his
separation of the flow into a mean and
a fluctuating part anticipates by
almost 400 years the approach taken
by Osborne Reynolds (1894). The
“Reynolds decomposition” of the
fluid velocity into mean and fluctuat-
ing parts underpins many engineering
models of turbulence in use today.1

Second, da Vinci’s identification of
“eddies” as intrinsic elements in tur-
bulent motion has a modern counter-
part: Scientists today are actively
investigating the role of such struc-
tures as the possible “sinews” of tur-
bulent dynamics.

Long after da Vinci’s insightful
observations, a major step in the
description of fluid flows was the
development of the basic dynamical

equation of fluid motion. The Euler
equation of motion (written down in
the 18th century) describes the con-
servation of momentum for a fluid
without viscosity, whereas the Navier-
Stokes equation (19th century)
describes the rate of change of
momentum at each point in a viscous
fluid. The Navier-Stokes equation for
a fluid with constant density ρ and
constant kinematic viscosity ν is 

(1)  
,

with ∇ ⋅ u = 0, which is a statement
of fluid incompressibility and with
suitable conditions imposed at the
boundaries of the flow. The variable
u(x,t) is the (incompressible) fluid
velocity field, and P(x,t) is the pres-
sure field determined by the preserva-
tion of incompressibility. This
equation (when multiplied by ρ to get
force per unit volume) is simply
Newton’s law for a fluid: Force equals
mass times acceleration. The left side
of Equation (1) is the acceleration of
the fluid,2 and the right side is the
sum of the forces per unit mass on a
unit volume of the fluid:3 the pressure
force and the viscous force arising

from momentum diffusion through
molecular collisions. Remarkably, a
simple equation representing a simple
physical concept describes enor-
mously complex phenomena.

The Navier-Stokes equations are
deterministic in the sense that, once
the initial flow and the boundary con-
ditions are specified, the evolution of
the state is completely determined, at
least in principle. The nonlinear term
in Equation (1), u · ∇u, describes the
advective transport of fluid momen-
tum. Solutions of the nonlinear
Navier-Stokes equations may depend
sensitively on the initial conditions so
that, after a short time, two realiza-
tions of the flow with infinitesimally
different initial conditions may be
completely uncorrelated with each
other. Changes in the external forcing
or variations in the boundary condi-
tions can produce flows that vary
from smooth laminar flow to more
complicated motions with an identifi-
able length or time scale, and from
there to the most complicated flow of
them all, namely, fully developed tur-
bulence with its spectrum of motions
over many length scales. Depending
on the specific system (for example,
flow in a pipe or behind a grid), the
transition from smooth laminar flow
to fully developed turbulence may
occur abruptly, or by successively
more complex states, as the forcing is
increased. 

The difficulties of finding solutions
to the Navier-Stokes equations that
accurately predict and/or describe the
transition to turbulence and the turbu-
lent state itself are legendary, prompt-
ing the British physicist Sir Horace
Lamb to remark, “I am an old man
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1 Reynolds rewrote the Navier-Stokes
fluid equation as two equations—one for
the mean velocity, which includes a quad-
ratic term in the fluctuating velocity called
the Reynolds stress, and one for the fluc-
tuations, which is usually modeled by
some suitable approximation. This
approach underpins commonly used engi-
neering models of turbulent fluid motion
known as Reynolds-Averaged Navier-
Stokes (RANS)—refer to Taylor (1938).

2 The acceleration term looks compli-
cated because of the advection term 
u ⋅ ∇u, which arises from the coordinate
transformation from a frame moving with
the fluid parcels (the “Lagrangian” frame,
in which Newton's law has the usual
form) to a frame of reference fixed in
space (the “Eulerian” frame, in which
other aspects of the mathematics are sim-
pler). Specifically, acceleration of the
fluid is, by definition, the second time
derivative of the Lagrangian fluid trajec-
tory x(t), which describes the motion of
the fluid element that was initially at
position x(0). The first time derivative is
the Lagrangian fluid velocity, dx(t)/dt,
which is related to the Eulerian fluid
velocity by dx(t)/dt = u(t,x(t)). Because u
is a function of time t and position x(t),
which itself is a function of time, the
Eulerian expression for the Lagrangian
second time derivative (the fluid accelera-
tion) is obtained through the chain rule
and equals du/dt = ∂u/∂t + u ⋅ ∇u. 

3 Often, there is an additional term added
to the right side of the equation that repre-
sents an external forcing of the flow per
unit volume such as by gravity.
Alternatively, the forcing can arise from
the imposition of boundary conditions,
whereby energy is injected by stresses at
those boundaries.

                                                                                   



now, and when I die and go to heaven
there are two matters on which I hope
for enlightenment. One is quantum
electrodynamics, and the other is the
turbulent motion of fluids. And about
the former I am rather optimistic”—
1932 (in Tannehill et al. 1984). One of

the most influential turbulence theo-
rists in the last 40 years, Robert
Kraichnan, started studying turbulence
while working with Albert Einstein at
Princeton, when he noticed the simi-
larity between problems in gravita-
tional field theory and classical fluid

dynamics. His contributions include
field-theoretic approaches to turbu-
lence that have had recent stunning
success when applied to the turbulent
transport of passive scalar concentra-
tion (see the article “Field Theory 
and Statistical Hydrodynamics” on
page 181).

What Is Turbulence? 

So, what is turbulence and why is
it so difficult to describe theoretically?
In this article, we shall ignore the
transition to turbulence and focus
instead on fully developed turbulence.
One of the most challenging aspects is
that, in fully developed turbulence,
the velocity fluctuates over a large
range of coupled spatial and temporal
scales. Examples of turbulence
(Figure 1) are everywhere: the flow of
water from a common faucet, water
from a garden hose, the flow past a
curved wall, and noisy rapids result-
ing from flow past rocks in an ener-
getically flowing river. Another
example is the dramatic pyroclastic
flow in a volcanic eruption. In
Figure 2, the explosive eruption of
Mount St. Helens is illustrated at suc-
cessively higher magnification, show-
ing structure at many length scales. In
all these examples, large velocity dif-
ferences (as opposed to large veloci-
ties) resulting from shear forces
applied to the fluid (or from intrinsic
fluid instability) produce strong fluid
turbulence, a state that can be defined
as a solution of the Navier-Stokes
equations whose statistics exhibit spa-
tial and temporal fluctuations.

Historically, investigations of tur-
bulence have progressed through
alternating advances in experimental
measurements, theoretical descrip-
tions, and most recently, the introduc-
tion of numerical simulation of
turbulence on high-speed computers.
Similarly, there has been a rich inter-
play between fundamental understand-
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Figure 1. Common Examples of Fluid Turbulence 
Turbulence is commonly apparent in everyday life, as revealed by the collage of pic-
tures above: (a) water flow from a faucet, (b) water from a garden hose, (c) flow past
a curved wall, and (d) and (e) whitewater rapids whose turbulent fluctuations are so
intense that air is entrained by the flow and produces small bubbles that diffusely
reflect light and cause the water to appear white.

(a) (b)

(c)

(d) (e)

       



ing and applications. For example, tur-
bulence researchers in the early to mid
20th century were motivated by two
important practical problems: predict-
ing the weather and building ever
more sophisticated aircraft. Aircraft
development led to the construction of
large wind tunnels, where measure-
ments of the drag and lift on scaled
model aircraft were used in the design
of airplanes. On the other hand,
weather prediction was severely ham-
pered by the difficulty in doing numer-
ical computation and was only made
practical after the development, many
decades later, of digital computers; in
the early days, the calculation of the
weather change in a day required
weeks of calculation by hand! In addi-
tion to these two large problems, many
other aspects of turbulent flow were
investigated and attempts were made
to factor in the effects of turbulence on
the design and operation of real
machines and devices. 

To understand what turbulence is
and why it makes a big difference in
practical situations, we consider flow
through a long cylindrical pipe of
diameter D, a problem considered
over a century ago by Osborne
Reynolds (1894). Reynolds measured
mean quantities such as the average
flow rate and the mean pressure drop
in the pipe. A practical concern is to
determine the flow rate, or mean
velocity U, as a function of the
applied pressure, and its profile, as a
function of distance from the wall.
Because the fluid is incompressible,
the volume of fluid entering any cross
section of the pipe is the same as the
volume flowing out of the pipe. Thus,
the volume flux is constant along the
flow direction. We can use
Equation (1) to get a naive estimate of
the mean velocity U for flow in a hor-
izontal pipe. Consider as a concrete
example the flow of water in a rigid
pipe hooked up to the backyard water
faucet. Taking a 3-meter length of a
2.5-centimeter diameter pipe and esti-

mating the water pressure at
30 pounds per square inch (psi), 
the imposed pressure gradient ∇P is
0.1 psi/cm or 7000 dynes/cm3. We
assume the simplest case, namely, that
the flow is smooth, or “laminar,” so
that the nonlinear term in Equation (1)
can be neglected, and that the flow
has reached its limiting velocity with
∂U/∂t = 0. In that case, the density-
normalized pressure gradient 
∇P/ρ would be balanced by the vis-
cous acceleration (or drag), ν∇2u.
Using dimensional arguments and
taking into account that u = 0 at the
pipe wall, we estimate that
ν∇2u ≈ νU/D2, which yields the esti-

mate for the mean flow velocity of
U ~ ∇PD2/ρν. Thus, for water with
viscosity ν = 0.01 cm2/s flowing in a
pipe with diameter D = 2.5 centime-
ters, the laminar flow velocity would
reach U ~ 40,000 m/s or almost
30 times the speed of sound in water!
Clearly, something is wrong with this
argument. It turns out that the flow in
such a pipe is turbulent (it has highly
irregular spatial and temporal velocity
fluctuations) and the measured mean
flow velocity U is smaller by a factor
of about 4000, or only about 10 m/s! 

How can we improve our estimate?
For the turbulent case, we might
assume, as Reynolds did, that the non-
linear term dominates over the vis-

cous term and then equate the nonlin-
ear term (u · ∇u ~ U2/D) to the pres-
sure gradient, thereby obtaining the
much more realistic estimate of 
U ~ (∇PD/ρ)1/2 ~ 1.5 m/s. This esti-
mate actually overestimates the
effects of the nonlinear term.

As illustrated in Figure 3, the solu-
tion for the laminar-flow velocity pro-
file is quite gradual, whereas the
turbulent velocity profile is much
steeper at the walls and levels off in
the center of the pipe. Evidently, the
effect of turbulence is to greatly
increase the momentum exchange in
the central regions of the pipe, as
large-scale eddies effectively ‘lock
up’ the flow and thereby shift the
velocity gradient (or velocity shear)
closer to the wall. Because the flow
resistance in the pipe is proportional
to the steepness of the velocity profile
near the wall, the practical conse-
quence of the turbulence is a large
increase in the flow resistance of the
pipe—that is, less flow for a given
applied pressure. The real-world
implications of this increase in flow
resistance are enormous: A large frac-
tion of the world’s energy consump-
tion is devoted to compensating for
turbulent energy loss! Nevertheless,
the detailed understanding and predic-
tion from first principles still elude
turbulence theory.
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Figure 2. Scale-Independence in Turbulent Flows
The turbulent structure of the pyroclastic volcanic eruption of Mt. St. Helens shown
in (a) is expanded by a factor of 2 in (b) and by another factor of 2 in (c). The char-
acteristic scale of the plume is approximately 5 km. Note that the expanded images
reveal the increasingly finer scale structure of the turbulent flow. The feature of
scale independence, namely, that spatial images or temporal signals look the same
(statistically) under increasing magnification is called self-similarity.

(a) (b) (c)

                                                                        



The example of pipe flow illus-
trates an important feature of turbu-
lence—the ratio of the nonlinear term
to the viscous dissipation term pro-
vides a good measure of the strength
of turbulence. In fact, this ratio,
Re = UD/ν, where D is the size of the
large-scale forcing (typically shear), is
known as the Reynolds number after
Reynolds’ seminal work on pipe flow
(1894). For a small Reynolds number,
Re << 1, the nonlinearity can be neg-
lected, and analytic solutions to the
Navier-Stokes equation corresponding
to laminar flow can often be found.
When Re >> 1, however, there are no
stable stationary solutions,4 and the
fluid flow is highly fluctuating in
space and time, corresponding to tur-
bulent flow. In particular, the flow is

fully developed turbulence when Re is
large compared with the Re for transi-
tion to turbulence for a particular set
of forcing and boundary conditions.
For example, in the problem above,
where D = 2.5 cm and U = 10 m/s,
the Reynolds number is Re ~ 3 × 105

compared with a typical Re ~ 2000 for
the onset of turbulence in pipe flow. 

The Search for Universal
Properties and the

Kolmogorov Scaling Laws

In early laboratory experiments on
turbulence, Reynolds and others sup-
plemented their measurements of
applied pressure and average velocity
by observing the rapidly fluctuating
character of the flow when they used
dyes and other qualitative flow-visuali-
zation tools. In the atmosphere, how-
ever, one could measure much
longer-term fluctuations, at a fixed
location, and such Eulerian measure-
ments intrigued the young theoretical
physicist G. I. Taylor (1938).
Turbulence is difficult to measure

because the turbulent state changes
rapidly in space and time. Taylor pro-
posed a probabilistic/statistical
approach based on averaging over
ensembles of individual realizations,
although he soon replaced ensemble
averages by time averages at a fixed
point in space. Taylor also used the
idealized concept (originally intro-
duced by Lord Kelvin in 1887) of sta-
tistically homogeneous, isotropic
turbulence. Homogeneity and isotropy
imply that spatial translations and rota-
tions, respectively, do not change the
average values of physical variables.5

Lewis F. Richardson was another
influential fluid dynamicist of the early
20th century. Richardson performed
the first numerical computation for
predicting the weather (on a hand cal-
culator)! He also proposed (1926) a
pictorial description of turbulence
called a cascade, in which nonlinearity
transforms large-scale velocity circula-
tions (or eddies, or whorls) into circu-
lations at successively smaller scales
(sizes) until they reach such a small
scale that the circulation of the eddies
is efficiently dissipated into heat by
viscosity. Richardson captured this
energy cascade in a poetic take-off on
Jonathan Swift’s famous description of
fleas.6 In Richardson’s words, “Big
whorls have little whorls that feed on
their velocity, and little whorls have
lesser whorls and so on to viscosity”
(circa 1922). A schematic illustration
of the energy cascade picture is shown
in Figure 4, where the mean energy
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Figure 3. Mean Velocity Profiles for Laminar and Turbulent Pipe Flow
The velocity profile across the diameter (D = 2R where R is the radius) of a pipe for
laminar-flow conditions (black curve) shows a gradual velocity gradient compared
with the very steep gradients near the walls resulting from turbulent flow conditions
(red curve). Those steep gradients are proportional to the flow resistance in the
pipe. Thus turbulence results in significantly less flow for a given applied pressure.

4 How large Re must be to get a turbulent
state depends on the particular source of
forcing and on the boundary conditions.
For example, the transition to turbulence
in pipe flow can occur anywhere in the
range 1000 < Re < 50,000 depending on
inlet boundary conditions and the rough-
ness of the pipe wall. For most com-
monly encountered conditions, the
transition is near Re = 2000.

5 Many theoretical descriptions use these
assumptions, but typical turbulence
encountered in the real world often obeys
neither condition at large scales. A key
question in real-world situations is
whether the assumptions of homogeneity
and isotropy are satisfied at small scales,
thus justifying application of a general
framework for those smaller scales.

6 “So, the naturalists observe, the flea,/
hath smaller fleas that on him prey;/ And
these have smaller still to bite ‘em;/ And
so proceed, ad infinitum.”—Jonathan
Swift, Poetry, a Rhapsody

                                              



injection rate ε at large scales is bal-
anced by the mean energy dissipation
rate at small scales. Richardson and
Taylor also appreciated that generic
properties of turbulence may be dis-
covered in the statistics of velocity dif-
ferences between two locations
separated by a distance r, denoted as
δu(x, x+r) = u(x) – u(x+r). The statis-
tics of velocity differences at two loca-
tions are an improvement over the
statistics of velocity fluctuations at a
single location for a number of techni-
cal reasons, which we do not discuss
here. Longitudinal projections of
velocity differences 

are often measured in modern experi-
ments and are one of the main quanti-
ties of interest in the analysis of fluid
turbulence.

Measuring velocity differences on
fast time scales and with high preci-
sion was a difficult proposition in the
early 20th century and required the
development of the hot-wire
anemometer, in which fluid flowing
past a thin heated wire carries heat
away at a rate, proportional to the
fluid velocity. Hot-wire anemometry
made possible the measurement, on
laboratory time scales, of the fluctuat-
ing turbulent velocity field at a single
point in space (see Figure 5). For a
flow whose mean velocity is large,
velocity differences were inferred
from those single-point measurements
by Taylor’s “frozen-turbulence”
hypothesis.7
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Figure 4. The Energy Cascade Picture of Turbulence  
This figure represents a one-dimensional simplification of the cascade process with
ββ representing the scale factor (usually taken to be 1/2 because of the quadratic
nonlinearity in the Navier-Stokes equation). The eddies are purposely shown to be
“space filling” in a lateral sense as they decrease in size.
(This figure was modified with permission from Uriel Frisch. 1995. Turbulence: The Legacy of A. N. Kolmogorov.

Cambridge, UK: Cambridge University Press.)

Figure 5. Time Series of Velocities in a Turbulent Boundary Layer
This time series of velocities for an atmospheric turbulent boundary layer with
Reynolds number Re ~ 2 ×× 107 was measured at a single location with a hot-wire
anemometer. The velocity fluctuations are apparently random. (This figure is courtesy of

Susan Kurien of Los Alamos, who has used data recorded in 1997 by Brindesh Dhruva of Yale University.)

7 If the mean velocity is large compared
with velocity fluctuations, the turbulence
can be considered “frozen” in the sense
that velocity fluctuations are swept past a
single point faster than they would change
because of turbulent dynamics. In that
case, the spatial separation ∆r is related to
the time increment ∆t by ∆r = – U∆t,
where U is the mean velocity. See also the
article “Taylor’s Hypothesis, Hamilton’s
Principle, and the LANS-α Model for
Computing Turbulence” on page 152 .

                                                               



Single-point measurements of tur-
bulent velocity fluctuations have been
performed for many systems and have
contributed both to a fundamental
understanding of turbulence and to
engineering modeling of the effects of
turbulence at small scales on the flow
at larger scales. (See the section on
engineering models.) Single-point
measurements of velocity fluctuations
have been the primary tool for investi-
gating fluid turbulence.They remain in
common use because of their large
dynamic range and high signal-to-noise
ratio relative to more modern develop-
ments such as particle image velocime-
try, in which the goal is to measure

whole velocity fields. For now, we con-
sider results that were motivated or
measured with the limitations of single-
point experiments in mind. 

The Kolmogorov Scaling Laws.
In 1938, von Kármán and Howarth
derived an exact theoretical relation
for the dynamics of turbulence statis-
tics. Starting from the Navier-Stokes
equation and assuming homogeneity
and isotropy, the two scientists
derived an equation for the dynamics
of the lowest-order two-point velocity
correlation function. (This function is
〈u(x) · u(x+r)〉, where the angle
brackets denote an ensemble average,

that is, an average over many statisti-
cally independent realizations of the
flow. The two-point velocity correla-
tion functions cannot describe univer-
sal features of turbulence because
they are scale dependent (the large-
scale flow dominates their behavior)
and they lack Galilean invariance.
Nevertheless, their derivation inspired
a real breakthrough. In 1941, Andrei
Kolmogorov recast the Kármán-
Howarth equation in terms of the
moments of δu(r), the velocity differ-
ences across scales, thereby producing
a relationship between the second
moment 〈[δu(r)]2〉 and the third
moment 〈[δu(r)]3〉. These statistical
objects, which retain Galilean invari-
ance and hence hold the promise of
universality, are now known as struc-
ture functions.

Kolmogorov then proposed the
notion of an “inertial range” of scales
based on Richardson’s picture of the
energy cascade: Kinetic energy is
injected at the largest scales L of the
flow at an average rate ε and gener-
ates large-scale fluctuations. The
injected energy cascades to smaller
scales via nonlinear inertial (energy-
conserving) processes until it reaches
a scale of order ld, where viscous dis-
sipation becomes dominant and the
kinetic energy is converted into heat.
In other words, the intermediate spa-
tial scales r, in the interval ld << r <<
L, define an inertial range in which
large-scale forcing and viscous forces
have negligible effects. With these
assumptions and the Kármán-Howarth
equation recast for structure functions,
Kolmogorov derived the famous
“four-fifths law.” The equation defin-
ing this law describes an exact rela-
tionship for the third-order structure
function within the inertial range: 

where ε is assumed to be the finite
energy-dissipation rate (per unit mass)
of the turbulent state. This relation-
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Figure 6. Kolmogorov-like Energy Spectrum for a Turbulent Jet
The graph shows experimental data for the energy spectrum (computed from veloc-
ity times series like that in Figure 5) as a function of wave number k, or E(k) vs k,
for a turbulent jet with Reynolds number Re ~ 24,000. Note that the measured spec-
trum goes as E(k) ∝∝ k–5/3. (Champagne 1978. Redrawn with the permission of Cambridge University Press.)

                                                                              



ship is a statement of conservation of
energy in the inertial range of scales
of a turbulent fluid; the third moment,
which arises from the nonlinear term
in Equation (1), is thus an indirect
measure of the flux of energy through
spatial scales of size r. (High
Reynold’s-number numerical simula-
tions are compared with the four-fifths
law and with other statistical charac-
terizations of turbulence in the article
“Direct Numerical Simulations of
Turbulence” on page 142.) 

Kolmogorov further assumed that
the cascade process occurs in a self-
similar way. That is, eddies of a given
size behave statistically the same as
eddies of a different size. This
assumption, along with the four-fifths
law, gave rise to the general scaling
prediction of Kolmogorov, which
states that the nth order structure func-
tion (referred to in the article “Direct
Numerical Simulations of Turbulence”
as Sn(r)) must scale as rn/3. During the
decades that have passed since
Kolmogorov’s seminal papers (1941),
empirical departures from his scaling
prediction have been measured for n
different from 3, leading to our pres-
ent understanding that turbulent scales
are not self-similar, but that they
become increasingly intermittent as
the scale size decreases. The charac-
terization and understanding of these
deviations, known as the “anomalous”
scaling feature of turbulence, have
been of sustained and current interest
(see the box “Intermittency and
Anomalous Scaling in Turbulence” on
page 136). 

Empirical observations show that a
flow becomes fully turbulent only
when a large range of scales separates
the injection scale L and the dissipa-
tion scale ld. A convenient measure of
this range of spatial scales for fluid
turbulence, which also characterizes
the number of degrees of freedom of
the turbulent state, is the large-scale
Reynolds number, Re. The Reynolds
number is also the ratio of nonlinear

to viscous forces introduced earlier in
the context of pipe flow. Most theo-
ries of turbulence deal with asymptot-
ically large Re, that is, Re → ∞, so
that an arbitrarily large range of scales
separates the injection scales from the
dissipation scales.

Because energy cascading down
through spatial scales is a central fea-
ture of fluid turbulence, it is natural to
consider the distribution of energy
among spatial scales in wave number
(or Fourier) space, as suggested by
Taylor (1938). The energy distribution
E(k) = 1/2|u~(k)|2, where u~(k) is the
Fourier transform of the velocity field
and the wave number k is related to
the spatial scale l by k = 2π/l.8 Wave-
number space is very useful for the
representation of fluid turbulence
because differential operators in real
space transform to multiplicative
operators in k-space. For example, the
diffusion operator in the term ν∇2u
becomes νk2u~ in the Fourier repre-
sentation. Another appealing feature
of the wave number representation is
the nonlocal property of the Fourier
transform, which causes each Fourier
mode represented by wave number k
to represent cleanly the corresponding
scale l. On the other hand, the k-space
representation is difficult from the
perspective of understanding how spa-
tial structures, such as intense eddies,
affect the transfer of energy between
scales, that is between eddies of dif-
ferent sizes. 

The consequence of energy conser-
vation on the form of E(k) was inde-
pendently discovered by Obukov
(1941), Heisenberg (1948), and
Onsager (1949), all of whom obtained
the scaling relationship for the energy
spectrum E(k) ~ k–5/3 for the inertial
scales in fully developed homoge-
neous isotropic turbulence. This result

is not independent of the picture pre-
sented above in terms of real space-
velocity differences but is another
way of looking at the consequences of
energy conservation. Many subse-
quent experiments and numerical sim-
ulations have observed this
relationship to within experimental/
numerical uncertainty, thereby lending
credence to the energy cascade pic-
ture. Figure 6 shows the energy spec-
trum obtained from time series
measurements at a single point in a
turbulent jet, where the spatial scale is
related to time by Taylor’s hypothesis
that the large mean velocity sweeps
the “frozen-in” turbulent field past the
measurement point. 

Vorticity. Another important
quantity in the characterization and
understanding of fluid turbulence is
the vorticity field, ωω(x,t) = ∇∇ × u(x,t),
which roughly measures the local
swirl of the flow as picturesquely
drawn by da Vinci in the opening
illustration. The notion of an “eddy”
or “whorl” is naturally associated
with one’s idea of a vortex—a com-
pact swirling object such as a dust
devil, a tornado, or a hurricane—but
this association is schematic at best.
In three-dimensional (3-D) turbu-
lence, vorticity plays a quantitative
role in that the average rate of energy
dissipation ε is related to the mean-
square vorticity by the relation ε = –
u〈ωω2〉. Vorticity plays a different
role in two-dimensional (2-D) turbu-
lence. Vortex stretching has long been
recognized as an important ingredient
in fluid turbulence (Taylor 1938); if a
vortex tube is stretched so that its
cross section is reduced, the mean-
square vorticity in that cross section
will increase, thereby causing strong
spatially localized vortex filaments
that dissipate energy. The notion of
vortex stretching and energy dissipa-
tion is discussed in the article “The
LANS-α model for Computing
Turbulence” on page 152.
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8If isotropy is assumed, the energy distri-
bution E(k), where k is a vector quantity,
depends only on the magnitude k = |k| and
one can denote the energy as E(k) without
loss of generality.

                                                                                                                                



Engineering Models 
of Turbulence

It is worth stressing again that tur-
bulence is both fundamentally inter-
esting and of tremendous practical
importance. As mentioned above,
modeling complex practical problems
requires a perspective different from
that needed for studying fundamental
issues. Foremost is the ability to get
fairly accurate results with minimal
computational effort. That goal can
often be accomplished by making
simple models for the effects of turbu-
lence and adjusting coefficients in the
model by fitting computational results
to experimental data. Provided that
the parameter range used in the model
is well covered by experimental data,
this approach is very efficient.
Examples that have benefited from
copious amounts of reliable data are
aircraft design—aerodynamics of
body and wing design have been at
the heart of a huge international
industry—and aerodynamic drag
reduction for automobiles to achieve
better fuel efficiency. Global climate
modeling and the design of nuclear
weapons, on the other hand, are
examples for which data are either
impossible or quite difficult to obtain.
In such situations, the utmost care
needs to be taken when one attempts
to extrapolate models to circum-
stances outside the validation regime. 

The main goal of many engineering
models is to estimate transport proper-
ties—not just the net transport of
energy and momentum by a single fluid
but the transport of matter such as pol-
lutants in the atmosphere or the mixing
of one material with another. Mixing is
a critical process in inertial confine-
ment fusion and in weapons physics
applications. It is crucial for certifica-
tion of the nuclear weapons stockpile
that scientists know how well engineer-
ing models are performing and use that
knowledge to predict outcomes with a
known degree of certainty. 

The Closure Problem for
Engineering Models. Engineering
models are constructed for computa-
tional efficiency rather than perfect
representation of turbulence. The class
of engineering models known as
Reynolds-Averaged Navier-Stokes
(RANS) provides a good example of
how the problem of “closure” arises
and the parameters that need to be
determined experimentally to make
those models work. Consider again
the flow of a fluid with viscosity ν in
a pipe with a pressure gradient along
the pipe. When the pressure applied at
the pipe inlet and the pipe diameter D
are small, the fluid flow is laminar,
and the velocity profile in the pipe is
quadratic with a peak velocity U that
is proportional to the applied pressure
(refer to Figure 3). When the forcing
pressure gets large enough to produce
a high flow velocity and therefore a
large Reynolds number, typically Re =
UD/ν ≥ 2000, the flow becomes tur-
bulent, large velocity fluctuations are
present in the flow, and the velocity
profile changes substantially (refer
again to Figure 3). An engineering
challenge is to compute the spatial dis-
tribution of the mean velocity of the
turbulent flow. Following the proce-
dure first written down by Reynolds,
the velocity and pressure fields are
separated into mean (the overbar
denotes a time average) and fluctuat-
ing (denoted by the prime) parts: 

where i denotes one of the compo-
nents of the vector field u(x,t) and the
average of the fluctuating part of the
velocity is zero by definition. Also, 

Substituting these expressions into
Equation (1), using the constant-den-
sity continuity condition

and averaging term by term yields an
equation for the mean velocity:

(2)

Note that the equation for the mean
flow looks the same as the Navier-
Stokes equation for the full velocity u,
Equation (1), with the addition of a
term involving the time average of a
product of the fluctuating parts of the
velocity, namely, the Reynolds stress
tensor,

That additional term, which repre-
sents the transport of momentum
caused by turbulent fluctuations, acts
like an effective stress on the flow and
cannot, at this time, be determined
completely from first principles. As a
result, many schemes have been
developed to approximate the
Reynolds stress.

The simplest formulation for the
Reynolds stress tensor is

where νT(x) is called the turbulent
eddy viscosity because the additional
term looks like a viscous diffusion
term. A more sophisticated approach
is to solve for the Reynolds stress by
writing an equation for the time evo-
lution of u′iu′j (Johnson et al. 1986).
This equation has multiple undeter-
mined coefficients and depends on the
third moment u′iu′ju′k. . Again, the third-
order moment is unknown and needs
to be approximated or written in terms
of fourth-order moments. In principle,
an infinite set of equations for higher-
order moments is required, so one
needs to “close” the set at a small
number to achieve computational effi-
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ciency. At any stage of approximation,
undetermined coefficients are set by
comparison with experimental or
direct numerical simulation data. This
approach is often very effective,
although it does depend on the quality
of the data and on the operating
parameter regime covered by the data. 

Modern Developments

By the end of the 1940s, great
progress had been made in the study
of turbulence. The statistical approach
to turbulence, the importance of the
energy and its wave number represen-
tation, the notion of measuring veloc-
ity differences, and the dynamics of
vortex structures as an explanation of
the mechanism of fluid turbulence had
all been articulated by Taylor. The
cascade picture of Richardson had
been made quantitative by
Kolmogorov and others. The concepts
of universal scaling and self-similarity
were key ingredients in that descrip-
tion. On the practical side, tremen-
dous advances had been made in
aeronautics, with newly emerging jet
aircraft flying at speeds approaching
the speed of sound. Empirical models
based on the engineering approach
described above were being used to
describe these practical turbulence
problems. 

The next 50 years were marked by
steady progress in theory and model-
ing, increasingly sophisticated experi-
ments, and the introduction and
widespread use of the digital com-
puter as a tool for the study of turbu-
lence. In the remainder of this review,
we touch on some of the advances of
the post-Kolmogorov era, paying par-
ticular attention to the ever-increasing
impact of the digital computer on
three aspects of turbulence research:
direct numerical simulations of ideal-
ized turbulence, increasingly sophisti-
cated engineering models of
turbulence, and the extraordinary

enhancement in the quality and quan-
tity of experimental data achieved by
computer data acquisition. As far
back as the Manhattan Project, the
computer (more exactly, numerical
schemes implemented on a roomful
of Marchand calculators) began to
play a major role in the calculations
of fluid problems. A leading figure in
that project, John von Neumann
(1963), noted in a 1949 review of
turbulence that “… a considerable
mathematical effort towards a
detailed understanding of the mecha-
nism of turbulence is called for” but
that, given the analytic difficulties
presented by the turbulence problem,
“… there might be some hope to
‘break the deadlock’ by extensive,
but well-planned, computational
efforts.” Von Neumann’s foresight in
understanding the important role of
computers for the study of turbulence
predated the first direct numerical
simulation of the turbulent state by
more than 20 years.

From a fundamental perspective,
the direct numerical simulation of
idealized isotropic, homogeneous tur-
bulence has been revolutionary in its
impact on turbulence research
because of the ability to simulate and
display the full 3-D velocity field at
increasingly large Reynolds number.
Similarly, experimentation on turbu-
lence has advanced tremendously by
using computer data acquisition;
20 years ago it was possible to meas-
ure and analyze time series data from
single-point probes that totaled no
more than 10 megabytes of informa-
tion, whereas today statistical ensem-
bles of thousands of spatially and
temporally resolved velocity fields,
taking 10 terabytes of storage space
can be obtained and processed. This
millionfold increase in experimental
capability has opened the door to
great new possibilities in turbulence
research that will be enhanced even
further by expected future increases
in computational power. 

Below, we briefly address
advances in numerical simulation, in
turbulence modeling, and theoretical
understanding of passive scalar trans-
port, topics dealt with more exten-
sively in the articles immediately
following this one. We then describe
several exciting new experimental
advances in fluid turbulence research
and close this introduction with a
view toward “solving” at least some
aspect of the turbulence problem.

Direct Numerical 
Simulation of Turbulence

Recent advances in large-scale sci-
entific computing have made possible
direct numerical simulations of the
Navier-Stokes equation under turbu-
lent conditions. In other words, for
simulations performed on the world’s
largest supercomputers, no closure or
subgrid approximations are used to
simplify the flow, but rather the simu-
lated flow follows all the twisting-
turning and stretching-folding motions
of the full-blown Navier-Stokes equa-
tions at effective large-scale Reynolds
numbers of about 105. These simula-
tions render available for analysis the
entire 3-D velocity field down to the
dissipation scale. With these numeri-
cally generated data, one can study
the structures of the flow and corre-
late them with turbulent transfer
processes, the nonlinear processes that
carry energy from large to small
scales.

An especially efficient technique
for studying isotropic, homogeneous
turbulence is to consider the flow in
a box of length L with periodic
boundary conditions and use the
spectral method, an orthogonal
decomposition into Fourier modes, to
simulate the Navier-Stokes equation.
Forcing is typically generated by
maintaining constant energy in the
smallest k mode (or a small number
of the longest-wavelength modes).
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The first direct numerical simulation
of fluid turbulence (Orszag and
Patterson 1972) had a resolution of
323, corresponding to Re ~ 100. By
the early 1990s, Reynolds numbers
of about 6000 for a 5123 simulation
could be obtained (She et al. 1993);
the separation between the box size
and the dissipation scale was just
short of a decade. Recent calcula-
tions on the Los Alamos Q machine,
using 20483 spatial resolution, and
on the Japanese Earth Simulator with
40963 modes (Kaneda et al. 2003)
achieved a Reynolds number of
about 105, corresponding to about
1.5 decades of turbulent scales,
which is approaching fully developed
turbulence in modestly sized wind
tunnels. It is important to appreciate
that the Re of direct numerical turbu-
lence simulations grows only as Re ∝
N4/9, where N is the number of
degrees of freedom that are com-
puted: A factor of 2 increase in the
linear dimension of the box means
computing 23 more modes for a cor-
responding increase in Re of about
2.5. Nevertheless, for isotropic,
homogeneous fully developed 
turbulence, direct numerical simula-
tion has become the tool of choice
for detailed characterization of 
fundamental flow properties and
comparison with Kolmogorov-type
theories. More details regarding
numerical simulation of turbulence
can be found in the article “Direct
Numerical Simulations of
Turbulence” on page 142.

Modern Turbulence Models

Although the RANS models
described above maintain a dominant
role in turbulence modeling, other
approaches have become tractable
because of increases in computational
power. A more recent approach to
modeling turbulent processes is to
decompose spatial scales of the flow

into Fourier modes and then to trun-
cate the expansion at some intermedi-
ate scale (usually with a smooth
Gaussian filter) and model the small
scales with a subgrid model. One then
computes the large scales explicitly
and approximates the effect of the
small scales with the subgrid model.
This class of methods (Meneveau
and Katz 2000) is called large eddy
simulation (LES) and has become an
alternative to RANS modeling when
more-accurate spatial information is
required. Because of the spatial fil-
tering, LES modeling has problems
with boundaries and is less computa-
tionally efficient than RANS tech-
niques. Nevertheless, LES models
may be more universal than RANS
models and therefore rely less on ad
hoc coefficients determined from
experimental data. 

Another variant of the subgrid-
model approach recently invented at
Los Alamos is the Lagrangian-aver-
aged Navier-Stokes alpha (LANS-α)
model. Although not obtainable by 
filtering the Navier-Stokes equations,
the LANS-α model has a spatial cut-
off determined by the coefficient α.
For spatial scales larger than α, the
dynamics are computed exactly (in
effect, the Navier-Stokes equations
are used) and yield the energy 
spectrum E(k) ∝ k–5/3, whereas for
spatial scales less than α, the energy
falls more rapidly, E(k) ∝ k–3. The
LANS-α model can be derived from a
Lagrangian-averaging procedure start-
ing from Hamilton’s principle of least
action. It is the first-closure (or sub-
grid) scheme to modify the nonlinear
term rather than the dissipation term
and, as a result, has some unique
advantages relative to more traditional
LES schemes (see the articles “The
LANS-α Model for Computing
Turbulence” and “Taylor’s
Hypothesis, Hamilton’s Principle, and
the LANS-α Model for Computing
Turbulence” on pages 152 and 172,
respectively).

Beyond the 
Kolmogorov Theory

The 50 years that have passed,
from about 1950 until the new millen-
nium, were notable for increasingly
sophisticated theoretical descriptions
of fluid turbulence, including the sem-
inal contributions of Robert
Kraichnan (1965, 1967, 1968, 1975),
who pioneered the foundations of the
modern statistical field-theory
approach to hydrodynamics, particu-
larly by predicting the inverse energy
cascade from small scales to large
scales in 2-D turbulence, and George
Batchelor (1952, 1953, 1959, 1969).
Those developments are generally
beyond the scope of the present
review, and we have already referred
the reader to recent books in which
they are surveyed in detail (McComb
1990, Frisch 1995, Lesieur 1997). We
touch briefly, however, on a few
recent developments that grew out of
those efforts and on the influence of
the Lagrangian perspective of fluid
turbulence. 

The physical picture that emerges
from the Kolmogorov phenomenology
is that the turbulent scales of motion
are self-similar; that is, the statistical
features of the system are independent
of spatial scale. One measure of this
self-similarity is the nondimensional
ratio of the fourth moment to the
square of the second moment, 
F = 〈δu4〉/〈δu2〉2, as a function of
scale separation. If the velocity distri-
bution is self-similar, then F should
be constant, or flat, as a function of
length scale. Indeed, the nondimen-
sional ratio of any combination of
velocity-increment moments should
be scale independent. If, however, F
behaves as a power law in the separa-
tion r, then the system is not self-sim-
ilar, but instead it is characterized by
intermittency: short bursts (in time) or
isolated regions (in space) of high-
amplitude fluctuations separated by
relatively quiescent periods or
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regions. From the 1960s to the 1980s,
experimentalists reported departures
from the Kolmogorov scaling. The
measured fourth-order and higher
moments of velocity differences did
not scale as rn/3, but rather as a lower
power of the separation r,
〈δun〉 ~ rξn , with ξn < n/3 for n > 3.
To preserve the correct dimensions of
the nth-order velocity difference
moments, the deviations from
Kolmogorov scaling, or from self-
similarity, can be written as a correc-
tion factor given by the ratio of the
large scale L to the separation r to
some power ∆n, or (L/ r)∆n (see the
box “Intermittency and Anomalous
Scaling in Turbulence” on page 136).
Some recent analytic progress toward
understanding the origin of the
observed anomalous scaling has been
made in the context of passive scalar
turbulence and involves the applica-
tion of nonperturbative field-theory
techniques to that problem (see the
article “Field Theory and Statistical
Hydrodynamics” on page 181).

The passive scalar problem
describes the transport and effective
diffusion of material by a turbulent

velocity field. This stirring process
characterizes fluid mixing, which has
many important scientific and techni-
cal applications. Whereas intermit-
tency is rather weak in turbulent
velocity statistics, the distribution of a
passive scalar concentration carried
by a turbulent flow is very intermit-
tent. In other words, there is a much
larger probability (compared with
what one would expect for a random,
or Gaussian, distribution) of finding
local concentrations that differ greatly
from the mean value. For characteriz-
ing fluid mixing, the Lagrangian
frame of reference (which moves with
the fluid element as opposed to the
Eulerian frame, which is fixed in
space) is very useful theoretically
because a passive scalar is carried by
fluid elements. Figure 7 shows the
distribution of a virtual drop of yellow
dye carried by a 2-D turbulent flow in
a stratified layer experiment.9 The
structured distribution of the dye illus-

trates how the velocity field stretches
and folds fluid elements to produce
mixing. Adopting the Lagrangian
frame of reference is rapidly emerging
as a powerful new approach for mod-
eling turbulent mechanisms of energy
transfer. This approach has led to
Lagrangian tetrad methods, a phenom-
enological model arising from the
nonperturbative field-theoretical
approach to turbulence, and to the
LANS-α model mentioned above.

Recent Experimental
Developments

Quantitative single-point measure-
ments of velocity combined with
qualitative flow visualization (van
Dyke 1982) have characterized almost
all experimental measurements of
fluid turbulence for most of the 20th
century. Recently, however, new
experimental techniques enabled by
digital data acquisition, powerful
pulsed-laser technology, and fast digi-
tal imaging systems have emerged
and are causing great excitement in
the field of turbulence.
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Figure 7. Passive Scalar Turbulence in a Stratified Layer
An effective blob of yellow dye is carried by a forced 2-D turbulent flow in a stratified layer. The images show (a) the initial dye
concentration and (b) the concentration after about one rotation of a large-scale eddy. The sharp gradients in the concentration
lead to the very strong anomalous scaling in the transport of the passive scalar field.

9The “virtual” drop consists of more than
10,000 fluid elements, whose evolution is
computed by solving the Lagrangian
equation dx(t)/dt = u(t,x(t)) from experi-
mental velocity fields. 

(a) (b)
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Intermittency is associated with the violent, atypi-
cal discontinuous nature of turbulence. When a
signal from turbulent flow (for example, the veloc-
ity along a particular direction) is measured at a
single spatial point and a sequence of times 
(an Eulerian measurement), the fluctuations in the
values appear to be random. Since any random
sequence is most naturally explained in terms of its
statistical distribution, one typically determines the
statistics by constructing a histogram of the signal.
The violent nature of turbulence shows itself in the
very special shape of the histogram, or the proba-
bility distribution function (PDF), of the turbulent
velocity signal. It is typically wider than the
Gaussian distributions emerging in the context of
equilibrium statistical physics—for example, the
Gaussian distribution that describes the velocity of
(or the distance traveled by) a molecule undergo-
ing Brownian motion.

The PDF of the energy dissipation rate, P(ε), illus-
trates how far from Gaussian a turbulent distribu-
tion can be. At values far above the average, ε >>
〈ε〉, where ε ≡ ν(∇u)2, the probability distribution
P(ε) has a stretched exponential tail, ln P(ε) ∝ –εa

(La Porta 2001). The extended tail of the turbulent
PDF illustrates the important role played by the
atypical, violent, and rare events in turbulence. 

Intermittency has many faces. In the context of
two-point measurements, intermittency is associ-
ated with the notion of anomalous scaling.
Statistics of the longitudinal velocity increments,
δu(r) (the difference in the velocity components
parallel to the line separating the two points) in
developed turbulence becomes extremely non-
Gaussian as the scale decreases. In particular, if the
scale r separating the two points is deep inside the
inertial interval, L >>r >> ld, then the nth moment
of the longitudinal velocity increment is given by

(1)

where L is the integral (pumping, energy-contain-
ing) scale of turbulence. The first thing to mention
about Equation (1) is that the viscous, Kolmogorov
scale ld does not enter the relation in the devel-
oped turbulence regime. This fact is simply related
to the direction of the energy cascade: On average,
energy flows from the large scale, where it is
pumped into the system, toward the smaller scale,
ld, where it is dissipated; it does not flow from the
small scale. Secondly, ∆n on the right side of
Equation (1) is the anomalous scaling exponent. In
the phenomenology proposed by Kolmogorov in
1941, the flow is assumed to be self-similar in the
inertial range of scales, which implies that anom-
alous scaling is absent, ∆n = 0, for all values of n.
The self-similar scaling phenomenology is an
extension of the four-fifths law proven by
Kolmogorov in 1941 for the third moment 

(See discussion of the four-fifths law in “Direct
Numerical Simulations of Turbulence” on page
142). This law is a statement of conservation of
energy from scale to scale in the inertial regime of
homogeneous isotropic turbulence. Modern 
experimental and numerical tests (Frisch 1995) 
unequivocally dismiss the self-similarity assump-
tion, ∆n = 0, as invalid. But so far, theory is still
incapable of adding any other exact relation to the
celebrated four-fifths law. 

On the other hand, even though a comprehensive
theoretical analysis of developed isotropic turbu-
lence remains elusive, there has been an important
breakthrough in understanding anomalous scaling
in the simpler problem of passive scalar turbulence
(see the article “Field Theory and Statistical
Hydrodynamics” on page 181).
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One innovative example of a new
turbulence experiment (La Porta
2001) is the use of silicon strip detec-
tors from high-energy physics to track
a single small particle in a turbulent
flow with high Reynolds number (see
Figure 8). This is an example of the
direct measurement of Lagrangian
(moving with the fluid) properties of
the fluid flow. Because the particle
trajectories are time resolved, the
acceleration statistics can be obtained
directly from experiment, and theoret-
ical predictions for those statistics can
be tested.

Another application of new tech-
nology has made possible the local
time-resolved determination of the
full 3-D velocity gradient tensor10 at a
point in space (Zeff 2003). Knowing
the local velocity gradients allows one
to calculate the energy dissipation rate
ε and mean-square vorticity, Ω =
〈ω2〉/2, and thereby provide an experi-
mental measure of intense and inter-
mittent dissipation events (see
Figure 9).

Both these techniques can be used
to obtain large data samples that are
statistically converged and have on
the order of 106 data sets per parame-
ter value. At present, however, the
physical length scales accessible to
these two techniques are constrained
to lie within or close to the dissipation
scale ld. By using holographic meth-
ods, one can obtain highly resolved,
fully 3-D velocity fields (see
Figure 10), which allow the full turbu-
lent inertial range of scales to be
investigated (Zhang et al. 1997). For
holographic measurements, however,
one is limited to a small number of
such realizations, and time-resolved
measurements are not currently
achievable. Finally, for physical realizations of

2-D flows, full-velocity fields can be
measured with high resolution in both
space and time (Rivera et al. 2003),
and the 2-D velocity gradient tensor
can be used to identify topological
structures in the flow and correlate

them with turbulent cascade mecha-
nisms. The technique used to make
these measurements and those repre-
sented in Figure 10 is particle-image
velocimetry (PIV) or its improved
version, particle-tracking velocimetry
(PTV). Two digital images, taken
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Figure 8. Three-Dimensional Particle Trajectory in a Turbulent Fluid 
A high-speed silicon-strip detector was used to record this trajectory of a particle
in a turbulent fluid with Re = 63,000 (La Porta 2001). The magnitude of the instanta-
neous acceleration is color-coded. Averaging over many such trajectories allows
comparison with the theory of Lagrangian acceleration statistics.
(Modified with permission from Nature. This research was performed at Cornell University.)

Figure 9. Intermittency of Energy Dissipation and Enstrophy at 
Re = 48,000
Time traces of the local energy dissipation εε (crosses) and enstrophy ΩΩ = 〈ωω2〉/2
(solid curve) illustrate the very intermittent behavior of these dissipation quantities
for turbulent flow with Re = 48,000 (Zeff 2003). (Modified with permission from Nature. This

research was performed at the University of Maryland.)

10 The velocity gradient tensor is a 3 × 3
matrix consisting of the spatial derivatives
of three components of velocity. For
example, for the velocity component ui,
the derivatives are ∂ui/∂x1, ∂ui/∂x2, and
∂ui/∂x3. 
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closely spaced in time, track the
motion of small particles that seed the
flow and move with the fluid. The
basic notion is illustrated in Figure 11,
where two superimposed digital
images of particle fields, separated by
∆t = 0.03 second, are shown. Within

small subregions of the domain, pat-
terns of red particles in image 1 can
be matched with very similar patterns
of blue particles in image 2 by maxi-
mizing the pattern correlation. An
average velocity vector for the match-
ing patterns is then calculated over the

entire box from which a velocity field
is obtained, as shown in Figure 12(a).
Notice that there are some anomalous
vectors caused by bad matching that
need to be fixed by some interpolation
scheme. PTV, on the other hand, uses
a particle-matching algorithm to track
individual particles between frames.
The resulting vector field is shown in
Figure 12(b). The PTV method has
higher spatial resolution than PIV but
also greater computational-processing
demands and more stringent image-
quality constraints. From the PTV
velocity field, the full vorticity 
field ωω can be computed as shown in
Figure 12(c).

An additional advantage of the
PTV approach is that, for high enough
temporal resolution, individual parti-
cle tracks can be measured over many
contiguous frames, and information
about Lagrangian particle trajectories
can be obtained. Some 2-D particle
tracks are shown in Figure 13.

This capability can be combined
with new analysis methods for turbu-
lence to produce remarkable new
visualization tools for turbulence.
Figure 14 shows the full backward
and forward time evolution of a
marked region of fluid within an iden-
tified stable coherent structure (a vor-
tex). These fully resolved
measurements in two dimensions will
help build intuition for the eventual
development of similar capabilities in
three dimensions. Further, the physi-
cal mechanisms of 2-D turbulence are
fascinating in their own right and may
be highly relevant to atmospheric or
oceanic turbulence.

The Prospects for
“Solving” Turbulence

Until recently, the study of turbu-
lence has been hampered by limited
experimental and numerical data on the
one hand and the extremely intractable
form of the Navier-Stokes equation on
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Figure 10. High-Resolution 3-D Turbulent Velocity Fields 
These images were obtained using digital holographic particle-imaging velocimetry.
(Zhang et al. 1997. Modified with permission from Experiments in Fluids.)

Figure 11. Superimposed Digital Images of a Particle Field
Two digital images of suspended particles taken 0.003 s apart are superimposed.
The first exposure is in red; the second, in blue. In PIV, the pattern of particles
over a small subregion is correlated between exposures, and an average velocity
is computed by the mean displacement δδx of the pattern. In PTV, each particle is
matched between exposures; as a result, spatial resolution is higher, and there is
no spatial averaging. These data allow one to infer the velocity field connecting
the two images.
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Figure 14. Time Evolution of a
Compact Distribution of 104

Points in a Coherent Vortex at
Time t2
Vortex merging and splitting happen
at times t1 and t3, respectively. The
color-coding of the surface repre-
sents the spatially local energy flux
to larger (red) and smaller (blue) 
spatial scales.
(M. K. Rivera, W. B. Daniel, and R. E. Ecke, to be

published in Gallery of Fluid Images, Chaos, 2004.)

Figure 13. Individual Lagrangian Particle Tracks 
for Forced 2-D Turbulence
(a) Approximately 104 particles are tracked for short periods.
(b) Several individual trajectories are shown for several 
injection-scale turnover times.

Figure 12. Two-Dimensional Vector
Velocity and Vorticity Fields
The velocities in (a) and (b) were
obtained from data similar to those in
Figure 11 using PIV and PTV techniques,
respectively. The vorticity field in (c) is
calculated from the velocity field in (b).

(a)

(c)

(b)

(a)

(b)

           



the other. Today, the advent of large-
scale scientific computation, combined
with new capabilities in data acquisi-
tion and analysis, enables us to simu-
late and measure whole velocity fields
at high spatial and temporal resolu-
tions. Those data promise to revolu-
tionize the study of fluid turbulence.
Further, new emerging ideas in statisti-
cal hydrodynamics derived from field
theory methods and concepts are pro-
viding new theoretical insights into the
structure of turbulence (Falkovitch et
al. 2001). We will soon have many of
the necessary tools to attack the turbu-
lence problem with some hope of solv-
ing it from the physics perspective if
not with the mathematical rigor or the
extremely precise prediction of proper-
ties obtained in, say, quantum electro-
dynamics. Let me explain then what I
mean by that solution. In condensed
matter physics, for example, the mys-
tery of ordinary superconductivity was
solved by the theory of Bardeen,
Cooper, and Schrieffer (1957), which
described how electron pairing medi-
ated by phonons led to a Bose-Einstein
condensation and gave rise to the
superconducting state. Despite this
solution, there has been no accurate
calculation of a superconducting transi-
tion temperature for any superconduct-
ing material because of complications
emerging from material properties. I
think that there is hope for understand-
ing the mechanisms of turbulent
energy, vorticity, and mass transfer
between scales and between points in
space. This advance may turn out to be
elegant enough and profound enough
to be considered a solution to the mys-
tery of turbulence. Nevertheless,
because turbulence is probably a whole
set of problems rather than a single
one, many aspects of turbulence will
likely require different approaches. It
will certainly be interesting to see how
our improved understanding of turbu-
lence contributes to new predictability
of one of the oldest and richest areas in
physics. n
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Data Generation and Statistical Analysis
Susan Kurien and Mark A. Taylor

In 1941, Andrei N. Kolmogorov predicted that, within all
highly turbulent flows, there is a universal energy-conserving
cascade whereby the energy of the large-scale eddies is trans-
ferred to finer and finer scales, down to the scales at which the
energy is finally dissipated to heat. It is difficult to measure
such a cascade directly, but related benchmark predictions for
the statistical behavior of turbulent flows can now be calculated
and examined using advanced simulation and flow visualization
tools. Los Alamos scientists have been able to simulate flows of
Reynolds numbers up to 105, the largest of which needed of the
order of terabytes of data storage and used the full power of 
the Advanced Simulation and Computing (ASC) Q machine 
for several weeks of computer time. Through clever analysis 
of single frames of the simulations, a great deal of information
can be extracted to show that the original constraints for the
Kolmogorov theory can be relaxed so that, in fact, his statistical
predictions hold locally in time. Furthermore, scientists are 
able to measure new statistical quantities that demonstrate the 
conditions under which departures from Kolmogorov theory
begin to occur. This type of statistical analysis of numerical
data is setting the agenda for future research.

Visualization of vorticity in a portion 
of a 2563 subdomain of the 20483 

turbulence simulation performed on 
the ASC Q machine at Los Alamos.

The ASC Q machine.

      



The problem of fluid turbulence
has benefited from concerted
efforts in theoretical, experi-

mental, and most recently, computa-
tional research. However, while
theoretical and experimental efforts
have cooperated for some time to
advance the field, computational sci-
ence is a relatively recent entry and
provides new data and problems that
have not been accessible by more
established techniques. For some prob-
lems, the entire turbulent flow field
can now be calculated to high preci-
sion with suitable numerical methods.
Flow visualization and extensive three-
dimensional (3-D) statistical analysis,
for example, are techniques that can be
used profitably. Computational capa-
bilities and expertise at Los Alamos
National Laboratory have resulted in
calculations that reveal new universal
properties of turbulence and new
directions in which to expand research
efforts, as we describe below.

Solving the Navier-Stokes equa-
tions, which provide the best-known
mathematical description of turbulent
flow, remains an immensely challeng-
ing problem. However, turbulence
research is driven by a practical need
for real-world engineering applications
and by the need to understand and pre-
dict the universal fundamental fea-
tures, if any, in all turbulent
phenomena. Therefore, approaches to
studying turbulence other than compu-
tational ones have evolved over sev-
eral decades and have produced a deep
understanding of the subject on a fun-
damental as well as a phenomenologi-
cal level. One such approach was
initiated in the late 19th century by
Osborne Reynolds, who proposed to
ignore the details of the turbulent flow
at each instant and, instead, to regard
the flow as a superposition of mean
and fluctuating parts. What naturally
followed this shift in approach was the
addition of statistics and probability
theory to the arsenal of tools used to
understand turbulence. The turbulence

field is considered to be a random field
in the probabilistic sense. The idea is
to study the statistical moments of tur-
bulent fields such as the multipoint
correlation functions of velocity, pres-
sure, and so on with the aim to recover
the full probability-distribution func-
tion of the field and its evolution given
a set of initial (boundary) conditions.
Alternatively, there are attempts to
obtain the probability distribution
functions first and derive from them
the statistics of the turbulent system. 
In a broad sense, deriving these func-
tions is the goal of statistical hydrody-
namics research (refer to the article 
“ Field Theory and Statistical
Hydrodynamics” on page 181 of this
volume). This article will examine
some of the questions that statistical
analysis of turbulence data can address
using several data sets generated by
solving the Navier-Stokes equations on
grids with different spatial resolutions.

Universal Properties 
of Turbulence

First, we briefly address the prob-
lem of universality of statistical prop-
erties. We would like to know
whether turbulence exists independ-
ently of the type of flow (water flow-
ing in a pipe or in a river, wind flow,
and others), the fluid that is flowing
(air or water), the boundary conditions
(smooth, rough, artificial, or periodic),
or the energy-input mechanisms (stir-
ring, shaking, or shearing). Is there a
regime of length scales that has quan-
tifiable properties common to all tur-
bulent flows? Two phenomenological
ideas have been useful in addressing
this question. The first was proposed
by Lewis F. Richardson in the late
19th century and is consistent with
our intuition from observing turbu-
lence—the energy input at large scales
is transferred into successively smaller
eddies of the turbulent flow in a so-
called cascade process. The notion of

an eddy in turbu-
lent

an “eddy” in turbulent flow is some-
what nebulous, but for current pur-
poses, it should be thought of as a
coherent turbulence structure with an
associated length scale, location, and
lifetime. The second idea is a
hypothesis advanced by Andrei N.
Kolmogorov (1941): For highly tur-
bulent flows in which the Richardson
cascade has created many genera-
tions of eddies, the turbulent length
scales of size r that are much smaller
than the typical large scale L of the
flow and much larger than the vis-
cous dissipative scale η must have
universal statistical properties.
Kolmogorov conjectured that, in this
regime of intermediate scales, the
dynamics is minimally affected by
forcing, boundaries, and large-scale
anisotropies, which are generally
flow-dependent, and unaffected by
the viscous dissipative effects that
occur at the very small scales. The
dynamics in this so-called inertial
range are dominated by the nonlinear
term of the Navier-Stokes equations,
and it seems reasonable that inertial-
range dynamics should display uni-
versal behavior statistically. In our
discussion of new statistical-analysis
and diagnostic techniques, we will be
concerned primarily with the statis-
tics of this universal inertial range of
scales in high-Reynolds-number tur-
bulence (see the article “ The
Turbulence Problem” on page 124
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rendering of
vorticity in the
2563 subdomain
shown on the opposite page.

            



for definitions of these terms).
The typical statistical scale-

dependent quantities investigated are
known as structure functions, one type
of which is

(1)

where uL(x) = u(x)⋅r̂ is the component
of the velocity along r (the subscript
L denotes longitudinal velocity) and
〈...〉 denotes ensemble and domain
averaging over all x. This structure
function is thus the nth-order moment
of the velocity difference across scales
of size r and is a measure, order by
order, of the statistical properties of
eddies of size r. Kolmogorov derived
a fundamental physical law for the
inertial range of scales r for high
Reynolds number, slowly decaying
(essentially steady-state) turbulence
under the assumption of isotropy and
homogeneity of the small scales:

(2)

where ε is the mean rate of energy
flux balancing the mean rate of energy
dissipation in statistically steady turbu-
lence in the limit of zero viscosity.
This so-called “four-fifths law”
(Kolmogorov 1941) is a statement of
energy conservation in the inertial
range; that is, the energy flux through
scales of size r1 equals the energy flux
through scales of size r2 if both r1 and
r2 are in the inertial range. The four-
fifths law is now used as a nominal
measure of the regime of inertial-range
scaling in experimental and numerical
data; that is, the range of scales over
which the four-fifths law is close to
being satisfied is taken to be the statis-
tically “universal” scaling regime.

Kolmogorov also assumed that the
cascade of energy occurs in a space-
filling, self-similar way. Formally,
there exists a unique scaling exponent
h such that

(3)

To be consistent with the four-
fifths law, the assumption of self-
similarity implies that h = 1/3 and
that, in general, if structure functions
of arbitrary order are to scale with r,
then

(4)

Most of the known empirical
departures from the Kolmogorov scal-
ing prediction can be traced to three
causes: The Reynolds number is not
large enough, the scaling is contami-
nated by the anisotropies inevitable in
most flows, and the self-similarity
assumption is not valid. The effects
relating to small Reynolds numbers
are something we have to live with, in
a sense, because of the limitations of
technology and computational power,
but cumulative data analysis of exper-
iments and simulations performed
over several decades strongly suggest
that the scaling exponents do not dif-
fer much for a Taylor microscale
Reynolds number1 Rλ ranging from
approximately 100 to approximately
10,000. 

It therefore seems that, at a mini-
mum, we observe a convergence of
the exponents over a wide range of
high Reynolds numbers. The assump-
tion of statistical isotropy, that is,
invariance under arbitrary rigid rota-
tions, is key to the scaling-law predic-
tions, but isotropy is a rather strong
restriction to make when most turbu-

lent flows are apparently highly
anisotropic. There are two ways to
remove the inevitable effects of
anisotropy in order to test the funda-
mental assumption of self-similarity.
The first is to measure flows with
extremely high Reynolds numbers,
such as wind flow over the ground,
that yield wide separation of scales
and resort to the Kolmogorov assump-
tion that, for sufficiently small scales,
the statistics will be locally isotropic.
The second is to explicitly extract the
isotropic component of the statistics,
for example, by systematically averag-
ing out the anisotropic contributions,
as we discuss in detail below.
Recently, the effect of anisotropy on
scaling exponents has been studied
extensively, and there are now ways to
quantify anisotropic effects (Kurien
and Sreenivasan 2001), as well as to
extract purely isotropic contributions
(Taylor et al. 2003), which might then
be more sensibly compared with theo-
retical predictions. We will discuss a
new method to implement the latter
procedure that has proved to be very
useful in analyzing arbitrarily
anisotropic flows. The final known
reason for departure from the
Kolmogorov scaling prediction is that
the turbulent cascade is not self-simi-
lar. That is, instead of each generation
of eddies being produced in a space-
filling, self-similar way, the cascade
proceeds in an intermittent manner, in
which some parts of the flow at a
given instant are extremely active
while others are relatively quiescent.
This is the now well-known intermit-
tency feature of turbulence, and it
results in what is known as “anom-
alous” scaling—that is, there is no
unique scaling exponent h from 
which all scaling exponents can be
simply derived.

In the remainder of this article, we
describe our studies of the universal
statistical features of turbulence using
quantities such as the structure func-
tions measured from simulations
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1The Taylor microscale Reynolds number is
Rλ = u′λ/ν, where u′ is the velocity fluctua-
tion and ν is the viscosity. Initially, G. I.
Taylor thought that the scale λ—the radius
of curvature at the origin of the autocorrela-
tion of the fluctuating velocity—was the
viscous dissipation scale of turbulence. In
fact, its magnitude is intermediate between
the large scale L and the true (Kolmogorov)
dissipation scale η. Rλ is often used instead
of the large-scale Reynolds number, Re, to
characterize flows that have widely varying
large-scale properties and, hence, widely
varying Reynolds numbers but whose small-
scale fluctuations might be comparable. At
high Reynolds numbers, Rλ ∝ Re1/2.

                                                                                 



(resolved down to the dissipation
scale) of the fundamental equations of
motion, the Navier-Stokes equations.
First, we discuss the simulations
themselves and then demonstrate the
use of diagnostics to extract statisti-
cally isotropic features of the flow.
Our results suggest a refinement of
the Kolmogorov picture of isotropic
turbulence.

Direct Numerical Simulations

Direct numerical simulation (DNS)
refers to solving the Navier-Stokes
equations numerically by resolving all
scales down to the scale of viscous
dissipation. DNS represents a brute-
force approach to modeling turbu-
lence: No modeling is required
beyond the Navier-Stokes equations,
simple well-understood numerical
methods are used, but massive com-
puting resources are needed. When
carefully produced, DNS data is an
excellent substitute for exact, analytic
solutions of the Navier-Stokes equa-
tions. The only drawback is that to
obtain solutions for moderately high
Reynolds numbers requires weeks of
computing time on today’s largest
supercomputers. To achieve the
Reynolds numbers of a typical atmos-
pheric boundary layer flow, Rλ
= 10,000, will require a 108-fold
increase in computing power over
today’s largest computers. Fortunately,
large-scale features such as the mean
flow and other statistical properties of
turbulence depend only weakly on the
Reynolds number. Thus, DNS of
flows with more moderate Reynolds
numbers has been valuable for study-
ing many aspects of turbulence,
including universal statistical features.
For additional information, see, for
example, the review by Moin and
Mahesh (1998).

To obtain as high a Reynolds num-
ber as possible, DNS calculations are
usually performed on the simplest

flows: the incompressible Navier-
Stokes equations, without multiple
materials or other physics that must
be modeled. The calculations are fur-
ther limited to simple domains and
equally spaced grids, which allow for
very efficient numerical algorithms.
The highest possible Reynolds num-
bers can be achieved for the classic
problem of homogeneous turbulence
in a square box with periodic bound-
ary conditions, the problem we have
focused on.

For fully resolved calculations,
spectral methods are preferred for
their high accuracy. Although high-
order finite-difference codes can yield
similar accuracy, spectral methods
still have an advantage because they
permit fast, direct solution of
Poisson’s equation. Solving Poisson’s
equation is required to determine the
pressure gradient that appears in the
Navier-Stokes equations. Spectral
methods became practical for compu-
tational fluid dynamics after the
development of the spectral-transform
method (Eliasen et al. 1970, Orszag
1970). Additional issues important for
the Navier-Stokes equations, such as
time-stepping schemes and control of
aliasing errors, were effectively
treated in Rogallo (1981). The meth-
ods used today are quite similar to
those used in that work.

The spectral part of a DNS code
refers to the method used for the spa-
tial discretization of the equations. In
particular, to compute a spatial deriva-
tive of a term in the equations, one
first expands that term in a truncated
Fourier expansion using the fast
Fourier transform (FFT) and then
computes the derivatives exactly from
the Fourier expansion. After the equa-
tions are discretized in space, we are
left with a system of ordinary differ-
ential equations, which are integrated
in time with a third- or fourth-order
Runge-Kutta or similar scheme. This
procedure has one complication aris-
ing from the nonlinear advection term.

The nonlinearity can transfer energy
into frequencies higher than can be
resolved by the numerical grid. The
energy in these unresolved frequen-
cies will then artificially contaminate
the energy and phases of the resolved
frequencies in a procedure known as
aliasing. This aliasing error is typi-
cally controlled by properly designed
spectral filters.

The computational expense of
DNS comes from the strict restrictions
on the grid spacing, ∆x, and the time
step, ∆t, that are required to fully
resolve all scales in the Navier-Stokes
equations. If one is primarily inter-
ested in the statistical properties of the
inertial range, it is sufficient to run the
numerical simulation with ∆x ≤ 3η,
where η is the Kolmogorov length
scale.2

Since η ∼ Re–3/4 (or η ∼ Rλ
–3/2),

this grid-spacing restriction also deter-
mines the highest-Reynolds-number
flow that can be accurately computed
for a given ∆x. The restrictions on ∆t
can be estimated from the considera-
tion of physical time scales in the
problem, but in practice, a more
restrictive constraint comes from the
CFL (Courant-Friedrichs-Levy) condi-
tion, which shows that, for the time-
stepping schemes used, the time step
must be kept proportional to the grid
spacing. Combined, these considera-
tions show that the computational cost
of DNS is proportional to Rλ

6 (Pope
2000).

In DNS calculations, it is important
to ensure that the energy dissipation is
due entirely to the viscous terms in
the Navier-Stokes equations, rather

Number 29  2005  Los Alamos Science  145

Direct Numerical Simulations of Turbulence

2 The Kolmogorov length scale η depends
only on the rate of energy flux ε and the
(chosen) fluid viscosity ν. In the forced
simulations, η is determined entirely by
the forcing (rate of input of energy),
which balances the flux rate in the statisti-
cal steady state and the chosen viscosity
coefficient. In the decaying simulation, η
is fully determined at initial time by the
initial condition but thereafter evolves
with the dynamics, thus resulting in
increasing resolution as the flow decays.

                                               



than to the numerical method used.
Often, numerical methods are
designed to introduce various types of
artificial dissipation, which can have
beneficial properties but are not
appropriate for DNS. For the spectral
method outlined here, we estimate the
numerical viscosity by computing the
kinetic energy E at every time step
and comparing the numerical evolu-
tion of E,

where E = 0.5 〈u⋅u〉, with the evolu-
tion given by the Navier-Stokes equa-
tions. In the unforced case, the latter
term is

where u is the flow field. In our
largest simulation, the two quantities
agree to more than four digits, demon-
strating that over 99.99 percent of the
dissipation is due to the Navier-Stokes
viscosity.

Finally, if DNS in a periodic box
is used to study universal features of
turbulence, the largest scales are
strongly influenced by the square
computational domain. For example,
consider a field with all its energy in
spherical wave numbers of at most
2. There are only a handful of such
Fourier modes, and they are strongly
aligned with the coordinate direc-
tions of the box. Any such field
could not be isotropic. Many of the
directional moments of the field
would greatly differ between coordi-
nate and noncoordinate directions.
There are several ways to avoid this
effect in order to obtain more
isotropic simulations. The most
direct method is to simply keep
energy out of the large scales. This
is the approach usually taken with
decaying turbulence simulations. For
forced simulations, it is possible to
achieve flows with much higher
Reynolds numbers by injecting

energy into only the low wave num-
bers, but to obtain isotropic solutions
requires careful attention. One
approach is to use stochastic forcing
designed so that the flow will be
isotropic for a long enough time
average, even though the field at any
given time will have large
anisotropies at the large scales. This
approach introduces a lot of fluctua-
tions in the solutions, so long time
averages must be taken to obtain
converged statistics. The most effi-
cient approach is to use smooth,
deterministic low-wave-number forc-
ing. Converged statistics can then be
obtained with shorter time averages,
but some anisotropy will persist
throughout the flow. For many quan-
tities of interest, however, this
anisotropy can be removed with the
angle-averaging techniques
described below.

In our work, we have examined
DNS simulations for decaying turbu-
lence, stochastically forced turbu-
lence, and deterministically forced
turbulence (refer to Table I). For the
decaying turbulence simulations, a
properly chosen initial condition is
allowed to decay through the effects
of viscosity. For the forced prob-
lems, the simulations are run until
the forcing and dissipation reach sta-
tistical equilibrium, and then they
are run for several additional eddy

turnover times to collect data from
the equilibrium regime.

The decaying problem has the
advantage that more realistic flows
can be simulated, and it is possible, in
principle, to compare the simulation
results with those from experiments,
such as those carried out at the
recently upgraded Corrsin Wind
Tunnel (Kang et al. 2003). But the
decaying problem has the drawback
that the results strongly depend on the
initial condition, and one is faced with
the challenge of generating a realistic
turbulence state to use for the initial
condition. To address this problem, in
data set 5, we have followed the pro-
cedure described by Kang et al.
(2003). We generate an initial flow
field with random, uncorrelated
phases but a prescribed energy spec-
trum. The flow is then run for a short
time, until the phases become corre-
lated enough to give a reasonable
mean-derivative skewness. The
energy spectrum is then reinitialized
back to the original spectrum while
retaining the correlated phases. Our
low-wave-number forcing schemes
are described in detail in Taylor et al.
(2003). The deterministic forcing is
based on the work by Sullivan et al.
(1994), Sreenivasan et al. (1996), and
Overholt and Pope (1998). Data sets 1
and 4 were obtained with this forcing.
Data set 3 was obtained with a similar
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scheme, but modified to inject helicity
into the flow. The stochastic forcing
used for data set 2 was based on the
forcing given in Gotoh et al. (2002).
We used both types of forcing to
demonstrate the equivalence of the
results when angle averaging is
applied to the data.

Parallel Computing Issues

DNS calculations at resolutions of
up to 5123 can now be obtained on
moderately large clusters. But the
larger DNS calculations currently
require Advanced Simulation and
Computing (ASC)-class supercomput-
ers. Our largest simulation, with a res-
olution of 20483, requires a 256-fold
increase in computing power over that
required for a resolution of 5123. With
8 billion grid points, our 20483 simu-
lation is one of the largest ever com-
pleted. It required several weeks using
2048 processors of ASC-Q and was
made as part of the Laboratory’s
Science Runs to showcase ASC-Q’s
performance.

To implement FFT-based DNS
codes on distributed memory parallel
computers, the community relies
almost exclusively on the data-trans-
pose method. Each processor must
perform thousands of FFTs per time
step, but the data required for those
FFTs will be distributed among many
other processors. It is quite difficult
to write an efficient, distributed-data
FFT, and thus the data-transpose
method continuously adjusts the dis-
tribution of data among the proces-
sors so that each processor can use a
conventional serial FFT. The name
“transpose” comes from the fact that
if the data distribution is represented
on a 3-D mesh of processors, the
operations required by the data-trans-
pose algorithm look like matrix
transposes. For a resolution of 20483,
over a terabyte of data must be
moved through the network for each

time step, and thus the method relies
on a tightly coupled parallel com-
puter with very high bandwidth. On
ASC-Q, for problems of size N3, we
obtain excellent scaling for up to N/2
processors. Using N processors still
represents a significant speedup, but
the scalability starts to decrease, so
there is little benefit to using more
than N processors.

Another important problem con-
cerns data input/output (I/O). For a
resolution of 20483, each flow snap-
shot (which can also be used as a
restart file) is 192 gigabytes. Serial
I/O (having a single processor collect
the data from all other processors and
write it into a single file) can obtain
data rates only in the tens of
megabytes per second and thus
requires hours to write a single snap-
shot or read in a snapshot when
restarting. To avoid this unacceptable
bottleneck, we utilized the Unified
Data Model (UDM) I/O library of the
High-Performance Computing
Environment Group at Los Alamos.
UDM, in conjunction with ASC-Q’s
parallel-file system, allows all
processors to participate in the I/O
for a single file. With UDM, we were
able to obtain data-transfer rates of
over 500 megabytes per second,
which means snapshots can be writ-
ten or read in under 7 minutes.

The Angle-Averaging
Technique

In general, the two-point structure
function S(r) defined in Equation (1)
is a function of the vector r, that is, a
function of the size of the separation
scale r = |r|, as well as of the orienta-
tion of r. The Kolmogorov 1941 the-
ory, however, assumes that, for
sufficiently small scales, the flow
depends only on the magnitude of r
and is independent of the orientation
of r. Most reasonably controlled flow
experiments (for example, those

occurring in wind tunnels or pipes),
as well as uncontrolled experiments
(for example, those involving meas-
urements of velocity in the atmos-
pheric boundary layer), inevitably
have some degree of anisotropy
either from boundary configurations
or from forcing mechanisms.
Therefore, reasonable comparisons
with theoretical predictions require
understanding the degree of contami-
nation caused by arbitrary anisotropy
as well as formulating methods to
eliminate these effects from the data.
From experiments at very high
Reynolds numbers (Taylor Reynolds
number of ~10,000 or higher), in
which there is wide separation
between the large scales and the dis-
sipative scales, we know that, for
two-point statistics of the structure
functions given in Equation (1), the
contamination due to anisotropy
decays rapidly with scale size and
that local isotropy is recovered in the
leading order. In numerical simula-
tions, the Reynolds numbers, as well
as the range of scales computed, are
much smaller, and anisotropic effects
typically do not have enough range
of scales to decay sufficiently. As a
result, they have a significant contri-
bution in the inertial range. However,
the availability of the full spatial and
temporal information of the flow
field offers other unique possibilities
for investigating purely isotropic
effects. One general procedure
recently developed at Los Alamos is
the angle averaging of the structure
functions, which averages out the
anisotropic contributions of an arbi-
trary (anisotropic) flow.

The primary motivation for our
angle-averaging procedure is the
recent derivation of a new version of
the Kolmogorov four-fifths law
(Duchon and Robert 2000, Eyink
2003). In this version, the four-fifths
law states that for any domain B of
size R in the limit that the viscosity
ν → 0 (infinite or sufficiently high
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Reynolds number), for scales of size
r << R, and at any instant in time,

(5)

where εB is the energy dissipation rate
averaged over B. That is, the four-
fifths law holds locally, instanta-
neously, and without any assumption
of homogeneity or isotropy. The inte-
gration over the solid angle Ω, indi-
cates averaging over all possible
orientations of r for a given |r|, which
projects out the isotropic part of the
correlation. The statement of energy
conservation in the inertial range is
now quite different—there is an under-
lying isotropic component common to
all flows that formally obeys the same
law that Kolmogorov derived using
more restrictive assumptions.

To test this prediction with numeri-
cal simulations, we devised a way to
take the solid-angle average of the
data computed on a grid. The obvious,
but computationally expensive and
error-prone solution, would be to
interpolate the velocity vector field
over a sphere of desired radius r and
integrate. Instead, we chose to first
use the separation vectors allowed by
the grid to compute structure func-
tions for a fixed (θ,ϕ) as a function of
r, as follows:

Then, we computed a set of these
structure functions for various (θ,ϕ)
allowed by our grid so that we have a
set of functions S(r,θ1,ϕ1),
S(r,θ2,ϕ2),… S(r,θn,ϕn) for pairs of
angles (θi,ϕi) that span the full spheri-
cal solid angle rather uniformly. Each
S is now a smooth function of r in a
particular direction and can be inter-

polated to obtain S(r) for any r. Then,
to yield the angle-averaged value for a
particular r, we compute

(6)

where the weight wi is the solid angle
subtended by the Voronoi cell contain-
ing the point r̂.

As n → ∞, the average becomes
arbitrarily close to the true spherical
integral of Equation (5), and so the
isotropic component of the statistics is
recovered. The method is not specific
to the four-fifths law and can in prin-
ciple be used to examine the underly-
ing isotropic component of any
two-point correlation function, as we
demonstrate below.

The Four-Fifths Law

Figure 1 shows such a calculation
performed on a single frame of an
anisotropically forced flow at a reso-
lution of 1024 grid points to a side
with periodic boundary conditions

(data set 4), which was run long
enough to achieve a statistically
steady state. Each colored line is the
compensated, domain-averaged, lon-
gitudinal third-order structure func-
tion, S3(r)/εr, computed in a
particular direction in the periodic
box for the increments r allowed by
the grid in that direction. The length
scale r has been nondimensionalized
by the dissipation length scale η. The
compensated statistics were com-
puted in 73 different directions that
were fairly evenly distributed over
the sphere. As is clearly seen, the
calculation in a given direction yields
a smooth curve, which we interpo-
lated using a cubic spline fit to
obtain S3(r)/εr for arbitrary length r
in a given direction. The different
directions also clearly display a large
degree of variability with respect to
each other, which appears to dimin-
ish as the scales get very small but is
significant in a midrange of scales
wherein the inertial range might be
expected to lie. The thick black line
is the average over all 73 directions
of S3(r)/εr as a function of r calcu-
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Figure 1. The Four-Fifths Law for a Single Frame of Forced Flow
The four-fifths law was computed for a single frame of data set 4 for deterministic
forced flow, whose resolution is 10243. Each colored line is the compensated third-
order structure function computed in one of 73 different directions of the flow. The
black line is the angle-averaged function, which displays a range of scales between
30 and 200 that fall within 5% of the theoretical value of 0.8.

                                                                                                                    



lated according to Equation (6).
Remarkably, this angle-averaged

function displays a reasonable range
over which the curve is rather flat
(indicating linear scaling in r) and is
within 5 percent of 0.8, which is the
theoretical predicted value. This
result says that, at every instant in an
anisotropic flow, there is an underly-
ing isotropic component that can be
projected out when an approximated
spherical average is used and that,
furthermore, obeys to a very good
degree the fundamental universal
four-fifths law for isotropic flow.

In Figure 2, we show the same cal-
culation for data sets 1 and 2, which
were calculated at lower Reynolds
numbers but are forced in the low
wave numbers as described above.
The solid (black) and dotted (red)
lines are the angle-averaged and then
time-averaged compensated third-
order structure functions for data sets
1 and 2, respectively. While the scal-
ing range for this resolution is less

than that in Figure 1, the noteworthy
feature is that the curves are indistin-
guishable, which is a strong indication
of universality because the underlying
isotropic contributions of these two
very different anisotropic flows are
identical (Taylor et al. 2003).

The Two-Fifteenths Law

To demonstrate the distinction
between the Kolmogorov local
isotropy assumption and what we see
in Figure 1, we discuss the measure-
ment, using the same angle-averaging
technique, of a very different statisti-
cal quantity that obeys the so-called
two-fifteenths law: 

where h is the mean helicity dissipa-
tion rate and uT denotes the compo-

nent of u(r) transverse to r. The quan-
tity on the left side of this equation is
a third-order statistic, as is S3(r) for
the four-fifths law, but this new quan-
tity probes the presence of a constant
total helicity flux h in the inertial
range (Kurien 2003). Like energy,
helicity (u ⋅ ∇ × u) is conserved in
turbulence, and our analysis has
revealed that in the inertial range,
helicity has other conserved properties
in common with those of energy, such
as constant flux. 

Figure 3 shows this parity-breaking
third-order statistic normalized by hr2

in a forced flow in a periodic box of
512 grid points to a side with fixed
sign of helicity input into the two
lowest modes at each time step (data
set 3). The picture in Figure 3 indi-
cates that helicity flux (that is, the
appropriate third-order correlation
function) is highly anisotropic all the
way into the small scales, as shown by
the vast spread among the different
directions. Nevertheless, there is still
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Figure 2. Angle- and Time-Averaged Compensated
Third-Order Structure Function for Two Different
Forced Flows
The angle- and time-averaged compensated third-order
structure function was computed for data sets 1 (solid line)
and 2 (dotted line), each of which has a resolution of 5123.
These two differently forced flows essentially coincide with
each other in this statistical measure, thus supporting the
notion of underlying universality of turbulent flows.

Figure 3. The Two-Fifteenths Law from a Single Frame
of Data Set 3
The two-fifteenths law was computed for a single frame of data
set 3, whose resolution is 5123. Each colored line is the com-
pensated third-order statistic in one of 73 different directions in
the flow. The black curve is the angle-averaged function, which
shows a range between 30 and 200 wherein its value is within
4% of the theoretically predicted value of 2/15.

                              



an underlying isotropic component
(thick black line) that emerges from
the angle-averaging procedure and
seems to agree with the universally
predicted two-fifteenths law to
within 5 percent over a reasonable
range of scales. This analysis
(Kurien et al. 2004) reveals that the
flux of helicity is more anisotropic
and intermittent (in the sense of
large departures from the mean) than
the energy flux measured analo-
gously by the four-fifths law
(Figures 1 and 2).

In summary, angle averaging and
statistical analysis have revealed that
the isotropic component in turbulent
flows is universal, agrees rather well
with the Kolmogorov theory, and
moreover, is consistent with the

local version of Duchon and Robert
(2000) and Eyink (2003). The proce-
dure allows us to separate the con-
tamination due to anisotropy from
other effects, such as small Reynolds
number and intermittency, that can
muddy the measurement of clean
scaling laws. The angle-averaging
method also gives us a way to more
efficiently use data and gain statisti-
cally significant results from single
snapshots of the flow, whereas in the
past, long time averages were taken,
which led to data size and storage
issues. Especially when we begin to
start looking at the storage and
analysis of data set 5, which needs
of the order of 250 gigabytes of disk
space, a scheme such as the angle-
averaging procedure, which

increases the amount of information
we can glean from a single frame of
turbulence data, is a definite asset.

Utility of Large-Scale
Simulations

Our largest simulation (data set 5) is
for a very highly resolved (20483),
decaying flow at a moderate Reynolds
number (270). The simulation’s initial
condition was taken from the centerline
data gathered from a wind tunnel exper-
iment performed at Johns Hopkins
University (Tao et al. 2000). The simu-
lation, performed on 2048 processors of
ASC-Q, did not achieve the Rλ ∼ 700 of
the experiment. Therefore, direct com-
parison with the experimental results
cannot be made until we can compute
decaying flow at a higher Reynolds
number or the experimental facility can
rerun the experiment at a Reynolds
number matching that of the existing
simulation. However, a full numerical
simulation provides access to the full
spatial and temporal velocity field,
while the experiments normally meas-
ure a sparse subset of the flow field.

Figure 4 shows the surfaces of con-
stant vorticity magnitude for a 2563

subdomain of the 20483 simulation.
Vorticity visualizations are typically
used to show the locations of the flow
structures. In this case, the vorticity
visualization shows that the generation
of successively smaller energetic struc-
tures occurs by the stretching of regions
of vorticity by the nonlinearity. The
small structures in Figure 4 persist
down to the grid size of the simulation.

Data sets 1 and 2 had Reynolds
numbers similar to the number for data
set 5 but only a quarter of the number
of grid points to a side. That is, the lin-
ear size of the smallest scales resolved
in the 5123 simulations of data sets 1
and 2 was 64 times larger than the
smallest scales in the 20483 simulation
of data set 5. Because the 5123 simula-
tions cannot resolve almost two orders
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Figure 4. Surfaces of Constant Vorticity for Decaying Turbulence
This visualization is of the surfaces of constant vorticity magnitude in one of the
2563 subdomains of the entire 20483 simulation (data set 5). There are 512 such sub-
domains in this simulation.

         



of magnitude in scale that are accessible
to the 20483 simulation, the coarser
simulations obscure the turbulent fine
structure seen at higher resolutions.
Although they are quite suitable for
observing the many inertial-range fea-
tures described above, the coarser com-
putations obscure the significant
energetic events that occur at higher
resolution. Clearly if we are to gain a
deeper understanding of the spatial and
temporal universal properties of turbu-
lence through such numerical calcula-
tions, we must continue to pursue ways
to compute larger resolved Navier-
Stokes simulations and to develop effi-
cient methods for analyzing the
enormous quantities of data involved. n
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The LANS-α Model
for Computing Turbulence 

Origins, Results, and Open Problems
Darryl D. Holm, Chris Jeffery, Susan Kurien, Daniel Livescu, 

Mark A. Taylor, and Beth A. Wingate 

Over the last 50 years, numerous computational turbulence models have been 
proposed for obtaining closure. Obtaining closure means capturing the physical phe-
nomenon of turbulence at computably low resolution, by mimicking the effects of the
small scales on the larger ones without calculating them explicitly. The Lagrangian-
Averaged Navier-Stokes alpha (LANS-α) model is the first to use Lagrangian averag-
ing to address the turbulence closure problem. LANS-α modifies the nonlinearity of
the Navier-Stokes equation, instead of its dissipation, thereby providing an alternative
way to reach closure without enhancing viscosity. The LANS-α model arose from an
educated guess, based on combining Lagrangian-averaged nonlinearity with Navier-
Stokes viscosity. Its derivation from these first principles implied mathematical theo-
rems for its solutions, thereby guaranteeing that the most basic properties of the flow

(energy transport, circulation, variability, instability, dissipation anomaly, and
intermittency) at scales above the effective cutoff scale of alpha are all 

modeled accurately. Mathematical analysis also proved that the LANS-
α solutions converge to Navier-Stokes solutions in the limit as the 

correlation length parameter (alpha) tends to zero, thereby estab-
lishing the LANS-α model’s accuracy. Moreover, the model’s

solutions for nonzero alpha possess a global attractor
whose fractal dimension is finite, thus guaranteeing that

the solutions are rigorously computable using finite 
resolution. The theorem-based approach of the

LANS-α model has raised the mathematical
standards for deriving other computational models

of turbulence. Application of the alpha model is still
in its infancy, but results so far suggest that this new

approach will complement, and in some cases subsume,
earlier approaches for modeling turbulence in real-world

applications. 

                   



Turbulence is an outstanding
unsolved multiscale nonlinear
problem of classical physics. It

occurs spontaneously in a fluid, when
forcing by stirring at the large scales
gets transferred by nonlinearity into
slender, swirling circulations in the
flow. These coherent swirling “blobs”
of fluid, pierced by vortex lines and
bounded by material circulation loops
are called eddies. The eddies are
Lagrangian structures, that is, they
travel with the flow, stretching them-
selves into extended shapes (sheets or
tubes) as they follow the flow induced
by the vortex lines that pierce them.
The coherent eddies, sheets, and tubes
of vorticity, stretching themselves into
finer and finer shapes, comprise the
“sinews” of turbulence.

The characteristic features of turbu-
lence—its distribution of eddy sizes,
shapes, speeds, vorticity, circulation,
nonlinear convection, and viscous dis-
sipation—may all be captured by using
the exact Navier-Stokes equations. The
Navier-Stokes equations correctly pre-
dict how the cascade of turbulent
kinetic energy and vorticity accelerates
and how the sinews of turbulence
stretch themselves into finer and finer
scales, until their motions reach scales
of only a few molecular mean free
paths, where they may finally be dissi-
pated by viscosity into heat. However,
the fidelity of the Navier-Stokes equa-
tions in capturing the cascade of turbu-
lence is also their downfall for direct
numerical simulations of turbulence.

The number of active degrees of
freedom required to simulate the turbu-
lent cascade in high-Reynolds-number
flows quickly outstrips the numerical
resolution capabilities of even the
largest computer. To make turbulence
computable, scientists have developed
various approximate models that halt

the cascade into smaller, faster eddies.
In most models, this effect is accom-
plished by causing the eddies below a
certain size to dissipate computational-
ly into heat. This dissipative imperative
causes errors, however, because it
damps out the variability in the larger-
scale flow caused by the myriad of
small scales of motion interacting non-
linearly together in the fields of the
larger motion. 

Consider the problem of modeling
the average effects of turbulence on
ocean currents in the North Atlantic
Ocean. The North Atlantic contains
circulations ranging in size from thou-
sands of kilometers to only a few
meters. The variability in the flow has
been documented through observa-

tions of Lagrangian trajectories (tra-
jectories moving with the fluid
parcels) in the Labrador Sea. As
shown in Figure 1 (Krahmann and
Visbeck 2003), the Labrador Sea is
full of highly oscillatory Lagrangian
trajectories delineating the circulating
eddy activity at the “mesoscale” size
of tens of kilometers. Standard turbu-
lence models for ocean simulations
remove the fluctuating effects of all
the scales of motion smaller than
about 30 to 100 kilometers. Thus, the
energy and information from the
smaller scales are lost, and the result-
ing models ultimately are overdamped
and inaccurate to the extent that the
variability of their solutions depends
upon these smaller scales.
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Figure 1. Lagrangian
Fluid-Parcel
Trajectories in the
Labrador Sea
(a) Individual Lagrangian
trajectories traced using
floats delineate circulat-
ing eddies traveling with
the flow. (b) Many over-
lapping trajectories cap-
ture the tangle of motions present in the flow. (Permission granted by Gerd Krahmann,

Lamont-Doherty Earth Observatory of Columbia University.) 

Greenland

Greenland

Labrador

Labrador

Opposite page: The sinews of turbu-
lence are illustrated by level surfaces of
vorticity calculated with the LANS-αα
model at a spatial resolution of 2563.

(a)

(b)

              



Capturing the mean effects of the
smaller-scale circulations on the larger-
scale motions in turbulence is called
closure. In a novel approach, the
Lagrangian-Averaged Navier-Stokes
alpha (LANS-α) model we discuss
here provides closure by modifying the
nonlinearity in the Navier-Stokes equa-
tions to stop the cascading of turbu-
lence at scales smaller than a certain
length, but without introducing extra
dissipation. Statistically, the size alpha
in the LANS-α model is the typical
distance that a Lagrangian trajectory
fluctuates away from its time-mean tra-

jectory. Hence, by definition, alpha is
the smallest eddy scale still participat-
ing actively in the cascade. Eddies at
scales smaller than alpha are, in effect,
slaved to the mean motions of the larg-
er ones; that is, they fluctuate locally
as they are carried along in the frame
of motion of the larger scales. This
modification of the Navier-Stokes non-
linearity, derived by applying
Lagrangian averaging techniques,
allows the turbulence problem to
remain computable at the resolution
size of alpha, but to still retain the
mean circulation effects of the smaller

(subgrid) scales on the resolved solu-
tion. The LANS-α model is the first
turbulence closure model to use
Lagrangian averaging, from which it
derives its name. 

We shall briefly review the develop-
ment of the LANS-α model from 1992
to1997, catalog its key results from
1997 to 2004, and finally discuss the
open problems. The year 1997 was a
turning point because only then was it
realized that the ideas being developed
in the context of ocean modeling had
the potential to be used as a com-
putable turbulence model.
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The Lagrangian Eddy 

A fluid possesses circulation if the integral of the tangential component of its velocity around any closed loop moving with
the fluid is nonzero. A geometrical object such as a circulation loop embedded in, or traveling with, the fluid flow is an
example of a Lagrangian quantity. A theorem of vector calculus by Kelvin and Stokes links the fluid’s circulation with its
vorticity, defined as the curl of its velocity. Namely, the circulation integral around the Lagrangian loop moving with the
fluid is equal to the integral of the normal component of the fluid’s vorticity, taken over any surface which has the circula-
tion loop as its boundary. (This surface integral defines the “vorticity flux” through the surface whose boundary is the circu-
lation loop.) Thus, circulation loops enclose distributions of vorticity flux, which may be regarded as bundles of vortex lines
embedded in the fluid and wrapped by these Lagrangian circulation loops. These Lagrangian structures are known as
“eddies.” When the eddies stretch themselves into tubes, they are called “vortex tubes”.

Above: As a material loop initially at C is carried by the fluid
flow, it deforms to C1 at a later time in domain D.

Right: A vortex tube is a material surface S surrounding 
a bundle of vortex lines (that is, lines tangent to the vorticity).
The surface S is formed by a union of material loops C, each 
carried by the fluid flow. The divergence theorem implies that the
flux of vorticity is the same through any slice, all along the vortex
tube. Kelvin’s theorem implies this flux of vorticity along the tube is 
constant in time. Thus, vortex tubes are “coherent structures.”
(Redrawn from J. E. Marsden and T. S. Ratiu, Geometric Analysis Methods in Fluid Mechanics,

manuscript in preparation.)

                              



The Development of the
LANS-α Model

The origins of the LANS-α model
can be traced to a one-dimensional
model of nonlinear shallow-water
wave dynamics, written down in a
moment of inspiration on a blank
page, in a pocket calendar, during a
seminar in 1992 at the Center for
Nonlinear Studies. Researchers began
to take the equation seriously when it
was discovered to be a soliton equa-
tion. That is, its initial value problem
was found to possess exact nonlinear
(weak) solutions, playfully dubbed
“peakons” because of their sharp
peaks, whose motion and interactions
could be completely solved using
elastic collision rules (Camassa and
Holm, 1993). Subsequently, the equa-
tion was derived from Hamilton’s
principle of least action, which
allowed it to be generalized to higher
dimensions. The synergy between
variational principles for soliton math-
ematics and dynamical concepts for
turbulence modeling was developed
further in the context of geophysical
fluid dynamics, using a variety of
approaches, including dominant
asymptotics (Camassa et al. 1996,
1997). 

The dominant asympotics tech-
nique produces hierarchies of equa-
tions that, at each increasing order in
the asymptotic expansion, include
more physics. Between 1993 and
1996, an interesting relation was dis-
covered between standard dominant
asymptotics and asymptotics per-
formed on the Lagrangian in
Hamilton’s principle (HP). Namely,
applying asymptotics in HP (before
taking its variation) introduces terms
in the resulting equations of motion
that would ordinarily be dropped in
dominant asymptotics, but which
restore important fluid dynamical
properties. These properties include
conservation of both energy and
potential vorticity (which arise from

symmetries of the Lagrangian in HP)
in the absence of viscosity, and
preservation of Kelvin’s theorem,
which insures the proper nonlinear
dynamics of circulation. 

In 1996, Ivan Gjaja and Darryl
Holm took the HP asymptotics idea a
step further, while working on
wave–mean flow interaction (WMFI)
theory for ocean dynamics. WMFI
theory addresses, for example, how
surface waves can transfer momentum
into regions far from their source. By
applying Lagrangian averaging, as
well as HP asymptotics, to a Wentzel-
Kramer-Brillouin (WKB) wave packet
representation of the rapid fluctua-
tions, they derived the Gjaja-Holm
WMFI equations, an asymptotic hier-
archy of new equations for the
wave–mean flow interaction.
(Lagrangian averaging has a double
meaning here because Gjaja and
Holm averaged the Lagrangian in HP
over the rapid phases of the WKB cir-
culations at fixed Lagrangian coordi-
nates.) Remarkably, these equations
coincided with the result of applying
dominant asymptotics and Lagrangian
averaging to the exact Euler-
Boussinesq equations for rotating,
stratified, incompressible flows of an
ideal fluid. This meant that the con-
servation laws for the Gjaja-Holm
WMFI equations were programmed
into the Lie-group symmetries of an
averaged Lagrangian. 

The Gjaja-Holm WMFI equations
were developed in the context of the
Laboratory’s Climate Change
Prediction Program, led by Robert
Malone. They were intended to pro-
vide a turbulence model for rotating
stratified fluids such as the oceans and
the atmosphere. However, these
WMFI equations were quite different
from the usual turbulence models, and
they needed to be simplified consider-
ably before they could be recognized
as a turbulence model. The inviscid
part of the simplification was pro-
posed in 1997, in work by Darryl

Holm, Jerry Marsden, and Tudor
Ratiu (1998a, 1998b). In this work,
the Lagrangian-averaged Euler-alpha
(LAE-α) equations, a Lagrangian-
averaged closed form of the Euler
equations (Navier-Stokes without vis-
cous dissipation), were obtained. The
key step in obtaining these LAE-α
equations was the assumption of
Taylor’s “frozen-in” hypothesis,
namely, that the mean statistics of the
rapid fluctuations were carried along,
or frozen, into the Lagrangian mean
flow instead of propagating as wave
packets, as had been assumed in
deriving the Gjaja-Holm WMFI equa-
tions. Nonetheless, the parameter α2

in the LAE-α equations has the same
meaning as it does in the Gjaja-Holm
WMFI equations. That is, α2 is the
typical size (statistical correlation
length) of the excursions of a fluid
parcel trajectory away from its mean
(phase-averaged) trajectory, where the
phase average is taken at a fixed
Lagrangian coordinate along that tra-
jectory. The derivation of the LAE-α
equations using this form of Taylor’s
hypothesis is discussed in “Taylor’s
Hypothesis, Hamilton’s Principle, and
the LANS-α Model for Computing
Turbulence” on page 172.

Once the LAE-α equations were
derived, the stage was set for intro-
ducing viscosity and interpreting the
resulting equations as a turbulence
model. This last step in deriving the
LANS-α model was taken in the col-
laboration among Shiyi Chen,
Ciprian Foias, Darryl Holm, and
Edriss Titi (1997–1998), when Foias,
Titi, and their students Eric Olson
and Shannon Wynne were visiting
scholars at the Laboratory’s Center
for Nonlinear Studies (CNLS) and
Institute for Space and Planetary
Physics (IGPP). The introduction of
viscosity was made first on an ad hoc
basis, and then the LANS-α model
was interpreted and confirmed as a
turbulence model by comparing its
predictions with experiment and
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numerical simulations and by analyz-
ing its theoretical properties. 

How the LANS-αα Model
Differs from Others

As mentioned above, the key dif-
ference between the LANS-α model
and other models of turbulence arises
from the difference in the averaging
technique used to derive the nondissi-
pative LAE-α equations. In the
LANS-α model, the average effects of
the small scales on the large are mod-
eled in the Lagrangian frame, which
moves with the fluid parcels, instead
of being modeled in the Eulerian
frame, which is fixed in space. The
Lagrangian averaging procedure leads
to a new closure mechanism, a mech-
anism which reduces the number of
degrees of freedom in the turbulence
problem and approximates the effects
of the small scales on the large. That
new closure mechanism is based on
nonlinear transport. In contrast, the
more traditional Eulerian-averaging
procedure leads to closure through
linear or nonlinear diffusion.

Traditional Eulerian turbulence
models use the Reynolds decomposi-
tion to separate the fluid velocity u at
a point x into its mean and fluctuating
components as u = u– + u′, where u′– =
0 and the overbar denotes an Eulerian
mean (time average at a fixed point in
space). Mathematically, Eulerian aver-
aging commutes with the partial
derivatives in space and time, but it
does not commute with the advective,
or material, time derivative D/Dt =
∂/∂t + u ⋅ ∇∇. This lack of commutivity
between Eulerian averaging and the
material time derivative leads to the
unknown Reynolds stresses in the
motion equations for the Eulerian
mean velocity u– and, subsequently, to
the well-known closure problem (see
page 132 of the article “The
Turbulence Problem”). In contrast,
Lagrangian averaging commutes (by

definition) with the material time
derivative to produce the generalized
Lagrangian mean (GLM) equations.
These GLM equations, however, are
also not yet closed. Moreover,
Lagrangian averaging does not com-
mute with spatial gradients. As a
result, the Lagrangian-mean theory is
history dependent, preserving the
memory of its initial labeling along its
Lagrangian trajectories, and the statis-
tics of the Lagrangian-trajectory fluc-
tuations must be prescribed in order to
close the GLM equations. 

Figure 2 illustrates the paths taken
to derive three different sets of equa-
tions: the Euler equations for inviscid,
incompressible flow (black), the cor-
responding Eulerian-averaged equa-
tions for the mean motion (red), and
the inviscid LAE-α equations (blue).
To produce the exact Euler equations
of motion, first the Lagrangian in
Hamilton’s principle for fluids is

defined and then the variations of the
action (that is, the time integral of the
Lagrangian) are taken. In turbulence
models based on Eulerian averaging,
most of the modeling effort takes
place after Hamilton’s principle of
stationary variations of the action has
produced the equations of motion. For
Reynolds-averaged turbulence mod-
els, the velocity is then decomposed
into its (Eulerian) mean and fluctuat-
ing quantities, or for the large eddy
simulation (LES) framework, the
equations in the Eulerian frame are
spatially filtered. In contrast, for the
LAE-α framework, the modeling
occurs in averaging the Lagrangian in
Hamilton’s principle before the varia-
tions are taken, and the Lagrangian-
averaged equations result from taking
variations of Lagrangian-averaged
quantities using the Euler-Poincaré
theory of Holm et al. (1998a, 1998b).
(The averaged Lagrangian approach is
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Figure 2. Paths to Derive Three Different Equations of Motion for
Inviscid, Incompressible Fluid Flow
The blue path starts by decomposing the Lagrangian velocity into mean and fluctu-
ating parts and then taking variations with respect to the Lagrangian averaged
quantities to derive the LAE-αα equations for ideal (inviscid) fluids.
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much simpler and more transparent
than averaging the equations term by
term, and a theorem guarantees that
the same equations result in either
order. A concise description of this
process is given in the article
“Taylor’s Hypothesis, Hamilton’s
Principle, and the LANS-α Model for
Computing Turbulence”on page 172.)
The LAE-α equations (in terms of
Eulerian averaged quantities) are
given by Equations (1) and (2) in the
box above.

The two velocities u and v in the
LAE-α Equations (1) and (2) are
averaged quantities. However, the
transport velocity u is smoother than
the transported velocity v by inversion
of the Helmholtz operator, (1 – α2∆).

This inversion operation amounts to
obtaining velocity u by filtering
velocity v over the length scale α.
When α → 0, then v → u, and one
recovers the original Euler equations. 

According to the Euler-Poincaré
theory of Holm et al. (1998a, 1998b),
the transport velocity u in Equation (1)
is the average velocity at which the
fluid material moves. So, what is the
interpretation of the other average
velocity v in Equation (2)? The Euler-
Poincaré theory defines the velocity v
as the momentum per unit mass of the
Lagrangian averaged motion. This
momentum is obtained by taking the
variational derivative of the averaged
Lagrangian in Hamilton’s principle
with respect to the average velocity u.

The two velocities differ for the usual
reason, namely, that nonlinearity and
averaging do not commute. One may
understand the different roles of these
two velocities by considering the
LAE-α equation as a form of
Newton’s law for the time rate of
change of the momentum in the frame
of fluid motion. Namely, Equation (1)
is equivalent to Equation (3). Thus,
the second term in the modified non-
linearity of Equation (1) arises from
the rate of change of the line element
dx(t) in the frame of motion of the
fluid moving with velocity u. (Of
course, the first term in this nonlinear-
ity arises from the chain rule.)

After deriving these inviscid LAE-α
equations, we added viscosity and forc-
ing so that energy would decay and
momentum would diffuse, thereby
obtaining the LANS-α model
Equations (4) and (5). When α → 0,
then v → u and the LANS-α equations
revert to the original Navier-Stokes
equations. 

Remarkably, the LANS-α equa-
tions answered an outstanding mathe-
matical question going back to the
early efforts of Leray (1934) to regu-
larize the Navier-Stokes equations.
This question was emphasized by
Galovotti (1993), namely, “How does
one regularize the Navier-Stokes
equations without destroying their cir-
culation properties?” (Recall that the
LANS-α model was developed to deal
with average effects of turbulence in
ocean circulation.) The answer is
obtained by direct calculation, which
yields the Kelvin circulation theorem
for the LANS-α equations given by
Equation (6). Physically, this theorem
means the circulation of the velocity v
around a material loop c moving with
smoothed transport velocity u is creat-
ed by the integral around this loop c
of the sum of the viscous and external
forces. When α → 0, then v → u, and
one recovers the fundamental Kelvin
circulation theorem for the Navier-
Stokes equations, thereby regaining

The LANS-αα Model Equations

The LAE-α equations are

(1)

(2)

Rewriting Equation (1) as the time rate of change of momentum in the
frame of the moving fluid yields

(3)

Adding viscosity and forcing yields the LANS-α equations:

(4)

(5)

The Kelvin circulation theorem for the LANS-α model is

(6)

 

                                                                                                    



the picture of the sinews of turbulence
described earlier. The Kelvin circula-
tion theorem for the LANS-α equa-
tions above shows how this picture is
modified by Lagrangian averaging. We
will discuss later how the LANS-α
Equations (4) and (5) regularize the
Navier-Stokes equations in the sense
discussed by Leray (1934) and
Galovotti (1993).

Results from 1997 to 2004

In the next few sections, we present
a sampling of key results for the
LANS-α model from 1997 to 2004.
This is not meant to be an exhaustive
review of the entire body of the
LANS-α literature, but a sampling of
theoretical and numerical results to
give the reader a flavor for what is
known and what remains to be studied.

Through the rest of this article,
the word ‘modeling’ refers to the
mathematical description of unknown
quantities in terms of known quanti-
ties for the purpose of regularizing or
reducing the number of active
degrees of freedom in the Navier-
Stokes equations. 

“Benchmark” Tests of the
LANS-αα Model

Once we recognized that 
LANS-α might be interpreted as a
turbulence model, we tested this
hypothesis by using LANS-α to cal-
culate some of the classic turbulence
problems. These included turbulent
flow in a pipe, forced turbulence in
a periodic domain, and decay of tur-
bulence in a periodic domain. In all
three cases, the results were very
encouraging. 

LANS-αα Stationary Solutions for
Pipe Flow Compared with
Experimental Data. Figure 3 (Chen
et al. 1999a) shows a semilog plot of

the time-averaged velocity for turbu-
lent flow in a pipe vs distance from
the wall at three different Reynolds
numbers. The experimental data (solid
lines) were measured at the Princeton
“super pipe” and correspond to turbu-
lent flows with the highest values of
Reynolds number available in a pipe-
flow experiment (Zagarola 1996). The
dashed lines show the corresponding
stationary solutions of the LANS-α
model. All three solutions were
obtained using a single constant value
of alpha (equal to about one percent
of the pipe radius). This value of
alpha was obtained by matching the
first set of data at a Reynolds number
of 98,812. Then, alpha was held con-
stant for the other two comparisons.
The family of mean velocity profiles
φ(η) seems to possess a lower enve-
lope. This straight line in the semilog
plot satisfies the famous von Kármán
logarithmic law of the wall. However,
the LANS-α steady solutions match
the experimental data all the way
across the pipe flow domain, from a
few tens of wall units away from the
pipe boundary all the way to the pipe
center, where the peak of each curve
occurs. (These peaks are offset
because the wall unit η contains the
Reynolds number in its definition.)

Note that the LANS-α solution
matches the measured mean velocity
over many orders of magnitude in
wall units. That agreement is a good
sign because turbulence models must
describe a wide range of scales of
motion—from the scale of the forc-
ing down to the dissipation scale.
The faint, dotted lines show the
recent power law from Barenblatt-
Chorin (1997), which does not cap-
ture the peaks of the curves. The
excellent agreement with the experi-
mental mean velocity profiles (from
Chen et al. 1998, 1999a) provided
the first clue that the LANS-α equa-
tions for the Lagrangian mean veloci-
ty might be interpretable as a model
of turbulence. 

Navier-Stokes Equations: Forced
Turbulence in a Periodic Domain.
Next, we tested the LANS-α model
on the problem of forced turbulence
in a three-dimensional (3-D) periodic
domain where turbulence is approxi-
mately homogeneous and isotropic
so that Kolmogorov-like scaling laws
should obtain. We performed direct
numerical simulations of the
LANS-α model and examined the
effect of increasing alpha on the
energy spectrum E(k), where k is the
wave number. Results from Chen et
al. (1999) show that, in the spectral
region kα < 1 (that is, for spatial
scales larger than alpha), E(k) is pro-
portional to k–5/3, as expected for
homogenous, isotropic turbulence. In
other words, the energy spectrum at
these spatial scales is essentially
unaffected by the presence of the α-
modification (regularization).
However, in the spectral region with
kα > 1 (that is, for spatial scales
smaller than alpha), E(k) rolls off
faster as wave number increases. In
Chen et al. (1999b), we kept alpha
fixed at α = 1/8 of the domain size
and compared the energy spectrum
for a high-resolution mesh of 2563

cells and a low-resolution mesh of
643 cells. The energy spectra at the
large scales (in the inertial range)
were the same for both simulations,
which means that, for this problem
of forced turbulence, the large-scale
flow properties can be preserved
when the resolution is decreased by a
factor of 8. (The actual computation-
al savings is a factor of about 44 =
256 in computer time.) This result
implies that direct numerical simula-
tion of the LANS-α model allows a
significant computational savings
over the direct numerical simulation
of the Navier-Stokes equations.

Later, Foias et al. (2001) used
dimensional arguments to predict the
faster energy-spectrum rolloff for kα
> 1 that was seen in the computations.
These dimensional arguments predict-
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ed the rolloff to be k–5/3 → k–3 for the
LANS-α model. The rolloff k–5/3 →
k–3 is consistent with the Re2 scaling
behavior in computational work for a
fully resolved direct numerical simu-
lation of the LANS-α equations, in
comparison with the Re3 scaling
behavior in computational work for a
fully resolved direct numerical simu-
lation of the Navier-Stokes equations. 

The relative scaling of Re2 for
LANS-α vs Re3 for the Navier-Stokes
equations implies a two-thirds-power
scaling in the computational work
required in the direct numerical simula-
tion of the Lagrangian-averaged
LANS-α equations vs the exact Navier-
Stokes equations, provided the k–3 iner-
tial range for the LANS-α model is
resolved. At a large Reynolds number,
Re, this scaling can provide a substan-
tial savings in computational work.

Navier-Stokes Equations:
Turbulence Decay in Three-
Dimensions. A more stringent test of
the LANS-α model is the initial value
problem for 3-D incompressible tur-
bulence known as turbulence decay.
In this problem, one starts from a tur-
bulent initial condition that results
from forcing, and then one turns off
the forcing and lets the turbulence
decay away. In recent computations
(Holm and Kerr 2002; Geurts and
Holm 2002a, 2002b; Mohseni et al.
2000, 2001), numerical comparisons
between large-eddy simulation (LES)
methods and the LANS-α model were
made for the onset, development, and
decay of shear turbulence. All three of
these numerical studies compared the
predictions of the LANS-α model for
the case of shear turbulence decay in
three dimensions against the most

advanced LES models, which achieve
closure through modifying the energy
diffusion rather than the nonlinearity.
The standard of comparison for these
low-resolution model simulations
using the LANS-α model and several
standard LES approximate models
was a direct numerical simulation of
the full Navier-Stokes equations at a
much higher resolution. In these
investigations, Holm and Kerr started
from a Taylor-Green initial condition
specified by spectral data; Geurts and
Holm started from the classic physical
realization of the Kelvin-Helmhotz
instability, leading to the formation
and decay of turbulent shear layers;
and Mohseni et al. studied the decay
of turbulence in the standard Comte-
Bellot and Corrsin wind-tunnel con-
figuration. 

In all these benchmark problems,
the results of the Lagrangian-averag-
ing approach to modeling turbulence
were found to be comparable with the
best of the standard LES approximate
models.

Relation of LANS-αα Model to
Large-Eddy Simulations

LES models are often used in
numerical simulations of turbulence.
Because of their importance and their
formal similarity to LANS-α, consid-
erable work has been devoted to
understanding the connection between
LANS-α and LES. 

The basis for the LES approach is
spatial filtering of the Navier-Stokes
equations in the Eulerian frame, where-
as the theoretical basis for obtaining
the LANS-α equations is Lagrangian
averaging. Of course, both approaches
face difficulties with closure. Either
approach to closure introduces approx-
imations because the equations are
nonlinear, and neither the averaged nor
the filtered product of two factors
would be equal, in general, to the prod-
uct of the averaged, or filtered, factors.
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Figure 3. Mean Velocity Profiles for Pipe Flow
Comparison in this figure from Chen et al. (1998, 1999a) of mean flow profiles for 
turbulent flow in pipes given by experimental data shows reasonable agreement 
with the profile of the corresponding solution of the LANS-αα equations at the highest
experimentally available Reynolds numbers. Here, the mean-velocity profile in the
pipe for the LANS-αα equation (the red dashed line) is compared with the experimen-
tal data (the solid line) of Zagarola (1996). (Copyright 1998 by the American Physical Society.)

                                                                     



Formally, the Lagrangian-averaged
turbulence equations appear similar to
the LES turbulence equations
(Domaradzki and Holm 2001), but
there are significant differences in the
interpretations of their solutions.
These differences in interpretation
arise because the two models are
derived from different fundamental
principles. The similarity between
them arises because both approaches
yield expressions for conservation, or
balance, of momentum. The similarity
between them also arises through
interpreting the equations produced by
the Lagrangian-averaging approach as
embodying a “regularization princi-
ple,” which involves an explicit filter
and its inversion (Guerts and Holm
2003). Momentum conservation for

this regularization principle identifies
the stress tensor corresponding to the
implied subgrid model, which
resolves the closure problem. Thus,
the model equations resulting from
the Lagrangian-averaged turbulence
method convey a central and very
specific physical role to a filter: The
transport velocity is a filtered version
of the fluid momentum, including the
mean momentum of the fluctuations.
This role differs from that of the filter
in the foundations of the LES
approach. In the LES approach, the
difference between the filtered product
of velocities and the product of fil-
tered velocities is modeled as a sym-
metric tensor involving gradients of
the filtered velocity, whose divergence
introduces dissipation of energy. 

In terms of physical effects, the
dissipation introduced by LES filter-
ing smoothes and slows the fluid’s
momentum, so the LES results tend to
be sluggish compared to DNS and,
thus, LES often fails to capture the
true variability of turbulence. In con-
trast, the modification of the nonlin-
earity in the alpha model “enslaves”
the smaller scales to the larger ones,
and their circulation is not lost to heat.
This feature gives the LANS-α model
an advantage. For example, it pro-
duces sharper, more-pronounced
coherent structures and higher vari-
ability than even the best LES models
(the dynamic LES models) in comput-
ing turbulent shear mixing (see
Figure 4). 

Application of LANS-αα to
Specialized Problems

Thin-Layer Navier-Stokes
Equations: Self-Similarity. Steady
self-similar solutions (for the depend-
ence of mean downstream velocity U
in a two-dimensional (2-D) boundary
layer of the form U(x, y) = g(x)f(y/x))
of the thin-layer Navier-Stokes
(TLNS) equations were known for
laminar boundary-layer problems
since Paul Blasius in 1908. For turbu-
lent shear flows such as jets, wakes,
and plumes, the Kelvin-Helmholz
instability generates mixing near the
interface between the moving and sta-
tionary fluids, and the mixing region
spreads tranversely, as the unstable
entrainment interaction between the
fluids proceeds in time—see
Figure 5(a). Finding solutions to these
self-similar flows was plagued by clo-
sure problems until Ludwig Prandtl
(1925) invented the mixing-length
theory, which captures the drag effects
of turbulent eddies. Prandtl’s mixing
length is a macroscopic length scale
defining the mean distance between
eddy collisions; it was meant to be
analogous to the mean free path
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Figure 4. Comparing Results of LANS-αα and Leray-αα with Dynamic LES
for the Turbulent Mixing Layer
This figure from Geurts and Holm 2002 compares the momentum thickness as a
function of time for the turbulent mixing layer initiated by the Kelvin-Helmholtz
instability. Here αα = L/16 and three LES models are plotted: LANS-αα (solid), Leray-αα
(dashed), Dynamic LES (dash-dotted). The nearly grid independent DNS solution at
resolution is shown as solid circles. The momentum thickness for the mixing layer
begins with a strong convective surge, which the LANS-αα model follows well. The
Leray-αα model lacks the term that provides line-element stretching to complete
Kelvin’s circulation theorem, and apparently this term is important at an early time.
Dynamic LES apparently lags in the beginning and never catches up, perhaps
because it attempts to model nonlinear turbulent transport as diffusion.
(Reprinted with the permission of Springer-Verlag.)

                                                                      



between molecules in kinetic theory.
For most TLNS self-similar problems,
such as jets, wakes, and plumes, ana-
lytical results from Prandtl’s mixing
length theory match experimental
data reasonably well.

Except for that simple mixing-
length theory, self-similar solutions of
most turbulence models have not
been investigated. However, because
the LANS-α equations were derived
to have self-consistent dynamics,
such solutions seemed possible.
Indeed, thin-layer self-similar solu-
tions of the LANS-α model were
found for boundary layers, jets,
wakes, and plumes (Cheskidov 2002,
Holm et al. 2003, Putkaradze and
Weidman 2003). These solutions arise
by introducing both α (a statistical
property of Lagrangian averaging)
and a mixing length (a statistical
property of Eulerian averaging). Each
averaging mechanism seems to con-
trol a different aspect of the analytical
self-similar solutions. For example, in
the planar jet shown in Figure 5(a),
the thickness of the jet g(x) depends
only on x, the distance downstream
from the source, and that thickness is
determined entirely by mixing-length
theory. On the other hand, the profile
of the analytical solution for the mean
velocity U across the jet—see
Figure 5(b)—is a function of the simi-
larity variable, η = y/x, and the shape
of that profile is determined by α in
these calculations. Figure 5(b) also
shows a comparison of the alpha
model’s similarity solution with the
experiments of Effie Gutmark and
Israel Wygnanski (1976).

Understanding the interplay of 
diffusion (as in the mixing-length the-
ory) and transport (as in the LANS-α
model) is still an outstanding problem
in modeling these self-similar 
turbulent flows.

Geophysical Fluids. Geophysical
fluid dynamics offers a unique regime
in which to compare the LANS-α

model with other well-known models
because the energy does not cascade
to the small scales as it does in 3-D
incompressible Navier-Stokes turbu-
lence. Instead, these quasi-2-D flows
are characterized by an upscale trans-
fer of energy to lower wave numbers.
This transfer of energy creates the
large-scale vortices observed in
nature. As a consequence, coarse-res-
olution models have a good chance of
simulating the most important dynam-
ical features of these flows. Between
1997 and 2004, two important
regimes were studied: quasi-geostro-
phy, whose principal wave solutions
are slow-time-scale Rossby waves,
and the rotating shallow-water equa-
tions, whose solutions include both
Rossby waves and fast inertial waves.

Quasi-Geostrophy (QG).
Application of the LANS-α model to
slow, large-scale motions for rotating,
planetary-scale fluid dynamics has
yielded mixed results. Two sets of
simulations have been performed of
the problem of wind-forced circula-
tion in a closed ocean basin.Wind-
forced circulation results, ostensibly,
in two counter-circulating gyres. As
described in Greatbatch and Nadiga
(2000), the time-mean ocean basin
circulation predicted by the QG equa-

tions shows a four-gyre pattern,
although its instantaneous motion
generally shows only two gyres,
which fluctuate strongly and rapidly. 

In the low-resolution LANS-α sim-
ulations of Nadiga and Margolin
(2001), the four-gyre time-mean pat-
tern was recovered, but only after an
appropriate combination of alpha and
dissipation parameters were deter-
mined from a higher-resolution eddy-
resolving run (regarded as a direct
numerical simulation). Further, the
correspondence between the time
mean of the eddy-resolving run and
the α-parameterized run was less than
satisfactory and not fully understood.
This incompleteness left open ques-
tions that still need further study.

In Holm and Nadiga (2003), an
LES viewpoint was adopted, in which
low-resolution simulations of the
QG-α model and some of its close
variants were compared with time
means of direct numerical simulations
of QG for the full double-gyre prob-
lem. This approach led to significantly
improved results for the time-mean
circulation in the double-gyre prob-
lem, and it also captured reasonable
variability in the form of eddy kinetic
energy and eddy potential enstrophy.
Figure 6 shows contour plots of the
time-averaged stream function, in
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Figure 5. Self-Similar Solutions for a Planar Turbulent Jet
(a) A turbulent jet gushes out from a source. (b) The analytical solution of the
LANS-αα equations for a planar turbulent jet is compared with results from experi-
ments) by Gutmark and Wygnanski (1976).
(Reprinted with the permission of Cambridge University Press.) 

                                                 



which the four-gyre pattern clearly
emerges. 

The results in Figure 6 show that
the LANS-α model yields a decided
benefit in predicting the correct time-
mean variability for this problem.
However, the strength of the circula-
tion was slightly higher than in the
resolved simulation.

Rotating Shallow Water (RSW).
Because RSW produces fast waves,
the RSW equations are hard to solve
numerically. The maximum allowable
time step is ∆t ≤ C/N, where C is a
constant of order unity and N is the
number of mesh points in the domain.

Using the LANS-α model to simulate
these equations led to a slowing down
of the fastest waves (those with wave
lengths smaller than α). Consequently,
LANS-α simulations that used a much
larger time step, given by ∆t(α) ≤ Cα,
retained the high variability found in
the highest-resolution runs. This
means that refining the mesh with a
fixed α causes the LANS-α model’s
maximum allowable time step to go to
a constant, while the shallow-water
model requires its time step to go to
zero. 

These simulations also revealed
that the LANS-α model preserves the
time variability of the dynamics.

Figure 7 from Wingate (2004) shows
the time series spectra for the kinetic
and potential energy on two different
grids for the double-gyre problem (see
the caption for details).

Although the LANS-α model does
reproduce the time variability of shal-
low-water flow, these results raise
several questions. As shown in
Figure 7, increasing α may cause an
overprediction of variability, as dis-
covered in the study of the double
gyre in Nadiga and Holm (2003). This
overprediction of variability leads us
to ask, “How does one make an opti-
mal choice of α?” Also, for the same
viscosity, the alpha model typically
has a higher variability than coarse-
resolution simulations of the exact
equations. This increased variability
occurs because, in the LANS-α
model, the enstrophy-like energy (not
the translational kinetic energy) con-
trols dissipation at high wave num-
bers. This result brings up the
question, “Should the Reynolds num-
ber be defined differently in these
cases?” This issue will be addressed
in the section on open problems. 

Modeling Fluid Instability

The stability and instability of
flows in different parameter regimes
(such as Reynolds number Re, Rossby
number Ro, and Froude number Fr)
could be altered, in principle, by
introducing turbulence models. We
performed two studies of fluid insta-
bility in the LANS-α model. 

Elliptical Instability. The elliptical
instability converts 2-D fluid motions
into 3-D convection, so it provides a
fundamental mechanism at the onset
of turbulence. Motivated by the idea
that a turbulence simulation method
should not erroneously predict stability
in a flow that is actually unstable,
Fabijonas and Holm (2003) investigat-
ed the elliptical instability in the
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Figure 6. Quasi-Geostrophic Double-Gyre Problem
This figure from Holm and Nadiga (2003) shows time-averaged contour plots of the
stream function for the quasi-geostrophic double-gyre problem. (a) Shown here is a
963 high-resolution QG simulation. The Munk layer scale is 0.02L, and the grid reso-
lution is 0.01L. At this low level of viscosity, the time-mean stream function displays
a four-gyre structure even though the wind forcing is that for a double gyre. (b) This
simulation is run at a resolution that is 4 times coarser—a grid resolution of 0.04L.
With no modeling of the subgrid scales, we find that the outer pair of gyres is great-
ly weakened compared with the pair in (a). (c) This simulation is also run at a resolu-
tion that is 4 times coarser, but it uses the alpha model to account for subgrid scale
activity. Here, we find that the outer pair of gyres is restored. However, the strength
of the wind-driven and the eddy-driven mean circulation is slightly higher than the
resolved simulation shown in (a). We are currently studying the reasons for this
overprediction. (Permission granted by the American Meteorological Society.)

                                                                   



LANS-α model and showed that the
model preserves, but modifies, this
important instability. In particular, the
LANS-α model reduces the maximum
growth rate for higher wave numbers,
kα >> 1, but for slightly lower wave
numbers, kα > 1, the model increases
the maximum growth rate. This
enhancement allows the dynamics of
the small scales to affect the larger
scales. This work led to a sequence of
investigations: from early assessments
of the average effects of turbulence on
elliptic instability to later assessments
of the combined effects and interplay
of turbulence, rotation, and stratifica-
tion on elliptical instablility. 

Baroclinic Instability.
Investigations using global ocean
models or coupled ocean, atmosphere,

and ice models require the use of
coarse meshes. The meshes are often
so coarse that the Rossby deformation
radius is not resolved,1 and conse-
quently baroclinic instability is incor-
rectly predicted. Baroclinic instability
is initiated by vertical shear in a rotat-
ing, stratified flow and describes the
process of converting available poten-
tial energy to kinetic energy on scales
of the Rossby deformation radius.
This is one of the most important
dynamical phenomena in geofluid
dynamics and one that any turbulence
model must reproduce if it is to simu-
late the correct variability.

In Holm and Wingate (2004), neu-
tral curves for the onset of baroclinic
instability from the simplest LANS-α
model were compared with those
from the simplest eddy-viscosity
model (see Figure 8). Neutral curves
show the shear forcing required to ini-
tiate baroclinic instability versus wave
number. Figure 8(a) presents LANS-α
neutral curves for three values of
αkint, the length of α relative to the
Rossby deformation radius. As α, or
αkint, is increased, the critical wave
number (wave number at the mini-
mum of the neutral curve) shifts to
lower wave number while the value of
the minimum forcing required
remains the same. Thus, the onset of
baroclinic instability remains resolv-
able with fewer grid points.
Figure 8(b) shows neutral curves for
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Figure 7. Improved Variability for LANS-αα Shallow Water Simulations
(a) The kinetic energy is shown as a function of frequency; (b) the potential energy is shown as a function of frequency. In both
(a) and (b), the values are for shallow water simulations at different values of αα and different resolutions. The Rossby deforma-
tion radius for all cases is approximately 48 km. The high-resolution calculations (red) with αα = 0, an average grid spacing of
14 km that resolves the Rossyby radius, and a viscosity of 200 m2/s serve as our standard of energy variability. The other three
simulations were performed on a much coarser mesh with an average grid spacing of 28 km, a mesh size for which the Rossby
deformation radius is not well resolved. The pale blue curve shows the results of the simplest eddy viscosity model (αα = 0 and
just enough viscosity is added to prevent numerical instability). The flow is sluggish with almost an order of magnitude
decrease in the variability of the kinetic energy due to the increase in the dissipation of the total energy. The purple curve shows
the increased variability that results by introducing alpha at the value αα = 25 km. The dark blue curve shows that, by increasing
alpha to the size of the Rossby deformation radius, we recover the variability of the fine-grid case.

1 The Rossby deformation radius is the
distance at which the pressure force bal-
ances with the Coriolis force in the
motion equation.

                                                          



the eddy viscosity model for three
values of Ek3

int/β. As the viscosity E
increases, the critical wave number
again decreases, but the minimum
forcing for instability gets higher
rather than remaining constant. This
difference arises because the LANS-α
model uses dispersion to lower the
critical wave number, whereas the
eddy-viscosity model uses energy dis-
sipation.The eddy-viscosity model
thus requires higher forcing for the
onset of baroclinic instability, and
consequently some of the instability
that should be present in the flow is
lost as E is increased. In the LANS-α
model, the gradient of potential vor-
ticity, which drives the instability, is
preserved, and therefore baroclinic
instability occurs at the same forcing
values  as those predicted by the
exact Navier-Stokes equations. 

What remains unanswered is how
best to choose the parameter α and
how to combine both eddy-viscosity
models and Lagrangian averaging in
concert to achieve the most realistic
results in both global ocean models
and in coupled ocean, atmosphere,
and ice models. 

Theoretical Developments for
the LANS-αα Model

The Kármán-Howarth Theorem
for Dynamics of the LANS-αα
Model. The Kármán-Howarth theo-
rem for fluid turbulence (1938) given
by Equation 7 (see box) is an exact
analytical relation between the time
rate of change of the second-order
two-point velocity correlation func-
tion and the gradient of the third-order
two-point velocity correlation func-
tion derived from the Navier-Stokes
equation for homogeneous, isotropic
turbulence.

Equation (7) is the lowest-order
two-point statistical equation for 
turbulence dynamics and may be
understood as a relationship between
the rate of change of energy in 
scales of size r to the flux of energy
through scales of size r.

One can write the same equation
for velocity structure functions, which
are the moments of the longitudinal
velocity difference, δLu(x,t; r) = r̂ ⋅
δu(x,t; r), with δu(x,t; r) ≡ u(x+r, t)
– u(x,t). One example is the second-
order structure function 〈[δLu]2〉. See
the articles “The Turbulence Problem”
and “Direct Numerical Simulations of
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The Kármán-Howarth Theorem

where subscripts i, j denote components in a Cartesian coordinate system. The
gradient of the third-order two-point velocity correlation function 
(the second term) arises from the nonlinear term in the Navier-Stokes 
equations. 

Figure 8. Baroclinic Instability: LANS-αα vs Eulerian-Averaged Eddy Viscosity Models
Neutral curves show the onset of baroclinic instability (Holm and Wingate 2004). U2 is a measure of the strength of the shear, kint is
the wave number of the internal Rossby deformation wave, ββ = df/dy, where f is the coriolis parameter, and E is the eddy viscosity.
Both models lower the critical wave number for the onset of instability (the value of k at the minimum point of these neutral curves)
as the modeling parameter is increased. For LANS-αα, the onset occurs at the same value of the forcing irrespective of the value of αα
.. (b) For the eddy viscosity model, the onset requires higher forcing as E is increased because of the increase in dissipation.

(7)

                                                                                                                                



Turbulence” on pages 124 and 142,
respectively, for further discussion of
structure functions. Kolmogorov
(1941a, 1941b) used the structure
function form of the Kármán-Howarth
equation to show that, for homoge-
neous, isotropic, stationary turbulence
in the limit of vanishing kinematic
viscosity (ν → 0), the Navier-Stokes
equations predict an exact relationship
between the third-order structure
function and the energy dissipation
rate ε– that scales linearly in the sepa-
ration r namely, 

(8)

Kolmogorov’s main hypotheses in
deriving this relationship, which we
now know as the four-fifths law were
that (1) there exists an ‘inertial’ range
of scales that are insensitive to the
large flow-dependent scales and the
viscous small scales, and (2) there
exists a finite energy dissipation rate
ε– in the limit of zero viscosity. The
latter is known as the dissipation
anomaly for Navier-Stokes turbu-
lence. As noted in Uriel Frisch (1995,
p. 76), Kolmogorov’s four-fifths law
is “one of the most important results
in fully developed turbulence because
it is both exact and nontrivial. It thus
constitutes a kind of ‘boundary condi-
tion’ on theories of turbulence: such
theories, to be acceptable, must either
satisfy the four-fifths law, or explicitly
violate the assumptions made in
deriving it.”

Kolmogorov then assumed the
self-similarity of scales in the inertial
range and was able to deduce, in steps
that essentially amount to dimensional
analysis, that the second-order struc-
ture function must scale with r2/3 and
that, consequently, the energy spec-
trum (which is essentially the Fourier
transform of the second-order struc-
ture function) must scale as k–5/3.

The equivalent of the Kármán-
Howarth equation was derived for the
LANS-α model in Holm (2002c).

Since the model relates the Helmholtz
smoothed velocity u to the
unsmoothed velocity v, the appropri-
ate structure functions that emerge
involve the second- and third-order
two-point correlations between u and
v. Upon following Kolmogorov’s
analysis for isotropic inertial range
statistics, the corollary to the LANS-α
Kármán-Howarth equation is that
solutions of the LANS-α equations
possess two regimes of scaling,
depending on whether the separation
distance r is greater, or less, than the
size α. First, we find that the corre-
sponding four-fifths law for the
LANS-α model has the following
scaling behavior: For r > α, the third-
order structure function 〈[δu(r)]3〉
scales like r, thereby recovering
Navier-Stokes behavior. In contrast,
for r < α, the third-order structure
function scales like r3. If we then
assume self-similarity, we find that,
for r > α, the second-order structure
function scales like r2/3, again recov-
ering Navier-Stokes behavior.
However, for r < α, the second-order
structure function scales like r2.
Correspondingly, the power spectrum
E(k) for the smoothed velocity u has
two regimes, which transition from
k–5/3 for kα < 1 to k–3 for kα > 1.
Thus, the Kármán-Howarth theorem
for the LANS-α model is consistent
with the spectral scaling results found
for it in Foias et al. (2001) by dimen-
sional arguments.

The k–5/3 →→ k–3 Spectral Scaling
Transition and the LANS-αα
Dissipation Anomaly. The LANS-α
modification of Kolmogorov’s four-
fifths law at small separations (r < α)
results from assuming the constancy
of total LANS-α energy dissipation as
ν → 0. This assumption corresponds
to the energy dissipation anomaly for
the LANS-α model. A technical argu-
ment using embedding theorems for
Besov spaces2 implies that the LANS-
α total energy dissipation is indeed

constant as ν → 0 in three dimen-
sions, provided its power spectrum
E(k) for kinetic energy is not steeper
than k–4. The k–3 spectrum for kα > 1
is not too steep; therefore, the rolloff
k–5/3 → k–3 in the LANS-α power
spectrum is consistent with the neces-
sary condition for possessing such an
energy dissipation anomaly. Hence,
the k–3 behavior in the power spec-
trum of the LANS-α model for kα >1
and the corresponding modification
for separations r < α of Kolmogorov’s
four-fifths law derived in (Holm
2002c) are both consistent with the
assumption of constant dissipation of
total kinetic energy as the Reynolds
number tends to infinity. 

The k–5/3 →→ k–3 Spectral Scaling
Transition and Resolution
Requirements. The spectral scaling
roll-off behavior for kα > 1 has
important implications for the com-
putational performance of the
LANS-α model. It substantiates the
mathematical estimates of Re3/2 for
the number of degrees of freedom
required for the LANS-α model to
perform numerical simulations at a
given Reynolds number in a peri-
odic domain. According to this scal-
ing, in two decades of numerical
dynamic range, the LANS-α model
should be able to simulate what
would take three decades of 
numerical dynamic range for direct
numerical simulation using the
Navier-Stokes equations, provided
the dissipation is chosen to properly
balance the nonlinear transport at
high wave numbers, kα >> 1.

Implications for Smoothness of
LAE-αα Solutions. The r2 behavior of
the longitudinal velocity structure
functions for r < α in the limit of zero
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2 We are grateful to G. Eyink and E. S.
Titi for discussions of this argument. See
Constantin and Titi (1994) and Eyink
(2004) for detailed discussions.

                                                                                                                                                                                            



viscosity implies the LAE-α velocity
is Lipschitz continuous (Hölder index
h = 1). That is, the velocity gradients
exist almost everywhere for the
LAE-α model. In contrast, the veloc-
ity for the Navier-Stokes equations in
the limit of zero viscosity (the Euler
equations) has Hölder index h = 1/3,
which gives no assurance of the exis-
tence of velocity gradients for the
Euler equations. On the other hand,
the viscous scaling regime for the
Navier-Stokes equations has Hölder
index h = 1 and the associated r2 scal-
ing agrees with that found in the
inviscid LAE-α model. This agree-
ment in scaling implies that, theoreti-
cally, velocity gradients in the LAE-α
model are regularized to the same
degree as viscosity regularizes the
gradients in the Navier-Stokes equa-
tions. Corresponding results have
been verified by analytical estimates
in Marsden et al. (2000). The practical
implications of these theoretical
results would depend, of course, on
the particular numerical implementa-
tion and on other relevant parameters
of a computation.  

The Lagrangian-Averaged
Euler-Poincaré (LAEP) Theorem.
The LAEP theorem was proved by
Holm (2002a, 2002b). This theorem
automates the derivation of the
LANS-α model and explains its rela-
tion to the generalized Lagrangian
mean (GLM) theory. The GLM equa-
tions provide the exact nonlinear
dynamics of Lagrangian-averaged
motion, but as mentioned earlier,
they are not closed. Incorporating
Taylor’s classic hypothesis (1921) of
frozen-in Lagrangian turbulent fluc-
tuations into the GLM equations pro-
vides the closure and yields the LAE-
α model. The LANS-α model
description is then obtained by intro-
ducing dissipation in the form of
Navier-Stokes viscosity. 

This new derivation of the LANS-
α model from GLM theory and the

LAEP theorem clarifies its relation to
other models and shows how to
extend the LANS-α model to include
additional physical effects, such as
rotation, buoyancy, compressibility,
and magnetic fields. See Holm
(2002a, 2002b) for more details.

Open Problems 

Three issues have been raised in
the results outlined here and in recent
experience: How to understand and
choose the length scale α, how to
enhance our understanding of the
interplay of nonlinear transport and
eddy diffusion, and how to gain a
more fundamental understanding of
the implications of the Lagrangian-
averaged fluctuation statistics of the
trajectories by using data analysis.

The Length Scale αα. Four heuris-
tic interpretations for the length scale
α have been proposed: (1) The size α
is the length scale below which the
smaller fluid circulations are swept by
the larger ones and are not allowed to
affect their own advection. This is the
Taylor’s hypothesis interpretation. (2)
In the LES interpretation, the size α
can be considered as a natural filter
width, which defines the size of a
“large” eddy in LES. (3) In its numer-
ical interpretation, one practical rule
of thumb has often been to choose α
as some small integer multiple of the
minimum grid spacing. In choosing α
in this way, one maximizes the
dynamic range left unmodified by the
LANS-α model. (4) Because of its
effect in slowing growth rates of
instabilities at high wave numbers,
Wingate (2003, Holm and Wingate
2003) suggested one could also
choose the size α based on fluid
and/or numerical stability require-
ments for numerical simulations.

All these interpretations lend
heuristic insight into the physics of
the particular problems we have stud-
ied using the LANS-α model.

However, the length scale α is a pre-
cisely defined statistical quantity
obtained from first principles. The
context of Lagrangian averaging, in
which the length scale α is defined,
provides the basis for future develop-
ments of the LANS-α model.

Statistical Context for Future
Developments. The Lagrangian statis-
tics of the trajectory fluctuations are
related to the Eulerian velocity statis-
tics at a fixed point in space. First, the
equation for the fluctuation u′′ in
Eulerian velocity u(x,t; ω) = u– +
u′′(x,t; ω) for a random variable, ω,
expressed in terms of the fluctuation
ξ(x,t; ω) in the Lagrangian trajectory
away from its mean is given by
Equation (9) in the accompanying
box. This relation defines the deter-
ministic time derivative operator,
D/Dt, which does not depend on the
random variable ω. As a result, one
finds that the exact formula for the
Lagrangian dispersion tensor 〈ξkξ l〉 in
terms of the Eulerian velocity statis-
tics at a fixed point in space is given
by Equation (10), where 〈⋅〉 = ∫(⋅)dµ
now denotes average over the proba-
bility measure dµ of the random
process associated with ω. The trace
of this formula, given by
Equation (11) in the box, is Taylor’s
famous dispersion law (Taylor 1921)
linking the Lagrangian and Eulerian
statistics of turbulence at a fixed point
in space. More discussion of the role
played by Taylor’s contributions in
the development of the LANS-α
model is given in the article “Taylor’s
Hypothesis, Hamilton’s Principle and
the LANS-α Model” on page 172.
The anisotropic tensor version of this
formula has yet to be applied in mod-
eling turbulence using Lagrangian sta-
tistics, and it represents an open prob-
lem in turbulence modeling. 

The constant alpha case derives
from Equation (9) by substituting
Taylor’s hypothesis that the fluctuat-
ing circulations ξ are frozen into the

166 Los Alamos Science Number 29  2005

The LANS-α Model for Computing Turbulence

                                                                                                                                         



Eulerian mean flow, with velocity u–,

(12) (12)

Hence, one finds

(13)

and, consequently,

(14)

The evolution of the symmetric
tensor 〈ξkξ l〉 in this formula is speci-
fied by assuming a “flow rule” for the
fluctuation statistics. This is the
required closure step for the
Lagrangian mean theories. For exam-
ple, the Taylor hypothesis—see
Equation (10)—of circulations being
frozen into the Eulerian mean flow
implies the flow rule for the symmet-
ric tensor, 

(15) 

which preserves the initial condition
that these Lagrangian statistics are
homogeneous and isotropic. That is,
this flow rule preserves 〈ξkξ l〉 =
α2δ kl, with a constant value of α. In
this case, the mean kinetic energy of
the turbulent circulations simplifies to
the LANS-α form, 

(16)

which relates the kinetic energy of the
Eulerian velocity fluctuations to the
Lagrangian statistics and the mean
shear. 

Other flow rules for these
Lagrangian statistics possessing more
sophisticated evolution equations for
〈ξkξ l〉 were catalogued in Holm
(1999). However, the results of these
anisotropic-tensor α equations and
their comparisons with the results for
the LANS-α equations in the constant
alpha case have yet to be systemati-
cally explored. 

Nonlinear Transport vs Diffusion
and Re Scaling. Most of the results
presented in this review depend on a

trade-off between viscosity and non-
linearity in modeling the average
effects of the small scales on the large
ones. Consider the energy dissipated
by the LANS-α equations,

(17)

Following the arguments of Foias
et al. (2001), the two types of energy in
Equation (17) become comparable at
wave number kα ≈ 1, and the scaling
of the kinetic energy spectrum rolls
over from E(k) ~ k–5/3 for kα < 1 to
E(k) ~ k–3 for kα > 1. This change of
scaling produces two different inertial
regimes for the LANS-α model,
depending on whether the circulations
are either larger or smaller than alpha.
Consequently, the modified nonlineari-
ty in the LANS-α model shortens the
inertial range relative to the inertial
range for the Navier-Stokes equations.
For a fixed α, the second, steeper, k–3

inertial range for LANS-α ends when
its nonlinear transport is balanced by
viscous dissipation at a wave number
κα. The LANS-α dissipation wave
number κα scales with the Reynolds
number as κα.~ Re1/2. This scaling is
to be compared with the scaling for the
Kolmogorov wave number κΚο ~
Re3/4, at which dissipation balances
nonlinearity for the Navier-Stokes
equations. Thus, the modified nonlin-
earity of the LANS-α model strikes a
balance with viscosity at a wave num-
ber that is lower than the wave number
for the Navier-Stokes equations. In
turn, the new balance of the LANS-α
model produces energy spectra that
agree well with the spectra produced
by the Navier-Stokes balance at low
wave numbers (kα < 1), but the
LANS-α spectra depart from the
Navier-Stokes spectra at high wave
numbers (kα >> 1), and thereby
enhance the model’s computability.
The scaling of dissipation wave num-
ber with Reynolds is Re1/2 for this new
balance vs Re3/4 for the Navier-Stokes
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Linking the Langrangian and Eulerian 
Statistics of Turbulence

The Eulerian velocity fluctuation u′(x,t; ω) in terms of the Lagrangian-tra-
jectory fluctuation ξ(x,t; ω) is

(9)

The total time derivative of the Lagrangian dispersion tensor is

(10)

where 〈⋅〉 = ∫ (⋅) dµ now denotes average over the probability measure dµ
of the random process associated with ω.

The trace of Equation (10) yields Taylor’s famous dispersions law linking
Lagrangian and Eulerian statistics:

(11)

                                                                                                                                          



balance. This difference in scaling is
the source of the improved computabil-
ity for the LANS-α model. 

Flow Rules for Lagrangian
Statistics. The LANS-α model is, by
definition, a mean field theory based
on Lagrangian averaging, and
Lagrangian averaging is still a young
field. For example, the corresponding
theory of large-deviation Lagrangian
statistics for nonequilibrium processes
has only recently begun to develop.
New experiments and direct numeri-
cal simulations have recently begun to
measure and investigate the funda-
mental tenets of Lagrangian trajecto-
ries in turbulence. One startling dis-
covery in both experiments and simu-
lations is that the Lagrangian trajecto-
ries tend to stay well localized along
their mean trajectories for a long peri-
od, of the order of 30 Kolmogorov
times (eddy turnover times at the dis-
sipation scale). During this period, the
Lagrangian trajectories tend to obey
Taylor’s hypothesis of frozen-in tur-
bulence. Then, suddenly, large scale
changes in the motion of those trajec-
tories may occur, which apparently
cause them to “forget” their previous
history and start over. These experi-
ments and simulations call for new
studies of stochastic effects in
Lagrangian turbulence that will take
Lagrangian turbulence beyond its cur-
rent status as a mean field theory.
Perhaps the LANS-α model will be
able to contribute as the mean field
basis for these studies, and, thus, it
may benefit from future achievements
in this currently very active area. One
potential benefit would be to include
into a new generation of Lagrangian
turbulence models the measured flow
rules for the Lagrangian statistics that
allow for the observed stochastic
shifts, or punctuations, thereby occa-
sionally and stochastically violating
Taylor’s deterministic hypothesis that
the turbulence statistics remain frozen
into the mean flow. One indication

that the LANS-α model may be able
to form the basis for such an interpre-
tation is the recent discovery
(Jonathan Graham, Darryl Holm,
Pablo Mininni, and Annick Pouquet,
private communication, November
2004) that, when magnetic fields are
included, this model possesses anom-
alous scaling, which is the hallmark of
intermittency. n
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G. I. Taylor’s Contributions to Lagrangian vs Eulerian
Thinking about Turbulence

G. I. Taylor’s Dispersion Law. An understanding of Lagrangian statistics is
of great importance in the ongoing effort to develop both fundamental and practi-
cal descriptions of turbulence. For example, Prandtl’s turbulent mixing length
came from a Lagrangian viewpoint: It was envisioned as the turbulent analog of
the mean free path of molecules in a gas. In fact, until the famous paper
“Diffusion by Continuous Movements” by G. I. Taylor (1921), most turbulence
theory was discussed exclusively from the Lagrangian viewpoint. However,
despite the obvious importance of the Lagrangian viewpoint in turbulent combus-
tion, reacting flows, and pollutant transport, until recently, very few measure-
ments of Lagrangian statistics were performed at large Reynolds numbers.
Instead, experimentalists performed Eulerian measurements and tried to link these
measurements as best they could to the Lagrangian statistics. For example, G. I.
Taylor (1921) pursued the idea originating with Prandtl and others that, “by anal-
ogy with the kinetic theory of gases,” one should attempt to find ways of predict-
ing statistical properties of the flow by taking measurements at a given point in
space. One of his most influential contributions in this regard was the formula

(1)

This formula links the Lagrangian and Eulerian statistics of turbulence. In this
formula, 〈 ⋅ 〉 denotes an appropriate statistical average and the velocity u(t) with
assumed zero mean 〈u(t)〉 = 0 is defined by the fundamental formula X

.
(t, X(0)) =

u(X(t), t), as a composition of functions. This is the Eulerian velocity evaluated
along the Lagrangian trajectory x = X(t, X(0)) whose initial position is X(t = 0,
X(0)) = X(0). 

Taylor’s formula is actually a definition, and it is independent of the dynamics
of how a real fluid moves. For example, it does not refer to the Navier-Stokes
equations. However, the formula is important because it relates two different
types of experimental measurements: Its left side represents the dispersion of
Lagrangian traces in the types of flows that can be measured—for example, by
observing how dye spreads in a turbulent flow or how a bunch of balloons dis-
perses in the wind.1

In contrast, the right side of Taylor’s formula can be measured by sampling the
Eulerian velocity field at a single spatial location, then averaging over time, and
thereby measuring its velocity correlations. 

Taylor argued that the correlation function on the right (Eulerian) side of this
formula specifies the statistical properties of a stationary random function, an
idea which had great influence in the subsequent development of statistical treat-
ments in turbulence theory and elsewhere. In general, the properties of the
(Lagrangian) displacement would depend on the specific trajectory under consid-
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eration. However, Taylor argued for assuming statistical homogeneity of the
Eulerian velocities, which assumes that the stochastic process generating u(t)
does not depend on the initial position X(0) of the trajectory. If, in addition, the
stochastic process is statistically stationary, then so are the Eulerian velocity sta-
tistics. Thus, one reason for Taylor’s formula to have been influential was that it
made experimental measurements of Eulerian velocity at a single point seem rele-
vant to turbulence. Eulerian measurements are much easier than Lagrangian
measurements. Averaging the velocity at a fixed location, or comparing velocities
at two fixed points in space at the same instant is much easier to perform than
measuring the motion of fluid parcel trajectories carried in a chaotic flow then
applying averaging techniques to them. However, Eulerian statistics are not
equivalent to Lagrangian statistics, in general, and turbulence modeling must
eventually deal with Lagrangian statistics.

G. I. Taylor’s Microscale and Its Scaling Laws. G. I. Taylor (1921) intro-
duced the length scale now called Taylor’s microscale, which is intermediate
between the integral scale L and the Kolmogorov dissipation scale η. The integral
scale L contains the most energy on the average. Due to the nonlinearity of fluid
dynamics, energy cascades from the integral scale down through the inertial
range of smaller scales, until it reaches the Kolmogorov scale, η = (v3/ε)1/4,
where viscous dissipation finally balances nonlinearity in the Navier-Stokes equa-
tions. Thus, Kolmogorov’s dissipation scale signals the end of the inertial range,
and it determines the average size of the smallest eddies, which are responsible
for the energy dissipation rate ε effected by the viscosity v. In contrast, Taylor’s
microscale λ is an intermediate length scale associated with energy dissipation
rate, the viscosity and the Eulerian time-mean kinetic energy of the circulations
u2
—

by Taylor’s formula

(2)

G. I. Taylor (1921) argued that, dimensionally, 

(3)

and if one assumes that viscous energy dissipation may be estimated as

(4)
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1 The Lagrangian statistics for the spread of such “passive tracers” was first studied quan-
titatively by Lewis F. Richardson (1926), in his observation of the spread of ten thousand
balloons released simultaneously at the London Expo on a windy day. Each balloon con-
tained a note asking the finder to call and tell him the location and time when the balloon
came to Earth. On collecting these observations, Richardson obtained the formula,

which implies the Lagrangian dispersion increases with time as <X(t)2 > ≈ t3. This
famous “Richardson Dispersion Law” still challenges researchers in turbulence for many
reasons, not least because it shows that the dispersion properties of turbulence are “anom-
alous” (non-Gaussian). This is one indication of the “intermittency” of turbulence. (In con-
trast, ordinary diffusion due to Gaussian random motion would yield the linear time
dependence <X(t)2 > ≈ t for the dispersion of particles.)



(5)

where Re = L4/3 ε1/3/v is the Reynolds number based on the integral scale. 
A similar estimate yields the well-known formula

(6)

for the ratio of Kolmogorov’s dissipation scale to the integral scale. Thus, at a
given Reynolds number Re (at the integral scale), Taylor’s microscale exceeds
Kolmogorov’s dissipation scale by the factor

(7)

A physical interpretation of Taylor’s microscale has recently emerged in the con-
text of Lagrangian-averaged computational turbulence models. In particular, the
LANS-α model is parameterized by the length scale α, which is the mean corre-
lation length of a Lagrangian trajectory with its own running time average.
Remarkably, the Lagrangian-averaged dynamics of the LANS-α model achieves
a balance between its modified nonlinearity and its viscous dissipation, occurring
at a length scale that has precisely the same Reynolds scaling as Taylor’s
microscale. Before explaining this result, we need to review another of Taylor’s
contributions linking Lagrangian statistics to the experimental interpretation of
Eulerian measurements in turbulence.

G. I. Taylor’s 1938 Frozen-in Turbulence Hypothesis. G. I. Taylor (1938)
made the hypothesis that, because turbulence has high power at large length
scales, the advection contributed by the turbulent circulations themselves must be
small, compared with the advection produced by the larger integral scales, which
contain most of the energy. Therefore, in such a situation, the advection of a field
of turbulence past a fixed point can be taken as being mainly due to the larger,
energy containing scales. This is the frozen-in turbulence hypothesis of G. I.
Taylor. Although only valid when the integral scales have sufficiently high power
compared with the smaller scales, this hypothesis delivered another very conven-
ient linkage between the Eulerian and Lagrangian viewpoints of turbulence.
Taylor’s hypothesis holds, provided u2

—
<<  U2, where u2

—
is a reasonable approxi-

mation for the variations of rapidly circulating quantities that are swept along in
the x-direction by the larger scales in the flow and do not influence their own
evolution.

G. I. Taylor made his frozen-in turbulence hypothesis in terms of the Eulerian
mean flow and, since then, others have followed suit. In experiments, this substi-
tution allows time series measured at a single point to be interpreted as spatial
variations being swept along in the Eulerian mean flow. This frozen-in turbulence
advects with the Eulerian mean flow; so it remembers its initial conditions for a
while. For example, advection of the three components of a vector quantity ξξ by
a three-dimensional Eulerian mean velocity field u– is expressed as

(8)

Thus, the advected quantity ξξ remembers its initial conditions, as it is being trans-
ported by the Eulerian mean velocity of the large-scale flow. This is Taylor’s
hypothesis. When it holds, this hypothesis allows the very useful conversion of

174 Los Alamos Science Number 29  2005

Hamilton’s Principle and the LANS-α Model

                                           



data taken from single-point spatial measurements into their corresponding inter-
pretation as temporal data, and vice versa. (Other approaches, such as two-point
spatial measurements, must be used when the assumptions of Taylor’s hypothesis
break down.)

Using the Frozen-in Turbulence Hypothesis 
in a Turbulence Closure 

Lagrangian averaging and the corresponding adaptation of Taylor’s hypothesis
of frozen-in turbulence circulations was used in Chen et al. (1998) to derive the
closed system of Lagrangian-averaged Navier-Stokes-α (LANS-α) equations.
This work treated the Lagrangian average of the exact flow as the large scale
flow into which the turbulence circulations are frozen. Thus, Lagrangian averag-
ing was first used to find a decomposition of the exact Navier-Stokes flow into its
Lagrangian mean and rapidly circulating parts. Then Taylor’s hypothesis was
used as a closure approximation.

Lagrangian averaging of fluid equations is a standard technique, which is
reviewed, for example, in Andrews and McIntyre (1978). However, Lagrangian
averaging does not give closed equations. That is, it does not give equations
expressed only in terms of Lagrangian-averaged evolutionary quantities.
Something is always left over, which must be modeled when averaging nonlinear
dynamics. This is because “the average of a product is not equal to the product of
the averages,” regardless of how one computes the averages. This difficulty is the
Lagrangian-average version of the famous “closure problem” in turbulence.

The approach used in Chen et al. (1999) for deriving the closed Eulerian form
of the inviscid convection nonlinearity in the LANS-α equations was based on
combining two other earlier results. First, the Lagrangian-averaged variational
principle of Gjaja and Holm (1996) was applied for deriving the inviscid aver-
aged nonlinear fluid equations, which had been obtained by averaging Hamilton’s
principle for fluids over the rapid phase of their small turbulent circulations at a
fixed Lagrangian coordinate. Second, the Euler-Poincaré theory for continuum
mechanics of Holm, Marsden, and Ratiu (1998) was used for handling the
Eulerian form of the resulting Lagrangian-averaged fluid variational principle.
Next, Taylor’s hypothesis of frozen-in turbulence circulations was invoked for
closing the Eulerian system of Lagrangian-averaged fluid equations. Finally, the
Navier-Stokes Eulerian viscous dissipation term was added, so that viscosity
would cause diffusion of the newly defined Lagrangian-average momentum and
proper dissipation of its total Lagrangian-averaged energy.

Gjaja and Holm had earlier derived (1996) a Lagrangian-average wave, mean-
flow turbulent description, which allowed the turbulent circulations to propagate
relative to the fluid. However, this Lagrangian-mean description was accom-
plished at the cost of adding complication in the form of self-consistent additional
dynamical equations for the Lagrangian statistics of this type of turbulence. The
use in Chen et al. (1998) of Taylor’s hypothesis of frozen-in turbulence circula-
tions simplified the description of the Lagrangian statistics, by assuming it is
swept along by the Eulerian mean flow. Following the assumption that these
Lagrangian statistics are homogeneous and isotropic, we and colleagues derived
the new LANS-α turbulence equations with only one additional (constant) param-
eter, which is the length scale alpha.

According to the theory, alpha is the mean correlation length of a Lagrangian
trajectory with its own running time average, at fixed Lagrangian label.
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Practically speaking, the quantity alpha is the length scale in isotropic homoge-
neous turbulence at which the sweeping of the smaller scales by the larger ones
first begins according to Taylor’s hypothesis. That is, circulations at length scales
smaller than alpha do not interact nonlinearly to create yet smaller ones in the
process of their advection. However, these smaller circulations are fully present.
In particular, their Lagrangian statistics contribute to the stress tensor, the inertial
terms in the nonlinearity and the circulation theorem for the resulting LANS-α
model.

Deriving the LANS-αα Model

The motion equation for the LANS-α model is

(9)

with Eulerian mean velocity u– satisfying

(10)

The inviscid part of this nonlinear motion equation (its left side) emerges from
the Lagrangian-averaged Hamilton’s principle for ideal fluids, upon using
Taylor’s hypothesis of frozen-in turbulence circulations. A sketch of its derivation
is given below. For full details, see Holm (1999).

Hamilton’s Principle for the Euler Equations. One begins with the Lagrangian
l [u, D] in Hamilton’s principle δS = 0 with S = ∫ l[u, D]dt for the Euler 
equations of incompressible fluid motion.

(11)

This Lagrangian is the kinetic energy, constrained by the pressure p to preserve
the volume element D d3x. Conservation of the volume element D d3x, in turn,
summons the continuity equation

(12)

The constraint D = 1 then implies incompressibility, ∇ ⋅ u = 0, and preservation
of incompressibility will determine the pressure as a Lagrange multiplier.

Varying the action yields

(13)

As expected, stationarity of S under the variation of pressure δp imposes preser-
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vation of volume, D – 1 = 0. The variations δD and δu are given in terms of arbi-
trary variations of the Lagrangian trajectory δX = ηη(x, t) as 

(14)

Integration by parts and use of the continuity equation yield

(15)

Cancellation between the third and fourth terms finally implies Euler’s equations,

(16)

by vanishing of the coefficient of the arbitrary vector function ηη. This is the stan-
dard derivation of Euler’s equations in the Euler-Poincaré theory of Holm,
Marsden, and Ratiu (1998).

Hamilton’s Principle for the Lagrangian-Averaged Euler αα Equations. The
derivation of the Lagrangian-averaged Euler-alpha (LAE-α) equations proceeds
along the same lines, except one first decomposes the fluid velocity and volume
element into their Eulerian mean and fluctuating parts, as

(17)

The fluctuating parts D′ and u′ of the Eulerian quantities D and u at a fixed point
in space x are associated with fluctuations of the fluid parcel trajectory X = X

~
+

ξξ(X~, t) around its Lagrangian mean trajectory X
~

(t, X0). (For example, the running
time average of X is taken at a fixed Lagrangian coordinate X0.) The relations
between the D′ and u′ and the Lagrangian fluctuation ξξ, all expressed as func-
tions of Eulerian position and time (x, t) are 

(18)

These are linearized relations, which apply for sufficiently small fluctuations.
Having used these linearized relations, we need not distinguish between Eulerian
and Lagrangian averaging because the difference is only relevant at higher order
in the relative amplitudes of the fluctuations. The simplest variant of the
Lagrangian-averaged Euler equations is derived by substituting Taylor’s hypothe-
sis in the form

(19)

Thus, Taylor’s hypothesis drastically simplifies the velocity decomposition. We
now substitute this form of Taylor’s hypothesis into the decomposition of fluid
velocity on the Lagrangian for Euler’s equations, perform the Eulerian average
(in time) using the projection property u= = u– and then constrain the Eulerian-
mean volume to be preserved (D– – 1). Following these steps yields the averaged

   

   

Number 29  2005  Los Alamos Science  177

Hamilton’s Principle and the LANS-α Model

                                                                                               



Lagrangian

(20)

By Taylor’s hypothesis, the Lagrangian statistic (ξjξk) in this expression satisfies

(21)

upon using the projection property u= = uu– again. Consequently, homogeneous
isotropic initial conditions satisfying (ξjξk) = α2δjk with constant α2 are preserved
by the dynamics, and the averaged Lagrangian l–[u–, D–] in Hamilton’s principle δS–

= 0 with S– = ∫ l
–[u–, D–]dt for these initial conditions simplifies to 

(22)

Note that the constant α2 appears in the relative kinetic energy much the same
way as Taylor argued dimensionally for his microscale. That is, α2 encodes the
relative specific kinetic energies of the Eulerian mean fluid velocity u–2 and the
turbulent circulations, which satisfy u′′2 = α2∇u–2 because of Taylor’s hypoth-
esis of frozen-in turbulence. However, as we shall see, α is not Taylor’s
microscale.

Reapplying Hamilton’s variational principle with this averaged Lagrangian by
following the Euler-Poincaré theory, as we did before for the Euler equations,
now yields the motion equation for the Lagrangian-averaged Euler-α (LAE-α)
model.

(23)

with

(24)

Finally, adding viscosity in Navier-Stokes form and forcing on the right side of
the LAE-α model recover the LANS-α equation of motion:

(25)

Relation of LANS-αα Inertial Subrange to Taylor’s Microscale

The LANS-α system of equations has a variety of properties, only one of
which we shall discuss here; that is, its inertial regime has two different scalings,
depending on whether the circulations are either larger or smaller than alpha. In
fact, its Kármán-Howarth theorem discussed in Holm (2002) implies that its
kinetic energy spectrum changes from k–5/3 for large scales, corresponding to
wave numbers kα << 1, to k–3 for small scales corresponding to wave numbers
kα >> 1. For a dimensional argument justifying this change of scaling in the iner-
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tial regime for the LANS-α model, see Foias, Holm, and Titi (2001).
Because of this change of scaling in the LANS-α model for circulations that

are larger or smaller than alpha, the inertial range is shortened for the LANS-α
model. With α fixed, the wave number κα at the end of the second, steeper k–3

LANS-α inertial range is determined in Foias, Holm, and Titi (2001) to be 

(26)

Since the Kolmogorov dissipation wave number (κKo) scales with integral
scale Reynolds number as κKo ≈ Re3/4, one finds that dissipation balances nonlin-
earity for the LANS-α model at κα ≈ Re1/2, which is precisely the Reynolds scal-
ing for the Taylor microscale. Thus, there is a relationship among the three pro-
gressively larger wave numbers

(27)

Shortening the inertial range for the LANS-α model to k < κα ≈ Re1/2 rather than
k < κKo ≈ Re3/4 implies fewer active degrees of freedom in the solution for the
LANS-α model, which clearly makes it much more computable than Navier-
Stokes at high Reynolds numbers.

Counting Degrees of Freedom. If one expects turbulence to be “extensive” in
the thermodynamic sense, then one may expect that the number of “active
degrees of freedom” Ndof for LANS-α model turbulence should scale as

(28)

where L is the integral scale (or domain size), κα is the end of the LANS-α iner-
tial range, and Re = L4/3ε1/3/v is the integral-scale Reynolds number (with total
energy dissipation rate ε and viscosity v). The corresponding number of degrees
of freedom for Navier Stokes with the same parameters is

(29)

and one sees a possible trade-off in the relative Reynolds number scaling of the
two models, provided one resolves down to the Taylor microscale. (In practice,
users of the LANS-α model often find acceptable results by setting its resolution
scale to be just a factor of 2 smaller than α.)

Should these estimates of the number of degrees of freedom needed for
numerical simulations that use the LANS-α model relative to Navier-Stokes not
be overly optimistic, the implication would be a two-thirds power scaling advan-
tage for using the LANS-α model. That is, in needing to resolve only the Taylor
microscale, the LANS-α model could compute accurate results at scales larger
than α by using two decades of resolution in situations that would require three
decades of resolution for the Navier-Stokes equations at sufficiently high Re.

The argument for this advantage is as follows: One factor of (NNS
dof/N

α
dof)

1/3
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in relative increased computational speed is gained by the LANS-α model for
each spatial dimension and yet another factor (at least) for the accompanying
lessened Courant-Friedrichs-Levy (CFL) time step restriction. Altogether, this
would be a gain in speed of 

(30)

Since α/L << 1 and Re >> 1, the two factors in the last expressions do com-
pete, but the Reynolds number should win out, because Re can keep increasing
while the number α/L is expected to tend to a constant value, say α/L = 1/100, at
high (but experimentally attainable) Reynolds numbers, at least for simple flow
geometrics. Empirical indications for this tendency were found in Chen, Foias et
al. (1998, 1999a, 1999b) by comparing steady LANS-α solutions with experi-
mental mean-velocity-profile data for turbulent flows in pipes and channels.

Thus, according to this scaling argument, a factor of 104 in increased speed for
accurate computation of scales greater than α could occur, by using the LANS-α
model at the Reynolds number for which the ratio κKo/κα = 10. An early indica-
tion of the feasibility of obtaining such factors in increased computational speed
was realized in the direct numerical simulations of homogeneous turbulence
reported in Chen, Holm et al. (1999), in which κKo/κα ≅ 4 and the full factor 
of 44 = 256 in computational speed was obtained using spectral methods in a
periodic domain at little or no cost of accuracy in the statistics of the resolved
scales. n
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Field theory is the most advanced subfield of theoretical physics that has been
actively developing in the last 50 years. Traditionally, field theory is viewed as a
formalism for solving many-body quantum mechanical problems, but the path or
functional-integral representation of field theory is very useful in a much broader
context. Here we discuss its use for predicting from first principles the stochastic,
or turbulent, behavior of hydrodynamic flows. 

The functional-integral formalism in field theory is a generalization of the
famous Feynman-Kac path integral, which was introduced as a convenient alter-
native to the description of quantum mechanics by the Schrödinger equation. The
path integral defines a quantum mechanical matrix element, or probability density
for an observable, in terms of a sum over all possible trajectories, or variations, of
the observable, some of which are forbidden by classical mechanics. In the more
general functional-integral formalism, there is a field corresponding to each
observable. In turn, to each field configuration, there is a corresponding statistical
weight, and the product of the two is the integrand in the functional integral. The
functional integral, which constitutes a summation or integration over many real-
izations of that field or observable, provides the probability distribution function
for the observable. 

In the 1950s, many researchers understood that any problem involving random
variables, or random fields, can be interpreted in terms of a sum or integral over
many field trajectories or field configurations. The simplest example is the prob-
lem of diffusion. There, the probability distribution function for the distance trav-
eled by a single molecule as it collides at random with other molecules in a medi-
um is calculated as a path integral over many Brownian motion trajectories. The
integral reformulation is often advantageous because it allows one to utilize very
powerful theoretical tools to evaluate or approximate the integrals. Perturbative
analysis (often formulated in terms of diagrammatic techniques), saddle-point, or
instanton, techniques, and various transformations (change of integration vari-
ables) are among the most useful tricks that allow analytical or semianalytical
(numerical evaluation follows a theoretical step) evaluations.

Any problem in turbulence, or for that matter any statistical problem, formu-
lated in terms of stochastic ordinary or partial differential equations can be refor-
mulated in terms of a functional, or path, integral. Many researchers have con-
tributed to the development of this field-theoretical approach to the problem of
turbulent flow. This approach is now called statistical hydrodynamics. In the
1960s the most notable contributions to statistical hydrodynamics came from
Robert Kraichnan (1967), who discovered the idea of the inverse cascade for two-
dimensional (2-D) turbulence, and from Vladimir Zakharov (1967), who put the
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theory of wave turbulence on a firm mathematical ground by finding turbulence
spectra as exact solutions and by introducing the notion of inverse and dual cas-
cades in wave turbulence.

Perturbative (or diagrammatic) analysis, which was at the core of the
Kraichnan-Zakharov analysis, defined the spirit of the most important theoretical
results in statistical hydrodynamics for some 30 years following publication of
Kraichnan and Zakharov’s seminal papers cited above. The work described in
those papers was cited in the award write-up for the 2003 Dirac Medal that went
to Kraichnan and Zakharov.1 

Between 1994 and 1995, however, three independent groups (refer to
Chertkov et al. 1995, Chertkov and Falkovich 1996, Gawedzki and Kupiainen
1995, Shraiman and Siggia 1995, Pumir et al. 1997) came to the conclusion that
the perturbative approach, which apparently led to self-similar scaling laws for
the correlation and other structure functions of Navier-Stokes turbulence, did not
work for passive scalar turbulence. By applying nonperturbative field-theoretic
techniques, these groups were able to prove the existence of anomalous scaling in
passive scalar turbulence. Below, we outline these new developments and discuss
the possible implications for anomalous scaling in both theoretical and applied
contexts of turbulent flow.

Intermittency and the Passive Scalar Model

Passive scalar turbulence describes the advection and diffusion of a scalar quan-
tity (such as temperature or pollutant concentration) in a turbulent flow. The
scalar quantity is described by a scalar field θ (t,r), and the dynamics of the
scalar field evolve in space r and time t according to the following linear equa-
tion:

(1)

where κ, u(t,r) and φ (t,r) stand for the diffusion (either thermal or material)
coefficient, the incompressible velocity field, and the source field controlling
injection of the scalar θ, respectively. The advection of θ is a passive process
under the assumption that all three fields—velocity u, injection φ, and scalar θ—
are statistically independent of each other. That assumption, which is realistic in
many practical cases, means that effects of the scalar field fluctuations on the
flow (for example, buoyancy) are neglected.

A few years after Kolmogorov (1941) proposed the inertial cascade four-fifths
law, relating third moment of velocity increment to the energy flux and energy
dissipation in Navier-Stokes turbulence, Obukhov (1949) and Corrsin (1951)
independently suggested that a similar consideration applies to the passive scalar
problem. Indeed, if diffusion and injection are removed from Equation (1), then
the integral of θ 2 over all space, ∫ drθ 2, is conserved (or does not change with
time). One can therefore consider θ 2 in the passive scalar problem as analogous
to kinetic energy density, or u2, in Navier-Stokes turbulence. In any turbulent
flow, the velocity fluctuations grow with scale size in the inertial range of scales,
which lies between the dissipation scale η and the large forcing scaling L.
Analogously, if the diffusion coefficient κ is small while the source field φ injects
the “scalar energy” at a relatively large scale, Lφ, then advection dominates diffu-
sion in the so-called convection range, which extends from Lφ down to the diffu-
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sive scale, rd. The ratio of the two scales Lφ/rd is a large dimensionless number
that plays a role in passive scalar turbulence analogous to the role of the pump-
ing-to-viscous scale ratio in the Navier-Stokes turbulence. That is, when the
dimensionless ratio Lφ/rd (closely related to the Peclet/Schmidt numbers)
becomes large, passive scalar turbulence develops.

In the Obukhov-Corrsin picture of the passive scalar problem, once a large
blob of the scalar field (that is, large on the scale of Lφ) is injected into a turbu-
lent flow, turbulent advection causes a fine spatial structure of scalar inhomo-
geneities to develop within the initially homogeneous cloud. The finest scale of
the spatial inhomogeneities is rd because inhomogeneities at even smaller scales
are smeared out by diffusion. In the language of the θ 2-energy “budget,” the
scalar energy density θ 2, which is permanently supplied at the large scale Lφ, cas-
cades toward smaller scales within the convective range and is dissipated at the
small scales, approximately rd. Thus, the analog of Kolmogorov’s four-fifths law
for the scalar energy flux in passive scalar turbulence reads 

(2)

where 〈…〉 describes averaging, with respect to statistics, of both velocity 
and injection fields and εφ is the averaged scalar-energy dissipation rate, 
εφ = κ 〈(∇θ)2〉. In this Obukhov-Corrsin picture, the flux of θ 2 remains constant
from scale to scale within the convective range, and the scalar-energy dissipation
rate is equal to the scalar-energy input rate at the injection scale, estimated as 
εφ ~ θ 2

Lφ uLφ/Lφ, where uLφ and θLφ are typical values of velocity and scalar fluc-
tuations at the injection scale. 

Equation (2), which is the passive scalar analog of the four-fifths law control-
ling the scalar energy budget, is exact. The exact statement, however, is limited to
the very special correlation function, and no generalization is known of
Equation (2) for other simultaneous correlation functions of the scalar field. This
caveat was “fixed” by Obukhov and Corrsin, who conjectured self-similarity of
scalar fluctuations. The conjecture is akin to Kolmogorov’s self-similarity
assumption for velocity fluctuations. 

The self-similarity for the scalar-field statistics looks simple and thus appeal-
ing. However, accurate experimental measurements between the 1960s and the
1980s (Sreenivasan 1991, Sreenivasan and Antonia 1997), supported neither the
Kolomogorov nor the Obukhov-Corrsin predictions for self-similar scaling laws,
thus offering an early hint that anomalous scaling is common in turbulence. For
the passive scalar increments, the anomalous scaling scenario means that the
moments of scalar increments have the following form:

(3)

where ∆2n > 0 is the anomalous exponent. In this formal description, the self-sim-
ilar scenario would correspond to ∆2n = 0. The anomalous scaling, and thus lack
of self-similarity, appeared to be much more pronounced in the experimental data
for the scalar field than for the velocity field. Because at that time there was no
theoretical understanding of the origin of anomalous scaling, the observations
were essentially rejected as spurious.

Resolution of the standoff on anomalous scaling emerged in the mid-1990s.
First, Kraichnan proposed (1994) an ad hoc scheme for producing a closed set of
equations for what is today called the Kraichnan model. This microscopic model,
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initially introduced in 1967 (refer to Kraichnan 1967), deals with passive scalar
turbulence for a velocity field in Equation (1) that has self-similar statistics. The
velocity field in the model was chosen to be incompressible, Gaussian, and short
correlated (δ-correlated) in time. Spatial correlations in the model are character-
ized by the pair correlation function of the velocity difference between two points
measured at two distinct times:

(4)

where α, β = 1, . . . , d. The eddy diffusivity tensor Kαβ (r) is growing alge-
braically with the spatial separation K ∝ r2–γ so that the exponent characterizing
the degree of non-smoothness of the synthetic velocity field γ and the spatial
dimensionality d are two independently controlled parameters. In his 1994 paper,
Kraichnan proposed an approximate closure scheme resulting in a closed set of
equations for scalar structure functions of order 4, S4(l) = 〈[θ (r + 1) – θ (r)]4〉,
and higher. The main message here was that, although the velocity field exhibited
self-similarity, the scalar fluctuations are extremely intermittent and thus charac-
terized by an anomalous expression generalizing Equation (3)

(5)

with ξ2n ≠ nξ2 and ∆2n ≠ 0. Then, independently, and almost simultaneously,
three groups (refer to Chertkov et al. 1995, Chertkov and Falkovich 1996,
Gawedzki and Kupiainen 1995, Shraiman and Sigia 1995, Pumir et al. 1997)
developed a rather different approach that required no ad hoc closure assump-
tions.

The new approach focused on the analysis of the simultaneous correlation
function of the scalar field taken at four different points, F1234 ≡ 〈θ (t,r1) θ (t,r2)
θ (t,r3) θ (t,r4)〉. That four-point correlation function is governed by a second-
order linear, and therefore closed (!!!), partial differential inhomogeneous equa-
tion,

(6)

where

is the differential operator of the second order, called eddy diffusivity operator,
and χ is a known function, so that no ad hoc closure was required. The solution
of any linear differential equation can be presented for a subinternal range of
scales as a sum of homogeneous and certain inhomogeneous solutions of the
equation. (For the four-point correlation function, the subinternal range would be
the convective range of scales in which the separations between the four points
are larger than the diffusive scale but smaller than the scalar injection scale.)
Progress came from the recognition that the anomalous scaling contributions to
the four- through n-point correlation functions, and respectively to the fourth-
through nth-order moments of the scalar increments (that is, structure functions),
originate primarily from homogeneous solutions of the partial differential equa-
tion, that is, from the zero modes Z of  the eddy diffusivity operator LZ = 0. Thus,

v t r v t r v t r v t r t t K r rα α β β αβδ( ; ) ( ; ) ( ; ) ( ; ) ( )1 1 1 2 2 1 2 2 1 2 1 2−( ) −( ) = −( ) −
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the first important outcome of the analysis was that the value of the anomalous
exponent for the passive scalar structure functions was insensitive to the strength
of the forcing field. It was also shown that the anomalous contribution originates
from matching the homogeneous and inhomogeneous solutions at the injection
scale rather than the diffusive scale. Zero modes of the eddy diffusivity operator
were analyzed and anomalous corrections ∆2n were calculated in some important
limits of the Kraichnan model corresponding to (a) a high spatial dimension, 
d → ∞, so that calculations were done in an expansion with respect to 1/d
(Chertkov et al 1995, Chertkov and Falkovich 1996), (b) an extremely irregular
(diffusive) velocity, 2 – γ << 1 (Gawedzki and Kupiainen 1996), (c) an almost
spatially smooth velocity, γ << 1 (Shraiman and Siggia 1995, Pumir et al. 1997),
and later for (d) a large deviation, or instanton, regime for which it was shown
that the structure function exponent ξ2n saturates to a constant (Chertkov 1997,
Balkovsky and Lebedev 1998). For the first time ever, analytical calculations of a
turbulence problem predicted the existence and the degree of anomalous scaling.

Passive transport in general and anomalous scaling in particular have also
been given a transparent Lagrangian interpretation: It was shown that the n-point
Eulerian (simultaneous) correlation function can be reinterpreted in terms of
Lagrangian trajectories of n particles/markers evolving in the same velocity field.
Thus, the Eulerian pair-correlation function of the scalar field 〈θ (r + 1)θ (r)〉 is
equal to the value of the θ 2 energy flux εφ multiplied by the time 〈Tl→Lφ〉, which
is defined as the average (over velocity field statistics) of the time for two parti-
cles released a distance r12 apart to become separated by a distance Lφ. In this
Lagrangian interpretation, the anomalous scaling is related to correlations
between Lagrangian trajectories of different particles—for example,
〈Tr12→LTr34→L〉 ≠ 〈Tr12→L〉〈Tr34→L〉. (That is, two pairs of particles, 1-2 and 3-4
respectively, released in the same flow diverge so that both r12 and r34 reach the
integral scale L in finite times, Tr12→L and Tr34→L, respectively. However, if the
gedanken experiment is repeated many times, one finds that the two times are
actually correlated; that is, they are statistically dependent. The Lagrangian inter-
pretation of passive scalar transport has also allowed efficient numerical analysis
of the problem (Frisch et al. 1998), leading to accurate validation of the theoreti-
cal results but, more important, to a wide exploration of anomalous scaling in the
intermediate parametric region—away from the asymptotic limits considered in
Chertkov et al. (1995), Chertkov and Falkovich (1996), Gawedski and Kupiainen
(1995), Shraiman and Siggia (1995), Pumir et al. (1997), Chertkov (1997) and
Balkovsky and Lebedev (1998)—where quantitative theoretical analysis had been
hopeless. 

In an independent development, Burgers turbulence (or simply “Burgulence”)
was found to have anomalous scaling of an extreme kind: The left (negative) val-
ues’ tail of the probability distribution function for the velocity increment is of
extremely extended, algebraic form (Chekhlov and Yakhot 1995, Polyakov 1995,
Khanin et al. 1997, Frisch and Bec 2001). 

These nonperturbative results on anomalous scaling in relatively simple prob-
lems are recognized as the most important breakthrough in the theory of turbu-
lence for the following reasons: (1) They prove that anomalous scaling as an
extreme form of intermittency does exist. They also demonstrate that anomalous
scaling is a generic phenomenon. Now, rather than proving the existence of
anomalous scaling, the major task is to explain why the anomalous scaling expo-
nent is so small (although still distinguishable from zero) in many more complex
situations such as isotropic homogeneous Navier-Stokes turbulence. (2) The new
nonperturbative approach has benefited from a Lagrangian description. Thus, in
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the passive scalar case, differential equations for scalar correlation functions can
be reinterpreted in terms of a path integral over many Lagrangian trajectories
(each set of trajectories corresponding to a single realization of velocity field). (3)
The development of scalar turbulence theory (Shraiman and Siggia 2000,
Falkovich et al 2001) has also generated new results in related areas of research
such as kinematic dynamo theory (Vergassola 1996, Chertkov et al. 1999),
enhancement of chemical reactions by turbulence (Chertkov 1999, Chertkov and
Lebedev 2003), polymer stretching by turbulence (Balkovsky et al. 2000 and
2001; Chertkov 2000), elastic turbulence (Fouxon and Lebedev 2003), and more.

The progress achieved in scalar turbulence has also generated a resurgence of
interest in more complex problems in statistical hydrodynamics. Motivated by the
Lagrangian representation of passive scalar transport, we and colleagues have
found a finite number of Lagrangian particles (four, or a tetrad, is the minimum
number—see Chertkov et al. (1999) can be considered a sensible closure frame-
work for a Lagrangian phenomenological model of Navier-Stokes turbulence.
Finally, the two solvable models have opened possibilities for benchmarking vari-
ous nonperturbative methods of statistical hydrodynamics such as instanton cal-
culus (Chertkov 1997, Balkovsky and Lebedev 1998, Falkovich et al. 1996,
Balkovsky et al. 1997). Our optimistic expectation is that these powerful theoreti-
cal methods may soon deliver new results for more complex and challenging
problems in statistical hydrodynamics, including homogeneous isotropic Navier-
Stokes turbulence, shear-driven turbulence, and perhaps even Rayleigh-Taylor
turbulent mixing and magnetohydrodynamic turbulence. n

186 Los Alamos Science Number 29  2005

Field Theory and Statistical Hydrodynamics

 



Number 29  2005 Los Alamos Science  187

Field Theory and Statistical Hydrodynamics

Balkovsky, E., and V. Lebedev. 1998. Instanton
for the Kraichnan Passive Scalar Problem.
Phys. Rev. E 58 (5): 5776. 

Balkovsky, E., A. Fouxon, and V. Lebedev.
2000. Turbulent Dynamics of Polymer
Solutions. Phys. Rev. Lett. 84 (20): 4765.

———. 2001. Turbulence of Polymer
Solutions. Phys. Rev. E 64: 056301. 

Balkovsky, E., G. Falkovich, I. Kolokolov, and
V. Lebedev. 1997. Intermittency of Burgers’
Turbulence. Phys. Rev. Lett. 78 (8): 1452.

Bernard, D., K. Gawedzki, and A. Kupiainen.
1996. Anomalous Scaling in the N-Point
Functions of a Passive Scalar. Phys. Rev. E
54 (3): 2564. 

Chekhlov, A., and V. Yakhot. 1995.
Kolmogorov Turbulence in a Random-
Force-Driven Burgers Equation. Phys. Rev.
E 51 (4): R2739. 

Chertkov, M. 1997. Instanton for Random
Advection. Phys. Rev. E 55 (3): 2722. 

———. 1998. On How a Joint Interaction of
Two Innocent Partners (Smooth Advection
and Linear Damping) Produces a Strong
Intermittency. Phys. Fluids 10 (11): 3017. 

———. 1999. Passive Advection in Nonlinear
Medium. Phys. Fluids 11 (8): 2257. 

———. 2000. Polymer Stretching by
Turbulence. Phys. Rev. Lett. 84 (20): 4761. 

Chertkov, M., and G. Falkovich. 1996.
Anomalous Scaling Exponents of a White-
Advected Passive Scalar. Phys. Rev. Lett. 76
(15): 2706. 

Chertkov, M., and V. Lebedev. 2003a.
Boundary Effects on Chaotic Advection-
Diffusion Chemical Reactions. Phys. Rev.
Lett. 90 (13): 134501. 

———. 2003b. Decay of Scalar Turbulence
Revisited. Phys. Rev. Lett. 90 (3): 034501. 

Chertkov, M., A. Pumir, and B. I. Shraiman.
1999. Lagrangian Tetrad Dynamics and the
Phenomenology of Turbulence. Phys. Fluids
11 (8): 2394.

Chertkov, M., G. Falkovich, I. Kolokolov, and
V. Lebedev. 1995. Normal and Anomalous
Scaling of the Fourth-Order Correlation
Function of a Randomly Advected Passive
Scalar. Phys. Rev. E 52 (5): 4924. 

Chertkov, M., G. Falkovich, I. Kolokolov, and
M. Vergassola. 1999. Small-Scale Turbulent
Dynamo. Phys. Rev. Lett. 83 (20): 4065. 

Corrsin, S. 1951. On the Spectrum of Isotropic
Temperature Fluctuations in an Isotropic
Turbulence. J. Appl. Phys. 22 (4): 469. 

E, Weinan, K. Khanin, A. Mazel, and Y. Sinai.
1997. Probability Distribution Functions for
the Random Forced Burgers Equation. Phys.
Rev. Lett. 78 (10): 1904. 

Falkovich, G., K. Gawedzki, and M.
Vergassola. 2001. Particles and Fields in
Fluid Turbulence. Rev. Mod. Phys. 73: 913. 

Falkovich, G., I. Kolokolov, V. Lebedev, and A.
Migdal. 1996. Instantons and Intermittency.
Phys. Rev. E 54 (5): 4896.

Fouxon, A., and V. Lebedev. 2003. Spectra of
Turbulence in Dilute Polymer Solutions.
Phys. Fluids 15 (7): 2060. 

Frisch, U., and J. Bec. 2001. “Burgulence”. In
Les Houches Session LXXIV. New Trends in
Turbulence. Turbulence: Nouveux Aspects.
Edited by M. Lesieur, A. Yaglom, and F.
David. (Grenoble, France, 2000), p. 341. 

Frisch, U., A. Mazzino, and M. Vergassola.
1998. Intermittency in Passive Scalar
Advection. Phys. Rev. Lett. 80 (25): 5532. 

Gawedzki, K., and A. Kupiainen. 1995.
Anomalous Scaling of the Passive Scalar.
Phys. Rev. Lett. 75 (21): 3834.

Kolmogorov, A. N. 1941. The Local Structure
of Turbulence in Incompressible Viscous
Fluid for Very Large Reynolds Numbers. C.
R. Acad. Sci. USSR 30: 301. 

Kraichnan, R. H. 1994. Anomalous Scaling of a
Randomly Advected Passive Scalar. Phys.
Rev. Lett. 72 (7): 1016. 

Kraichnan, R. H. 1967. Inertial Ranges in 2-
Dimensional Turbulence. Phys. Fluids 10
(7): 1417. 

———. 1975. Statistical Dynamics of 2-
Dimensional Flow. J. Fluid Mech. 67: 155. 

———. 1971. Inertial-Range Transfer in 2-
Dimensional and 3-Dimensional
Turbulence. J. Fluid Mech. 47: 525.

Obukhov, A. M. 1949. Structure of the
Temperature Field in Turbulence. Izv. Acad.
Nauk. USSR, Ser. Geogr. Geophys. 13: 55. 

Polyakov, A. M. 1995. Turbulence without
Pressure. Phys. Rev. E 52 (6): 6183. 

Pumir, A., B. I. Shraiman, and E. D. Siggia.
1997. Perturbation Theory for the 
δ-Correlated Model of Passive Scalar
Advection Near the Batchelor Limit. 
Phys. Rev. E 55 (2): R1263. 

Shraiman, B. I., and E. D. Siggia. 1995.
Anomalous Scaling of a Passive Scalar in
Turbulent Flow. C. R. Acad. Ser. II 321 (7):
279. 

Shraiman, B. I., and E. D. Siggia. 2000. Scalar
Turbulence. Nature 405: 639. 

Sreenivasan, K. R. 1991. On Local Isotropy of
Passive Scalars in Turbulent Shear Flows.
Proc. R. Soc. London, Ser. A 434: 165.

Sreenivasan, K. R., and R. A. Antonia. 1997.
The Phenomenology of Small-Scale
Turbulence. Annu. Rev. Fluid Mech. 29:
435. 

Vergassola, M. 1996. Anomalous Scaling for
Passively Advected Magnetic Fields. Phys.
Rev. E 53 (4): R3021. 

Zakharov, V. E. 1967. Weak-Turbulence
Spectrum in a Plasma without a Magnetic
Field. Sov. Phys. JETP 24 (2): 455.

Zakharov, V. E., V. S. Lvov, and G. Falkovich.
1992. Kolmogorov Spectra of Turbulence.
Berlin; New York: Springer-Verlag.

Further Reading

For further information, contact 
Misha Chertkov (505) 665-8119
(chertkov@lanl.gov).



    

188 Los Alamos Science Number 29  2005

Physically Motivated
Discretization Methods
A Strategy for Increased Predictiveness 

Dana Knoll, Jim Morel, Len Margolin, and Misha Shashkov

Los Alamos is one of the birthplaces of computational science. The need of
the weapons program to approximate the solutions of strongly nonlinear, cou-
pled partial differential equations in complex domains has been a continuous
driver in the dual development of supercomputing platforms and of more
accurate and efficient numerical algorithms. More recently, the cessation of
nuclear testing has placed a new requirement on algorithms, that of increased
predictiveness. 

Despite the importance and magnitude of the effort that has been put into
computational science, in many ways the construction of new algorithms
remains more of an art than a science. While the accuracy and efficiency of 
an algorithm can be studied and enhanced with the mathematical tools of
numerical analysis, increased predictiveness is more typically the result of
incorporating physical principles into the algorithm. In this article, we
describe three examples of methodologies for improving predictiveness of
numerical simulations: mimetic differencing, asymptotic-preserving 
discretization, and implicitly balanced solution techniques. The first two
methodologies are focused on spatial discretization, and the third, on temporal
discretization. Each is attempting to embed some basic underlying physical
concept into the numerical method, thereby improving the fidelity and 
predictive capability of computer simulation. At some level, these methodologies
are currently being incorporated in existing or next-generation simulation 
software within the Los Alamos weapons program.

     



Mimetic Discretizations for PDEs

Many algorithms used for simulation of physical problems solve discrete approxi-
mations of partial differential equations (PDEs). Usually, these PDEs express funda-
mental physical laws—for example, the conservation of mass, momentum, and total
energy in fluid flows, or Faraday’s, Maxwell-Ampere’s, and Gauss’ laws in electro-
magnetics. Such PDEs are derived in the framework of differential calculus, where
the differential operators are introduced as the ratio of coordinate invariant integrals
in the limit that the integration volume goes to zero. For example, the divergence
operator is defined as the limit of a ratio of flux through a closed surface to the vol-
ume enclosed by this surface. In general, the PDEs approximated for continuum
physics applications can be formulated in terms of invariant first-order differential
operators such as the divergence of a vector or a tensor, the gradient of a scalar or
vector, and the curl of a vector. Many of the important properties of those PDEs are
inherent in these first-order operators.

The idea underlying mimetic discretizations for PDEs is to develop a discrete vec-
tor and tensor analysis (DVTA) (Shashkov 1996, Hyman and Shashkov 1997a,
Hyman and Shashkov 1997b, Campbell et al. 2002, Margolin et al. 2000a) that pre-
serves a subset of the properties of its analytic analog. For example, it is useful to
construct the discrete first-order difference operators so as to satisfy specific analytic
integral identities that imply the conservation laws for continuum PDEs. We note
that it is not possible to preserve all the analytic properties of the discrete operators,
and so different DVTAs can result, depending on which properties are considered to
be most important to a particular application.
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The construction of a mimetic discretization for a particular PDE starts with
the choice of a discrete representation of the scalar and vector fields—what is
usually termed the data structure. (Here, we are considering discretizations that
employ a computational mesh, which is the most common but by no means the
only choice.) For example, in electromagnetics it is natural to choose the normal
projections of magnetic flux density with respect to the faces of the computation-
al cells and the normal projections of electric field intensity to edges of the com-
putational cells as primary variables, because these components of the magnetic
and electric fields are continuous at an interface between different materials
(Hyman and Shashkov 1999a). On the other hand, in Lagrangian gas dynamics, it
is natural to locate the Cartesian components of velocity at the nodes of the mesh
because, in a Lagrangian framework, the nodes of the mesh move with the fluid
(Caramana et al. 1998b).

The next step is to identify the connection between the most significant prop-
erties of the model PDEs and the first-order differential operators in terms of
which they are written. For example, the conservation of total energy in
Lagrangian gas dynamics formally follows from the property that the analytic
gradient operator is the negative adjoint of the analytic divergence operator
(Shashkov 1996):

(1)

where p is the (scalar) pressure and W is the (vector) velocity field. Similarly,the
conservation of momentum in the equations of gas dynamics follows from the 
following property of the gradient:

(2)

A third example arises in solid dynamics, where the velocity derivatives are
used to estimate the strain-rate tensor. Here it is important to define the discrete
divergence operator so that the divergence of velocity is consistent with the
change of volume of a material parcel (Margolin et al. 2000a):

(3)

Sometimes it is not possible to formulate discrete operators that satisfy all of
the desired properties; for example, in multidimensional Lagrangian gas dynam-
ics, it is not possible to construct a discretization that simultaneously conserves
energy and preserves entropy in smooth isentropic flows.

Conservation is not the only important property to mimic. Another feature of
operators, which is closely related to physics, is the associated null space. In the
continuum, the gradient of a scalar function can be zero if and only if this func-
tion is constant in space; we say that the null space of the gradient operator con-
sists of constants. Similarly, the null space of the analytic divergence operator
consists of vectors that can be represented as a curl of another vector field. If the
discrete operators have a larger null space than their continuum counterparts, par-
asitic (that is, unphysical) modes may grow and pollute the numerical solution.
For example, in electromagnetics one may see magnetic monopoles (see discus-
sion in Hyman and Shashkov 1999a). In Lagrangian gas dynamics on a two-
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dimensional (2-D) quadrilateral mesh, one may see so-called hourglassing modes,
which distort the shape of the cells without producing restoring forces (refer to
Figure 1). This problem is well known in the finite-element community, where it
is termed “under-integration;” however, hourglassing patterns are found in finite-
difference and finite-volume simulations as well. On the other hand, when the
discrete operators have a smaller null space, the solution becomes “stiff,” a prob-
lem analogous to the well-known phenomenon of locking in finite elements. 

The finite size of computational cells leads to another important consideration
for mimetic algorithms. While the PDEs can resolve all the scales of motion in a
problem, a simulation is more restricted. For example, in high Reynolds number
flows, the energy dissipation by molecular viscosity cannot be resolved. The
absence of the effects of physical viscosity leads to the need for an artificial
mechanism to dissipate a correct amount of energy; in turbulence, this mecha-
nism is called a subgrid-scale model, while in compressible flows with shocks, it
is termed an artificial viscosity. Artificial viscosity was first proposed by von
Neumann and Richtmyer (1950) to regularize shocks that can not be resolved on
the computational mesh. By “regularize,” we mean dissipate sufficient energy
(and create sufficient entropy) to capture the shock on the mesh without unphysi-
cal oscillations. In fluids and gases, the forces due to physical viscosity are
isotropic. However, to effectively regularize shocks so that the flow does not
depend on the details of the computational mesh, the artificial viscosity needs to
have the form of a (possibly nonsymmetric) second-order tensor (Campbell and
Shashkov 2001).

In Figure 2, we demonstrate the extent to which a numerical solution can be
affected by the choice of mesh if the artificial viscosity is not properly formulat-
ed. The simulated problem is known as the Noh implosion and is widely used to
study the effects of artificial viscosity. Initial conditions for this problem are
specified as a spatially uniform density and an inward radial velocity. The flow
has a simple analytic solution, which is an expanding circular shock wave. For
the values of density and velocity specified, the position of the shock is at radius
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Figure 1. Hourglass Modes
Degrees of freedom that are exhibited
by a quadrilateral cell in a Lagrangian
mesh are shown in (a) and (b). In
addition to physical patterns of
motion-translation, extension, shear
and rotation, a quadrilateral cell in a
Lagrangian mesh can exhibit an
unphysical motion called an hour-
glassing. Because hourglassing nei-
ther changes the area of the cell nor
does any work on the cell, this pat-
tern produces no restoring forces.
Thus, an additional mechanism must
be introduced to control the resulting
artificial grid distortion. One approach
(Margolin and Pyun 1987) to treating
hourglassing is to directly filter the
pattern from the velocity field. An
alternate strategy (Caramana and
Shashkov 1998) is to employ a 
subcell discretization for density (see
the dotted lines in Figure 1(c)) that
recognizes the consequent hourglass
distortion and produces restoring
forces (δδP in Figure 1(c)).

          



R = 0.2 for time t = 0.6. Now, in Lagrangian simulations, best results are typically
obtained when the symmetry of the flow coincides with the symmetry of the
mesh. Unfortunately, in realistic problems such a choice of mesh is not always
possible. To illustrate these points, we present results for two types of initial
mesh: A polar mesh that reflects the anticipated symmetry of the flow is shown in
Figure 2(a), and a uniform square mesh is shown in Figures 2(b) and 2(c). Two
types of artificial viscosity are used, an “edge viscosity” (Caramana et al. 1998a),
as illustrated in Figures 2(a) and 2(b), and a tensor viscosity (Campbell and
Shashkov 2001), shown in Figure 2(c). The edge artificial viscosity works well
for the initial polar mesh, which is aligned with flow—see Figure 2(a)—but per-
forms poorly for the initial square mesh shown in Figure 2(b), which is not
aligned with flow. The reason for such behavior is that the forces generated by
the artificial edge viscosity depend strongly on mesh. The tensor artificial viscosi-
ty is based on a mimetic discretization of the gradient of a velocity. Because this
gradient is based on the discretization of a coordinate invariant differential opera-
tor, it is able to produce results that show essentially no dependence on the
mesh—see Figure 2(c).

The preservation of the physical flow symmetry in an implosion is critically
important to achieve accurate predictions for the inertial confinement fusion pro-
gram. Small departures from spherical symmetry due to discrete errors can grow
into unacceptably large asymmetries in systems undergoing strong convergence.
Also, the uncertainty of whether a nonsymmetric result is due to numerical errors
or to the physical design severely limits our predictive capability and ultimately
our understanding of the dynamical behavior of an implosion. Those methods that
preserve symmetries are viable for investigating perturbations of these symme-
tries. However, the development of such methods may require consideration of
meshes with curvilinear edges (as opposed to straight line segments) and the deri-
vation of discrete operators on such a mesh (Margolin and Shashkov 1999,
Margolin et al. 2000b). An alternative approach on a line segment mesh has been
developed based on the addition of special corrective forces (Caramana and
Whalen 1998).

We demonstrate the importance of using symmetry-preserving discretizations
on a spherical version of the Rayleigh-Taylor instability (Margolin et al. 2000b).
Radial gravity is assumed to act on an unstable interface placed at radius R = 1.
The computational domain is .25 ≤ R ≤ 1.75. We use a γ-law gas as the equation
of state, with γ = 1.4. The initial velocity for all nodes is zero. The density is
100.0 for R > 1 and 1.0 for R < 1. The initial pressures are chosen to be in exact
hydrostatic balance. The gravitational constant is taken as 0.02. 
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Figure 2. The Effects of the
Choice of Mesh and of Artificial
Viscosity on an Implosion
Problem
(a) Results using an initial mesh with
polar symmetry that anticipates the
converging fluid flow of a radial
implosion. The simulation employs an
edge artificial viscosity. The figure
shows the simulation is in excellent
agreement with the analytic solution
at time t = 0.6. (b) Results using the
same edge viscosity as in panel (a)
but starting from a square mesh pro-
duces asymmetric results by t = 0.6.
(c) Results using a tensor artificial
velocity and starting with an initially
square mesh produces superior
results at t = 0.6.

                         



In the first example shown in Figure 3, the initial state—refer to Figure 3(a)—
is represented on a polar grid without any initial perturbation. When a conven-
tional discretization scheme is used (Caramana et al. 1998b), an asymmetric trun-
cation error quickly triggers an instability and, by time t = 6, has produced the
unphysical mode shown in Figure 3(b). The symmetry-preserving scheme does
not trigger any instability. Therefore, the solution at t = 6 shown in Figure 3(c) is
unchanged from the initial condition in Figure 3(a). 

The second example employs a grid with a very small initial perturbation (not
visible to the naked eye) at R = 1—see Figure 3(d). Let θi be the usual angle in
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Figure 3. The Effects of Symmetry-Preserving Discretization in the Simulation of a Spherical 
Rayleigh-Taylor Instability
(a) An interface at R = 1 initially separates a dense outer fluid from a less-dense inner fluid. Both fluids are in a gravitational
field directed radially inward. (b) With no initial perturbation at the fluid interface, the solution obtained by differencing on a line-
segment mesh (Caramana et al. 1998c) develops an unphysical instability by t = 6.0. (c) With the same initial conditions, the
solution at t = 6.0 obtained by differencing on a curvilinear mesh (Margolin and Shashkov 1999) is unchanged from that at t = 0
(as expected). (d) The initial mesh is slightly perturbed at the north pole. (e) The solution obtained by differencing on a line-
segment mesh shows an instability whose maximum growth rate is not along the vertical axis at t = 6.0, which is incorrect.
(f) The solution obtained using a curvilinear mesh and with the same initial perturbation as in panel (d) produces an instability
whose maximum growth rate is along the vertical axis at t = 6.0, which is qualitatively correct.

                         



the r – z plane of the points along R = 1 in the unperturbed grid. The perturbed
grid replaces these points with ri = (1 + f (θi)) cos(θi) and zi = (1 + f (θi)) sin(θi).
The perturbation f is designed to produce a very small indentation centered at the
north pole. The exact form is given by 

(4)

The solution that uses a conventional scheme is shown in Figure 3(e). It is vis-
ibly different from that produced by the symmetry-preserving scheme. The maxi-
mum growth rate for the conventional scheme is no longer along the z-axis, even
though the initial perturbation is largest at the z-axis.

The solution at time t = 6 for this case, using mimetic differencing on curvilin-
ear mesh, is shown in Figure 3(f). It exhibits the expected growth of the initial
perturbation. The maximum growth rate is along the z-axis, where the initial per-
turbation is largest.

As previously noted, the construction of discrete operators and the overall
properties of discrete algorithms depend significantly on the choice of the compu-
tational mesh. In addition to trying to coordinate the mesh symmetry with the
expected symmetry of the flow, it is found that aligning the mesh with material
interfaces (Hyman et al. 2002) and having orthogonality of the mesh lines to the
interface (Khamayseh and Hansen 2000) are also key to improving the accuracy
of simulations. Further, the overall accuracy of an algorithm also depends on the
smoothness of the mesh. (A mesh is smooth if such characteristics as the volumes
of the cells and the lengths of the cell edges vary smoothly in the mesh—refer to
Knupp et al. 2002.)

In Lagrangian simulations, there is no guarantee that an initially smooth mesh
will remain smooth. For this reason, a hybrid technique named arbitrary
Lagrangian-Eulerian, or ALE, has been developed (Margolin 1997) to allow the
automatic identification and improvement of Lagrangian meshes during the simu-
lation. ALE techniques require a strategy for how to rezone (that is, improve) a
nonsmooth or tangled mesh. Some elements of this strategy are to preserve the
integrity of interfaces and other physically important surfaces (Garimella et al.
2004) and to try to “mass match,” that is, to make the mass of the cells vary
smoothly in space. However, formulating more general and more complete strate-
gies for rezoning, which simultaneously improve mesh quality while enhancing
solution accuracy, is an active field of research. 

There are many other issues to consider in the design of discrete operators. For
example, for the implicit discretization of a diffusion equation, one needs to solve
a system of linear (or perhaps nonlinear) equations. The continuum diffusion
operator is symmetric and positive-definite (SPD). If the discrete gradient and
divergence are negatively adjoint to each other, then the discrete diffusion opera-
tor is also SPD (Hyman et al. 2002). Such SPD operators have the practical
advantage that there exist efficient iterative solvers for the associated matrix
equations. 

To summarize, we have illustrated that many of the important properties of the
PDEs that describe the evolution of physical processes are inherent in the differ-
ential operators from which they are constructed. We have given examples of
how to design discrete operators that mimic these important properties of their
analytic counterparts. In some cases, these properties transcend the individual dis-
crete operators and require relationships between different operators to be
enforced. We offer that our approach of a discrete tensor and vector analysis pro-
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vides a formal framework to study the convergence, symmetries, and accuracy of
numerical methods (Berndt et al. 2001). At the same time, we recognize that this
is an unfinished story and much work remains to be done. 

Balanced Approximations for Time Integration 
of Multiple-Time-Scale Systems

It can be quite a challenge to do numerical modeling of physical systems that
involve many processes occurring at different speeds. The faster processes must
be resolved by small simulation time steps, which is computationally expensive,
or must be modeled by other means.

Often, the faster processes are nearly in balance at all times, and the system as
a whole evolves more slowly than any of the faster processes. A classic example
of this type of situation is the flame speed of a laminar diffusion flame. The diffu-
sion and reaction at the flame front are fast processes. However, they compete
with each other, with one process slightly dominating the other. The two process-
es are nearly in balance, producing a flame front that propagates relatively slow-
ly. This is the type of multiple-time-scale problem considered here. There are
many examples of such problems in plasma physics, geophysical fluid dynamics,
combustion, and radiation hydrodynamics (see, for example, Brackbill and Cohen
1985).

For these problems, it is computationally efficient to resolve only the relative-
ly slow evolution of the system as a whole by using a time step that is large com-
pared with the time scales of the faster processes. At the same time, one must
preserve the dynamical balance responsible for the slow evolution of the system.
An effective way to achieve this result is to design nonlinear, implicit time-inte-
gration schemes that ensure a consistent solution of the separate processes even
when large time steps are used. We call such techniques implicitly balanced
(Knoll et al. 2003). These techniques were avoided in the past because of a lack
of efficient implicit solvers. At that time, formulations based on time splitting
and/or linearization were mainly used (Brackbill and Cohen 1985).

In this article, we demonstrate that (1) split methods contain inherent errors
that could be dangerous for predictive simulation, (2) modified equation analysis
(MEA) (Hirt 1968, Warming and Hyett 1974) can identify possible errors in split
methods, and (3) modern, implicitly balanced methods can provide efficient alter-
natives to split methods. The second point is important because some form of
time splitting is required for many problems of interest. We demonstrate these
three points by using simple numerical experiments and numerical analysis.

First, we show how MEA can identify splitting errors. The classical analysis
of splitting and linearization errors uses asymptotic expansions of exponential
operators (Strang 1968). The technique is well suited to determining the stability
and assessing the order of accuracy (that is, the rate of convergence) of time-split
algorithms. However, the analysis is less useful for obtaining quantitative esti-
mates of the consequences of linearization, the effects of boundary conditions, or
the error itself. The latter items can be more readily obtained using MEA, in
which a Taylor-series truncation analysis is applied to the discretized PDE (or
semidiscretized PDE, for the example considered here). The continuum PDE is
reassembled on the left side of the equation, and all the other terms are brought to
the right side. This is the new, or modified, equation used for MEA.

Let us now define an implicitly balanced method and compare it with a time-
split method, using the equation for the time-dependent reaction-diffusion problem

Number 29  2005  Los Alamos Science  195

Physically Motivated Discretization Methods

     



(5)

where u is the dependent variable (or perhaps a system of dependent variables), t
is time, Du represents the spatial discretization of a diffusion term, and Ru repre-
sents the volumetric reaction, with both Du and Ru being functions of u. In an
implicitly balanced method, Ruu and Duu will be evaluated at the same value of
u when advancing u in time. This evaluation is not done with a linearized time-
split method.

We wish to advance the solution one discrete time step from the existing time
level un to the new time level un+1. A standard first-order linearized time-split
method advances the solution using two linearized subsystems: 

(6)

and

(7)

where u* is an intermediate, or temporary, value for u. The effective time step is
then given by

(8)

The linearization that has occurred here is in evaluating Du and Ru at the known
values of u, un.

One possible second-order-accurate implicitly balanced approach would be

(9)

The solution of this time discretization will require a nonlinear iteration involving
both diffusion and reaction. It is clear that given the same initial value, un, 
these two methods do not give the same final value at the new time level, that is,
u~n+1 ≠ un+1. We need to understand when this difference is important for predic-
tive simulation. 

We will compare and contrast implicitly balanced methods with a simple lin-
earized time-split method using numerical analysis and numerical experiments
with a simple model problem. For further details on this discussion, refer to Knoll
et al. (2003). In the following paragraphs, we touch only on issues related to
splitting, not on those related to linearization.

We consider only the simplest first-order splitting to illustrate the important
points. It is straightforward to design a second-order-accurate splitting for the
problem considered below. MEA analysis of more sophisticated splittings is
ongoing.

 .

u u
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We consider the linear reaction-diffusion problem with T as the scalar depend-
ent variable, a constant diffusivity D, and a constant reactivity α < 0:

(10)

with standard boundary conditions and initial conditions. The dynamical time
scale is estimated to be

(11)

where the diffusion time τdif and reaction time τreac are 

and L is the gradient scale of the solution.
To solve Equation (10), we consider a first-order time-split method that first

advances the reaction and then the diffusion. Specifically, the first-order splitting is

(12)

where T* is an intermediate value for T.
We also consider two balanced methods: one first- and the other second-order

accurate. The first-order accurate balanced method is

(13)

The second-order accurate balanced method is

(14)
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where the intermediate time is defined as,

(15)

Considering the semidiscrete problem in time (that is, ignoring the spatial dis-
cretization), we require the Taylor series expansion of Tn in terms of Tn+1:

(16)

where Tt = ∂T/∂t. It is straightforward to show that the modified equation for the
first-order accurate balanced method is

(17)

and for the second-order accurate balanced method is

(18)

MEA tells us that, when Equation (10) is numerically integrated in time using
Equation (13), one is really solving Equation (17). Defining the modified equa-
tion for the split method is more subtle.

After the two steps from the split method in Equation (12) have been com-
bined, the effective time step is given by

(19)

To perform the MEA, we must eliminate Tn and T* in favor of Tn+1 and its
time derivatives. As we have seen, Tn can be eliminated using standard Taylor-
series expansion. Rather than attempting to write a similar Taylor series for T*,
we can use the second step in the split method itself:

(20)

The modified equation for the splitting method can now be written as

(21)

Compared with the first-order balanced method, namely, Equation (17), a new
first-order truncation term has appeared in the split modified equation. This new
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term is proportional to the second spatial derivative and scales with α ∆t. If an
altered diffusion coefficient is used, the modified equation of the split method can
be viewed as having the same form as the modified equation of the balanced
first-order-accurate method. Indeed, if we replace D with D* in Equation (21) and
equate terms with Equation (17), the result is

(22)

This suggests that using the split algorithm with the diffusion coefficient D*
should reproduce the results of using the first-order-accurate balanced method
with the original diffusion coefficient D. For α < 0, the altered diffusion coeffi-
cient remains positive and less than the original coefficient.

We consider the problem on the domain 0 < x < 1 with initial conditions 
T(x, t = 0) = 0.1, T(x = 0, t) = 1, T(x = 1, t) = 0.1, D = 1, α = –20, and a time
step, ∆t, of 0.01. To demonstrate some properties of the solution, we have simu-
lated the problem using the second-order-accurate balanced method with 
∆t = 0.0001 and α = –0, –5, and –20. Figure 4 shows how different values of the
finite reaction term α affect the steady-state solutions. Figure 5 shows the time-
dependent solutions at x = 0.1. At early times, the dynamical time scale is domi-
nated by the diffusion time scale, τdif, since L is very small near x = 0 (the initial
gradient is sharp). As this initial structure fades, the impact of finite α on the evo-
lution of the solution becomes clear.

A study of the time-step convergence, verifying that the simple split method is
indeed first-order accurate, is given in Knoll et al. (2003). However, it is not
apparent from this study that the split method will give the correct steady-state
solution using a large time step—that is, α∆t ≈ O(1). Figure 6 shows the solutions
as functions of time at a particular point (x = 0.1) for the different solution meth-
ods. For a time step chosen so that α∆t = 0.2, the split method does not give the
correct steady-state solution. The solution from the split method gives no indica-
tion of error since the method is stable and qualitatively correct.

In Figure 7, we show the time history of the solution at the same point 
(x = 0.1) for the first-order balanced method and for the split method with the
modified diffusion coefficient D* given in Equation (22). These two solutions are
identical, confirming the validity of the MEA of the splitting errors. From these
results, it is evident that the solutions given by these first-order split methods can
be interpreted as solutions from a balanced method using an altered diffusion

α
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Figure 4. Steady-State Solutions
Obtained with the Implicitly
Balanced Method
These solutions of the linear reaction-
diffusion equation—refer to
Equation (10)—were obtained with a
second-order-accurate implicitly bal-
anced method. T is the scalar depend-
ent variable, and x is position. Shown
are the solutions for three values of
constant reactivity αα.

                                                                                     



coefficient. The degree to which the diffusion coefficient is altered is proportional
to the chosen time step normalized by a normal mode (fast) time scale, that is, 
α∆t = ∆t/τreac.

Developing implicitly balanced methods that can be used to simulate large
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Figure 5. Time-Dependent
Solutions Obtained with the
Implicitly Balanced Method
These time-dependent solutions to
Equation (10) at x = 0.1 correspond to
the steady-state solutions shown in
Figure 4.

Figure 6. Implicitly Balanced
Solutions vs a Split Solution
We compare the time-dependent solu-
tions to Equation (10) at x = 0.1 using
a second-order-accurate implicitly
balanced method (“Base”), a first-
order-accurate implicitly balanced
method (“Balanced 1st”), and a split
method (“Split”).

Figure 7. Equivalence of the
First-Order-Accurate Balanced
Solution and the Split Solution
The solution to Equation (10) obtained
with the first-order-accurate balanced
method and the original diffusion
coefficient (“Balanced, 1st”) is identi-
cal to the solution obtained with the
split method and the corrected diffu-
sion coefficient (“Split, modified D”).
The original and corrected diffusion
coefficients are related through
Equation (22).

                   



three-dimensional (3-D) multiphysics problems is an ongoing research effort that
involves many contributors. To give one example, work in this area is discussed
in Knoll and Keyes (2004).

Another way to remove the splitting errors is by iterating on the splitting
methods. Although some 3-D multiphysics problems have been simulated with
implicitly balanced methods, time splitting and linearization are still required for
many problems. Thus, we must gain a deeper understanding of the inherent error
in time splitting and linearization to achieve more accurate simulations.

Finally, we present results from research using implicitly balanced methods to
simulate hurricane intensification (Mousseau et al. 2002, Reisner et al. 2003,
Reisner et al. 2004). This 3-D work involves the simulation of compressible mul-
tiphase flow. Hurricanes intensify by passing over warm water, and the signature
of intensification is the minimum pressure in the hurricane eye. In Reisner et al.
(2004), an initially steady-state hurricane is driven into a transient state by specif-
ic time-dependent boundary conditions, namely, a time-varying temperature at the
ocean’s surface. The dynamical time scale in this problem is estimated to be
roughly 100 seconds, whereas the sound-wave time scale is roughly 1 second.
The split-linearized method, therefore, is used on sound-wave physics equations.
Figure 8 shows that, for the implicitly balanced method, the correct solution con-
verges for a time step of ∆t = 60 seconds, whereas the split-linearized method
requires a time step of ∆t = 1 second to achieve convergence. In this article, the
implicitly balanced method achieved convergence about 5 times faster than the
split-linearized method.
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Figure 8. Solution
Convergences for the Balanced
and Split Methods
We used a 3-D simulation of the 
minimum pressure in the eye of a hur-
ricane to compare the convergences
of (a) split-linearized solutions for 
different values of the time step (∆t)
and (b) implicitly balanced solutions.

             



Asymptotic-Preserving Discretization Schemes

Asymptotic limits associated with PDEs are limits in which certain terms in an
equation are purposely made “small” relative to other terms. Such limits reflect
physical situations in which certain physical quantities or processes do, in fact,
dominate others. For instance, the compressible hydrodynamic Euler equations,
which describe inviscid fluid flow, represent an asymptotic limit of the nonlinear
Boltzmann equation for rarefied gas dynamics. In that limit, the ratio of the mean
distance between atomic collisions to the system size goes to zero. Similarly, the
equations for incompressible fluid flow can be derived from the compressible
Euler equations in the limit as the ratio of the material speed to the speed of
sound in the material goes to zero. Although asymptotic equations approximate
the equations from which they are derived, they accurately represent system
behaviors for problems that are highly asymptotic.

An asymptotic equation emerges from the process for obtaining a formal
asymptotic solution. The mathematical procedure for obtaining such a solution
introduces an asymptotic dimensionless scaling parameter ε that tends to zero.
First, the original, or parent, equation is put in dimensionless form, and some of
the terms in the equation are scaled by εn, where n is a positive integer that may
take on different values for different terms. This scaling is defined so that the
equation has the desired asymptotic physical behavior as ε goes to zero. Once the
scaling is completed, the equation is returned to dimensional form, and the asymp-
totic solution is assumed to take the form of a power series expansion in ε. This
expansion is substituted into the scaled equation, and coefficients of like powers of
ε are equated, thereby forming a hierarchical set of equations for the expansion
coefficients. The expansion coefficient associated with the lowest power of ε rep-
resents the asymptotic solution, that is, the solution obtained in the limit as ε goes
to zero. One can use the hierarchical equations to deduce the equation satisfied by
the asymptotic solution and thereby obtain the asymptotic equation.

Because the asymptotic equation is generally simpler than the parent equation,
it is easier to solve the asymptotic equation for the problems for which it applies
than to solve the parent equation. The applicable problems are those in which the
assumed dominance of certain terms occurs to a significant extent. Of course, no
real problem is perfectly asymptotic, but the exact limit can be approached as
closely as desired. As a problem becomes increasingly asymptotic, the solution of
the asymptotic equation approaches the solution of the parent equation. However,
many problems that require numerical solutions have spatial regions that change
in time from asymptotic to nonasymptotic. In those cases, it is often impractical
to solve the parent equation in nonasymptotic regions and the asymptotic equa-
tion in asymptotic regions. Thus, one must obtain solutions in both the nonas-
ymptotic and asymptotic regions using a single numerical approximation to the
parent equation. For the approximation scheme to be valid, solutions to the dis-
crete equation must converge to the continuum solutions as the mesh size goes to
zero in both asymptotic and nonasymptotic regions. The problem is that not all
methods of discretizing the parent equation produce solutions that converge
appropriately in the asymptotic regions. On the contrary, for some discretization
schemes, an accurate asymptotic solution is obtained only if the mesh size h
resolves length scales much smaller than those relevant to the asymptotic 
solution. We call such schemes nonasymptotic preserving. Such schemes are 
inefficient in highly asymptotic regions because they require an excessively large
number of spatial cells. In fact, nonasymptotic-preserving schemes require an
infinite number of cells in the limit as a region becomes perfectly asymptotic. 
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To determine whether a discretization scheme “preserves” the asymptotic limit
(that is, converges appropriately to the asymptotic solution), one must perform
and analyze an asymptotic expansion for the discrete equation that is completely
analogous to the expansion for the continuum equation. In this article, we use a
particle transport equation and the asymptotic diffusion limit associated with this
equation to illustrate both the continuum and discrete asymptotic methodologies.
The asymptotic diffusion limit of particle transport is characterized by negligible
particle absorption and a diffusion length that is large relative to the mean free
path (or average distance between collisions). We derive the diffusion limit for
the continuum transport equation and then apply the asymptotic methodology to
two spatially discrete forms of the transport equation. One form is obtained 
using the diamond discretization scheme, and the other is obtained using the
upwind discretization scheme. We show that the diamond scheme is asymptotic
preserving and the upwind scheme is not. Finally, we give specific computational
examples demonstrating the contrasting behavior of these schemes in highly
asymptotic (diffusive) problems. 

We focus our discussion on a particle transport equation: 

(23)

This is an equation for a phase-space particle-density function, N(x, µ). Although
this function depends on a single spatial coordinate, its domain is 3-D and corre-
sponds to an infinite slab. All particles travel at a single speed, ν, in directions
characterized by the cosine µ = νx/ν. Each cosine corresponds to a cone of direc-
tions as illustrated in Figure 9. Particles are assumed to be uniformly distributed
within the band. The number of particles located at position x in direction µ, is
N(x, µ) dx dµ. The spatial volume associated with dx has unit dimensions in the
other two Cartesian coordinates, that is, it consists of a differential rectangular
box with dimensions dx × 1 × 1. Particles are randomly absorbed and scattered
within the medium. The scattering is isotropic, that is, particles scatter into all
directions with equal probability. The absorption cross section is σa, and the scat-
tering cross section is σs. The expected absorption rate of particles in direction µ
at position x is σaνN(x, µ) dx dµ, and the expected scattering rate of particles in
direction µ at position x is σsνN(x, µ) dx dµ. The total cross section, σt, is the
sum of the absorption and scattering cross sections. The mean distance between
particle interactions is called the mean free path, and it is given by λt = 1/σt. The
mean free path represents a fundamental spatial scale length in highly absorbing
media that appears explicitly in the transport equation. For instance, after travel-
ing a distance s in a purely absorbing medium, a beam of particles is attenuated
by a factor of exp(–s/λt). The quantity Q(x,µ) is the particle source function.
Therefore, the number of particles created at position x in direction µ is 
Q(x,µ) dx dµ.

Equation (23) is a statement of particle conservation. It simply states that the
source rate for the particles entering the differential phase-space volume at posi-
tion x and direction µ must equal the sink rate for the particles leaving that vol-
ume. The boundary conditions for Equation (23) are given in terms of the inci-
dent particle distributions at the boundaries. For instance, if the problem domain
is the interval [0, 1], the solution to Equation (23) is uniquely determined once N
is defined at x = 0 for µ > 0 and at x = 1 for µ < 0.
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Figure 9. Variable Definitions for
the Particle-Density Function 
N(x, µµ)
The number of particles at position 
x moving in direction µµ is N(x, µµ) dx dµµ.

                                                                                                                                                  



It is convenient for our purposes to rewrite Equation (23) as

(24)

where

(25)

The quantity ψ = νN is called the angular flux, and the directional average of ψ,
which is denoted by φ, is called the scalar flux. 

We now begin the derivation of the asymptotic diffusion limit associated with
Equation (24). For simplicity, we skip the nondimensionalization process and
directly scale Equation (24) by the nondimensional scaling parameter ε: 

(26)

Scaling the terms in Equation (24) ensures the following behavior as ε → 0: 

(1) The total cross section scales with ε–1 and thus becomes infinite (or,
equivalently, the mean free path goes to zero). 
(2) The absorption cross section scales with ε and thus goes to zero.
(3) The source scales with ε and thus goes to zero to properly normalize the
solution. 

Because both the mean distance between collisions and the probability of
absorption go to zero, it is not difficult to imagine that the result will be a diffu-
sion process for the particles.

We next assume a power series expansion in ε for the asymptotic solution: 

(27)

Substituting Equation (27) into Equation (26) and equating coefficients of like
powers of ε, we obtain a hierarchical set of equations for the expansion coeffi-
cients in Equation (27). After slight algebraic manipulation, the leading-order
equation O(1) becomes 

(28) 

This equation simply states that the leading-order solution is isotropic, that is,
independent of direction. After considerable manipulation and use of
Equation (28), the O(ε) equation becomes 

(29)

The O(ε2) equation (after considerable manipulation and use of previous equa-
tions) becomes 
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(30)

Averaging Equation (30) over all µ (by integration), we find that the 
leading-order solution, ψ(0) = φ(0), satisfies the following diffusion equation:

(31)

Thus, we see that this asymptotic scaling does indeed lead to a limit in which the
transport solution satisfies a diffusion equation. The effective boundary condi-
tions satisfied by the asymptotic diffusion solution must be determined by a
boundary-layer analysis beyond the scope of this discussion. It suffices to note
that, with no incoming particles at the boundaries, the asymptotic diffusion solu-
tion is zero at both boundaries. 

The fundamental scale length associated with the diffusion equation is the dif-
fusion length L: 

(32)

Homogeneous solutions of Equation (31) have the form exp(±x/L). Note that, if
we apply the asymptotic scaling defined in Equation (26) to L, we find that L is
independent of ε, which is appropriate because an asymptotic scale length should
not depend on ε. Further note that, since L is O(1) and λt is O(ε) in the diffusion
limit, the mean free path becomes infinitely small relative to a diffusion length in
the asymptotic diffusion limit. This implies that the mean free path can be arbi-
trarily small relative to a diffusion length in problems that are highly diffusive. 

The diffusion limit for a spatially discretized transport equation is completely
analogous to that for the analytic transport equation. We have shown that the
transport solution satisfies an analytic diffusion equation in the asymptotic diffu-
sion limit. By analogy, one would expect a spatially discrete transport solution to
satisfy a valid spatially discrete diffusion equation in the asymptotic diffusion
limit. A transport spatial-discretization scheme preserves the asymptotic diffusion
limit when this occurs. In a practical sense, this means that an accurate solution
can be expected in highly diffusive problems if the width of each mesh cell is
small compared with a diffusion length. If a discretization scheme does not pre-
serve the diffusion limit, one generally finds that an accurate solution can be
obtained for highly diffusive problems only if the width of each cell is small with
respect to a mean free path. This condition is nonphysical in the sense that the
mean free path is an appropriate scale length for the transport solution in highly
absorbing problems, but it is not a scale length for the transport solution in diffu-
sive problems. More significantly, as a problem becomes increasingly diffusive,
the mean free path approaches zero while the diffusion length remains constant.
Thus, an arbitrarily large number of spatial cells can be required to obtain an
accurate solution in highly diffusive problems if a spatial-discretization scheme
does not preserve the asymptotic diffusion limit.

We next consider two spatial-discretization schemes for the transport equation
and discuss their properties for diffusive problems. The first is the upwind
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scheme, and the second is the diamond scheme. Although it may not be obvious,
all transport discretizations are completely defined by the equations for a single
spatial cell. The reason is that each spatial cell can be considered to be an inde-
pendent transport domain with the incoming angular flux defined by either true
boundary conditions or the outgoing angular fluxes from adjacent cells. Let us
consider a cell defined over the interval [xi–1/2, xi+1/2], and let h = xi+1/2 – xi–1/2
denote the cell width. Integrating Equation (24) over this interval, we get the bal-
ance equation, which is exact: 

(33)

For simplicity, we have assumed a uniform grid with constant cross sections 
in Equation (33). Three angular fluxes appear in this equation, namely, two
cell-edge values and one cell-average value. As previously noted, the incoming
cell-edge angular flux is known, leaving two unknowns: the cell-average and
the outgoing cell-edge angular fluxes. The balance equation provides one of
two equations needed to close the system. The second equation is usually called
the auxiliary equation and relates the outgoing cell-edge and cell-average angu-
lar fluxes. In the case of upwind differencing, the outgoing cell-edge angular
flux is equal to the cell-average angular flux: 

(34)

In the case of diamond differencing, the cell-average angular flux is the arith-
metic average of the incoming and outgoing cell-edge angular fluxes: 

(35)

An asymptotic analysis for the upwind scheme in the thick diffusion limit
yields a rather bizarre result. In particular, the upwind asymptotic solution satis-
fies the following difference equation: 

(36)

If we multiply Equation (36) by 4/h, we obtain a standard three-point cell-
centered discretization for the following analytic diffusion equation:

(37)

However, comparison with Equation (31) shows that this is not the right diffusion
equation. It contains no cross sections and no source! Thus, the upwind scheme 
does not preserve the asymptotic diffusion limit.
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An asymptotic analysis of the diamond scheme in the thick diffusion limit
indicates that the diamond solution satisfies the following asymptotic difference
equation: 

This is a valid discretization scheme for the diffusion equation given in
Equation (31). Thus, the diamond scheme preserves the asymptotic diffusion
limit.

We next consider computational examples that will hopefully make the con-
cept of the discrete diffusion limit concrete. To illustrate the discrete asymptotic
limit, we first define a fixed initial transport problem and associate it with ε = 1.
The problem then changes as a function of ε, according to the scaling of the total
cross section, the absorption cross section, and the source given in Equation (26).
Specifically, the initial problem is defined as follows: 

(1) The spatial domain is the interval [0, 1], measured in centimeters, and is
fixed for all ε.
(2) The transport solution satisfies vacuum boundary conditions, that is, ψ is
zero at both boundaries in the incoming directions.
(3) The internal source is spatially constant with Q = 1 particle per cubic
centimeter per second [p/(cm3-s)].
(4) The cross sections are spatially constant with σt = 10 expected interac-
tions per centimeter and σa = 0.1 expected absorption per centimeter. 
(5) The cell thickness, h, is 0.1 centimeter, for a total of 10 spatial cells.

As previously stated, we assume that this initial problem corresponds to ε = 1.
Then, we scale σt by ε–1, σa by ε, and Q by ε. For instance, when ε = 0.1, we
find that σt = 100 expected interactions per centimeter,σa = .01 expected absorp-
tion per centimeter, and Q = 0.1 p/(cm3-s). The asymptotic transport solution to
this sequence of problems satisfies Equation (31) with zero Dirichlet boundary
conditions; that is, the solution is zero at both boundaries. Note that the diffusion
equation is invariant to the scaling of the physical parameters, so the set of physi-
cal parameters for any value of ε may be used to evaluate the asymptotic diffu-
sion solution. Furthermore, note that h/λt is scaled by ε–1, so the number of mean
free paths per cell becomes infinite as ε → 0.

We plot the upwind and diamond solutions in Figures 10 and 11, respectively,
for ε =1, 0.25, and 0.1. Figure 11 shows that the upwind solutions converge to
zero with decreasing ε, in accordance with the analysis. This convergence to zero
occurs because particles enter the computational domain only through the internal
source Q, which is not present in the discrete asymptotic equation given by
Equation (14). It can be seen from Figure 3 that the diamond solutions appear to
converge to the analytic asymptotic diffusion solution given by Equation (31).
However, the convergence will eventually stagnate because the mesh is fixed.
The diamond solutions actually converge to the solution of Equation (38) with
boundary conditions corresponding to φ(0) = 0 at both x = 0 centimeter and 
x = 1 centimeter.

We next demonstrate the excessive mesh refinement required by a scheme that
does not preserve the diffusion limit. In particular, we plot the upwind solutions for
the problem corresponding to ε = 0.1 calculated with 10, 100, and 1000 spatial
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cells, respectively. It can be seen from Figure 12 that the upwind scheme is con-
verging, but a small amount of error is still evident with 1000 spatial cells. The cell
thickness in the 1000-cell calculation is 0.01 mean free paths. As expected, an accu-
rate solution requires a cell width that is small when measured in mean free paths.
The accuracy of the 1000-cell calculation will be maintained for smaller values of ε
only if the cell width remains fixed when measured in mean free paths.

This is why schemes that do not preserve the diffusion limit can require an
arbitrarily large number of mesh cells in highly diffusive problems. For instance,
one would have to use 10,000 spatial cells for the ε = 0.01 problem to obtain
essentially the same solution as with 1000 cells for ε = 0.1. In general, the num-
ber of cells required to maintain a given level of accuracy will be inversely pro-
portional to ε. This is to be contrasted with the asymptotic-preserving diamond
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Figure 11. Solutions for the
Scalar Flux in the Asymptotic
Diffusion Limit with Diamond
Spatial Differencing
Shown are the numerical solutions to
Equation (31) for several values of εε.
The “exact” analytical solution is also
shown.

Figure 10. Solutions for the
Scalar Flux in the Asymptotic
Diffusion Limit with Upwind
Spatial Differencing
Shown are the numerical solutions to
Equation (31) for several values of εε.
The “exact” analytical solution is
also shown.

                        



scheme, which maintains a given level of accuracy with a fixed number of cells
in the limit as ε → 0, even though the cell width measured in mean free paths
becomes infinite in this limit.

In summary, it is essential to use asymptotic-preserving discretization schemes
in asymptotic problems whenever the scale lengths associated with the asymptot-
ic equation are much larger than one or more scale lengths that explicitly appear
in the parent equation. Schemes that are not asymptotic preserving can be prohib-
itively expensive to use because they require the mesh to be refined with respect
to scale lengths that can be arbitrarily small compared with the scale lengths
associated with the asymptotic solution. Although we have focused on the trans-
port equation and the asymptotic diffusion limit, the basic properties that we have
illustrated apply to a wide variety of physical systems. The concept of asymptot-
ic-preserving discretizations is relatively new and not well known in the compu-
tational community. However, it can be expected to gain widespread attention in
the near future because of the increasing emphasis on multiphysics/multiscale
numerical simulation.

Conclusions

The common thread of the three numerical methodologies discussed in this
article is the inclusion of physical insight. Perhaps, the major driving force at Los
Alamos for developing such methodologies is the weapons program. However,
these methods are also affecting such diverse areas as weather simulation, mag-
netic-confinement fusion simulations, nuclear reactor safety simulation, and air-
craft design. Efforts aimed at developing and implementing such methods are
ongoing within several Los Alamos programs. However, developing physically
motivated numerical-discretization schemes remains a challenging task as we
move toward more-accurate computer simulations of phenomena involving many
types of physics. n
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Figure 12. Solutions for the
Scalar Flux in the Asymptotic
Diffusion Limit with Upwind
Differencing 
Shown are the numerical solutions to
Equation (31) for εε = 0.1 and different
numbers of computational cells. The
“exact” analytical solution is also
shown.
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Erratum to “Photoelectron Spectroscopy of Alpha- and Delta-Plutonium”
Los Alamos Science 26: 168, 2000
A. J. Arko, J. J. Joyce, L. A. Morales, J. H. Terry, and R. K. Schulze

Some of the plutonium research presented in the article was conducted at the
Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The
ALS work was performed as a multi-institutional collaboration. In addition to the
authors listed for the ALS work (J. H. Terry and R. K. Schulze), we would like to
acknowledge their coworkers, who were Jim Tobin of Lawrence Livermore
National Laboratory; Tom Zocco and Doug Farr of Los Alamos National
Laboratory; David Shuh, Eli Rotenberg and Keith Heinzelman of Lawrence
Berkeley National Laboratory; and Peter Boyd of Boyd Technologies. Further
details of this portion of the plutonium research are available through the follow-
ing publications: J. Terry, R. K. Schulze, J. D. Farr, T. Zocco, K. Heinzelman, E.
Rotenberg, D. K. Shuh, G. van der Laan, D. A. Arena, and J. G. Tobin. 2002. 5f
Resonant Photoemission from Plutonium. Surf. Sci. Lett. 499: L141; J. G. Tobin,
B. W. Chung, R. K. Schulze, J. Terry, J. D. Farr, D. K. Shuh, K. Heinzelman, E.
Rotenberg, G. D. Waddill, and G. van der Laan. 2003. Resonant Photoemission in
f-Electron Systems: Pu and Gd. Phys. Rev. B 68: 155109.
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