
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

05-7606

ACCESS INTERFACES FOR OPEN ARCHIVAL
INFORMATION SYSTEMS BASED ON THE OAI-PMH AND
THE OPENURL FRAMEWORK FOR CONTEXT-SENSITIVE
SERVICES

Jeroen Bekaert, and Herbert Van de Sompel

PV 2005 "Ensuring Long-term Preservation and Adding Value
to Scientific and Technical Data"

 November 21-23, 2005, Edinburgh

Access Interfaces for Open Archival Information Systems
based on the OAI-PMH and the OpenURL Framework for

Context-Sensitive Services

Jeroen Bekaert1,2, and Herbert Van de Sompel1

1 Digital Library Research & Prototyping Team, Los Alamos National Laboratory,
MS P362, PO Box 1663, Los Alamos, NM 87544-7113, US

{jbekaert, herbertv}@lanl.gov
2 Dept. of Architecture and Urbanism, Faculty of Engineering, Ghent University,

Jozef-Plateaustraat 22, 9000 Gent, Belgium
{jeroen.bekaert}@ugent.be

Abstract. In recent years, a variety of digital repository and archival systems have
been developed and adopted. All of these systems aim at hosting a variety of
compound digital assets and at providing tools for storing, managing and accessing
those assets. This paper will focus on the definition of common and standardized
access interfaces that could be deployed across such diverse digital respository and
archival systems. The proposed interfaces are based on the two formal specifications
that have recently emerged from the Digital Library community: The Open Archive
Initiative Protocol for Metadata Harvesting (OAI-PMH) and the NISO OpenURL
Framework for Context-Sensitive Services (OpenURL Standard). As will be
described, the former allows for the retrieval of batches of XML-based
representations of digital assets, while the latter facilitates the retrieval of
disseminations of a specific digital asset or of one or more of its constituents. The
core properties of the proposed interfaces are explained in terms of the Reference
Model for an Open Archival Information System (OAIS).

1. Introduction

The Open Archival Information System (OAIS) Reference Model [1] addresses a wide
range of information preservation functions, including ingest, storage, management, and
access. The Reference Model also conceptually identifies the internal and external
interfaces to these archival functions. Of specific importance for this paper is the OAIS
Coordinate Access Activities function, which provides the conceptual interfaces to the
holdings of an archive compliant with the OAIS Reference Model. Several pre-defined
categories of access requests are distinguished, including Order requests aimed at
returning Dissemination Information Packages (DIPs). Another type of request that is of

particular interest in the context of this paper is a Dissemination Request. This type of
request aims at returning a dissemination of one or more constituents of a digital asset.
While an Order request is mainly intended for machine-based consumption, the response
of a dissemination request is typically presented to an end user.

The concept of a common access interface to a repository of digital assets is also
recognized in the Kahn/Wilensky framework [2]. There, the conceptual Repository
Access Protocol is introduced to allow requesting disseminations of a ‘digital object’ by
specifying its identifier, a service request type, and a set of additional parameters. The
need for common access interfaces has also been expressed and explored by various
projects. For example, the Networked European Deposit Library (NEDLIB), a project
aimed at defining a workflow for ingesting, storing and accessing content in deposit
systems for electronic publications, raised the need to explore possible ‘standardized
techniques for the content transfer from publishers to libraries, following the OAIS
Reference Model’ [3]. The Joint Information Systems Committee (JISC) Digital
Repository Programme concludes that ‘a technical implementation of the OAIS DIP/SIP
interfaces’ is one of many areas where additional standards or specifications are needed
[4]. And, in a paper describing a project aimed at mirroring the collection of the American
Physical Society (APS) at the Research Library of the Los Alamos National Laboratory,
the authors observe the lack of standardization in repository access mechanisms that the
Library experiences when uploading content from scholarly publishers. They introduce a
standards-based (OAI-PMH) interface to the APS repository to allow recurrent and
accurate transfer of digital assets, and suggest the approach could be deployed beyond the
context of the described project [5].

Because the importance of common and standardized access interfaces to digital asset
repositories is well recognized, it is somehow surprising to find that, so far, no cross-
community solutions have been proposed and deployed in this realm. Indeed, typically, a
different access interface exists per repository system. In this paper, in order to try and
help alleviate this impasse, two standard-based repository access mechanisms are
proposed that could be deployed across systems and communities. The proposed
interfaces are based on the two formal specifications that have recently emerged from the
Digital Library community: The Open Archive Initiative Protocol for Metadata
Harvesting (OAI-PMH) [6] and the NISO OpenURL Framework for Context-Sensitive
Services (OpenURL Standard) [7]. As will be described, the former allows for the
retrieval of batches of XML-based representations of digital assets, while the latter
facilitates the retrieval of disseminations of a specific digital asset or of one or more of its
constituents.

To allow for a good understanding of the proposed interfaces, Section 2 of this paper
describes some crucial concepts from the OAIS Reference Model, Section 3 maps those
concepts to a few real life repository systems, and Section 4 describes the essence of the
OAI-PMH and the NISO OpenURL Standard. Section 5 introduces the proposed
interfaces, and Section 6 looks at the applicability of the proposed interfaces for the
repository systems described in Section 3. The paper concludes by discussing the potential
usability of the proposed interfaces and looking at possible areas of future work.

2. An OAIS perspective on the representation, identification and
versioning of digital assets

The Reference Model for an Open Archival Information System (OAIS) [1] developed by
the CCSDS has become a foundation for thinking about problems in the digital
preservation domain. The OAIS Reference Model defines both a Functional Model and an
Information Model. The Functional Model outlines the range of functions that need to be
undertaken by a compliant archive, such as access, archival storage, and ingest. The
Information Model defines broad types of information that are required in order to
preserve and access the information stored in an archive. Both the Functional Model and
the Information Model define useful abstract concepts but not a blueprint for an
implementation of an archival system. The organizational and technical choices of how to
implement the abstract OAIS concepts in actual concrete environments is left to the
communities involved.

Although the focus of the proposed access interfaces is not only archives tasked with
the long-term preservation of digital information, but rather repository systems in general,
the Reference Model for an OAIS provides well-defined terminology that allows
expressing a variety of properties of systems that store digital assets. Therefore, in this
paper, terms of the Informational and Functional Models will be used to describe the core
characteristics of the proposed interfaces. A description of each of those terms is provided
below; some are also depicted in Figure 1.

AIP

Content
Information

Content
Data Object

AIP Identifier

1

1

1

1

AIP Fragment
Identifier(s)

Content
Information
Identifier(s)

Fig. 1. Archival Information Package, Content Information, and Content Data Object

Content Information is information that is the original target of preservation in an
OAIS environment. In the information science domain, Content Information is typically
referred to as a digital asset or a digital object; it is the information object of primary
interest to an end user.

Content Information is the binding of a Content Data Object with Representation
Information that supports the actual representation of the Content Data Object. A Content
Data Object is a sequence of bits that is typically implemented as one or more files. It is

fair to state that these Content Data Object files can be considered the actual constituents
of the Content Information.

An Information Package is a container that binds the Content Information with
associated Preservation Description Information. Preservation Description Information
is information that is essential to adequately preserve the particular Content Information
to which it is bound. An Information Package is serialized using Packaging Information.
This Packaging Information also provides local hooks (often called ‘Fragment
Identifiers’) into the Information Package to allow accessing each file of which the
Content Data Object of the Content Information consists.

Content Information can have one or more identifiers, each of which is named a
Content Information Identifier; these identifiers reside under the Reference Information
sub-category of the Preservation Description Information.

An Information Package has a single Information Package Identifier. The value of
this identifier must be unique within a (federation of) archive(s). In contrast with the
Content Information Identifier, the Information Package Identifier is an internal property
of the repository, and hence, is typically not exposed to downstream applications or end-
users.

The Information Model for an OAIS recognizes three subtypes of the Information
Package: the Archival Information Package (AIP), the Submission Information
Package (SIP), and the Dissemination Information Package (DIP). The definitions of
these types of Information Packages are based on the function of the archival process that
uses the Information Package, and on the translation from one Information Package to
another as it passes through the archival process. A distinction is made between
Information Packages that are submitted to an archive (i.e. SIP), Information Packages
that are subsequently stored and preserved by an archive (i.e. AIP), and those that are
disseminated from an archive (i.e. DIP). In order for archives in a federation to be able to
exchange Information Packages they must support at least one common DIP/SIP format.

According to the OAIS Functional Model, whenever the Content Information or its
Preservation Description Information is updated, a new AIP must be created. Dependent
on the nature of the update, a distinction is made between several types of AIPs. Of
special interest for this paper are the notions of Version and Edition. A Version is an AIP
that results from applying a transformation, induced by a preservation strategy, on the
Content Information of a source AIP. An Edition is an AIP that results from increasing or
improving the Content Information of a source AIP; for example by removing a few
typographic errors from one of the constituents of the Content Information. Both an AIP
Version and an AIP Edition are candidates to replace the source AIP from which they are
derived. No matter which type of update the Content Information or the Preservation
Description Information of a source AIP undergoes, the result is a new AIP that receives a
new, unique AIP Identifier. Note that in both cases, the Preservation Description
Information needs to be updated to provide information about the source AIP, and to
describe what was done and why. The Content Information Identifier may remain
untouched.

Content
Information

90-70002-04-3
(ISBN)

source AIP

Content
Data Object

repo:890352

6fb6 & 78d0

1

1

1

1

AIP Version

Content
Data Object

Content
Information

1

1

1

1

repo:965032

nz74 & 539k

90-70002-04-3
(ISBN)

Fig. 2. Archival Information Package Versions

Because it may be of historical interest, especially in the context of digital preservation,

to retain previous Versions or Editions of AIPs, it results that, within a single archive,
several versions of specific Content Information may exist. All these versions share a
Content Information Identifier, yet have a different Archival Package Information (AIP)
Identifier. Each version of specific Content Information can be retrieved using the AIP
Identifier of the AIP that encapsulates the particular version. An example of a source AIP
and an AIP Version is depicted in Figure 2. As can be seen, both AIPs share the same
Content Information Identifier (i.e. the ISBN number 90-70002-04-3); yet each AIP is
identified using a different AIP Identifier (i.e. the identifiers repo:890352 and
repo:965032, respectively).

3. The representation, identification and versioning of digital assets in
real-life repositories

In recent years, a variety of digital repository and archival systems have been developed
and adopted. Of specific interest in the current technological environment are systems that
are capable of hosting compound digital assets, consisting of one or more datastreams of a
variety of MIME media types. Examples of such information systems that will be
considered here are aDORe, a repository architecture designed and implemented at the
Research Library of the Los Alamos National Laboratory [8], DSpace, a digital repository
system jointly developed by MIT Libraries and Hewlett-Packard (HP) [9,10], and Fedora,
an open-source software jointly developed by Cornell University and the University of
Virginia [11,12]. All of these systems aim at hosting a variety of compound digital assets
and at providing tools for storing, managing and accessing those assets. In spite of their
similar goals, each of these systems comes with its own perspective on how to accomplish
them.

This section explores how specific properties of the data models that underly aDORe,
DSpace and Fedora map to the concepts of the OAIS Information Model discussed in
Section 2. The focus hereby is on those properties that are core to the proposed access
interfaces, namely on the handling of identifiers and versions of digital assets. Figure 3
summarizes the findings described hereafter.

AIP

Content
Information

Content
Data Object

Content
Information

Identifier

AIP Identifier

AIP Fragment
Identifier

OAIS Information Model aDORe DSpace

1

1

1

1

1

1

*

1

1

*

Fedora

1

1

*

HandleDSpace Item

Handle +
METS

filename
METS doc

DSpace
Bitsteam

1

Fedora
Digital Object

FOXML doc

Fedora
datastream

PID

XMLID

PID +
dateTime

1

Digital Item

DIDL doc

component
resource

1

XMLID

Digital Item
identifier

DIDL doc
identifier

XMLID

Fig. 3. Mapping concepts from the OAIS Information Model to the

aDORe, DSpace, and Fedora systems

• aDORe [8]: Compound digital assets stored in the aDORe environment are

represented according to the MPEG-21 DID Abstract Model and serialized using the
MPEG-21 DIDL syntax. In MPEG-21, the digital asset itself is called a Digital Item
and is considered the primary information of interest to an end user in the MPEG-21
environment. The XML document that packages and serializes the Digital Item is
referred to as a DIDL document [13,14,15]. As such the aDORe Digital Items map to
OAIS Content Information; the DIDL XML documents that package the Digital Items
map to OAIS Archival Information Packages. The MPEG-21 DIDL syntax is the
Packaging Information.

aDORe has two parallel identification mechanisms. The first identification
mechanism pertains to Digital Items. This type of identifier is typically associated
with a digital asset at the moment of its creation by a publisher, and, hence already
exists when the asset is ingested into aDORe. If it does not yet exist, it is created upon
receipt. Clearly, this type of identifier maps to the concept of OAIS Content
Information Identifiers. A second identification mechanism pertains to the DIDL
XML documents that package the Digital Items. These identifiers are minted during
ingestion into aDORe. They are unique within the aDORe repository, and even
globally unique through the use of the info URI scheme [16]. This type of identifiers
is mainly used for repository management purposes; it directly maps to the concept of
OAIS AIP Identifiers.

During creation of a DIDL XML document, each constituent datastream of a
Digital Item is conveyed as an MPEG-21 DID component/resource constructs, and is

accorded a Fragment Identifier. As a result, each constituent datastream becomes
addressable in the aDORe repository using a combination of the AIP Identifier of the
DIDL document in which it is contained, and its own Fragment Identifier.

In the aDORe repository, whenever a new version of a previously ingested digital
asset is ingested, a new DIDL XML document is created for it; existing DIDL
documents are never updated or edited. As such, a version of a digital asset (aka
Digital Item) can be directly retrieved using the identifier of the DIDL document that
packages the transformed or modified content. All these versions of a specific digital
asset share the same Digital Item identifier. This approach closely resembles the
versioning concepts defined by the OAIS Functional Model.

• DSpace [9,10]: Compound digital assets stored in the DSpace repository are organized

using the DSpace Data Model. A digital asset is typically represented as a DSpace
Item; datastreams aggregated by the digital asset are called DSpace Bitstreams. The
current DSpace digital repository system (release 1.3.1 – August 2005) instantiates the
DSpace Data Model using linked tables in a relational database. DSpace Bitstreams
are stored in a file system. Every DSpace Item receives a persistent unique identifier;
DSpace uses the Handle System for minting, managing and resolving these identifiers.
It is important to note that DSpace treats the identifiers that were assigned to digital
assets before their ingestion into DSpace (i.e. URL, DOI, ISBN, etc.) as descriptive
metadata (DC:identifier), not as identifiers that can easily be mapped to identifier
concepts in the OAIS Information Model. This is in contrast with aDORe that treats
these identifiers as the OAIS Content Information Identifiers. Also, the current
release of the DSpace system does not seem to provide an unambiguous solution for
the versioning of stored digital assets. While it is argued that a separate DSpace Item
could be created for each distinct version of a digital asset [17], this approach does not
allow for multiple versions of a digital asset to share the same identifier. Overall, it
seems difficult to unambiguously map the manner in which the current version of
DSpace handles identifiers and versions to corresponding concepts of the OAIS
Reference Model.

However, at the time of writing, plans exist to create a new version of the DSpace
repository system (release 2.0) [18]. Our discussion of the mapping of DSpace
concepts to those of the OAIS Reference Model will focus on this planned version. In
the planned version, the DSpace Data Model would remain untouched, but it would
introduce a flat file storage mechanism in which each DSpace Item is represented as
an XML document conformant with the Metadata Encoding and Transmission
Standard (METS) syntax [19]. The main reason for replacing the current relational
database structure with the METS-based solution is to ease various preservation
related tasks, including disaster recovery, versioning control, and data replication. In
this revised approach, according to the OAIS Information Model, the DSpace Items
that represent the actual content can be considered Content Information. A METS
XML document that represents and serializes the content as a storable package can be
considered the Archival Information Package. The METS syntax is the Packaging

Information. In the planned release, different versions of a stored digital asset would
be represented by different METS documents, one per version. Following this
approach, several versions of a DSpace Item may share the same handle identifier;
they will be distinguished by a different METS document. From this discussion, it
follows that in the planned version 2.0 of the DSpace system, the handle that is
assigned to each DSpace Item maps to the concept of the OAIS Content Identifier. A
unique METS file name or a unique identifier for a METS file would map to concept
of an OAIS AIP Identifier. The exact details with this respect remain a topic of further
study by the DSpace group [18].

• Fedora [11,12]: Compound digital assets stored in the Fedora repository (release 2.0)
are represented according to the Fedora Digital Object Model [20] and encoded using
the FOXML syntax [21]. The digital asset itself is referred to as a Fedora Digital
Object; it maps to the OAIS concept of Content Information. The serialization of a
Fedora Digital Object in FOXML is called a FOXML document. This serialization
maps to the OAIS concept of Archival Information Package. The FOXML syntax can
be considered the Packaging Information.

The Fedora system does not make an explicit distinction between identifiers
accorded to the actual content (i.e. Content Information Identifiers), and identifiers
pertaining to stored packagings of the content (i.e. Information Package Identifiers).
Both the Fedora Digital Object and its representation in FOXML share the same
unique persistent identifier, referred to as the ‘PID’ (Persistent Identifier). PIDs may
be minted by a Fedora repository or may be user-defined; the latter allows for the use
of identifiers that were assigned to digital assets prior to their ingestion into Fedora.
During the creation of a FOXML document, each datastream constituting a Fedora
Digital Object is accorded an XML Fragment Identifier. As a result, these constituent
datastreams become addressable in the Fedora repository using a combination of the
PID and their own Fragment Identifier.

In the Fedora repository, a modification made to a constituent of a Fedora Digital
Object results in the creation of a new version of that constituent. Fedora does not
create a new FOXML document when a new version of a constituent of a Digtal
Object becomes available. Instead, each specific constituent is versioned in the source
FOXML document through the assignment of a local key that conveys a dateTime of
creation or update. In this versioning approach, the PID of the Fedora Digital Object
remains constant [22]. Because multiple versions of a Fedora Digital Object may
share the same PID, and because a PID is considered the primary identification
mechanism of a Fedora Digital Object for downstream application, the PID maps to
the OAIS concept of Content Information Identifier. In addition, a version of a Fedora
Digital Object can be uniquely identified using the combination of a PID and a
specific dateTime key. This combination maps to the OAIS concept of the AIP
Identifier.

For completeness, it is worthwhile mentioning that from the above discussion it
follows that in terms of the OAIS, a FOXML document in Fedora is really a collection

of AIPs in which each AIP holds a version of a Fedora Digital Object. However, this
refined perspective does not change the aforementioned reasoning regarding
identifiers.

4. The OAI-PMH and the OpenURL Framework for Context-
Sensitive Services

In this paper, the potential of two existing specifications will be explored to define
common access interfaces to information systems: The Open Archives Protocol for
Metadata Harvesting (OAI-PMH), a widely adopted specification that allows for the
selective harvesting of metadata, and the OpenURL Framework for Context Sensitive
Services (NISO OpenURL), a recent NISO Standard, formally known as ANSI/NISO
Z39.88-2004. Both are briefly described below.

4.1 The Open Archival Initiative Protocol for Metadata harvesting
 (OAI-PMH)

The OAI-PMH [6] is a protocol that allows for the recurrent harvest of XML-based
metadata from one place to another. An OAI-PMH repository exposes a collection of
metadata records. A harvester issues OAI-PMH protocol requests, in order to harvest
XML metadata. The OAI-PMH builds on existing standards, notably the IETF Hypertext
Transfer Protocol (HTTP), and the W3C Extensible Markup Language (XML) syntax for
encoding the exchanged metadata. OAI-PMH harvesters may request information from
OAI-PMH repositories using a standard set of six OAI-PMH verbs. OAI-PMH requests
are transmitted according the rules of HTTP 1.0, with requests specified using URL-
encoded parameters and responses delivered in strictly validifiable XML.

The OAI-PMH 2.0 solution is based on a data model – depicted in Figure 4 – that
helps specifying the semantics of the six protocol requests. In what follows, OAI-PMH
entities of the data model are written in italic font, while OAI-PMH protocol requests are
written in courier:

• At the very top is a digital resource about which an OAI-PMH repository exposes

metadata. By definition, resources themselves are outside of the scope of the OAI-
PMH.

• Listed below the resource is the item. The item is the highest-level entity within the
scope of the OAI-PMH. In essence, the item is the entry point to all available
metadata pertaining to a resource. In the protocol, the item is uniquely identified by
an OAI-PMH identifier. All possible metadata records available from a single item
share the same OAI-PMH identifier.

• Below the item, several records are shown. A record is metadata in a specific
metadata format. A specific record in the OAI-PMH is unambiguously identified by
means of the combination of the OAI-PMH identifier (of the item), the metadata
format used for the dissemination of the metadata, and the OAI-PMH datestamp of
the metadata. The datestamp is the date and time of creation or modification of the
metadata. Note that the datestamp is a property of the metadata record, not of the item
as used to be the case in previous protocol versions. This reflects the fact that
metadata of various metadata formats may be made available and may be modified
independently, thus having different datestamps.

• The OAI-PMH also defines a set as an optional construct for grouping items for the
purpose of selective harvesting. Repositories may organize items into sets. A set
organization may be flat, i.e. a simple list, or hierarchical. Multiple, parallel, set
structures may exist.

record 1

metadata format 2
datestamp y

metadata format 3
datestamp z

metadata format 1
datestamp x

record 2 record 3

item (OAI-PMH identifier)

resource

Fig. 4. The OAI-PMH data model

The OAI-PMH consists of six verbs, three of which reveal the characteristics of the

repository (ListMetadataFormats, ListSets, and Identify) and three verbs for
extracting metadata from the repository (GetRecord, ListRecords,
ListIdentifiers). Each OAI-PMH verb requires and/or allows the use of certain
parameters that further define the exact nature and details of the request. The OAI-PMH
defines three supporting protocol requests that are aimed at helping a harvester understand
the nature of an OAI-PMH repository:
• Identify: This verb is used to retrieve information about an OAI-PMH repository;

an important information element returned in the response to the Identify request is
the granularity of the datestamp supported by the repository (day-level or seconds-
level).

• ListMetadataFormats: This verb is used to retrieve the metadata formats available
from a repository.

• ListSets: This verb is used to retrieve the set structure of a repository. This
information is useful for selective harvesting.

The OAI-PMH defines three further protocol requests that are aimed at the actual
harvesting of XML-based metadata:
• ListRecords: This verb is used to harvest records from a repository. Optional

arguments permit selective harvesting of records based on set membership and/or
datestamp.

• GetRecord: This verb is used to retrieve an individual record from a repository. The
verb has two required arguments; one argument specifies the OAI-PMH identifier of
the item from which the record is requested; the other conveys the metadata format of
the metadata that should be included in the record.

• ListIdentifiers: This verb is an abbreviated form of ListRecords, retrieving
only identifiers, datestamps and set information.

Data providers process the OAI-PMH requests and reply with appropriate OAI-PMH

responses, which are always in the form of valid XML conforming to top-level XML
schemas defined by the OAI-PMH.

Due to its origins in the realm of resource discovery, the OAI-PMH mandates the
support of the Dublin Core metadata format, but strongly encourages supporting more
expressive formats. As a result, any metadata format can be used as long as it is defined
by means of an XML Schema. In typical use cases, the exposed metadata is descriptive,
and is expressed by means of metadata formats of varying complexity, such as simple
Dublin Core, or MARCXML. However, recently, new use cases have emerged that reveal
a more liberal interpretation of what constitues metadata. For example, at the Research
Library of the Los Alamos National Laboratory, various projects have been carried out
that explore the use of XML-based complex objects formats in combination with the OAI-
PMH. Examples include the use of OAI-PMH to export DIDL document from the aDORe
repository [8], the use of OAI-PMH to transfer digital assets from the American Physical
Society to the Los Alamos National Laboratory [5], and the use of the OAI-PMH to
expose content accessible from Apache Web servers [23].

The metadata formats supported by the OAI-PMH Interface proposed in this paper are
DIP formats. The metadata records returned in response to OAI-PMH requests are DIPs
derived from stored AIPs. Each DIP is unambiguously identified by means of the
combination of an OAIS DIP format, an OAI-PMH identifier, and the OAI-PMH
datetstamp of the OAIS DIP. The OAI-PMH identifier in the proposed Interface can be
expressed in terms of OAIS AIP Identifiers or OAIS Content Information Identifiers.

4.2 The NISO OpenURL Framework for Context-Sensitive Services

The NISO OpenURL Framework Standard [7] defines an architecture for creating
OpenURL Applications. An OpenURL Application is a networked service environment, in
which packages of information are transported over a network. The main purpose of the
transportation of these packages is to request and obtain context-sensitive services
pertaining to a referenced resource. In order to do so, each package describes the
referenced resource itself, the network context in which the resource is referenced, and the
context in which the service request takes place.

The NISO OpenURL Framework Standard originated in the scholarly information
community. Within that community, the initial OpenURL 0.1 specification [24] – the
precursor of the NISO OpenURL standard – was introduced for the specific purpose of
reference-linking (i.e. referencing an article citation to the full text of the article) and was
targeted at facilitating the provision of context-sensitive service links for popular types of
scholarly works such as journal articles and books. Hereby, identifiers and metadata
describing the work are conveyed using a controlled-vocabulary HTTP GET request to a
user-specific linking server, which uses a rules-based approach to provide an agent or end
user with appropriate services pertaining to the work.

A generalization of the essential components of the initial OpenURL 0.1 solution,
beyond the scholarly information environment, inspired the very nature of the NISO
OpenURL standard [7]. The NISO OpenURL Framework Standard allows for expressing
requests for the delivery of context-sensitive services pertaining to whichever type of
resource referenced in a networked environment. Again, the main pre-requisite for this
extension is the existence of identifiers and/or metadata that describe the referenced
resources and its network context.

Referent

ReferringEntity

Requester

Resolver

Referrer Identifier

By-Value Metadata

By-Reference Metadata

ServiceType

Private Data

ContextObject

Descriptor

Fig. 5. Each Entity of a ContextObject is specified using a Descriptor; four Descriptor types can be
used simultaneously.

To that end, the NISO OpenURL Standard introduces the notion of a ContextObject;

an abstract information construct that contains descriptions of various Entities involved in

the process of requesting context-sensitive services. The different Entities are shown in
Table 1 and are also depicted in Figure 5. In what follows, pre-defined terms provided by
the NISO OpenURL standard are written in italic font.

Entity Definition
A Referent The Entity that is referenced in a networked environment and about which

the ContextObject is created
A ReferringEntity The Entity that references the Referent
A Requester The Entity that requests services pertaining to the Referent
A ServiceType The Entity that defines the type of service requested
A Resolver The Entity at which a request for services is targeted
A Referrer The Entity that generates the ContextObject

Table 1. The NISO OpenURL Entities of a ContextObject

A ContextObject can be transported to a networked system, named a Resolver, in
order to request services (expresssed by a ServiceType) pertaining to the Referent
described in it. To decide upon the nature of such services, the Resolver may take Entities
other than the Referent and ServiceType into account. These other Entities are
ReferringEntity, Requester, and Referrer. Each Entity of the ContextObject can be
described by means of so-called Descriptors. As depicted in Figure 5 and listed in Table
2, the Standard distinguishes between Identifier Descriptors, Metadata Descriptors and
Private Data Descriptors.

Descriptor type Definition

An Identifier
This Descriptor unambiguously specifies the Entity by means of a
Uniform Resource Identifier (URI). This URI either points to the Entity
itself or to metadata that specify the Entity.

By-Value Metadata
This Descriptor specifies properties of the Entity by the combination of: 1)
a URI reference to a Metadata Format; and 2) a particular instance of
metadata about the Entity expressed according to this Metadata Format.

By-Reference
Metadata

This Descriptor specifies properties of the Entity by the combination of: 1)
a URI reference to a Metadata Format; and 2) the network location of a
particular instance of metadata about the Entity expressed according to
this Metadata Format.

Private Data
This Descriptor specifies information about the Entity using out-of-band
technology. The Resolver and the Referrer have a common understanding
of the Descriptor based on a bilateral agreement.

Table 2. The NISO OpenURL Descriptor types

The NISO OpenURL standard makes a clear distinction between the abstract

definition of the above concepts, their concrete representation, and the protocol by which
such representations are transported. The OpenURL Framework allows for a

ContextObject to be represented in many different Formats and currently, a Key/Encoded-
Value (KEV) representation and an XML representation have been defined. A
representation of a ContextObject is transported to a Resolver, in order to request services
pertaining to the Referent described in it. The transport of a ContextObject can occur
using various network protocols, and currently transport over HTTP and HTTPS have
been defined.

To address the issue of open-endedness, and allow for the creation of highly
interoperable solutions, an OpenURL Framework Registry is introduced
[http://www.openurl. info/registry], providing a mechanism for the public
disclosure of specific selections for the representation and transportation of
ContextObjects. In general, a community or application domain defines an OpenURL
Application by constraining the type and numbers of Entities and Descriptors pertaining
to a ContextObject and by selecting entries from the Registry to represent and transport
the ContextObjects. If necessary and/or desired, the community may define and register
new entries.

5. An OAIS perspective on the access to digital assets

In this paper, two access interfaces for an OAIS are proposed that could be deployed
across systems and communities. One interface is based on the OAI-PMH, the other on
the NISO OpenURL Framework Standard. These interfaces support the following types of
repository access:

• Requests aimed at returning OAIS Dissemination Information Packages. In the OAIS

Reference Model, this type of request is referred to as an Order. An Information
Package Order identifies one or more OAIS Archival Information Packages (AIPs) of
interest, and specifies how these OAIS AIPs are to be mapped into OAIS
Dissemination Information Packages (DIPs). In response to an Order, an OAIS
compliant archive provides all or a part of an OAIS AIP to a consuming archive in the
form of an OAIS DIP. Of specific interest, in particular in the context of digital
preservation, is the retrieval of individual versions of stored OAIS Content
Information.

• Requests aimed at returning a dissemination of one or more (parts of an) OAIS
Content Data Object(s). The response to this request is a MIME-typed bitstream.
Again, the nature of a dissemination may vary dependent on the version of the OAIS
Content Information (and hence of its OAIS Content Data Object). Because the OAIS
Reference Model does not introduce a specific term to refer to this type of request, we
will henceforth refer to it as a Content Data Object Dissemination Request, or
Dissemination Request in short.

As described in Section 2 of this paper, the OAIS Information Model recognizes the

existence of two parallel identification mechanisms to address information stored in an
archive or repository. One mechanism is directly related to the identification of OAIS
Content Information using the OAIS Content Information Identifier; the other mechanism
uses the OAIS AIP Identifier to identify an OAIS AIP stored in an archival system. While
the same OAIS Content Information Identifier may be shared by multiple sets (or
versions) of OAIS Content Information, the OAIS AIP Identifier is considered unique
within an information system. It follows that access interfaces to an OAIS compliant
system could be centered around both identification mechanisms. This paper will focus on
the definition of access interfaces based on OAIS Content Information Identifiers only. A
first interface is based on the OAI-PMH, and allows for the Order of batches of DIPs. A
second interface is based on the NISO OpenURL Framework. For this interface, two
levels of conformance are defined. The first level of conformance allows to Order
individual OAIS DIPs from an information system; the second level is directly related to
Dissemination Requests for (parts of) a Content Data Object.

5.1 Interface #1: Ordering OAIS DIPs using OAI-PMH

A first Interface (henceforth referred to as Interface #1) allows for the retrieval of OAIS
DIPs from an information system using the OAI-PMH protocol. The identifier of the
OAIS Content Information that is packaged by an OAIS DIP serves as the OAI-PMH
identifier. The response returned by the interface is an OAI-PMH record. Each record
physically embeds the requested OAIS DIP as OAI-PMH metadata. Following the OAI-
PMH specification, the OAIS DIP must be delivered in strictly valid XML. The specifics
of this interface are described below.

The OAI-PMH Interface #1 of the OAIS that hosts the OAIS AIPs has the following
characteristics:
• The baseURL of the OAI-PMH interface is the HTTP address

baseURL(OAIPMH_CIID).
• The OAI-PMH identifiers used by Interface #1 are the OAIS Content Information

Identifiers of the OAIS Content Information packaged by the OAIS AIPs stored in the
repository.

• The OAI-PMH datestamps used by the OAI-PMH interface are the datetime of
creation of the OAIS AIPs. Note that, because the OAIS Reference Model requires the
creation of a new AIP (instead of an update of an OAIS AIP) for every new version of
OAIS Content Information, the OAI-PMH datestamp of a given AIP will never
change once the OAIS AIP has been created. Because of the nature of the OAI-PMH,
a request for an OAIS DIP containing OAIS Content Information with a specific
OAIS Content Information Identifier will result in an OAIS DIP derived from the
most recent OAIS AIP that packages the identified OAIS Content Information; that is
from the most recent version of the OAIS Content Information.

• The natively supported metadata format is an XML-based OAIS DIP format.
Potentially, multiple OAIS DIP formats could be supported by Interface #1. Various
XML-based Packaging formats have emerged over the last several years, some of
which have been standardized. Examples include, the ISO MPEG-21 Digital Item
Declaration Language (MPEG-21 DIDL) [13,14,15], the Metadata Encoding and
Transmission Standard (METS) [19], the IMS Content Packaging XML Binding [26],
and the XML Formatted Data Units (XFDU), a pre-standard developed by CCSDS
Panel 2 [25].

• The supported granularity of Interface #1 is seconds-level.
• Set structures may be supported for grouping OAIS AIPs for the purpose of selective

harvesting.

agent

baseURL(OAIPMH_CIID)?
verb=ListMetadataFormats

baseURL(OAIPMH_CIID)?
verb=ListRecords&
metadataPrefix=info:pathways/svc/dip.rdf

list of DIP formats (ListMetadataFormats response)

list of DIPs (derived from most recent AIPs)

Fig. 6. Sequence Diagram of Interface #1:

Ordering OAIS DIPs using OAIS Content Information Identifiers and OAI-PMH

The interaction of a downstream OAI-PMH harvester with the repository through the
OAI-PMH interface is illustrated in Figure 6 and explained below. Typically, the
interaction is a two-step approach:
• Firstly, the OAI-PMH harvester issues a ListMetadataFormats request against the

OAI-PMH Interface #1 of the OAIS. In response, the OAI-PMH harvester receives a
list of supported XML-based OAIS DIP formats. The request looks as follows:

[BaseURL(OAIPMH_CIID)?
verb=ListMetadataFormats]

• Once a list of OAIS DIP formats has been obtained, OAI-PMH harvesters can retrieve

OAIS DIPs from the OAI-PMH interface of the information system by issuing an
OAI-PMH GetRecord or ListRecords request. Each OAIS DIP is provided as an
OAI-PMH record. The metadata format of the OAIS DIP must correspond with one

of the OAIS DIP formats retrieved from the repository by issuing the
ListMetadataFormats request. Each recordis uniquely identified by the
combination of an OAIS Content Information Identifier of the OAIS Content
Information packaged by the OAIS AIP (and from which the OAIS DIP will be
derived) as the OAI-PMH identifier, an OAIS DIP format as the OAI-PMH metadata
format, and the datetime at which the OAIS AIP containing the OAIS Content
Information (and from which the OAIS DIP will be derived) has been created. It is
very important to note that, as has been explained in Section 2 of this paper, multiple
OAIS AIPs may exist that package a set of OAIS Content Information sharing the
same OAIS Content Information Identifier. Because of the nature of the OAI-PMH, a
request for an OAIS DIP that packages OAIS Content Information with a specific
OAIS Content Information Identifier will result in an OAIS DIP derived from the
most recent OAIS AIP that packages the identified OAIS Content Information.

An example of both a GetRecord and a ListRecords request is shown below. A
GetRecord request automatically results in the retrieval of a single OAIS DIP that is
derived from the most recent OAIS AIP that packages a set of OAIS Content
Information with OAIS Content Information Identifier ContentInfoIdentifier.
The ListRecords request results in a list of OAIS DIPs, in which each OAIS DIP is
derived from the most recent OAIS AIP that, given a specific OAIS Content
Information Identifier, has been created within the bounds of the (optional) from and
until arguments. info:pathways/dip.rdf identifies an OAIS DIP format that is
available from the OAI-PMH Interface #1.

[BaseURL(OAIPMH_CIID)?
verb=GetRecord&
identifier=ContentInfoIdentifier&
metadataPrefix=info:pathways/svc/dip.rdf]

and

[BaseURL(OAIPMH_CIID)?
verb=ListRecords&
from=T1&until=T2&
metadataPrefix=info:pathways/svc/dip.rdf]

For reasons of completeness, it should be noted that the proposed interface equates the

identifier of the OAI-PMH item with the identifier of the OAI-PMH resource. While the
item and resource are two different entities in the OAI-PMH data model, the OAI-PMH
does not specify the nature of the OAI-PMH resource nor of its identifier. Indeed, the
nature of the resource and its identifier is outside the scope of the OAI-PMH specification
and hence, may vary dependent on the application domain. In the context of this
application, the identifier of the OAI-PMH item is set to match that of the OAI-PMH
resource.

The power of Interface #1 lies in the possibilities it offers for downstream applications
to harvest batches of OAIS DIPs that package the most recent sets of OAIS Content
Information available in an information system and to keep the retrieved content up to
date using a datestamp based harvesting strategy. Indeed, newly added and updated
content can be harvested using a ListRecords request, by setting the value of the from
parameter to the datetime of the last harvest that was conducted. It should be noted that
Interface #1 does not facilitate the harvesting of all versions of OAIS Content
Information, but rather only the most recent version. In order to support harvesting all
versions, an interface similar to Interface #1, but based on OAIS AIP Identifier can be
defined. This is, however, outside of the scope of this paper. For now, it suffices to
mentioned that such an interface is being used in the aDORe repository work [8].

5.2 Interface #2: Ordering OAIS DIPs and requesting Disseminations using NISO
OpenURL

A second interface (henceforth referred to as Interface #2) is compliant with the NISO
OpenURL Framework standard. As described in Section 4.2, the NISO OpenURL
Framework allows a community or application domain to define OpenURL Applications
by formally describing the restrictions the implementation of the abstract ContextObject
data structure, and on the choice of a mechanism to transport concrete ContextObjects. In
this Section, we propose an OpenURL Application that allows to request disseminations
from data stored in an information system, using OAIS Content Information Identifiers as
the primary key in the request. A distinction is made between two levels of conformance.
• Conformance Level 1: An OpenURL Resolver compliant with Conformance Level 1

of this OpenURL Application allows for ordering individual OAIS DIPs from an
information system. The Referent in this OpenURL Application is Content
Information, and it is being described by means of an Identifier Descriptor, which is
the OAIS Content Information Identifier of the OAIS Content Information. The
response returned by this OpenURL Resolver is an OAIS DIP. A detailed description
is provided in Section 5.2.1 and illustrated in Figure 7.

• Conformance Level 2: An OpenURL Resolver compliant with Conformance Level 2
of the proposed OpenURL Application allows requesting disseminations of
datastreams (aka Content Data Object files). Again, the OAIS Content Information
Identifier is used as the value of the Referent Identifier Descriptor. The response
returned by this OpenURL Resolver is a MIME-typed stream. A detailed description is
provided in Section 5.2.2 and depicted in Figure 8.

In the OpenURL Application described in this paper, ContextObjects are represented

using the Key/Encoded-Value (KEV) ContextObject Format and are transported to an
OpenURL Resolver using the HTTP(S) GET mode of the By-Value OpenURL Transport.
It should be noted however that, because the OpenURL Standard is specified in a generic
manner, the same interface can be implemented in many different ways as technologies

evolve. For example, the concepts underlying the proposed Interface #2 can also be
instantiated in an OpenURL Application in which ContextObjects are represented by
means of the XML ContextObject Format and transported using an XML-based protocol
such as SOAP. In essence, this means that the conceptual interface that underlies the
proposed, concrete Interface #2 remains persistent over time.

5.2.1 Conformance Level 1: Ordering OAIS DIPs using NISO OpenURL

agent

list of ContextObjects

DIP (RDF)

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
svc_id=info:pathways/svc/dip

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways&
rft.aip=AIPIdentifier&
svc_id=info:pathways/svc/dip.rdf

OpenURL

for each DIP format

list of ContextObjects

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways &
rft.aip=AIPIdentifier&
svc_id=info:pathways/svc/dip

for each AIP (version)BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways &
rft.aip=AIPIdentifier&
svc_id=info:pathways/svc/dip

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways&
rft.aip=AIPIdentifier&
svc_id=info:pathways/svc/dip.*

Fig. 7. Sequence Diagram of Interface #2, Conformance Level 1:

Ordering OAIS DIPs using OAIS Content Information Identifiers and NISO OpenURL

The Interface of an OpenURL Resolver compliant with Conformance Level 1 of the
proposed OpenURL Application accepts two types of service requests. Both types of
requests are expressed by means of a ContextObject that is transported towards the
OpenURL Resolver at baseURL OpenURL_CIID:

• The interoperable OAIS DIP bootstrap service request: The OpenURL Resolver of

an information system compliant with Conformance Level 1 of this OpenURL
Application must support the ‘OAIS DIP bootstrap’ request. This request is conveyed
as a ContextObject with the following charachteristics:
• The Referent of the ContextObject is OAIS Content Information stored (as an

OAIS AIP) in the information system. The Referent is described by means of an

Identifier Descriptor. Its value is the OAIS Content Information Identifier of the
OAIS Content Information in question.

• The ServiceType of the ContextObject is a service requesting a list of all OAIS
DIP formats that can be provided for the Referent. The ServiceType is described
by means of an Identifier Descriptor with the fixed value
‘info:pathways/svc/dip’.

• The ContextObject may contain Entities other than Referent and ServiceType.
These Entities offer the potential for describing, for example, properties of the
agent that issues the request. This would allow tailoring the response to those
properties.

As described in Section 2 of this paper, given a single OAIS Content Information

Identifier, multiple OAIS AIPs may exist. As such, the first task of this OpenURL
Application, in response to the initial ‘OAIS DIP bootstrap’ request, is to
disambiguate between the various OAIS AIPs available from the information system
for a given Content Information Identifier. Therefore, a separate process is started in
which the OpenURL Application returns a list of all OAIS AIPs that can be provided
for a given OAIS Content Information Identifier to the agent. This list is expressed as
an XML container of ContextObjects; the syntax of the list must be valid against the
XML Schema for the XML ContextObject Format
[http://www.openurl.info/registry/
docs/xsd/info:ofi/fmt:xml:xsd:ctx]. For each OAIS AIP (that packages
OAIS Content Information identified by the given OAIS Content Information
Identifier), a new ContextObject is provided. Each such ContextObject has the
following charactersitics:
• The Referent of the ContextObject is an OAIS AIP containing the OAIS Content

Information for which the initial OAIS DIP bootstrap service has been requested.
The Referent is described by the combination of an Identifier Descriptor and a By-
Value Metadata Descriptor. The value of the former is the OAIS Content
Information Identifier as conveyed by the initial OAIS DIP bootstrap service. The
latter conveys the OAIS AIP Identifier of the Referent. The Metadata Format used
to described the Referent is identified by the KEV pair
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways. The aip key from the
identified By-Value Metadata Format conveys the OAIS AIP Identifier. The
syntax of the OAIS AIP Identifier itself is a property of the information system.

• Other Entities of the ContextObject are copied from the initial OAIS DIP bootstrap
request.
It should be noted, that in some applications this extra step of interaction with the

agent could be by-passed; for instance by allowing the OpenURL Resolver to return a
specific ContextObject instead of a list of ContextObjects; the Resolver could, for
example, do so based on context related information provided by the agent in the
initial OAIS DIP bootstrap request.

Once the list of ContextObjects has been received by the agent, the agent may
choose one and send it back to the OpenURL Resolver at baseURL OpenURL_CIID.
The response to this request is a list of all OAIS DIPs that can be provided for the
Referent. Again, this list is expressed as an XML container of ContextObjects. Each
individual ContextObject details a specific OAIS DIP request. The XML container is
compliant with the aforementioned XML Schema for the XML ContextObject
Format. For each OAIS DIP format available from the information system, a new
ContextObject is provided. Each such ContextObject has the following characteristics:
• The Referent of the ContextObject is the OAIS AIP that has been selected by the

agent. Again, the Referent of the ContextObject is described using the combination
of an Identifier Descriptor and a By-Value Metadata Descriptor. The latter
conveys the OAIS AIP Identifier of the OAIS AIP being requested by means of
the aip key. The former expresses the OAIS Content Information Identifier of the
OAIS Content Information packaged by that OAIS AIP and is the OAIS Content
Information for which the initial OAIS DIP bootstrap service has been requested.

• The ServiceType of the ContextObject conveys an available OAIS DIP format
supported by the information system. The ServiceType is provided using an
Identifier Descriptor. The value of this Descriptor is a property of the information
system hosting the OAIS AIPs. Though it should be noted that, in order for
information systems to transfer content in an interoperable manner, a set of
standardized OAIS DIP format – each of which is identified using an Identifier
Descriptor – will be required. Figure 7 shows the use of an Identifier Descriptor to
convey a ServiceType of the form ‘info:pathways/dip.*’.

• Similarly to the OAIS DIP bootstrap request, Entities other than Referent and
ServiceType may be provided.

Once the list of ContextObjects has been received by the agent, the agent may

choose the ContextObject of interest and send it back as a service request to the
OpenURL Resolver.

• A specific OAIS DIP requests supported by the information system: The OpenURL

Resolver of an information system compliant with Conformance Level 1 of the
proposed OpenURL Application must support the service requests that it listed in the
container of ContextObjects in response to the initial OAIS DIP bootstrap service
request. Each such service requests results in the response of an OAIS DIP. The
syntax of the OAIS DIP is not defined by this OpenURL Application.

Conformance Level 1 of the OpenURL Application underlying Interface #2 allows for
agents to request single sets of content (each of which is packaged in an OAIS DIP) from
an information system using OAIS Content Information Identifiers. The strength of this
access interface lies in the potential it offers to be deployed across systems and
communities. Its use of the ANSI/NISO Standard provides the unique benefit of

potentially allowing the tailoring of responses to contextual information conveyed in
ContextObjects.

5.2.2 Conformance Level 2: Requesting Disseminations using NISO OpenURL

agent

list of ContextObjects

dissemination

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
svc_id=info:pathways/svc/bootstrap

OpenURL

for each DIP format

list of ContextObjects

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways &
rft.aip=AIPIdentifier &
svc_id=info:pathways/svc/bootstrap

for each AIP (version)BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways &
rft.aip=AIPIdentifier&
svc_id=info:pathways/svc/bootstrap

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways&
rft.aip=AIPIdentifier&
rft.args=ListOfAIPFragmentIdentifiers&
svc_id=info:pathways/svc/foo

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways&
rft.aip=AIPIdentifier&
rft.args=ListOfAIPFragmentIdentifiers&
svc_id=info:pathways/svc/*

Fig. 8. Sequence Diagram of Interface #2, Conformance Level 2:

Requesting Disseminations using OAIS Content Information Identifiers and NISO OpenURL

The Interface of an OpenURL Resolver compliant with Conformance Level 2 of this
OpenURL Application accepts two types of service requests. Similarly to Conformance
Level 1, both types of requests are expressed by means of a ContextObject that is
transported towards the OpenURL Resolver at baseURL OpenURL_CIID:

• The interoperable Dissemination bootstrap service request: The OpenURL

Resolver of an information system compliant with Conformance Level 2 of this
OpenURL Application supports the ‘Dissemination bootstrap’ request. This request is
conveyed as a ContextObject with the following characteristics:
• Similarly to Conformance Level 1 of this OpenURL Application, the Referent of

the ContextObject is OAIS Content Information stored (as an OAIS AIP) in the
information system. The Referent is described by means of an Identifier
Descriptor. Its value is the OAIS Content Information Identifier.

• The ServiceType of the ContextObject is a service requesting a list of all
Dissemination services that can be provided for (files of) the Content Data Object
constituting the Referent. The ServiceType is described by means of an Identifier
Descriptor with the value ‘info:pathways/svc/bootstrap’.

• The ContextObject may contain Entities other than Referent and ServiceType,
including the Requester Entity.

Again, the OAIS Content Information referenced by the Referent, may be

packaged by multiple OAIS AIPs in the Information system. Therefore, similarly to
Conformance Level 1 of this OpenURL Application, a separate process is started in
which the OpenURL Application generates a list of all OAIS AIPs that can be
provided for that given OAIS Content Information Identifier, and presents the list to
the agent. The list is expressed as an XML container of ContextObjects. Each such
ContextObject has the following charactersitics:
• The Referent of the ContextObject is an OAIS AIP containing the set of OAIS

Content Information for which the initial Dissemination bootstrap service has been
requested. The Referent is described by the combination of an Identifier
Descriptor and a By-Value Metadata Descriptor. The value of the former is the
OAIS Content Information Identifier as has been conveyed by the initial
Dissemination bootstrap service. The latter uses the aip key to convey the OAIS
AIP Identifier of the Referent. Again, the Metadata Format used to described the
Referent is identified by the KEV pair rft_val_fmt=info:ofi/fmt:kev:
mtx:pathways.

• Other Entities of the ContextObject are copied from the initial Dissemination
bootstrap request.

Once the list of ContextObjects has been received by the agent, the agent may

choose the OAIS AIP of interest and send the corresponding ContextObject back to
the OpenURL Resolver at baseURL OpenURL_CIID.

The response to this request, is a list of all dissemination services that can be
provided for the (constituents of the) selected OAIS AIP. This list is expressed as an
XML container of ContextObjects in which each individual ContextObject details a
specific Dissemination Request. The XML syntax of the container is again expressed
by the official XML Schema for the XML ContextObject Format. For each
Dissemination service available, a new ContextObject is provided. Each such
ContextObject has the following characteristics:
• The Referent of the ContextObject is a (set of) constituent(s) of the OAIS AIP for

which the initial Dissemination bootstrap service has been requested. The Referent
is described by the combination of two Descriptors: 1) an Identifier Descriptor
conveying the OAIS Content Information Identifier for which the initial
Dissemination bootstrap service was requested 2) a By-Value Metadata Descriptor
consisting of 2 keys. A first key (aip) conveys the OAIS AIP Identifier of the

OAIS AIP that has been selected by the agent in the aforementioned process. A
second key (args) carries one or more Fragment Identifiers pertaining to that
OAIS AIP. Each of those Fragment Identifiers points to a constituent (or Content
Data Object file) of the OAIS AIP. The syntax of both keys is formally defined by
the Metadata Format with identifier info:ofi/fmt:kev:mtx:pathways.

• The ServiceType of the ContextObject conveys an available Dissemination service
supported by the information system. The ServiceType could be conveyed using an
Identifier Descriptor or By-Value and By-Reference Metadata Descriptors. The
values of these Descriptors is a property of the information system. For example,
Figure 8 shows the use of an Identifier Descriptor to convey a ServiceType of the
form ‘info:pathways/svc/*’. In addition, optional By-Value Metadata
Descriptors could be added that convey arguments for the service.

• The ContextObject may contain Entities other than Referent and ServiceType.
Again, these Entities offer the potential for expressing context related information
allowing for the request of context-sensitive Dissemination Requests.

Once the list of ContextObjects has been received by the agent, the agent may

choose the ContextObject that describes the Dissemination Request of interest and
send it back to the OpenURL Resolver.

• A specific Dissemination requests supported by the information system: The

OpenURL Resolver of an information system compliant with Conformance Level 2 of
the proposed OpenURL Application must support the Dissemination Requests that it
listed in the container of ContextObjects in response to the initial Dissemination
bootstrap service request. Each such service requests results in the response of a
dissemination of (parts of) a Content Data Object packaged by the referenced OAIS
AIP; the result is returned as a MIME-typed stream.

Conformance Level 2 of Interface #2 allows for applications to request dissemination

of (parts of) a Content Data Object stored in an information system using OAIS Content
Information Identifiers. Again, the merits of this interface are related to its approach that
enables cross-community interoperability. In addition, because of its use of the NISO
OpenURL Framework, it offers the potential for requesting disseminations that take
contextual information into account.

6. The access of digital assets in real-life repositories

In current real-life digital repository and archival systems, typically a different access
interface is defined per information system. A short overview is provided below.

• aDORe [8]: In order to facilitate the retrieval of stored information from the aDORe

environment, two access interfaces are introduced.
First, the OAI-PMH Federator provides an OAI-PMH enabled interface through

which DIDL documents stored in the aDORe environment can be requested. The
identifiers of the DIDL document act as the OAI-PMH identifiers. A list of supported
packaging formats can be retrieved using a ListMetadataFormats request.
Currently, the MPEG-21 DIDL and the METS XML-based packaging formats are
supported. The documents themselves can be harvested using GetRecord and
ListRecords requests.

Second, an OpenURL Resolver is introduced through which disseminations of
constituents of Digital Items can be requested. Requests for disseminatons of
datastreams are conveyed using the identifiers of the Digital Items containing the
datastreams (represented as components/resource constructs) in question. If no
serviceType is provided, the OpenURL Resolver of the aDORe environment will, by
default, respond with an XHTML table of contents listing all constitutent datastreams
of the Digital Item as well as the services that are available for them.

• DSpace [9,10]: Currently, the only available means for accessing the DSpace system

is via its Web user interface. The Web user interface facilitates human-based access
by allowing end users to view and submit content and to perform workflow tasks on
that content. The Web user interface is implemented using both java Servlets and JSP
pages: Java Servlets receive incoming HTTP requests and handle the processing and
business logic; and forward the request to a particular JSP for display. Also, at the
time of writing, efforts are ongoing at defining a Lightweight Network Interface based
on the WebDAV protocol [27] and tailored to the DSpace Data Model. While the
DSpace WebDAV interface will allow for the (machine-based) retrieval of digital
assets stored in a DSpace repository, it does not seem to provide methods to request
versions of digital assets nor disseminations of individual datastreams. The interface
also seems to lack the contextual features that can be provided by an interface based
on the OpenURL Framework.

• Fedora [11,12]: The Fedora system defines two Application Programming Interfaces

(APIs) for accessing a Fedora repository: The Fedora-API-A and the Fedora-API-A-
LITE. The former is implemented as a SOAP-enabled web service and defines a full
blown interface for accessing digital assets stored in the Fedora repository. The access
operations include methods to retrieve packagings of Fedora Digital Objects from the
Fedora repository, and to discover and request disseminations of datastreams of a
Fedora Digital Object. The Fedora-API-A-Lite defines a streamlined version of the
Fedora-API-A and is intended to support a REST-like style of access. Both APIs are
closely interwoven with the Fedora Data Model.

Based on the OAIS mapping described in Section 3, the two cross-system interface
solutions proposed in Section 5 can be implemented for each of the above information
systems. A first set of interface is compliant with the solution described in Section 5.1
(Interface #1). This interface uses the OAI-PMH for the Order of OAIS DIPs from an
information systems. The specific properties of these interfaces can be summarized as
follows:
• The OAI-PMH identifiers exposed by each interface are OAIS Content Information

Identifiers. As depicted in Figure 2, in the aDORe, DSpace and Fedora information
systems, these identifiers correspond with the identifiers of the Digital Items, the
handles of the DSpace Items and the PIDs of the Fedora Object, respectively.

• The OAI-PMH metadata format exposed by each information system corresponds
with an OAIS DIP format. The format itself is a property of the information system.
Though, it is important to note that in order for information systems to transfer content
in an interoperable manner, a standardized and system-agnostic OAIS DIP format is
required. The semantics and structure of that format must be known by both the OAI-
PMH harvester and the OAI-PMH repository.

A second set of interface is compliant with the solution defined in Section 5.2

(Interface #2). This interface uses the NISO OpenURL framework for the Order of OAIS
DIPs (Conformance Level #1) and the request of Dissemination (Conformance Level #2)
from an information system. The specific properties of this interface can be summarized
as follows:
• The Referent Identifier Descriptor corresponds with the OAIS Content Information

Identifier of the OAIS Content Information stored in the information system. As
shown in Figure 2, in aDORe, DSpace and Fedora, OAIS Content Information
Identifiers are mapped to the identifiers of the Digital Item, the handle of the DSpace
Item and the PID of the Fedora Object, respectively.

• The aip key of the By-Value Metadata Descriptor describing the Referent conveys
the OAIS AIP Identifier of an OAIS AIP that packages the OAIS Content Information
with the OAIS Content Information Identifier specified by the Refererent Identifier
Descriptor. As depicted in Figure 2, in aDORe, an OAIS AIP Identifier corresponds
with the identifier of a DIDL document; in DSpace, an OAIS AIP Identifier is the
combination of the Handle with the file name of the METS document representing the
OAIS AIP; and in Fedora, an OAIS AIP can be uniquely identified using the
combination of a PID and a local dateTime key.

• The args key of the By-Value Metadata Descriptor of the Referent conveys a set of
Fragment Identifiers pertaining to the OAIS AIP (that has been retrieved using the
aforementioned aip key). In aDORe, DSpace and Fedora, those Fragment Identifiers
typically corrrespond with XMLIDs of a DIDL document, a METS document and a
FOXML document, respectively.

When paying close attention to the information provided in a ContextObject using the

above mapping principles, one may notice that in case of both the DSpace and Fedora

information systems, redundant information is provided. Indeed, both the Identifier
Descriptor of the Referent and the aip key of the By-Value Metadata Descriptor of the
Referent provide a DSpace handle identifier and a Fedora PID, for the DSpace and Fedora
system, respectively.

This duplication is merely caused by the fact that versions of content stored in DSpace
and Fedora repository systems do not receive identifiers that are unique within those
repository systems; but are expressed in function of the OAIS Content Information
Identifier of the content being versioned. For example, as described in Section 3 of this
paper, in the Fedora repository system, content is versioned through the assignment of a
local key that conveys a dateTime of creation or update. This key is unique within the
context of the Fedora Digital Object being versioned. The latter is uniquely identified
within a Fedora system using its PID. A version of the Fedora Digital Object is uniquely
identified within a Fedora system using the combination of the PID and a specific
dateTime key.

agent

list of ContextObjects

DIP (RDF)

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
svc_id=info:pathways/svc/dip

OpenURL

for each DIP format

list of ContextObjects

for each AIP (version)

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways&
rft.version=VersionKey&
svc_id=info:pathways/svc/dip.rdf

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways&
rft.version=VersionKey&
svc_id=info:pathways/svc/dip.*

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways &
rft.version=VersionKey&
svc_id=info:pathways/svc/dip

BaseURL(OpenURL_CIID)?
url_ver=Z39.88-2004&
rft_id=ContentInfoIdentifier&
rft_val_fmt=info:ofi/fmt:kev:mtx:pathways &
rft.version=VersionKey&
svc_id=info:pathways/svc/dip

Fig. 9. Sequence Diagram of Interface #2, Conformance Level 1 (version key):
Ordering OAIS DIPs using OAIS Content Information Identifiers and NISO OpenURL

Based on this consideration, a reality-inspired adjustment of Interface #2 can be

proposed, by replacing the aip key of the By-Value Metadata Descriptor of the Referent
by a version key (see Figure 9). The latter allows conveying a repository specific value
to distinguish between different versions of OAIS Content Information stored in that
repository. While the value of the aip key, by definition of the OAIS AIP Identifier, must
be unique within an information system, the syntax and value of the version key is
defined as a property of the information system itself. As such, the version key could

convey a value that is globally unique within the context of an information system (e.g. an
OAIS AIP Identifier) or could carry a value that is unique within the context of the OAIS
Content Information Identifier (e.g. the Fedora dateTime key).

7. Conclusion

This paper has described two formal interfaces that can be deployed across diverse
information systems. The first interface is based on the OAI-PMH; the second builds on
the NISO OpenURL Framework for Context-sensitive Services. Both interfaces use OAIS
Content Information Identifiers, as defined by the OAIS Information Model, as their
primary key.

The OAI-PMH interface defines an application-neutral interface for Ordering OAIS DIPs
from an archival system. The core characteristics of this interface are:
• The OAI-PMH identifier is the OAIS Content Information Identifier of the OAIS

Content Information packaged by an OAIS DIP.
• The OAI-PMH metadata format is an application neutral, XML-based OAIS DIP

format that serializes the requested OAIS DIP. The OAIS DIP format is considered
the OAIS Packaging Information of the OAIS DIP.

• The OAI-PMH datestamp is the date of creation of the OAIS AIP from which the
OAIS DIP is derived.

The use of the OAI-PMH as the protocol for this interface has the following attractive
features:
• The ability to selectively harvest batches of OAIS DIPs from archival systems across

systems and communities.
• The ease of implementation: OAI-PMH is a lightweight protocol for which several

software tools are readily available.
• The ability to augment the OAI-PMH record and its associated metadata using third

party XML Schemas. For example, as described by the authors in [5], W3C XML
Signatures can be included in the OAI-PMH responses to facilitate verification of
authenticity and integrity of the harvested information. Such capabilities are crucial in
a scenario in which trusted mirrors of archives need to be created. Similarly, data
providers may associate rights expressions with(in) the returned OAI-PMH metadata
to indicate how it may be used, shared and modified after it has been harvested. A
practical solution on how to convey such rights expressions in described in [28].

The interface based on the NISO OpenURL Framework facilitates responding to two
kinds of service requests: First, the Order of individual OAIS DIPs from an information
system, and second, the request of Disseminations of datastreams (aka Content Data

Object files). Both levels employ OAIS Content Information Identifiers. The core
characteristics of this interface are:
• The Referent of the ContextObject that bootstraps both requests is a set of OAIS

Content Information stored in the information system. It is specified by means of an
Identifier Descriptor that conveys the identifier of the OAIS Content Information.

• The ServiceType of the ContextObject conveys the nature of the Dissemination
Request. It is specified by means of an Identifier Descriptor that is the identifier of
the service that is requested as well as by means of an optional By-Value Metadata
Descriptor that conveys arguments for the service.

The paper also argues that the use of the OpenURL Standard for the specification of an
interface for both OAIS DIP Orders and Dissemination Requests has other attractive
features:
• The ability to Order OAIS DIPs and request Disseminations of stored content across

systems and communities.
• Because the OpenURL Standard is specified in a generic manner, it allows for the

same conceptual interfaces to be implemented in different ways as technologies
evolve. The concepts underlying the interface remain persistent over time.

• Because the ContextObject can contain other Entities that are involved in a service
request – e.g. Requester, Referrer and Resolver – it offers the potential for requesting
context-sensitive Disseminations.

References

1. International Organization for Standardization. (2003). ISO 14721:2003. Space data and
information transfer systems -- Open archival information system -- Reference model (1st ed.)
Geneva, Switzerland: Author.

2. Kahn, R., & Wilensky, R. (1995, May 13). A framework for distributed digital object services.
Retrieved from http://hdl.handle.net/cnri.dlib/tn95-01

3. van der Werf-Davelaar, T. (1999, September). Long-term Preservation of Electronic
Publications. D-Lib Magazine, 5(9). Retrieved from http://dx.doi.org/10.1045/september99-
vanderwerf

4. Joint Information Systems Committee (2005, February 19). Digital respositories Review.
Retrieved from http://www.jisc.ac.uk/uploaded_documents/rep-review-Annex2-software.pdf

5. Bekaert, J. & Van de Sompel, H. (2005, June). A Standards-based Solution for the Accurate
Transfer of Digital Assets. D-Lib Magazine, 11(6). Retrieved from
http://dx.doi.org/10.1045/june2005-bekaert

6. Lagoze, C., Van de Sompel, H., Nelson, M. L., & Warner, S. (Eds.). (2004, October 12). The
Open Archives Initiative protocol for metadata harvesting (2nd ed.). Retrieved from
http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm

7. National Information Standards Organization. (2005). ANSI/NISO Z39.88-2004: The OpenURL
Framework for Context-Sensitive Services. Bethesda, MD: NISO Press.

8. Van de Sompel, H., Bekaert, J., Liu, X., Balakireva, L., & Schwander, T. (2005) aDORe. A
Modular, Standards-based Digital Object Repository. The Computer Journal. Oxford, UK:
Oxford University Press. Retrieved from http://dx.doi.org/10.1093/comjnl/bxh114

9. Smith, M., Barton, M., Bass, M., Branschofsky, M., McClellan, G., Stuve, D., et al. (2003,
January). DSpace: An open source dynamic digital repository. D-Lib Magazine, 9(1).
Retrieved May 1, 2005, from http://dx.doi.org/10.1045/january2003-smith

10. Tansley, R., Bass, M., Stuve, D., Branschofsky, M., Chudnov, D., McClellan, G., & Smith, M.
(2003) The DSpace institutional digital repository system: current functionality. In
Proceedings of the 3rd ACM/IEEE-CS joint conference on Digital libraries (pp. 87-97). New
York, NY: ACM Press.

11. Payette, S., & Lagoze, C. (1998). Flexible and Extensible Digital Object and Repository
Architecture (FEDORA). In C. Nikolaou & C. Stephanidis (Vol. Eds.), Lecture Notes in
Computer Science: Vol. 1513 / 1998. Research and Advanced Technology for Digital
Libraries: Proceedings of the 2nd European Conference (pp. 41-60). Heidelberg, Germany:
Springer-Verlag.

12. Lagoze, C., Payette, S., Shin, E., & Wilper, C. accepted for publication). Fedora: An
Architecture for Complex Objects and their Relationships. In International Journal on Digital
Libraries. Pre-print Retrieved from http://arxiv.org/ftp/cs/papers/0501/0501012.pdf

13. Drury, G., Van de Walle, R., & Burnett, I. (Eds.). (2005, January). Text of ISO/IEC 21000-2
2nd edition FDIS (Output Document of the 71st MPEG Meeting, Hong Kong, China, No.
ISO/IEC JTC1/SC29/WG11/N6927). Retrieved from the NIST MPEG Document Register.

14. International Organization for Standardization. (2003). ISO/IEC 21000-2:2003. Information
technology -- Multimedia framework (MPEG-21) -- Part 2: Digital Item Declaration (1st ed.)
Geneva, Switzerland: Author.

15. Bekaert, J. & Van de Sompel, H. (accepted for publication). Representing Digital Assets using
MPEG-21 Digital Item Declaration. In International Journal on Digital Libraries. Pre-print
Retrieved from http://arxiv.org/ftp/cs/papers/0508/0508065.pdf

16. Van de Sompel, H., Hammond, T., Neylon, E., & Weibel, S. (2005, January 12). The "info"
URI scheme for information assets with identifiers in public namespaces. (IETF Internet-Draft,
expires on July 13, 2005) Retrieved from http://info-uri.info/registry/docs/drafts/draft-
vandesompel-info-uri-02.txt

17. MacKenzie (Ed.). (2004, July 19). DSpace Versioning Feature Summary. Retrieved from
http://simile.mit.edu/dspace-mit-docs/versioning.pdf

18. Tansley R., Bass, M., & Smith, M. (2003). DSpace as an Open Archival Information System:
Current Status and Future Directions. Lecture Notes in Computer Science: Vol. 2769. Research
and Advanced Technology for Digital Libraries: Proceedings of the 4th European Conference
(pp. 446-460). Heidelberg, Germany: Springer-Verlag.

19. The Library of Congress: The Network Development and MARC Standards Office. (2004,
July). Metadata Encoding and Transmission Standard (METS). Retrieved from
http://www.loc.gov/standards/mets/

20. Fedora Project (2005, January 26). Overview: The Fedora Digital Object Model. Fedora
Release 2.0. Retrieved from
http://www.fedora.info/download/2.0/userdocs/digitalobjects/objectModel.html

21. Fedora Project (2005, January 26). Introduction to Fedora Object XML (FOXML). Fedora
Release 2.0. Retrieved from
http://www.fedora.info/download/2.0/userdocs/digitalobjects/introFOXML.html

22. Fedora Project (2005, January 28). Fedora Content Versioning. Fedora Release 2.0. Retrieved
from http://www.fedora.info/download/2.0/userdocs/server/features/versioning.html

23. Nelson, M. L., Van de Sompel, H., Liu, X., Harrison, T.L., 7 McFarland, N. (in press)
mod_oai: An Apache Module for Metadata Harvesting. In Proceedings of the 2nd European
Conference on Digital Libraries. Preprint retrieved from
http://arxiv.org/ftp/cs/papers/0503/0503069.pdf

24. Van de Sompel, H., Hochstenbach, P., & Beit-Arie, O. (2000, May). OpenURL syntax
description, version OpenURL/1.0f - 2000-05-16. Retrieved from
http://alcme.oclc.org/openurl/docs/pdf/openurl-01.pdf

25. Consultative Committee for Space Data Systems (CCSDS) Panel 2. (2003, August). XML
structure and construction rules (CCSDS Tech. Rep. No. 727/0831XFDUv09). Retrieved from
http://www.ccsds.org/docu/dscgi/ds.py/Get/File-727/0831XFDUv09.pdf

26. IMS Global Learning Consortium. (2003, June). IMS content packaging XML binding
specification version 1.1.3. Retrieved from http://www.imsglobal.org/content/packaging/

27. Stone, L. (2005, August 26). Lightweight Network Interface. Retrieved from
http://wiki.space.org/LightWeightNetworkInterface.

28. Lagoze, C., Van de Sompel, H., Nelson, M. L., & Warner, S. (Eds.). (2005, May 3). Conveying
rights expressions about metadata in the OAI-PMH framework (2nd ed.). Retrieved from
http://www.openarchives.org/OAI/2.0/guidelines-rights.htm

